Pathophysiology of atopic dermatitis: Clinical implications
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ABSTRACT

Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Genetic predisposition, epidermal barrier
disruption, and dysregulation of the immune system are some of the critical components of AD. An impaired skin barrier may
be the initial step in the development of the atopic march as well as AD, which leads to further skin inflammation and allergic
sensitization. Type 2 cytokines as well as interleukin 17 and interleukin 22 contribute to skin barrier dysfunction and the
development of AD. New insights into the pathophysiology of AD have focused on epidermal lipid profiles, neuroimmune
interactions, and microbial dysbiosis. Newer therapeutic strategies focus on improving skin barrier function and targeting
polarized immune pathways found in AD. Further understanding of AD pathophysiology will allow us to achieve a more
precision medicine approach to the prevention and the treatment of AD.

(Allergy Asthma Proc 40:84-92, 2019; doi: 10.2500/aap.2019.40.4202)

Atopic dermatitis (AD) is the most common chronic

inflammatory skin disease." The U.S. prevalence
of AD was reported to be 11.3-12.7% and 6.9-7.6% in
children and in adults, respectively.” The Hanifin and
Rajka criteria and the American Academy of Derma-
tology Consensus Criteria are useful diagnostic tools
based on features of AD.>* AD severity can be assessed
by using validated methods such as Scoring Atopic
Dermatitis or the Eczema Area and Severity Index.’

Although the pathophysiology of AD is not com-
pletely understood, numerous studies demonstrated
that skin barrier dysfunction and immune dysregula-
tion contribute to the pathobiology of AD.*~® The epi-
dermis plays a crucial role as a physical and functional
barrier, and skin barrier defects are the most significant
pathologic findings in AD skin."*!° Filaggrin (FLG),
transglutaminases, keratins, and intercellular proteins
are key proteins responsible for epidermal function.
Defects in these proteins facilitate allergen and micro-
bial penetration into the skin.’™!

Skin barrier dysfunction has been considered to be
the first step in the development of atopic march as
well as AD.”'? However, it is also now evident that
immune dysregulation, including the activation of type
2 immune responses, results in impairment of the epi-
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dermal barrier.”>® Recently, new insights into the
pathophysiology of the development of AD focused on
an important role of abnormalities in epidermal lipid
layer as well as neuroimmune interactions and micro-
bial dysbiosis."”?° These factors have been used to
develop novel therapeutic and preventative strategies
of AD. This review addressed recent insights into the
pathophysiologic mechanism of AD and the clinical
application of these factors for improved treatment and
prevention of AD. This work was supported by Na-
tional Institutes of Health (grant AR41256). J. Kim and
B. Eui Kim contributed equally to the article.

GENETICS

The filaggrin (FLG) gene is located on chromosome
192, and encodes FLG (filaggrin protein), which is a ma-
jor structural protein in the stratum corneum (SC).** Pro-
FLG polymers are proteolytically cleaved and dephos-
phorylated into FLG monomers, which are associated
with the aggregation of keratin filaments and the for-
mation of SC."* The generation of FLG degradation
products, urocanic acid and pyrrolidine carboxylic
acid, contributes to SC hydration and acidic pH of
skin.'* It is well known that FLG null mutations impair
skin barrier function and increase the risk of AD.*'?*
FLG mutations, particularly homozygous mutations,
are associated with an increased risk of severe AD with
earlier onset, longer persistence, and skin infec-
tions.>**** Approximately 10% of European popula-
tions are heterozygous carriers of FLG mutations,
which results in a 50% reduction in expressed pro-
tein.?> However, the pathophysiology of AD goes far
beyond FLG mutations. For example, Japanese and
Korean patients have a lower frequency of FLG muta-
tions than do patients in Western populations.'*?* Fur-
thermore, ~40% of subjects with FLG-null alleles do
not show characteristics of AD, and most of the pa-
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tients with AD and with FLG mutations eventually
outgrow the disease.”

