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Abstract

After its recognition as a distinct clinical entity, Brugada syndrome is increasingly recognized worldwide as an important cause of sudden

cardiac death. Brugada syndrome exhibits autosomal dominant inheritance with SCN5A, which encodes the cardiac sodium channel, as the

only gene with a proven involvement in 20–30% of patients. Its signature feature is ST segment elevation in right precordial ECG leads and

predisposition to malignant ventricular tachyarrhythmias. The pathophysiological mechanism of ST elevation and ventricular

tachyarrhythmia, two phenomena strongly related, is controversial. Here, we review clinical and experimental studies as they provide

evidence to support or disprove the two hypotheses on the mechanism of Brugada syndrome that currently receive the widest support: (1)

nonuniform abbreviation of right ventricular epicardial action potentials (‘‘repolarization disorder’’), (2) conduction delay in the right

ventricular outflow tract (‘‘depolarization disorder’’). We also propose a schematic representation of the depolarization disorder hypothesis.

Moreover, we review recent evidence to suggest that other derangements may also contribute to the pathophysiology of Brugada syndrome,

in particular, right ventricular structural derangements.

In reviewing these studies, we conclude that, similar to most diseases, it is likely that Brugada syndrome is not fully explained by one

single mechanism. Rather than adhering to the notion that Brugada syndrome is a monofactorial disease, we should aim for clarification of

the contribution of various pathophysiological mechanisms in individual Brugada syndrome patients and tailor therapy considering each of

these mechanisms.

D 2005 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The Brugada syndrome is characterized by sudden

cardiac death from ventricular tachyarrhythmias, in con-

junction with a typical ECG signature of ST segment

elevation in the right precordial leads [1,2]. It is inherited

in an autosomal dominant fashion. The only gene with a

proven involvement is SCN5A, which encodes the cardiac

sodium (Na) channel (INa) [3]. Brugada syndrome is a

leading cause of death among young men in East/South-
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east Asia [4,5], and responsible for a sizeable proportion of

the devastating effect of sudden death in young adults

worldwide [6,7]. With the pathophysiological mechanisms

of its signature ECG and arrhythmias being unknown, the

only effective prevention of sudden death are implantable

cardioverter-defibrillators (ICDs) [8]. Their prohibitive cost

imparts direct clinical relevance to the elucidation of the

pathophysiological basis of Brugada syndrome. Further-

more, these insights may prove invaluable in increasing

our understanding of arrhythmia mechanisms in general,

including common acquired disease. Accordingly, the aim

of this study is to review clinical and experimental studies

to clarify the pathophysiological mechanisms of Brugada

syndrome.
67 (2005) 367 – 378
d by Elsevier B.V. All rights reserved.
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2. General clinical properties

2.1. Demography

Since its recognition as a distinct subgroup of idiopathic

ventricular fibrillation (VF), Brugada syndrome is described

increasingly worldwide. The clinical presentation is hetero-

geneous, including palpitations, dizziness, syncope, and

(aborted) sudden death, although many subjects are asymp-

tomatic [9,10].

Brugada syndrome is endemic in East/Southeast Asia,

where it underlies the Sudden Unexpected Death Syndrome

[4]. It is particularly prevalent in Japan and Thailand, [5,11]

while in China and Korea the reported incidence is lower

[12,13]. In Europe, it is extensively described [14,15],

except in Scandinavian countries [16]. Although its preva-

lence is not totally resolved, [10,17,18] it represents a rare

syndrome, with an estimated 5–50 cases per 10,000 [7]. In

the USA, Brugada syndrome is also rare [19]. Arrhythmic

events occur at all ages, from childhood to the elderly [1],

with a peak around the fourth decade [20]. It is believed to

cause 4–12% of all sudden cardiac deaths and up to 20%

among patients without identifiable structural abnormalities

[6].

Strikingly, males have a higher disease prevalence,

particularly in regions where Brugada syndrome is endemic,

despite equal genetic transmission among both genders

[5,20]. Sex hormones may underlie this gender disparity

[21].

