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Abstract
SARS-CoV-2 is a positive-strand RNA virus that infects humans through the nasopharyngeal and oral route causing COVID-
19. Scientists left no stone unturned to explore a targetable key player in COVID-19 pathogenesis against which therapeutic 
interventions can be initiated. This article has attempted to review, coordinate and accumulate the most recent observations 
in support of the hypothesis predicting the altered state of mitochondria concerning mitochondrial redox homeostasis, 
inflammatory regulations, morphology, bioenergetics and antiviral signalling in SARS-CoV-2 infection. Mitochondria is 
extremely susceptible to physiological as well as pathological stimuli, including viral infections. Recent studies suggest that 
SARS-CoV-2 pathogeneses alter mitochondrial integrity, in turn mitochondria modulate cellular response against the infec-
tion. SARS-CoV-2 M protein inhibited mitochondrial antiviral signalling (MAVS) protein aggregation in turn hinders innate 
antiviral response. Viral open reading frames (ORFs) also play an instrumental role in altering mitochondrial regulation of 
immune response. Notably, ORF-9b and ORF-6 impair MAVS activation. In aged persons, the NLRP3 inflammasome is 
over-activated due to impaired mitochondrial function, increased mitochondrial reactive oxygen species (mtROS), and/or 
circulating free mitochondrial DNA, resulting in a hyper-response of classically activated macrophages. This article also 
tries to understand how mitochondrial fission–fusion dynamics is affected by the virus. This review comprehends the overall 
mitochondrial attribute in pathogenesis as well as prognosis in patients infected with COVID-19 taking into account pertinent 
in vitro, pre-clinical and clinical data encompassing subjects with a broad range of severity and morbidity. This endeavour 
may help in exploring novel non-canonical therapeutic strategies to COVID-19 disease and associated complications.
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signalling

Introduction

While few of COVID-19-affected individuals displayed mild 
or no clinical symptoms, the majority of infected exhibited 
upper respiratory tract disease or even fatal pneumonic com-
plications. Acute respiratory distress syndrome, pulmonary 

oedema, severe septic shock and sometimes multi-organ 
failure are linked with the maximum rates of mortality [1]. 
Host–pathogen interactions in this regard has been intri-
cately studied for therapeutic opportunities [2]; however, in 
COVID-19 pathogenesis, comprehensive compilation of the 
vital roles of relevant intracellular signalling in an organelle-
specific manner is still missing.

Mitochondria have generally been considered to be 
one of the most important organelles of the cell owing 
to its ability to produce ATP through oxidative phospho-
rylation, housing fatty acid oxidation; Ca2 + storage and 
playing important role in innate immunity, production of 
lipids, amino acids and carbohydrates, stress management, 
autophagy, apoptosis, necrosis and so on [3]. Apart from 
that, it also participates in the biosynthesis and devel-
opment of several cofactors including heme, biotin and 
iron–sulphur (Fe/S) clusters [4]. However, with time, 
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mitochondria have been shown to play other important 
roles such as induction of apoptosis upon loss of its mem-
brane potential or inhibition of electron transport chain 
[5–7]. It is known to play a major role in reactive oxygen 
species (ROS) generation [8] which are capable of induc-
ing plethora of downstream signalling [9], instrumental 
in cellular function and autophagy in the state of cellular 
stress [10] and many other functions [11].

The crosstalk between mitochondria and severe acute 
respiratory syndrome coronavirus infection has hypoth-
esised and observed before [12]. In this scenario, with the 
recent rise of severe acute respiratory syndrome corona-
virus-2 (SARS-CoV-2) and given the importance of mito-
chondria in cellular housekeeping and stress functions, it 
was not long before a connection between mitochondria 
and SARS infection was drawn [13]. Early SARS-CoV-2 
connection with mitochondria was drawn using informa-
tion from SARS-CoV-1 outbreak in 2003 which shared 
significant sequence similarities with SARS-CoV-2 while 
simultaneously maintaining uniqueness in its manner of 
cellular infection. Both viruses belong to the beta corona-
virus genera of the Coronaviridae family and both have a 
30 kb long positive-sense RNA genome. Their spike (S) 
protein was found to have 76.2% identity and 87.2% simi-
larity and also showed antigenic similarity to some degree. 
It was observed that the SARS-CoV-1 open reading frame 
9b (ORF-9b) targeted the mitochondria to suppress the 
host innate immune system [14] and displayed the ability 
to cause cellular apoptosis through the mitochondrial path-
way [12]. Other accessory proteins of SARS-CoV-1 such 
as ORF-3a and ORF-8a were found to induce apoptosis 
via the mitochondrial pathway, while ORF-7a, associated 
with the viral replication, was discovered to be localised 
in the mitochondria [15]. These studies were used as clues 
for where to look for information on the impact of SARS-
CoV-2 on mitochondrial cellular machinery. SARS-CoV-2 
has the ability to modulate mitochondrial function and 
integrity as well as evident from the localisation of viral 
proteins and RNA in mitochondria to reside in host cell 
mitochondria which is recently termed as viral hijacking 
of mitochondria [16–18]. Not only in the primary infected 
organs like lungs or immune cells, spike protein or SARS-
CoV-2 induces significant mitochondrial pathology sys-
temically as evident from reduction in mtDNA content 
in infected microglia cells [19]. This study tried to com-
prehend the virus-mitochondrial nexus in COVID-19 dis-
ease based on experimental evidences and tried to exclude 
hypotheses and speculations based on the data related to 
previous renowned coronaviruses, namely SARS-CoV and 
MERS-CoV. This review summarises, in a comprehen-
sive approach, how SARS-CoV-2 infection affects host cell 
mitochondria in the process of pathogenesis.

Inflammatory response and mitochondrial 
redox status in SARS‑CoV‑2 infection

Cells need to maintain precise levels of ROS and reactive 
nitrogen species (RNS) as per requirement as they are used 
for signalling, while out of control levels may create trouble for 
the cells in multiple ways [20–22]. One of the ways mitochon-
drial ROS (mtROS) impacts the cell is through heightened 
inflammatory response (Fig. 1). Among the mitochondria-
associated inflammatory cascade, NLRP-3 signalling [23] 
plays a pertinent role in COVID-19 which is responsible for 
generating pro-inflammatory signals by activating cytokines 
[24, 25].