Polymorphisms of various immune pathway genes
are associated with an increased risk of AD through
alternations in the T-helper (Th) type 2 signaling path-
way.?!?® Upregulation of interleukin (IL) 4 and IL-13
lowers FLG expression, which leads to skin barrier
defects.””*®* A gain of functional polymorphisms of
type 2 cytokine receptors (IL-4R and IL-13R) are also
implicated in AD pathogenesis.®** Other immune-
related genes that contribute to the development of AD
include IL-31, IL-33, signal transducer and activator of
transcription (STAT) 6, thymic stromal lymphopoietin
(TSLP) and its receptors (IL-7R and TSLPR), interferon
regulatory factor 2, Toll-like receptor 2, and high-affin-
ity IgE receptor (FceRI) a gene in specific popula-
tions.?'*?°%  Additionally, recent studies demon-
strated that vitamin D receptor polymorphisms and
cytochrome P450 family 27 subfamily A member 1
(CYP27A1) variant are associated with AD.**?> CYP27A1
is known to be involved in the metabolism of vitamin D3,
which plays an essential role in immune modulation.*

Epigenetic mechanisms are heritable and can regu-
late gene expression without changing the DNA se-
quence.”® There is increasing evidence that demon-
strates that environmental exposures induce epigenetic
changes and AD through DNA modification and mi-
cro-RNA-mediated posttranscriptional regulation.”*>°
A recent study provided evidence for the importance
of DNA methylation and showed the relationship be-
tween umbilical cord blood methylation at 5'-C-phos-
phate-G-3’ sites of IL-4R and the development of AD at
1 year of age.”” DNA methylation in one adjacent CpG
site of FLG was reported to have a significant interac-
tion with FLG sequence variants and association with
the increased risk of eczema,®® whereas another study,
which used buccal cells, could not show the relation-
ship between methylation of the FLG promoter and
gene expression and allergic diseases.”® Furthermore,
hypomethylation of TSLP and FceRI vy promoters con-
tributes to gene overexpression in patients with AD.?

IMMUNE DYSREGULATION

Previous studies showed that type 2 immune cyto-
kines, e.g., IL-4 and IL-13, play important roles in
chemokine production, skin barrier dysfunction, sup-
pression of antimicrobial peptides (AMP), and allergic
inflammation.'>*’ Interestingly, IL-31 was reported to
enhance the release and production of brain-derived
natriuretic peptide and to coordinate cytokine and
chemokine release from skin cells, thereby inducing
itch in patients with AD.*! In addition, TSLP is highly
expressed in the epidermis of patients with AD, and its
production is triggered by exposure to environmental
factors such as allergens, microorganisms, diesel ex-
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haust, cigarette smoke, and chemical irritants.'>*>*

When using skin tape samples, a Korean birth cohort
study showed elevated expression of TSLP in the skin
of 2 month-old infants before the development of clin-
ical AD at 24 months of age.*

Although blockade of type 2-driven inflammation
improves AD symptoms, the pathogenesis of AD is not
exclusively explained by Th2 immunity. In this regard,
IL-17 has been reported to reduce expression of FLG
and involucrin.*>*® More prominent Th17 activation
was observed in blood and acute AD skin lesions in
Asian patients compared with European-American pa-
tients.*” In addition, AD is classified as the extrinsic
and the intrinsic type, and production of IL-17 cytokine
is higher in intrinsic AD with normal immunoglobulin
E levels than in extrinsic AD.*® IL-22 is also highly
upregulated in the skin of patients with AD and is
associated with skin barrier dysfunction and abnormal
epidermal markers, such as keratin 6 and keratin
16.*7°! In particular, transition to the chronic phase is
manifested by the start of Th1-cell activation as well as
the sustained activation of Th2 and Th22 cells (Fig.
1).°2°3 Of interest, tumor necrosis factor « in combina-
tion with Th2 cytokines altered the expression of early
and terminal differentiation products and reduced the
level of long-chain free fatty acids (FFA) and ester
linked w-hydroxy (EO) ceramides.'”*

Recent studies showed that skin-resident group 2
innate lymphoid cells (ILC2) play a role in the patho-
genesis of AD. ILC2s were found to produce IL-5 and
IL-13, which result in the development of an AD-like
skin lesion.”** Similarly, human skin ILC2s are highly
enriched in lesional skin of patients with AD and acti-
vated by the epithelial cell-derived cytokines such as
IL-25, IL-33, and/or TSLP.”>*° This leads to the pro-
duction of type 2 cytokines and skin allergic inflam-
mation.”>° In contrast, epidermal ILC2s are inhibited
by E-cadherin, and its downregulation recent studies
showed that skin-resident.”