2.2. Diagnosis and ST segments

The diagnosis revolves around characteristic ST segment

elevations. However, the ST segment in Brugada syndrome

is typically highly dynamic, exhibiting profound day-to-day

and beat-to-beat variation in amplitude and morphology
V1IC2
V1IC3
V1IC4

Fig. 1. ECG from a Brugada syndrome patient showing most severe ST–T abnorm

type ST segment in second and third intercostal space (V2IC2 and V2IC3). Intermed

space (V2IC4).
[22]. Of note, accentuation of ST elevation immediately

preceding VF [23,24] links these phenomena. Two mor-

phologies of ST segment elevation exist (see Fig. 1).The

coved-type morphology is required for the diagnosis [25],

while the saddle-back type is an intermediate form that

requires confirmation using pharmacological challenge

(conversion into coved-type) or genetic analysis [26].

Pharmacological challenge utilizes class IA-IC INa blockers

(except quinidine), but not class IB [27–30]. The diagnostic

yield and safety of such tests are incompletely elucidated

and require further investigation [14,30–33].

The signature ST elevations are usually confined to leads

V1–V3, with rare occurrences in inferior or lateral leads

[34,35]. More strikingly, leads positioned cranially from V1

and V2 in the third (V1IC3 and V2IC3) or second (V1IC2 and

V2IC2) intercostal spaces often inscribe the most severe

abnormalities [36,37] (Fig. 1), as demonstrated with body

surface mapping (BSM) [38,39]. Therefore, these leads

must be scrutinized when Brugada syndrome is suspected

[25]. Similarly, these observations firmly place the right

ventricular outflow tract (RVOT) at the heart of the disease

process which underlies Brugada syndrome. Overwhelming

evidence, discussed below, indicates primary right ventricle

(RV) involvement in Brugada syndrome.

2.3. Other electrocardiographic features

Brugada syndrome is often accompanied by (atypical)

right bundle brunch block. Signs of conduction defects are

found at many levels, particularly in patients with SCN5A

mutations [40]: QRS widening [41], electrical axis deviation

[1,9,34,42,43], and PQ prolongation, presumably reflecting

prolonged HV conduction time [1,7,9,25,34,40,44]. More-

over sinus node dysfunction is reported [43,45]. In contrast,

QTc duration is generally within the normal range [7,25] but

it may be occasionally prolonged [1].
V3
V4

V2IC2
V2IC3
V2IC4

V2IC2

V2IC3

V2IC4

alities in leads overlying right ventricular outflow tract (shaded area): coved-

iate ST–T abnormalities (saddleback-type) are recorded in fourth intercostal

uest on 16 August 2022
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2.4. Types and mode of onset of arrhythmias

Sudden death results from polymorphic ventricular

tachycardia (VT) originating in the RVOT [46]. Mono-

morphic VT rarely occurs [35,47], especially in patients

taking antiarrhythmic drugs [8]. An estimated 80% of

subjects with documented VT/VF has a history of syncope

[14], caused by self-terminating episodes [8]. Supraven-

tricular tachycardias are more prevalent in Brugada syn-

drome [1,23,48–50] and atrial flutter/fibrillation is

described with a prevalence of 10–30% [51,52]. Given

the correlation between a history of atrial arrhythmias and

VT/VF inducibility during electrophysiological study

(EPS), patients with atrial arrhythmias may constitute a

population with higher risk and more advanced disease [53],

but these data are still limited [54].

Sudden death typically occurs at rest, when the vagal

tone is augmented [55], often at night [52]. Although

premature ventricular complexes (PVCs) are rare [24,56],

their prevalence increases before VF [24]. From stored ICD

electrograms, these PVCs show the same morphology as the

first VT beat, and different VT episodes are initiated by

similar PVCs in the same subject [56,57]. Further con-

firmation of the role of initiating PVCs derives from the

clinical benefit resulting from their elimination via catheter

ablation [58].

These triggering PVCs have a left bundle branch block

morphology [59], variable coupling intervals [1,6,24,56]

and endocardial mapping localizes their origin in the RVOT

[58]. No variations in QTc intervals precede VF [1,56].