Mitochondria induces NLRP‑3 ‑based inflammatory 
response

Mitochondria generates significant amount of superoxide 
ions as a side product of the functioning of electron trans-
port chain (ETC) [26], and it plays roles in various functions 
such as apoptosis [27] in stress and viral infections [28]. 
Previous studies [29] found that bone marrow macrophages 
(BMM) stimulated with coronavirus 3a protein were found to 
induce IL-1Beta-mediated inflammatory response and owing 
to the  K+ ion channel activity of the ORF-3a, they fulfilled 
the requirement of ion channels in the activation of Nod-like 
receptor family pyrin domain containing 3 (NLRP-3) [25]. 
This pathologies were rescued by use of Mito-TEMPO [29], 
a renowned scavenger of mitochondrial ROS [30]. Recent 
studies suggest that this cascade of events is occurring in 
SARS-CoV-2 infection as well [31, 32]. How mitochondrial 
ROS generation may aid in the closely related SARS-CoV-2 
infection using NLRP-3 signalling is depicted in Fig. 1. It is 
known that with increasing age, NLRP-3-based inflammasome 
increases [33], which may explain the exacerbation of infection 
by the virus in aged patients [34]. Indeed, transcriptomic and 
proteomic study of SARS-CoV-2-infected Vero-E6 cells by 
Appelberg et al. [35], found up-regulation of NLR proteins. A 
study [36] of cell samples from SARS-CoV-2-infected patients 
found low calcium levels and altered calcium homeostasis in 
mitochondria and endoplasmic reticulum (ER). It is possible 
that this might be associated with activation of NLRP-3 as 
ER  Ca2+ channel activation is required for NLRP-3 activation 
[25] and that the closely related coronavirus protein E has been 
shown to work as a  Ca2+ ion channel and activate the NLRP-3 
inflammasome [37].

Mitochondrial ROS induces extended oxidative 
stress aggravating pro‑inflammatory response

The study by Singh et al. [38] compared gene expression 
differences between healthy and SARS-CoV-2-infected 
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Fig. 1  SARS-CoV-2-induced 
mitochondrial redox imbalance 
fuels hyper-inflammation in 
Covid-19 infection. SARS-
CoV-2 invasion in cells express-
ing ACE2 and TMPRSS2 
proteins initiates the following 
series of downstream events 
that trigger NLRP-3-mediated 
inflammatory signalling,- (i) 
heightened ROS generation 
triggering ETC leak leading 
to increased mtROS forma-
tion; (ii) mitochondrial DNA 
(mtDNA) damage; and (iii) 
stimulation of mitochondrial 
antiviral signalling (MAVS). 
Moreover, mitochondria are 
taken over by SARS-CoV-2 to 
form double-membrane vesicles 
that destabilise mitochondrial 
membrane integrity. Release 
of mtDNA and mitochondrial 
cardiolipin into the cytosol 
through disrupted mitochondrial 
membrane acts as damage-
associated molecular patterns 
(DAMPs) and in circulation 
they activate the deregulated 
hyperinflammatory state. 
Increased mtROS is noted in 
infected as well as chemokine-
activated monocytes with up-
regulation of pro-inflammatory 
genes such as TNF-α, IL-6 and 
IFN-Alpha, beta and gamma as 
well as shift towards glycolytic 
metabolism with compromised 
mitochondria generating mtROS 
and Hypoxia inducible factor-
1alpha. In SARS-CoV-2-in-
fected cells mtROS-associated 
mitochondrial dysfunction and 
mtDNA leak leads to activa-
tion of TLR9 and NF-kB, 
and release of inflammatory 
cytokines
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lung cells and found down-regulation of genes related 
to oxygen sensing. As Castro et  al. [36], showed dis-
rupted membrane and ETC complexes, it hints towards 
greater ROS production as loss of membrane potential 
leads to ROS generation [39]. This was backed by Wang 
et al. [40], who showed higher mitochondrial ROS in 
SARS-CoV-2-infected human pulmonary alveolar epi-
thelial cells (HPAEpiC) cells compared to mock-infected 
cells of the same kind. However, extracellular increase 
of ROS was very mild compared to mitochondrial ROS 
increase. Further proteomics analysis showed that IL1-α 
was up-regulated in these cells which was annotated as a 
response to ROS. Further study by Codo et al. [41] found 
enrichment of oxidative stress-associated genes in bron-
choalveolar lavage (BAL) in severely infected patients 
and showed increased mtROS generation in SARS-CoV-
2-infected monocytes from patients using MitoSOX study. 
This prompted them to administer antioxidants such as 
mitoquinol (MitoQ) or the reductant N-acetyl cysteine 
(NAC) to the cells which were able to inhibit viral rep-
lication and prevent up-regulation of pro-inflammatory 
genes such as TNF-α, IL-6 and IFN-Alpha, beta and 
gamma. Studies suggest that SARS-CoV-2 could infiltrate 
peripheral monocytes straightaway or can activate them 
by circulating chemokines. These, in turn, becomes one 
of the primal sources of pro-inflammatory cytokines and 
chemokines accompanying poor prognosis [42] (Fig. 1).

Studies reported that mitochondrial DNA (mtDNA), if 
released into cytosol, acted as damage-associated molecu-
lar patterns (DAMPs) leading to the “cytokine storm” and 
deregulated hyperinflammatory responses and is an early 
biomarker of severe illness and mortality from COVID-
19 [43]. Higher production of anti-cardiolipin antibodies 
in COVID-19 patients [44] also pointed towards similar 
DAMP activity of mitochondrial membrane cardiolipin. 
SARS-CoV-2-infected human endothelial cell, HUVECs, 
expressing angiotensin-converting enzyme 2 (ACE2) and 
transmembrane serine protease 2 (TMPRSS2) proteins, 
have been shown to increase mtROS-associated mito-
chondrial dysfunction and mtDNA leak, leading to acti-
vation of Toll-like receptor 9 (TLR9) and NF-κB, and 
release of inflammatory cytokines. These events lead to 
endothelial cell dysfunction, possibly aggravating sever-
ity of COVID-19 [45]. Moreover, recent findings indicate 
that mitochondria are taken over by SARS-CoV-2 to form 
double-membrane vesicles. These mitochondrion-hijack-
ing vesicles destabilise mitochondrial membrane integ-
rity. This leads to release of mtDNA into circulation that 
activates immune response, which may culminate into a 
severe pro-inflammatory state [46] (Fig. 1).

Mitochondrial morphology and structural 
alteration in SARS‑CoV‑2 infection

Mitochondria are dynamic in nature and show the ability 
to divide and fuse as per the requirements of the cell. They 
have been shown to undertake fission at around 1.26 ± 1.01 
fission events per mm mitochondrion/minute [47]. Studies 
presented the importance of mitochondrial fission–fusion 
dynamics by discussing how mitochondrial fission is 
required to supply newly dividing cells with mitochondria 
while on the other hand, knockout of fusion promoting 
genes; Mfn1 and Mfn2 lead to embryo death in mice [48]. 
Mitochondrial morphological alteration and/or destabilisa-
tion of normal physiological fission–fusion dynamics of 
the organelle is instrumental in many pathological states 
as well [49].