NEUROIMMUNOLOGIC MECHANISMS

A subset of sensory neurons that express histamine
H, receptor and histamine H, receptor is activated by
histamine, which can cause itch as well as allergic
inflammation.”” H, antihistamines have been widely
used for the treatment of itch due to urticaria, but its
effects are limited in the treatment of chronic itch in
patients with AD. Recently, much interest has focused
on the role of histamine-independent itch signaling
pathways in which TSLP and type 2 cytokines, such as
IL-4, IL-13, and IL-31, stimulate neurons expressing
transient receptor potential cation channel subfamily A
member 1 and afferent neurons via its receptors and
Janus kinase (JAK) family, respectively.'” Of note,
IL-31 induces sensory nerve elongation and branching,
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Figure 1. Effects of cytokines on epidermis in AD. Disrupted epidermal barrier and environmental triggers stimulate keratinocytes to release
IL-1B, IL-25, IL-33, MDC, TARC, and TSLP, which activate dendritic cells and Langerhans cells. Activated dendritic cells stimulate Th2
cells to produce IL-4, IL-5, IL-13, IL-31, and IL-33, which leads to barrier dysfunction, decreased AMP production, impaired keratinocyte
differentiation, and itch symptoms. Chronic AD is characterized by recruitment of Thl, Th22, and Th17 subsets, which results in epidermal
thickening and abnormal keratinocyte proliferation. AD = atopic dermatitis; AMP = antimicrobial peptide; DC = dendric cell; IFN =
interferon; IL = interleukin; KC = keratinocyte; LC = Langerhans cell; MDC = macrophage-derived chemokine; S100A = S100
calcium-binding protein A; Th = T-helper type; TARC = thymus and activation-requlated chemokine; TSLP = thymic stromal

lymphopoietin.

which supports its role that involves sensitivity to min-
imal stimuli and sustained itch in patients with AD.*®
In addition, the activation of STAT3 in the astrocytes of
the spinal dorsal horn has been reported to be involved
in chronic pruritus via the generation of lipocalin-2.>

EPIDERMAL DYSFUNCTION

IL-4, IL-13, IL-31, IL-33, and high-mobility group box
1 downregulate the production of epidermal barrier
proteins, including FLG, keratins, loricrin, involucrin,
and cell adhesion molecules.'*'>%°~¢> A damaged epi-
dermal barrier not only leads to the development of
AD but also heightens sensitization to allergens and
contributes to the risk of Food allergy (FA) and airway
hyperreactivity.”'> Impairment of skin barrier function
at birth and at 2 months, as evaluated by transepider-
mal water loss (TEWL), can precede clinical AD by 12
months of age.”> Moreover, increased TEWL in the
early newborn period is associated with a higher inci-
dence of FA at 2 years of age, which supports the
concept of transcutaneous allergen sensitization.**
Defects in epidermal barrier proteins, such as FLG,
transglutaminases, keratins, and intercellular proteins, fa-
cilitate dysregulated immune responses to external anti-
gens and drive skin and systemic inflammatory re-
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sponses (Table 1).%'° FLG is highly downregulated in
both lesional and nonlesional skin of patients with AD.®

Recently, McAleer et al.°® demonstrated that FLG
breakdown products in the first year of life are lowest
in the cheek compared with the elbow and the nasal
tip, and the slowest to achieve maturity levels, which
supports the importance of FLG on the pathogenesis of
infantile AD. In that study, FLG processing enzymes
such as bleomycin hydrolase and calpain-1 were also
increased at cheek skin by 1 month of age.** This may
explain the predilection for AD at the cheeks initially in
early childhood. Epidermal FLG levels are also reduced
by environmental factors, including low humidity, sun-
burns, diesel exhaust particles, and skin irritants.®”%® In
addition, loricrin and involucrin are downregulated by
overexpression of Th2 cytokines through a STAT6-
dependent mechanism in AD skin.®” Corneodesmosin
(CDSN) and tight junctions play a central role by sup-
porting the adhesion between corneocytes and the in-
tegrity of the skin barrier as an intercellular protein.”®”°
A recent study showed that CDSN was downregulated
by IL-4, IL-13, IL-22, IL-25, and IL-31 in human kera-
tinocytes, and the penetration of vaccinia virus was
enhanced in a CDSN-deficient skin model.*’ In addi-
tion, claudin 1-deficient mice were reported to die
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Table 1 Epithelial skin dysfunction in atopic dermatitis