However, right precordial QTc prolongation was reported

upon emergence of flecainide-induced ST elevations [60],

possibly reflecting RVOT action potential (AP) prolongation

[61]. Changes in autonomic tone [24,28], body temperature

[62], or the use of antiarrhythmic drugs [29] may modulate

VT/VF susceptibility, since they affect ST segment elevation

[27,63,64].

2.5. Evidence of a functional basis

Structural cardiac abnormalities are undetected using

routine cardiologic diagnostic tools [1,2,65]. However, fatty

replacement and RV fibrosis were reported from myocardial

biopsies and autopsies [44]. Indeed, in all hearts studied

histologically, some structural derangements were found

[44,66–68]. Still, the notion that Brugada syndrome

constitutes a functional defect gained almost unanimous

acceptance by its linkage, in 1998, to mutations in SCN5A,

which encodes the a subunit of the cardiac Na channel [3].

While SCN5A is the only gene with a proven involvement,

the subsequent discovery that the proportion of patients with

a SCN5A mutation is 30% at most [14,40], indicates a

heterogeneous genetic basis of Brugada syndrome. Linkage

to a second locus on chromosome 3p22–24 was demon-

strated (which overlaps the previously reported ARVD5

locus at 3p23) [69], but other genes still await identification.
More than 50 SCN5A mutations are linked to Brugada

syndrome [70–72]. Their common effect is INa reduction,

resulting from changes in the functional properties (gating)

of the mutant Na channels, or failure of expression in the

sarcolemma (trafficking) [73–76]. Of interest, SCN5A

mutations are also implicated in Long QT syndrome type

3 (LQT3) and Lev–Lenègre disease [71,73,77], and some

SCN5A mutations may cause combinations of Brugada

syndrome and LQT3 or Lev–Lenègre disease within the

same family or individual [78,79]. While LQT3 associated

SCN5A mutations generally increase INa during the action

potential plateau phase due to noninactivating current, those

associated with Lev–Lenègre disease or Brugada syndrome

reduce it [73]. One mutation co-segregated with Brugada

syndrome in male members in a family, but with Lev–

Lenègre disease in female members [79], mirroring the more

prevalent clinical expression of Brugada syndrome in males.

2.6. The case for reentry

General mechanisms of arrhythmias include reentry,

early afterdepolarizations (EADs), delayed afterdepolariza-

tions (DADs), and abnormal automaticity. Reentry is

regarded as the dominant mechanism in Brugada syndrome,

based on: conduction slowing, easy VT/VF induction during

EPS, and the polymorphic nature of the arrhythmias.

Although polymorphic tachycardias and tachycardia onset

during slow heart rates are also compatible with EADs,

EADs typically require QT prolongation, which is, however,

not present in Brugada syndrome; furthermore, quinidine’s

efficacy in preventing tachyarrhythmias [80,81], while also

causing QT prolongation, argues against a causative role of

EADs. DADs are even less likely: DADs typically occur

during calcium (Ca) overload, e.g., fast heart rates.

Attenuation of ST elevations by catecholamines [82]

provides further evidence against DADs, as catecholamines

generally increase Ca overload and facilitate DADs [83].

Finally, abnormal automaticity does not usually present as a

polymorphic tachycardia and exhibits a warm-up phenom-

enon, rather than the abrupt tachyarrhythmia onset seen in

Brugada syndrome.
3. Proposed electrophysiological mechanisms

The cause of ST elevation in Brugada syndrome and its

strong linkage to VT/VF remains unresolved [52]. Clearly,

pathophysiological mechanisms responsible for ST segment

changes must operate during the cardiac repolarization

phase. Also, these mechanisms must be based on INa
reduction. The proposed mechanism which presently

appears to receive the widest support, both from exper-

imental [84–87] and clinical studies [23,60,88–90],

ascribes Brugada syndrome to a primary repolarization

disorder, as it revolves around abnormal shortening of

epicardial AP duration. However, we propose that Brugada
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syndrome may involve a depolarization disorder, revolving

around conduction slowing, as put forward in other clinical

[24,50,91–95] and experimental [96] studies. Accordingly,

we here review clinical and experimental studies to analyze

whether they support the ‘‘repolarization disorder hypoth-

esis’’, ‘‘depolarization disorder hypothesis’’, or both. More-

over, we analyze whether they support other mechanisms, in

particular, structural derangements or the presence of node-

like tissues (see paragraph 8.2).
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4. The repolarization disorder model