Alteration of mitochondrial dynamics in SARS‑CoV‑2 
infection

Once SARS-CoV-2 infects the cell, it starts interfering 
with a multitude of signalling pathways which leads to 
modifications in levels of protein expression both in cyto-
sol and mitochondria which causes changes in usual mito-
chondrial morphology (Fig. 2). The effect of SARS-CoV-2 
invasion is somewhat ambiguous and includes both fuso-
genic and fissogenic responses. Early experiments running 
WGCNA (Weighted gene co-expression network analysis) 
and GeneMANIA analysis of SARS-CoV-2-infected ACE2 
expressing A549 cell lines revealed down-regulation of 
genes related to mitochondrial ribosome synthesis, mito-
chondrial complex I synthesis, translocases and mitochon-
drial fission-promoting proteins MTFP1 and SOCS6 [38]. 
Outside mitochondria, mTORC1 complex expression was 
also observed to be down-regulated which was seen as the 
primary cause behind reduced expression of mitochon-
drial fission process 1 (MTFP1) and Complex I since it 
acts as their inducer [50, 51]. It was found that reduced 
MTFP1 and suppressor of cytokine signalling 6 (SOCS6) 
expression may lead to hyper-fused mitochondria. Coro-
navirus ORF-9b was found to be localised in mitochon-
dria of artificially infected A549 cells and exhibited elon-
gated mitochondria compared to control [52]. However, 
this phenomenon was observed due to ORF-9b-mediated 
proteasomal degradation of DRP1 the principal protein 
responsible for executing mitochondrial fission, by up to 
70%. They also observed that lowered DRP1 levels lead 
to somewhat impaired MAVS-induced IFN-β response and 
suggested that ORF-9b ubiquitinated DRP1 to reduce the 
protein. This, however, goes against the general trend that 
mitochondrial fusion enhances MAVS-mediated signalling 
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and subsequent IFN activation [52]. It has also been shown 
that hyper-fusion up-regulates NF-κB activation [53]. 
Recent study by Krishnan et al. [54] observed gradually 
decreasing mtDNA copy numbers with increasing sever-
ity in patients which hinted towards mitochondrial fusion 
as a compensatory response. This was backed by a dry 
laboratory study [55] that checked for mitochondrial tran-
scriptomic response to the infection, found that mtDNA 
gene expression levels to be mostly constant or somewhat 
down-regulated. Nuclear-encoded mitochondrial genes 
such as mitochondrial ribosomal and ETC-related genes 
also appeared to be down-regulated. However, contrarian 
evidence was provided by Wang et al. [44], who observed 
mitochondrial fragmentation using transmission elec-
tron microscopy in SARS-CoV-2-infected HPAEpiC and 
HULEC-5a cells. Similarly, confocal imagery by Lei et al. 
[56] yielded images of fragmented mitochondria in pul-
monary arterial endothelial cells (PAEC) upon treatment 
with S1 protein. The viral-load and active multiplication 
creates a stressful environment interfering with a plethora 
of signalling, functions and metabolism of the cell. It was 
observed that SARS-CoV-2 ORF3a overrides autophagy 
impairing ER homeostasis to induce ER stress [57]. It 
could be relevant to note that the duration of stress in cell 
plays a role in whether the mitochondria is in a fused or 

fragmented as Lebeau et al. [58] found that ER stress ini-
tially caused mitochondrial fragmentation, followed by 
fusion and then fragmentation again after the stress per-
sisted for 24 h (Fig. 2A).

Alteration of mitochondrial membrane 
in SARS‑CoV‑2 infection

The mitochondrial membrane integrity post SARS-CoV-2 
infection was found to be hampered. Serological study in 
SARS-CoV-2 patients with cardiomyopathy and thrombo-
cytopenia found anti-cardiolipin IgA antibodies, suggesting 
mitochondrial impairment post SARS-CoV-2 infection [36]. 
It is known that cardiolipin helps attach ETC proteins to the 
mitochondrial membrane [59]. Not surprisingly, the study 
by Soria-Castro et al. [36] also found ETC Complex II and 
IV in the cytosol and outside mitochondrial outer matrix, 
thus hinting at lack of mitochondrial structural integrity and 
ETC disruption. Ehrlich et al. [60] also showed loss of mito-
chondrial membrane potential in their primary lung cells 
expressing individual viral proteins with ORF-3a causing 
a 45% decrease in the organelle’s membrane potential. A 
study [61] aimed at understanding impact of SARS-CoV-2 
on pregnant women, found differential expression of genes 
related to mitochondrial membrane permeability and ETC 

Fig. 2  Modification of mitochondrial structure and dynamics in 
SARS-CoV-2 infection. A SARS-CoV-2-infected cells revealed 
down-regulation of mitochondrial fission-promoting proteins MTFP1 
and SOCS6 [38] leading to hyper-fused mitochondria. ORF-9b medi-
ates proteasomal degradation of important fission protein DRP1. 
mtDNA copy number decreases with increasing severity in patients 
that in turn triggers mitochondrial fusion. In some cases in contrast, 
mitochondrial fragmentation is evident in HULEC-5a cells and in 

pulmonary arterial endothelial cells (PAEC) upon treatment with S1 
protein. Based on the duration of stress mitochondria stays is in a 
fused or fragmented state. Fissogenic response along with ER stress 
initially causes mitochondrial fragmentation, followed by fusion and 
then fragmentation again if the stress persists for longer periods. B 
Mitochondria of the infected cells are found to be significantly thin-
ner with swollen cristae and condensed matrix
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in ACE-2 ( +) and TMPRSS-2 ( +) syncytiotrophoblasts 
compared to its ACE-2 ( − ), TMPRSS (-) counterparts. It 
is important to remember that ACE-2 ( +) and TMPRSS ( +) 
cells are more susceptible to SARS-CoV-2 infection and thus 
warrants further study of the interplay of the mitochondrial 
membrane regulating genes pre and post infection.

Alteration of mitochondrial intra‑structure 
in SARS‑CoV‑2 infection

Study by Cortese et al. [62] found greater intracristal space 
and matrix density in infected Calu-3 cells observed under 
FIB scanning electron microscope compared to control. 
They also found the mitochondria of the infected cells to be 
significantly thinner (Fig. 2B). Their study revealed that the 
mitochondria were displaced from their usual locations and 
were found to be accumulated in the surrounding of viral 
dsRNA containing double-membrane vesicles (DMV) which 
are formed in infected cells. This was supported by Nardacci 
et al. [63] conducting study on status of lipids, who found 
that under electron microscope, SARS-CoV-2-infected Vero 
cells showed mitochondria with swollen cristae and unu-
sual morphology. They also found the mitochondria to be 
in close contact with lipid droplets which were formed after 
the cells were infected with the virus. Such contact sites 
were also seen in electron microscopic analysis of lung tis-
sue cells of the virus-infected patients. It is relevant to note 
that such DMV regions are also known as viral replication 
organelles as they are used for + ssRNA viral replication in 
host cells [64]. Soria-Castro et al. [36] too observed loss of 
mitochondrial matrix and disruption of outer mitochondrial 
membrane in cardinal cell samples from infected patients. In 
their unpublished work under review, RNA-seq analysis of 
infected human bronchial cells by Ehrlich et al. [60] showed 
enrichment of lipid metabolism genes. It is, thus, possible 
that such contact sites may have been created to fuel the 
energy requirements of the cell under stress as lipid droplets 
have been known to interact with mitochondria during cell 
starvation for oxidation of lipids with greater efficiency [65].