Penetration of allergens and microbes

Epithelial Dysfunction Abnormalities Effects
Cornified envelope proteins Decreased expression of filaggrin, | Skin hydration
transglutaminases, keratins, 1 Skin pH
loricrin, involucrin, and 1 Penetration of allergens and microbes
intercellular proteins 1 Proinflammatory cytokines
| Inflammatory threshold levels
Tight junctions Reduced claudins | Skin hydration
T TEWL
\
\

Antimicrobial peptides

Microbiome

Epidermal lipids

Decreased cathelicidin (LL-37)
and human B-defensins

S. aureus colonization and
decreased bacterial diversity

Decreased long-chain free fatty
acids and ceramides

Skin infections

1 Cytokine production

| Expression of filaggrin, loricrin,
desmocollinl, and keratins

1 Proinflammatory cytokines

1 Skin infections

1 TEWL

1 S. aureus infections

| = decreased; 1 = increased; TEWL = transepidermal water loss; S. aureus = Staphylococcus aureus.

within 1 day of birth with wrinkled skin appearance
and severe dehydration, which provides good evi-
dence for the essential role of claudin for the skin
barrier function.”?

AMPs, including cathelicidin (LL-37) and human
B-defensins, are produced by keratinocytes and play a
pivotal role for host defense as well as control of host
physiologic functions, such as inflammation and wound
healing.”> AMP expressions are inhibited by Th2 cyto-
kines, which are highly produced in AD skin.”* The de-
creased expression of AMPs is associated with a higher
predisposition to Staphylococcus aureus colonization,
which can aggravate AD.” It has been reported that
human B-defensins and LL-37 are chemoattractants for
T lymphocytes, monocytes, dendritic cells, and neutro-
phils, and can induce cytokine production by mono-
cytes and epithelial cells.”®”” These immunomodula-
tory properties of AMPs have important roles for host
defense against infections through activation of im-
mune cells as well as their direct antimicrobial activity.

LIPIDS

Lipids, such as ceramides, long-chain FFAs, and cho-
lesterol, constitute the lipid matrix that is organized in
lamellar bodies and located between corneocytes.”®
During epidermal differentiation, precursor lipids are
stored in lamellar bodies within the upper cell layers of
the epidermis and extruded into the extracellular do-
main.”” Subsequent enzymic processing produces the
major lipid classes, which are necessary to maintain the
integrity of the epidermal barrier. Altered lipid com-
position is observed in lesional and nonlesional AD
skin.* In particular, long-chain EO ceramides are es-
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sential because they are covalently bound to cornified-
envelope proteins and cover the surface of each cor-
neocyte.”” Th2 cytokines reduce levels of long-chain
FFAs and EO ceramides with a STAT6-dependent
manner.'”'®?% The levels of long-chain ceramides were
decreased in patients with AD and who were colonized
with S. aureus when compared with those who were
not colonized. TEWL was negatively correlated with
levels of these ceramides.*

MICROBIOME

AD skin has decreased bacterial diversity associated
with increased Staphylococcus, Corynebacterium, and
with reduced Streptococcus, Propionibacterium, Acineto-
bacter, Corynebacterium, and Propionibacterium during
AD flares.""®* Greater bacterial diversity with in-
creased abundance of Staphylococcus epidermidis and
Streptococcus, Corynebacterium, and Propionibacterium
species was observed after AD treatment and reduced
eczema.®” Species-level investigation of AD has shown
a higher predominance of S. aureus in patients with
more-severe disease and an abundance of S. epidermidis
in patients with less-severe disease.*”> S. aureus colo-
nizes AD skin and has pivotal roles in the development
and exacerbation of AD.** S. aureus can induce T-cell-
independent B-cell expansion; upregulate proinflam-
matory cytokines, such as TSLP, IL-4, IL-12, and IL-22;
and stimulate mast cell degranulation, which results in
Th2 skewing and skin inflammation.®>®®