By studying arterially perfused RV wedge preparations

of dogs, Yan and Antzelevitch developed a model to explain

Brugada syndrome as a repolarization disorder (Fig. 2)

[84,97]. This model revolves around unequal expression of

the transient outward potassium current (Ito) between

epicardium and other transmural layers. Ito drives early

repolarization. Stronger Ito expression in epicardium than in

endocardium [98,99] renders epicardium more susceptible

to the effects of reduced depolarizing force. Thus, in

epicardium, when INa is reduced (e.g., when mutants Na

channel produce reduced INa in the presence or absence of

INa blockers), a ‘‘spike-and-dome’’ AP shape arises,

manifesting as saddle-back ST elevation (Fig. 2B). To
Fig. 2. Representation of the repolarization disorder hypothesis. For ex
account for the negative T wave in coved-type ST elevation,

prolongation of epicardial AP dome is invoked, which

causes AP duration to become longer than in endocardium

(Fig. 2C). With further INa reduction, Ito repolarizes the

membrane beyond the voltage at which L-type Ca channels

(ICa-L) are activated, resulting in loss of the AP dome. This

loss is, however, heterogeneous, generating epicardial

dispersion of repolarization (Fig. 2D). This dispersion

creates a vulnerable window, which allows phase 2 reentry

[87] to cause a premature impulse, which triggers VT/VF

based on reentry between transmural layers [6,87,100] (Fig.

2E). This hypothesis requires that AP shape in endocardium

remain unaltered by INa reduction; this is explained by less

Ito expression in endocardium in many species, including

humans [86,99,101–104]. Similarly, the presence of the

ECG changes in right, but not left, precordial leads is

explained by larger Ito expression in RV than LVepicardium

[85], while the higher disease prevalence in males is

paralleled by higher epicardial Ito density in males than

females [105].
5. The depolarization disorder model

An alternative explanation for the ECG signature in

Brugada syndrome, which does not invoke fundamentally
planation see text. (Modified from Ref. [100] with permission).

scres/article/67/3/367/505399 by guest on 16 August 2022
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different AP shapes, is based on conduction delay in RVOT

(Fig. 3). The RVOT AP (Fig. 3B, top) is delayed with

respect to the RVAP (Fig. 3B, bottom). During the hatched

phase of the cardiac cycle in Fig. 3D, the membrane

potential in RV is more positive than in RVOT, thus acting

as a source, and driving intercellular current to RVOT,

which acts as a sink (Fig. 3C, a). To ensure a closed-loop

circuit, current passes back from RVOT to RV in the

extracellular space (Fig. 3C, c), and an ECG electrode

positioned over the RVOT (V2IC3) inscribes a positive

signal, as it records the limb of this closed-circuit which

travels towards it (Fig. 3C, b). Thus, this electrode inscribes

ST elevation during this phase of the cardiac cycle (Fig. 3D,

bottom, bold line). Reciprocal events are recorded in the left

precordial leads, as demonstrated using BSM [39]. Here,

current flowing from the extracellular space into RV (Fig.

3C, d) causes ST depression. In the next phase of the cardiac

cycle (following the upstroke (Fig. 3F, hatched phase) of the

delayed AP in RVOT), the potential gradients between RV

and RVOT are reversed, as membrane potentials are now

more positive in RVOT than RV. Thus, RVOT now acts as

the source, driving the closed-loop circuit in the opposite
V2IC3

V2IC3

RVOT

RV

RA

RVOT
delayed

RV
early

RVOT

RV

RRV RVOT
b

c

d

a

RV RVOT

V2IC3RVOT

RV

d

c

b

a

V2IC3

E F

A B

C D

Fig. 3. Qualitative model of the depolarization disorder hypothesis. For

explanation see text.
direction (Fig. 3E), with current now passing away from

lead V2IC3 (Fig. 3E, d), thus resulting in the negative Twave

(Fig. 3F, bottom, bold line). Note that in Fig. 3D and F, the

delayed AP of RVOT is abbreviated in comparison to RV

AP (and in comparison to Fig. 3B, where APs of isolated

cells are shown), as electrotonic interaction between RV and

RVOT (which is present when RVand RVOT are electrically

well-coupled) accelerates repolarization of RVOT AP (the

mass of RV strongly exceeding that of RVOT) [106].