Alteration of mitochondrial  Ca2+ signalling 
and intra‑organellar crosstalk in SARS‑CoV‑2 
infection

An interaction study [66] found that there were 18 interac-
tions between SARS-CoV-2’s ORF3a, M protein and mito-
chondria-associated membrane (MAM), the region of ER 
responsible for vesicle transportation to mitochondria. The 
MAM acts as a connective tissue between the ER and mito-
chondria and plays an important role  Ca2+ cycling between 
the two organelles [67]. The study by Lee et al. [66], via 
Contact-ID, a technique used to detect changes in organelles 
by checking for biotinylation, found that ORF3a expressing 

HEK293 cells displayed more biotinylated proteins com-
pared to control leading to the conclusion that ORF3a 
induced significant changes in MAM’s proteome. They 
also showed increased MAM formation after expression of 
ORF3 and hypothesised that the increased MAM allows for 
transport of the cytosolic calcium to mitochondria released 
from the ER as ORF3a has been shown to be a calcium ion 
transporter [68]. Using Gene Ontology (GO) and western 
blotting, Davis et al. [69] found non-structural proteins nsp2 
and nsp4 to be enriched in MAMs. They observed interac-
tions of nsp2 and nsp4 with ERLIN1/2 complex and prohibi-
tions which are functional in regulating  Ca2+ signalling from 
ER to mitochondria. This allowed them to hypothesise that 
the non-structural proteins manipulate proteins in the MAM 
to increase  Ca2+ uptake by mitochondria as ERLIN1/2 is 
known to degrade ER  Ca2+ receptors used in MAM forma-
tion [70]. Furthermore, it was observed that nsp2 interacted 
with STOML2 which is associated with increasing ATP 
synthesis [71], while nsp4 interacted with LONP1 which 
is known for conducting mitochondrial protein chaperone 
activities [72]. It is relevant to note that the Hepatitis C 
virus, also a positive-strand RNA virus, has demonstrated 
the ability to cause leakage of  Ca2+ due to ER stress which is 
then taken up by surrounding mitochondria [73]. The same 
Hepatitis C virus study discovered that when Hepatitis C 
ORFs expressing UHCVcon-57.3 cells were treated with a 
mitochondria-specific  Ca2+ uniporter inhibitor, ruthenium 
red, many of the pathologic alterations in the mitochondria 
such as inhibition of ETC complex I, loss of mitochondrial 
membrane potential, ROS homeostasis loss, conditions also 
observed in mitochondria during SARS-CoV-2 infection, 
were brought back to normal.

Mitochondrial energetics, metabolism 
and SARS‑CoV‑2 infection

Mitochondria, aptly called “the powerhouse of the cell”, are 
the location which deals with energy requirements of the 
cells. While glycolysis itself occurs in the cytosol, its end 
products heading for the TCA cycle move to the mitochon-
dria wherein the NADH produced are utilised by ETC to 
create ATP. Lipid oxidation occurs in mitochondria as well.

Down‑regulation of mitochondrial function 
and associated genes

Early studies [74], in May 2020 using hierarchical clustering 
of proteome analysis of infected cells over time also found a 
cluster of genes associated with carbon metabolism were dif-
ferentially expressed. RNA-Seq-mediated differential gene 
expression analysis revealed that, in SARS-CoV-2-infected 
nasopharyngeal cells, mitochondria-related genes were 
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predominantly down-regulated in infected cells [38]. Recent 
studies have confirmed that SARS-CoV-2 can take over host 
mitochondria to manipulate metabolic pathways in their 
favour [17, 75–77]. In one of such investigations, metabolic 
shift to glycolysis and high levels of mitokines, e.g. FGF-21 

in peripheral blood mononuclear cells (PBMCs) owing to 
mitochondrial dysfunction and subsequent energy deficit in 
COVID-19 patients was noted [78] (Fig. 3). Owing to greater 
morbidity associated with diabetes in SARS-CoV-2-infected 
patients [79], the patients studied by Castro et al. [36] to 

Fig. 3  Representative events suggestive of impairment of mitochon-
drial function and metabolism in SARS-CoV-2 infection. RNA-
Sequencing analysis of SARS-CoV-2-infected nasopharyngeal cells 
shows that expression of mitochondria-related gene were largely 
down-regulated in infected cells. Metabolic alteration to glyco-
lysis and high levels of mitokine generation, e.g. FGF-21 in PBMCs 
induce mitochondrial dysfunction leading to ETC suppression and 
higher glucose transporter GLUT-1 expression suggestive of higher 
glucose catabolism in COVID-19 patients. RNA-seq data also found 
enrichment of glucose metabolism genes. Intracellular flux analysis 
showed spike proteins caused reduction basal mitochondrial respira-

tion, ATP production along with increased glycolytic capacity in vas-
cular endothelial cells. Targeted transcriptomics data showed impair-
ment of mitochondrial OXPHOS and antioxidant gene expression due 
to heightened mtROS which alleviates HIF-1α, known to induce gly-
colysis, in tissue samples of nasopharyngeal, heart, kidney and liver. 
Bronchoalveolar lavage (BAL) monocytes from infected patients had 
higher HIF-1alpha target genes such as GLUT-1, phosphokinase/fruc-
tose bisphosphatase (PFKFB-3) and pyruvate kinase (PKM-2) and 
showed greater HIF-1alpha expression, which is known to induce and 
repress mitochondrial oxygen consumption and probable down-regu-
lated TCA cycle genes
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understand carbon metabolism in SARS-CoV-2-infected 
patients showed higher lactate and plasma glucose levels 
which was hypothesised to have occurred due to low aerobic 
respiration in mitochondria on account of disrupted ETC and 
loss of membrane potential which is also known to cause 
ROS generation [39]. The study by Ehrlich et al. [60] using 
RNA-seq data also found enrichment of glucose metabolism 
genes. Using seahorse flux analysis, Lei et al. [56] showed 
spike proteins in vascular endothelial cells lowered basal 
mitochondrial respiration, ATP production, increased glu-
cose induced glycolysis and maximised glycolytic capac-
ity (Fig. 3). This was backed by Krishnan et al. [54] who 
also found up-regulated levels of glucose and lactate in mild 
patients along with alterations of a series of metabolites in 
COVID-19 patients compared to healthy cases suggestive 
of higher glycolysis/gluconeogenesis metabolism as well 
as toxic metabolic deregulation in SARS-CoV-2 infection 
in Calu-3 cells (Table 1). However, this change was seen 
only in Calu-3 cells, which are lung epithelial cells but not 
seen in Caco-2 and Huh-7 cells, indicating that different cell 
types may show different alterations in carbon metabolism 
upon the viral infection. Most recent targeted transcriptome 
analysis revealed impairment of mitochondrial OXPHOS 
and antioxidant gene expression in clinical samples of 
nasopharyngeal, heart, kidney and liver tissues, which was 
correlated with enhanced mtROS which stabilises HIF-1α 
[80], which is known to induce glycolysis [81] and repress 
mitochondrial oxygen consumption [82] as well. The study 
also confirms with the help of clinical autopsy samples that, 
with reducing viral load, mitochondrial integrity is rescued 
that repairs tissue damage. However, this rescue mechanism 
fails in case of overwhelming damage to mitochondria in 
multiple organs like heart, kidney, and liver ultimately lead-
ing to death. Table 1 summarises the series of alteration 
in the mitochondria-associated metabolic profile of host in 
SARS-CoV-2 infections.