This qualitative model of ST elevation in Brugada

syndrome derives from the mechanism believed to cause

ST elevation in regional transmural ischemia, where large

differences in membrane potential exist between ischemic

and nonischemic zones [107]. Similar to regional ischemia,

where premature beats which trigger reentrant tachyarrhyth-

mias originate in the border zone between areas with

disparate membrane potentials, the first beat of the

ventricular tachyarrhythmia in Brugada syndrome may

originate in the border zone between early and delayed

depolarizations [107].
com
/cardiovascres/article/67/3/367/505399 by guest on 16 August 2022
6. Evidence for the repolarization disorder hypothesis

6.1. Heterogeneity in repolarization

Clearly, proof of the repolarization disorder hypothesis

requires documentation of disparate AP duration between

transmural layers. This hypothesis relies heavily on findings

in the perfused canine RV wedge preparation which allows

simultaneous recordings of transmembrane APs from

various transmural layers, along with ECG-like electro-

grams [84,108]. Other in vitro studies provide additional

support by showing that INa blockers [87,109] and ATP-

sensitive potassium channel (IK-ATP) openers [110] worsen

transmural dispersion of APs, and that Ito blockers

ameliorate them [85,104]. However, in another isolated

canine RV preparation, these findings were only partially

confirmed [111]. While INa blockers and IK-ATP openers

were also required for ST elevations and reentrant arrhyth-

mias, and the first arrhythmia beat occurred in areas with

short recovery times (consistent with phase 2 reentry),

arrhythmias did not always involve epicardium. A closed-

chest in vivo study [61], where signature ST elevations were

created by cooling a small epicardial RVOT area, was

equally ambivalent: cooling did cause a ‘‘spike-and-dome’’

monophasic action potential (MAP) shape in epicardium,

but not endocardium, along with ST elevations, and

exacerbation of ST elevation and spontaneous VF upon

vagal stimulation. However, no loss of AP dome was

reported. Of interest, the area needed to cool was small and

confined to RVOT, mirroring the small thorax area where

signature ECG changes are often found in Brugada

syndrome patients (Fig. 1).

Validation of this hypothesis in patients is more

challenging, because it requires simultaneous electrogram
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recordings from epicardium and endocardium. Accord-

ingly, RVOT activation recovery intervals (ARIs) were

recorded using an epicardial catheter in the great cardiac

vein, at a reasonably small distance from a corresponding

endocardial catheter [88]. In this patient, during augmented

ST elevation, epicardial, but not endocardial, ARIs

shortened. In another study, MAPs were recorded from

RVOT epicardium during open-chest surgery, along with

MAPs from endocardial catheters [90]. Here, RVOT

epicardial ‘‘spike-and-dome’’ AP shapes were found; these

phenomena were neither found endocardially, nor in

control subjects. However, there was no loss of epicardial

AP dome. More fundamentally, comparison between the

ST segment morphology, which would be predicted by this

model (Fig. 2), and clinically observed ST segments (Fig.

1) reveals that the proposed changes in epicardial AP

shape/duration must take place in a very limited space.

Thus, abbreviated ‘‘spike-and-dome’’ APs in epicardium

(Fig. 2B) must be present in the fourth intercostal space,

because ‘‘saddle-back ST elevations’’ are observed there

(Fig. 1, V2IC4). Concurrently, AP lengthening with ‘‘spike-

and-dome’’ morphology in epicardium (Fig. 2C) accounts

for ‘‘coved-type ST elevation’’ in the third intercostal space

(Fig. 1, V2IC3), and nonuniform loss of AP dome (Fig.

2D) underlies more accentuated ‘‘coved-type ST eleva-

tions’’ in the second intercostal space (Fig. 1, V2IC2). This

large spatial dispersion in epicardial AP morphology

would not be expected when electrical coupling is normal.

Still, some authors suggest that ST segment and T wave

alternans after class I antiarrhythmic drugs [42,112]

support the repolarization disorder hypothesis; however,

whether this observation truly reflects a repolarization or

depolarization disorder is unresolved.

6.2. Effects of autonomic modulation

Autonomic modulation strongly affects ST elevations in

Brugada syndrome [24,28,89,113]. Parasympathetic stim-

ulation increases ST elevation, presumably by reducing ICa-L
during the AP plateau [114], rather than inducing coronary

spasm [28,89], while heart rate variability analysis revealed

an increased vagal tone preceding VF episodes [24].

Accordingly, opposing effects of sympathetic stimulation

were reported, as isoproterenol reduced ST elevation and

prevented VT/VF inducibility [28,82]. Interestingly, abnor-

mal norepinephrine recycling was identified in Brugada

syndrome [115] indicating that abnormal autonomic inner-

vation may cause ST elevation.

6.3. Effects of Ito blockade

The repolarization disorder hypothesis predicts that

removal of the transmural gradient in Ito counteracts the

pathophysiological mechanisms of Brugada syndrome,

attenuating ST elevation and VT/VF occurrence. Accord-

ingly, 4-aminopyridine, which blocks Ito, restored the AP
dome and electrical homogeneity in the canine wedge

preparation [84,100], consistent with the clinical efficacy

of quinidine, an antiarrhythmic drug with Ito blocking

properties, in normalizing the ECG pattern [28,116] and

preventing spontaneous or induced arrhythmias [80,117].

However, this effects may be due to quinidine’s anti-

cholinergic action [118,119], while prolongation of AP

duration by blockade of the delayed rectifier potassium

channel [120,121] may also act to suppress reentrant

arrhythmias.

6.4. Effects of heart rate

The observations that long RR intervals [23,50] augment

ST elevations and that VT/VF occurs at night were used as

support for the repolarization disorder hypothesis. These

observations were ascribed to slow gating kinetics of Ito,

which increase this current at slow heart rates [99].

Accordingly, pacing provided an effective therapy against

bradycardia-related VT/VF onset in a Brugada syndrome

patient [122]. Yet, ST elevations may also increase at fast

heart rates [42,112,123,124]. While particular circumstances

may be responsible (enhanced intermediate inactivation of

the mutant Na channel [123] or the use of class IC

antiarrhythmic drugs with use-dependence [42,112]), this

phenomenon was also described in the absence of such

confounders [42,112].
7. Evidence for the depolarization disorder hypothesis

7.1. General conduction slowing

Most evidence to favor the depolarization disorder

hypothesis derives from clinical studies [24,50,91–95],

with a modeling study providing further confirmation [96].

Given the numerous ECG signs of conduction slowing in

Brugada syndrome, the first studies into its pathophysio-

logical mechanisms were based on the hypothesis that it

revolves around conduction slowing and found strong

supportive evidence. Analysis of ventricular late potentials,

which reflect delayed and fragmented ventricular conduc-

tion and are strong predictors of ventricular arrhythmias

[94], has received particular attention. Late potentials are

not only highly prevalent in Brugada syndrome

[24,50,92,94,112,125], but also independent predictors of

VT/VF inducibility (as opposed to QTc dispersion and T

wave alternans) [94,95]. Noteworthy, late potentials

coincide with spontaneous ST elevation and late r’ in

V1–V3 [24], while Holter analysis of multiple sponta-

neous VF episodes shows that ST elevation—late r’ in V1

correlates with VF onset [24]. Moreover, flecainide elicits

late potentials along with ST elevations [50]. Of further

support for the role of conduction slowing, VT/VF

inducibility during EPS is associated with longer HV

intervals [126].
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7.2. Right ventricular conduction slowing

While these findings confirm the strong correlation

between conduction slowing and VT/VF in Brugada

syndrome, validation of the depolarization disorder hypoth-

esis requires that conduction delay is mapped to the RVOT.