Up‑regulation of glycolysis is coupled 
with suppression of mitochondrial OXPHOS

To understand the effects of glycolysis on the viral repli-
cation rate, Bojkova et al. [74] infected Caco-2 cells with 
the virus and then treated them with 2-deoxy-D-Glucose, 
an inhibitor of hexokinase and found that nontoxic con-
centrations of 2-DG prevented SARS-CoV-2 replica-
tion in the cells. Similar studies also reported a 50-fold 
decrease in infectivity of the virus in Calu-3 cells when 
treated with 2-DG [54]. The role of glycolysis and HIF-
1alpha allowed Icard et al. [86] to hypothesise that the 
Warburg effect might play a positive role in enhancing 
SARS-CoV-2 replication in infected cells by promoting 
PI3/ALT/mTOR pathway. Early studies by Gassen et al. 
[89] found down-regulated AMPK in SARS-infected 
VeroFM cells and indicated high levels of mTORC1 by 
checking levels of mTORC1 dependent phosphorylation 
of ULK1 in infected VeroFM cells. Transcriptomic and 
proteomic data obtained by Appelberg et al. [35] showed 
up-regulated PI3K-AKT, HIF1 and mTOR signalling 
pathways in virus-infected Vero-E6 cells (Fig. 3). How-
ever, they also raised concerns regarding its validity in 
airway cells which might be of importance as it has been 
observed [38] that SARS-CoV-2-infected ACE-2 express-
ing A549 cells, which are adenocarcinomic human alveo-
lar basal epithelial cells, show down-regulated mTORC1 
expression and hence unenhanced aerobic glycolysis. 
This was further backed by Miller et al. [55], who found 
different levels of expression of genes related to oxida-
tion–reduction across different cell lines and concluded 
that the virus’ impact may affect metabolism differently 
in different cell types. It is relevant to note that mTORC1 
has been found to have an antagonistic relationship with 
AMPK, increase GLUT1 and GLUT4 glucose transporters 
along with positive regulation of glycolysis and inhibition 

Table 1  Change in levels of metabolically important molecules in SARS-CoV-2-infected cells

Molecules Alteration 
in levels

Probable mechanism for alteration References

Lactate ⇧ Increased carbon metabolism [54]
Glucose ⇧ Increased expression of glucose transporter, GLUT1 [54]
Pyruvate ⇧ Increased glucose intake and glycolysis [54]
α-ketoglutarate ⇧ Increased glutaminolysis for SARS-CoV-2-induced anaplerotic replenishment of TCA substrate [54]
Oxaloacetate ⇧ Increased pyruvate carboxylase (PC) [83, 84]
ATP ⬇ Down-regulation of TCA cycle [56]
Citrate ⬇ Incomplete TCA, shunted for FAO, Up-regulation of ATP citrate lyase (ACLY) [83][85, 86]
Aconitate ⬇ Depression in TCA cycle, Low aconitase [85]
Serum and 

mitochondrial 
calcium

⬇ High intracellular calcium intake by virus-induced expression of permeable calcium channel [36, 87, 88]
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of glycogenesis [90], thus hinting at it potential role in 
promoting anaerobic respiration during infection.

Alteration in glycolysis‑OXPHOS equilibrium by key 
mediators in immune cells

Proteomic analysis by Codo et al. [91] also found down-
regulation of proteins associated with TCA cycle. Natu-
rally, reduced spare respiratory capacity was also seen in 
the virus-infected monocytes. This was further backed 
up by their data which showed that BAL monocytes 
from patients had higher HIF-1alpha-target genes such 
as GLUT-1, phosphokinase/fructose bisphosphatase 
(PFKFB-3) and pyruvate kinase (PKM-2) and showed 
greater HIF-1alpha expression (Fig. 3), Ehrlich et al. [60] 
proposed probable down-regulated TCA cycle genes from 
their RNA-seq data while observing an up-regulation of 
ATP citrate lyase (ACLY) which converts citrate to acetyl 
CoA indicating lipid biogenesis and adds more context 
to close interaction between lipid droplets and mitochon-
dria as described earlier. Krishnan et al. [54] also found 
similar metabolic state of mitochondria as they found 
higher surface GLUT-1 expression in  CD8+ T-cells and 
monocytes of severe SARS-CoV-2-infected patients. They 
too found lower expression levels of TCA cycle, oxida-
tive phosphorylation-associated protein levels in patients. 
However, the study by Appelberg et al. [35] saw reduced 
HIF-1alpha expression post infection.

The study conducted by Codo et al. [91] detected high 
levels of monocytes in fluid extracted from SARS-CoV-
2-infected patients through bronchoalveolar lavage (BAL) 
and used this information to study metabolic changes in 
monocytes by infecting test human monocytes with the 
virus and blocking certain pathways. When pyruvate car-
rier to mitochondria was inhibited using UK-5099, viral 
replication was unaffected in monocytes while blocking 
lactate fermentation with oxamate severely affected it 
thus suggesting that both SARS-CoV-2 replication and 
anti-SARS-CoV-2 monocyte response are energetically 
fed by anaerobic glycolysis and not mitochondrial ATP 
synthesis. Further proteomic analysis of monocytes by 
Codo et  al. [91] showed down-regulation of NDUFV 
(Complex 1), SDHA (Complex 2), COR1 (cytochrome 
c reductase), UQCRC2 (Complex 3) and ARP5PF, 
ATP5F1A, ATP5PD, F-type ATPase A and PPA2 (ATP 
Synthase). Cortese et al. [62] found decrease in ATP syn-
thase subunit 5B (ATPB5B) using FIB scanning electron 
microscopy on infected Calu-3 cells. This was backed by 
Miller et al. [55], which showed down-regulation of Com-
plex I genes (NDUFB11, NDUFB2, etc.) after infection 
across all primary cell cultures.