Accordingly, epicardial electrograms were recorded from the

conus branch of the right coronary artery, which runs over

the RVOT surface [92]. Activation delay was found here, but

not endocardially. Of note, this delay increased with class IC

drug challenge. In another study [127], BSM localized areas

of conduction delay to the RVOT. Conduction delay here

increased with INa blockers and decreased after isoproter-

enol. Of interest, changes in ARIs paralleled these changes,

arguing against premature repolarization. In a study where

signal averaged ECGs were calculated from BSMs [125],

late potentials coincided with ST elevation and were mapped

to the RVOT. RV conduction delay was also demonstrated

using tissue Doppler echocardiography, as the amplitude of

ST elevation in Brugada syndrome patients correlated with

delay in RV contraction [91]. Still, some studies failed to

document delayed potentials of RV [28].
com
/cardiovascres/article/67/3/367/505399 by guest on 16 Augu
8. Evidence for other pathophysiological mechanisms

8.1. Structural disorders

Given its predominant RV involvement, some initially

considered Brugada syndrome a RV cardiomyopathy, akin to

arrhythmogenic right ventricular cardiomyopathy (ARVC),

with subtle structural abnormalities undetectable by standard

diagnostic tools [44,67,128]. Similarities between Brugada

syndrome and ARVC were further substantiated by the

discovery of SCN5A mutations in an ARVC family [129].

While linkage to SCN5A has drawn attention to functional

derangements [3], recent evidence now rekindles support for an

abnormal structural RVOT component in Brugada syndrome.

Electron beam CT scan studies revealed RV enlargement,

abundant adipose tissue [130] and RV wall motion

abnormalities whose localization correlated with the origin
RVOT

RV

RA

RV

Fig. 4. Model of depolarization disorder hypothesis with incorporation of node-lik

3, delayed activation of node-like cells causes potential gradients, resulting in co
of spontaneous PVCs following an arrhythmic event [131].

Of note, spontaneous PVCs may originate in areas where

VT/VF is most readily inducible during EPS, usually the

RVOT free wall [132]. The link between structural and

functional derangements was further tightened by an other

electron beam CT scan study, in which wall motion

abnormalities were exacerbated/provoked with a pharmaco-

logical challenge [133]. Using cardiac magnetic resonance

imaging, a sensitive tool for detection of RV structural

abnormalities [134], significant RVOT enlargement was

found in Brugada syndrome patients [135]. Also, the

explanted heart of a Brugada syndrome patient with a

SCN5A mutation and electrical storms revealed substantial

structural derangements (fatty replacement and intense

fibrosis) in the RVOT, while LV was normal [68]. This

study found no spike-and-dome configuration in RV

epicardium, but prominent conduction slowing, and VT/

VF origin in endocardium, not epicardium. These findings

argue against the repolarization disorder hypothesis and in

favor of the depolarization disorder hypothesis [68]. Finally,

the efficacy of catheter ablation in preventing VT/VF

suggests a structural basis of Brugada syndrome [58].

While these studies demonstrate a link between structural

and functional derangements in Brugada syndrome,

strengthening the tie between Brugada syndrome andARVC

[136], recent studies have raised the intriguing possibility

that the functional derangements, i.e., INa reduction, may

cause these structural derangements. A boy with compound

heterozygosity for two SCN5A mutations exhibited severe

degenerative changes in the specialized conduction system

[137], while transgenic mice with SCN5A haploinsuffi-

ciency developed cardiac fibrosis as they aged [138].

8.2. The role of slow conducting tissues

Another explanation for RVOT conduction slowing may

involve the presence of slow conducting tissues in the

RVOT, i.e., node-like tissues whose AP upstroke is ICa-L
dependent. Cardiac development may hold the key for this

premise, and explain the intriguing RVOT involvement in

Brugada syndrome. RV has a different embryological origin
RVOT RVOTRV

e cells in right ventricular outflow tract (right panel, RVOT). Similar to Fig

ved-type ST elevation.

st 2022
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Table 1

Clinical and experimental evidence to suggest the electrophysiological

mechanism of Brugada syndrome

Support for repolarization disorder hypothesis

Sodium channel blockers exacerbate/provoke ST elevations [27]

Linkage with SCN5A mutations exhibiting reduced sodium current [3]

Quinidine normalizes ECG and prevents arrhythmias [80,81,116]

More prevalent phenotype in males [5,20,105]

ST elevations are usually facilitated by slow heart rates [23,50]

ST elevations are accompanied by epicardial action potential

abbreviation [88]

‘‘Spike-and-dome’’ configuration of epicardial monophasic AP during

heart surgery [90]

ST elevation is associated with reduced ejection time of RV but not

of LV [91]

Support for depolarization disorder hypothesis

Sodium channel blockers exacerbate/provoke ST elevations [27]

Linkage with SCN5A mutations exhibiting reduced sodium current [3]

ECG signs of general conduction slowing: axis deviation, PQ/QRS

prolongation, sinus/AV node dysfunction [1,9,34,40,42–45]

High prevalence of late potentials [50,92,94,112,125]

Late potentials indicate increased risk of arrhythmic events [94,125]

Flecainide induces greater QRS widening in Brugada s. patients than

controls [29]

Conduction delay in right ventricular outflow tract (body surface

mapping) [24,127]

Longer HV interval predicts VT/VF inducibility [126]

ST elevation correlates with delay in right ventricle contraction [91]

Arrhythmogenic area is confined to small RVOT region (initiating PVCs,

VT/VF inducibility, efficacy of catheter ablation) [58,132]

Structural derangements, including fibrosis, in histological studies in

Brugada Syndrome patients [44,67,128,136]

Progression of ECG abnormality localized in the area overlying the RVOT

[36–39]
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than LV [139], and the outflow tract derives from the same

group of cells that compose the atrioventricular region, thus

possessing slow conduction properties [140,141]. While

these node-like cells are essential for peristaltic blood

movement in the embryonic heart which has yet to develop

cardiac valves [142], remnants of these cells may constitute

the substrate for arrhythmias originating in the RVOT [143].

We here propose that these cells may be incorporated into

the depolarization disorder hypothesis in Brugada syndrome

(Fig. 4, right panel). This would not only explain RVOT

conduction slowing, but also the observation that the most

severe ST elevations are present in RVOT leads (Fig. 1,

V2IC2 and V2IC3), as these cells are localized close to the

pulmonary valve [143]. Furthermore, it would explain

suppression of ST elevation and arrhythmias by isoproter-

enol, as isoproterenol-induced enhancement of ICa-L
increases conduction velocity in these cells. Conversely,

smaller ICa-L expression in males than females [144] may

explain higher disease prevalence in males.
9. Synthesis

Clearly, no single clinical or experimental study reviewed

here provides irrefutable proof of one hypothesis regarding
the pathophysiology of Brugada syndrome while rejecting all

other hypotheses. For instance, if Brugada syndrome were

only a depolarization disorder or repolarization disorder, it is

not understood why subjects who take flecainide do not all

have Brugada syndrome ECGs, as INa reduction sets off both

hypotheses. Other derangements (possibly secondary to the

primary derangement) seem necessary. For instance, fibrosis

may be secondary to INa reduction, and lead to electrical

uncoupling. Clearly, uncoupling would not only facilitate

slow conduction, thereby supporting the depolarization

disorder hypothesis, but may also be required for the

repolarization disorder hypothesis, because, while this

hypothesis revolves around strong electrophysiological

heterogeneity within the ventricular wall [86,104,145],

in vivo studies have raised doubts on the presence of

large heterogeneity when electrical coupling is normal

[106,146,147].

In conclusion, clinical and experimental studies provide

ample evidence to support the depolarization disorder

hypothesis in Brugada syndrome, as well as the repolariza-

tion disorder hypothesis (Table 1). Similar to most diseases,

it is likely that Brugada syndrome is not fully explained by

one single mechanism. While most studies reviewed here

provide evidence to support either hypothesis over the other,

no study provides irrefutable proof against either hypothesis.

Moreover, recent studies highlight the role of other

pathophysiological derangements, e.g., fibrosis. The insight

now emerges that we must move away from the notion that

Brugada syndrome is a monofactorial disease, because

adhering to this notion may hinder the development of

rational and effective therapies. Rather, we should perhaps

aim for clarification of the contribution of each mechanism

in individual Brugada syndrome patients, so as to render

rational and effective therapy, tailored to each of these

mechanisms, a realistic aim in the near future.
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