Mitochondrial antiviral signalling 
in SARS‑CoV‑2

MAVS or mitochondrial antiviral signalling pathway is 
responsible for eliciting innate immune response through 
mitochondria upon viral infection. The mitochondrial 
membrane-anchored mitochondrial antiviral signalling 
protein MAVS is a critical factor in cellular antiviral 
defence system.

MAVS and associated key proteins in eliciting 
inflammatory response in case of viral infection

MAVS is composed of three functional domains, a caspase 
activation and recruitment domain (CARD) at the N-termi-
nus, a proline-rich domain (PRR) and a C-terminal trans-
membrane (TM) domain [92]. It executes its function by 
the help of retinoic acid inducible gene (RIG-1), Melanoma 
differentiation associated gene 5 (MDA-5) and Laboratory 
of genetics and physiology 2 (LGP2) receptors (RIG-I-like 
receptor or RLRs) which are able to detect viral pathogen-
associated molecular patterns (PAMPs) entering the host 
cell. More specifically, RIG-I detects 5’-di/ tri-phosphoryl-
ated RNA sequences rich in poly-U whereas MDA-5 binds 
to high molecular weight viral RNA. This causes RIG-1 and 
MDA-5 present on the outer mitochondrial membrane to 
undergo conformational changes and interact with MAVS 
present on the mitochondria using its CARD domain. Upon 
receiving such activation signal, MAVS proteins oligomer-
ise and forms “MAVS signalosome” complex. Formation of 
MAVS complex is mediated by interaction with translocase 
of the outer mitochondrial membrane proteins (TOMs) lead-
ing to activation of TANK-binding kinase (TBK1) and phos-
phorylation as well as activation of IRFs. IRF-3 then associ-
ates with cytosolic chaperone heat shock protein 90 (HSP90) 
to robustly trigger a series of downstream effectors. Trig-
gered by MAVS complex, E3 ligases tumour necrosis factor 
receptor-associated factors 3 and 6 (TRAF3 and TRAF6) 
offer protection against virus by activating nuclear factor 
kappa light chain enhancer of activated B cell (NF-κB) and 
interferon regulatory factors (IRFs). Upon translocation to 
nucleus, NF-κB initiates pro-inflammatory cytokine gene 
expression and IRFs increase production of interferons [93] 
(Fig. 4). A succinct review by Koshiba [94] describes how 
MAVS form homo-dimers which interact with multiple mol-
ecules belonging to TRAF family, TRAF-associated NF-κB 
activator, receptor interacting protein 1 and so on which lead 
to downstream signals to the mitochondria to finally activate 
the NF-κB which goes on to activate Type I interferons and 
other pro-inflammatory signals.
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SARS‑CoV‑2 ORF‑9b acts as a key molecular 
stimulus in alteration of MAVS signalling to impair 
inflammatory response

Research conducted by Yin et al. [95] indicated that MDA-5 
and MAVS knockout lung epithelial cells showed greater 
viral infection and lower IFN response as opposed to RIG-1 

knockout cells, essentially highlighting the importance of 
MDA-5 over RIG-1 in triggering the MAVS pathway upon 
detection of viral PAMPs. Coronavirus ORF-9b was shown to 
localise in host mitochondria and trigger degradation of MAVS 
and its signalling leading to hindered type 1 IFN response from 
the host. It also exhibited the ability to alter mitophagy rates 
by reducing DRP1 levels [14]. Using previously available 

Fig. 4  Alteration of Mitochondrial Antiviral signalling in SARS-
CoV-2. MAVS offer antiviral defence system with assistance of RIG-
1, MDA-5 and LGP2 receptors which are able to detect PAMPs, as 
for example viral genome (DNA/RNA), entering the host cell. This 
causes RIG-1 and MDA-5 present on the outer mitochondrial mem-
brane to undergo conformational changes and interact with MAVS 
present on the mitochondria using its CARD domain. This is followed 
by MAVS proteins oligomerisation to forms MAVS signalosome 
which is mediated by interaction with mitochondrial TOMs leading 
to activation of TANK-binding kinase (TBK1) and activation of IRFs. 
IRF-3 then interacts with cytosolic HSP90 to activate downstream 
signalling. Triggered by MAVS complex, TRAF3 and TRAF6 offer 
antiviral protection by activating NF-κB and IRFs. Nuclear translo-
cation of NF-κB initiates pro-inflammatory cytokine gene expression 
and that of IRFs increase production of interferons. SARS-CoV-2 

ORF-9b is shown to inhibit RIG-1, MDA-5, MAVS, TOM70 and 
TBK1 inhibiting downstream IRFs signalling eventually blocking 
IFN activation. M protein (ORF-5) of SARS-CoV-2 down-regulates 
MAVS related pathway as well restricting recruitment of TRAF3, 
TBK1 and IRF3 to the MAVS complex. ORF-6 of SARS-CoV-2 was 
able to prevent interferon induction by MDA-5, MAVS and TBK1. A 
non-structural protein 13 (nsp13) interact with only TBK1 impairing 
the downstream MAVS signal resulting in lower IFN-β levels. STING 
(MITA) helps activate IRF3 in MAVS upon “sensing” DAMPS like 
mitochondrial dsDNA in cytosol with help of cGAS. One of the 
sources of cytosolic mtDNA in SARS-CoV-2 infection are dysfunc-
tional mitochondria. Cellular RNF5 protein interacts with viral ORF-
3a and nsp4, to down-regulate MAVS signalling by ubiquitinating 
STING
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information from studies with coronaviruses, Wu et al. [96] 
found increased IFN-β production in wild type HEK293T 
cells when compared to RIG-1, MDA-5 and MAVS deficient 
mutant cells where IFN induction was absent. By measuring 
IFN-β1 mRNA levels and ORF-9b protein levels in Caco-2 
and HPAEpiC cells, they found barely increased IFN-β1 lev-
els. Furthermore, they found that in the absence of ORF-9b, 
SARS-Cov-2 RNA induced IFN-β1 expression in HPAEpiC 
cells. They also reported that IFN-β expression induction by 
vesicular stomatitis virus (VSV) was inhibited by ORF-9b in 
BEAS-2B, Calu-3 and HEK293T cell lines. Their study also 
discovered that ORF-9b inhibited RIG-1 and MAVS expres-
sion but not IRF3. Similarly, study by Han et al. [97] found 
SARS-CoV-2 to hinder Type 1 and Type 3 Interferon by inter-
fering with the MAVS pathway. They found that SARS-CoV-2 
ORF-9b expressing HEK293T cells showed weaker IFN-β 
and IFN-L1 induction compared to control. Using luciferase 
reporter assay, ORF-9b was shown to inhibit RIG-1 N, MDA-
5, MAVS and TBK1 luciferase reporters but not that of IRF3-
5D suggesting that ORF-9b interacts with proteins upstream 
at IRF3 and inhibits them from doing their regular signalling 
duties (Fig. 4). This was further backed by confocal micros-
copy data and co-IP which showed ORF-9b co-localisation 
and immunoprecipitation with RIG-1, MDA-5, TBK1, TRIF 
and STING [98]. They found that ORF9b was able to impair 
TBK1 phosphorylation, an effector molecule whose activa-
tion is necessary for movement of the signalling cascade from 
mitochondria to cytosol and then to nucleus for eventual IFN 
activation.

Study by Jiang et al. [99] found that the ORF-9b inter-
acted and bound strongly with TOM70. It was shown that, 
by binding to TOM70, it was able to reduce IFN responses. 
This was backed by Gao et al. [100] who found strong inter-
actions between TOM70 and ORF-9b using X-ray crystal-
lography and using the data, concluded that ORF-9b seemed 
to keep TOM70 in a rigid state (Fig. 4). It should come as no 
surprise that TOM70 has been shown to play an important 
role in activating IFN responses by interacting with TBK1 
through HSP90 for taking the signal outside mitochondria 
[101]. It could be relevant that a study of mutant TOM70 
showed lower steady state levels of Complex I, IV and V in 
mitochondria as it is involved in transport of ETC complex 
assembly-associated proteins [102]. It could be speculated 
that ORF-9b’s interaction with TOM70 alters ETC function-
ing in mitochondria by not allowing it to function normally 
as it will be shown later how SARS-CoV-2 infection affects 
the ETC in mitochondria.

Other ORFs behind modulation of MAVS signalling 
restricting proper inflammatory response

Interestingly, it has been shown that the M (ORF-5) pro-
tein of SARS-CoV-2 participates in a similar, albeit more 

focused function when compared to ORF9b where it seemed 
to lower IFN activation by down-regulating MAVS-related 
pathway [97, 103]. By using luciferase assay, Fu et al. [103] 
showed that the M protein interacted with RIG-1-CARD, 
MDA-5 and MAVS, co-IP studies showed only MAVS inter-
acted with M protein in over-expressed mammalian cell 
systems. Further co-IP studies showed M protein inhibited 
recruitment of TRAF3, TBK1 and IRF3 to the MAVS com-
plex but did not hinder interaction of RIG-1 and MDA-5 
with MAVS thus hinting its activity further downstream of 
the MAVS signalling pathway (Fig. 4). Yet another ORF, 
ORF-6 of SARS-CoV-2 was able to prevent interferon 
induction by MDA-5, MAVS and TBK1 as per luciferase 
assays conducted by Yuen et al. [104].

Lee et al. hypothesised that RNF5 interacts with ORF-3a 
[66], although the consequence of such interaction has not 
been elucidated yet. It is, however, worth noting that RNF5 
is known to regulate MAVS signalling by ubiquitinating 
MITA, a protein that helps activate IRF3 in MAVS [105]. 
STING (MITA) is a transmembrane protein residing at the 
ER, mitochondria, and mitochondrial-associated membrane 
that helps activate IRF3 in MAVS upon “sensing” cytosolic 
dsDNA with the help of cyclic-GMP-AMP (cGAMP) syn-
thase (cGAS) [106] (Fig. 4). Interaction between RNF5 and 
nsp4 has also been observed [69] (Fig. 4). It is, however, 
relevant to note that in ORF-3a of previously known corona-
viruses have been shown to down-regulate IFN-1 activity by 
inducing ubiquitination of Interferon-Alpha Receptor Subu-
nit 1 (IFNAR1) [107], as IFNAR 1 is the cognate receptor 
through which IFN-1 is activated [108].

SARS‑CoV‑2 non‑structural proteins 
behind modulation of MAVS signalling

Another interesting interaction that has been observed by 
Guo et al. [109] is that of non-structural protein 13 (nsp13). 
It has been found to interact with only TBK1 on its scaf-
fold binding domain (SBD) which is required for interacting 
with TRAFs thus inhibiting it from doing so and abruptly 
ending the downstream MAVS signal (Fig. 4). Naturally, 
over-expression of nsp13 in HEK293T cells was followed 
by lower IFN-β levels. Predicting hijacking of host de-
ubiquitination by the virus, Guo et al. checked for inter-
actions between host de-ubiquitinase and nsp13 and found 
USP13 to interact with it and observed that loss of USP13 
led to greater ubiquitinated nsp13. Addition of Spautin-1, an 
USP13 inhibitor, to host cells was seen to lead to reduction 
in nsp13 levels. A study by Xia et al. [110] also observed 
that nsp6 and nsp13 inhibited luciferase activity in lucif-
erase assay when IFN-β promoter was activated by MAVS 
and TBK1 adding another set of viral proteins that interact 
with and affect MAVS. They also found that nsp13 inhibited 
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TBK1 phosphorylation which confirmed its role blocking 
downstream of the MAVS pathway.

Comorbidities involving mitochondrial 
aetiology in COVID‑19 pathogenesis

Since outbreak, previous medical histories and existing 
health conditions have been associated with higher complex-
ities and increased risk of serious disease outcomes and mor-
tality in SARS-CoV-2 infection [111]. SARS-CoV-2 infec-
tion has been shown to have adverse effects in pregnancy. 
A placental role in protecting the foetus from SARS-CoV-2 
infection has been documented. In placentas of COVID-19 
positive mothers, mtDNA, antioxidant (e.g. CAT, GSS) and 
mitochondrial respiratory chain protein (NDUFA9, SDHA, 
COX4I1) expression were decreased [112].

Recent reports suggest that severity of the respiratory 
syndrome is exacerbated by pre-existing conditions such 
as diabetes, and renal disease, cardiovascular disorders, 
gut problems, cancer and pulmonary disorders, along with 
immunodeficiency or hyper-inflammation [113]. Since out-
break, SARS-CoV-2 infection age, in this regard, has been 
proved to be one of the most imperative prognostic factors 
culminating into lethality in contrast to younger individ-
ual having healthy mitochondria that enforces a defensive 
attribute against COVID-19 [114]. Mitochondrial dam-
age is associated with multifaceted age-related disorders 
including malfunctioning immune response which can be 
accountable to many of the poor prognosis and comorbidi-
ties and in COVID-19 [115]. Not only that, studies reported 
many environmental chemicals (ECs), malnutrition and 
enhanced socioeconomic stress can induce mitochondrial 
damage negatively affecting prognosis in COVID-19 [116]. 
Studies reported mtROS-associated abrupt activation of 
NLRP3-inflammosome, caspase-1 activity and interleukin 
have been observed in aged lung that lead to critical hyper-
inflammatory cascade [117].

Metabolic disorders such as diabetes and obesity have 
always been correlated with alteration in mitochondrial 
integrity, which recently were also proved to be inducing 
susceptibility and poor outcome in SARS-CoV-2 infection 
[79, 118–120]. Renowned metabolic disorders in association 
with lifestyle diseases like cardiovascular and liver diseases, 
which is already known to have mitochondrial aetiology 
aggravate mortality significantly in COVID-19 [121, 122].

Therapeutic strategies against COVID‑19 
involving mitochondria

Recent studies suggest that much of the alteration in the 
mitochondria can be decreased by a combined therapeutic 
strategy. The first phase of this strategy would be to lower 
the viral load that is the source and origin of the chronic 
inflammatory condition leading to severe sepsis, multiple 
organ failure and mitochondrial damage. The second phase 
should be aimed to decrease alterations in the mitochondria 
which may be lowered by the use of antioxidants such as 
melatonin and N-acetyl-cysteine that have the capacity of 
restoring and protecting the mitochondrial function [123]. 
In addition, the use of direct‐acting antivirals, in particular, 
the nucleoside/nucleotide analogues such as the remdesi-
vir, can efficiently inhibit viral replication by inhibiting the 
viral polymerase activity. However, these drugs may exert 
off‐target effects by inhibition of mitochondrial DNA poly-
merase, resulting in a reduction of mtDNA copy number 
[124]. Given the scope of our paper, we found multiple 
researchers treating cells with molecules which seemed to 
ease the stress on mitochondria of the infected cells and 
showed direct results such as reduction of viral load and 
suppression of a strong IFN response. Table 2 summarises 
the most recent mitochondria-associated therapeutic strate-
gies against COVID-19 that shows significant potential for 
future clinical studies.

Table 2  Mitochondria-associated therapeutic strategies against COVID-19

Potential molecules Mode of action References

Melatonin Address mitochondrial redox imbalance [123]
Mitoquinol Antioxidants managing mtROS [91]
Mito-TEMPO Scavenge mitochondrial superoxide and reduce mtROS [29, 91, 130, 131]
Mito-MES mitochondrial antioxidant [130]
N-acetyl cysteine Antioxidants used in restoration of mitochondrial function [91]
2-DG Glycolysis inhibition [74, 126]
Limonoids, triterpenoids Block nsp 13 [127]
Spautin 1 Inhibit USP 13 to deubiquitinate nsp 13 [109]
Ruthenium red Mitochondrial calcium uniporter inhibitor to fix calcium imbalance [129]
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As previously mentioned, SARS-CoV-2-infected cells 
thrive predominantly on glycolysis for bioenergetic demand 
because of mitochondrial respiratory dysfunction. 2-DG was 
tested and shown to restrict viral proliferation, by inhibition 
of glycolysis in infected Caco-2 cells [74]. The therapeutic 
potential of 2-DG as an antiviral in viruses like influenza 
and herpes is not new and has shown beneficial effects on 
patients and animals suffering from respiratory syncytial 
virus as appropriately reviewed [125] by Kang et al.. Given 
its role as a hexokinase inhibitor, proven safety of usage in 
other diseases, and the prognostic improvement in SARS-
CoV-2-infected cells in in vitro studies [126], 2-DG deserves 
further rigorous trials as a potential treatment for SARS-
CoV-2-infected patients.

Recent studies explored the therapeutic potential of limo-
noids and triterpenoids in inhibiting nsp-13 [127], a viral 
protein playing a role in suppressing MAVS of the host. 
Spautin-1 was shown to inhibit USP-13, a de-ubiquitinase 
of the host cell hijacked by the SARS-CoV-2 which led to 
successful ubiquitination of nsp-13 [109]. It is a relatively 
new therapeutic agent first brought to notice by Liu et al. 
[128] for its ability to inhibit USP-13. Lack of any further 
studies necessitates understanding its possible effect on viral 
replication in cells by allowing nsp13 ubiquitination.

The possibility of mitochondrial calcium homeostasis 
had been previously discussed while also observing how 
mitochondrial calcium uniporter (MCU) inhibitor ruthenium 
red had successfully restored mitochondrial morphology and 
function back to normal in HIV C-infected cells [73]. Woods 
et al. [129] identified Ruthenium265, mitoxantrone and the 
antibiotic doxycycline among many other MCU inhibitors. 
Of them, Ruthenium265 is known to offer the advantage of 
not harming energetic activities and membrane potential of 
the mitochondria. However, there is serious concern regard-
ing its toxicity in animals and therefore requires preliminary 
study on SARS-CoV-2-infected cell lines for greater infor-
mation. A combinatorial dose of 2-DG and MCU inhibitor 
together could provide much needed respite for the other-
wise stressed mitochondria and would allow it to move back 
to creating ATP through TCA cycle and ETC rather than the 
virus-preferred anaerobic glycolytic respiration.

Both mitochondrial antioxidants Mito-TEMPO and mito-
quinol have been previously used in studies to reduce mito-
chondrial oxidative stress [30], but only few studies [29, 
91] have been conducted to test their effect on the Corona-
virus family. Given the findings that mtROS is significantly 
increased compared to extracellular ROS [44], a targeted 
approach to bringing ROS levels back to normal would be 
beneficial and hence further studies with mitochondrial 
antioxidants on infected cells are required. Recent stud-
ies exploited other mitochondrially targeted antioxidants 
like mitoquinone/mitoquinol mesylate (Mito-MES), which 
showed significant antiviral activity against SARS-CoV-2 

and lower viral titre by nearly 4 log units which led to 
reduced hyper-inflammation in the host as well [130]. Not 
only might these antioxidants show positive signs as thera-
peutics, they might also provide greater insight into the role 
mtROS plays in assisting SARS-CoV-2 infection of host 
cells.

Conclusion and future perspective

SARS-CoV-2 was found to affect a plethora of structures 
and functions of mitochondria which further highlighted the 
need to study the virus’ impact on the organelle in greater 
detail. Upon infection, the organelle seemed to show signs 
of morphological alterations in its shape, structure, its inner 
cristae-matrix arrangement and hampered membrane poten-
tial. The MAVS, triggered from the mitochondria was con-
cluded to have interacted with a lot of SARS-CoV-2 pro-
teins such as the ORF-9b, ORF-3a, nsp4 and nsp13 which 
mounted a multipronged attack on the MAVS and strongly 
suppressed and cut off its activity. The virus also managed 
to cause a sudden increase in mtROS generation in the 
organelle as a by-product of its disruption of the electron 
transport chain which seemed to be manageable by mito-
chondrial antioxidants. It severely interfered and unsettled 
oxidative phosphorylation and ETC to ensure shut down of 
aerobic respiration and promotion of glycolysis and asso-
ciated anaerobic respiration. Such disruption was discov-
ered to be part of a larger scheme of the virus to hijack the 
intracellular machinery to make the cell more conducive to 
the virus. With a suppressed MAVS and aerobic glycolysis, 
SARS-CoV-2 would then go on to successfully replicate 
and spread further in the host body and elsewhere. These 
findings unboxed novel non-canonical paths for therapeutic 
interventions which has become absolute necessity recently 
worldwide to combat the deadly COVID-19 disease as well 
as to manage the comorbidities associated with it in acute 
phase as well as in long-term perspectives.
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