A recent study demonstrated that epidermal thick-
ening and expansion of cutaneous Th2 and Th17 cells
were induced when mice were exposed to S. aureus
isolates from patients with AD.*> Of note, methicillin-
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resistant S. aureus colonization on AD skin is associated
with lower microbial diversity and a more profound
reduction in the composition of commensal bacteria,
such as Streptococcus and Propionibacterium, than meth-
icillin-sensitive S. aureus colonization.® It is presumed
that the differences and shifts in skin microbiome ac-
cording to AD status are associated with the produc-
tion of bacteriocins and AMPs from commensal bacte-
ria.”*”! In addition, a recent study showed a positive
correlation between the abundance of propionibacteria
and corynebacteria on epidermis and long-chain un-
saturated FFAs, such as FA20:1, FA20:2, FA22:1, and
FA24:1.°* These findings highlight the importance of
the balance between S. aureus and commensal bacteria.

Patients with AD have significantly lower numbers
of intestinal commensal Bifidobacterium and higher
numbers of Staphylococcus than healthy control sub-
jects.” Overgrowth of pathogenic bacteria, such as
Escherichia coli and Clostridium difficile, is postulated as
being associated with a decrease in beneficial bacteria,
reduced induction of regulatory T (Treg) cells, loss of
immune tolerance, and increased intestinal permeabil-
ity.”** These observations support the hypothesis that
specific microbial composition in the gut prevented
Th2-shifted immunity and stimulated regulatory im-
munity, producing regulatory dendritic cells and Treg
cells.”®®” However, further studies are necessary to
elucidate how dysbiosis affects epidermal barrier func-
tion and the development of AD.

CLINICAL APPLICATION

Frequent application of appropriate moisturizers,
such as physiologic lipid mixtures and ceramide-dom-
inant lipid, is known to help reduce TEWL, enhance
skin hydration, decrease bacterial colonization, and im-
prove skin barrier function, which leads to decreased
need for topical corticosteroid."”®” Petrolatum appli-
cation has been reported to upregulate AMPs; induce
key barrier differentiation markers, e.g., FLG; and re-
duces T-cell infiltration in AD skin.”® Of note, regular
application of emollients has been reported to reduce
the risk of AD development as a primary prevention
strategy in infants at high risk."””'"" In addition, a
recent study demonstrated that topical application of a
liver X receptor agonist (VIP-38543) improved epider-
mal differentiation and lipids in patients with mild-to-
moderate AD.'”

Topical calcineurin inhibitors, such as tacrolimus and
pimecrolimus, inhibit calcineurin-dependent T-cell acti-
vation, which leads to downregulation of proinflamma-
tory cytokines.” Systemic immunosuppressants, includ-
ing cyclosporine, methotrexate, and azathioprine, are
used in patients with severe and difficult-to-treat symp-
toms.” However, these drugs have limitations and ad-
verse reactions. Therefore, various biologics to target po-
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larized immune pathways have been newly developed
for patients with moderate-to-severe AD. Although
omalizumab did not show beneficial effects to treat
AD,'®"* dupilumab, a humanized monoclonal antibody
(mAb) to block IL-4 and IL-13, has been approved by
the Food and Drug Administration.'”'* Clinical effi-
cacy of dupilumab occurred without significant safety
concerns in adult patients with AD.'*'% Clinical trials
are also underway with dupilumab in pediatric pop-
ulations (NCT02407756, NCT02612454, NCT03054428,
NCT03346434, NCT03345914). Because the upregula-
tion of Th17 and Th22 cytokines have been identified in
patients with AD, the blockade of these pathways is
being investigated by using secukinumab and a human
monoclonal antibody against interleukin-22 (ILV-094;
NCT02594098, NCT01941537). Moreover, Guttman-
Yassky et al.'"” reported that an anti-IL-22 mAb (fez-
akinumab) showed clinical improvement in patients
with severe AD.'"””

A recent study also showed clear trends of therapeu-
tic effects of ustekinumab, which is an IL-12/IL-23p40
antagonist, to suppress Thl, Th17, and Th22 immune
activation in adults with moderate-to-severe AD.'*®
However, there was no significant difference between
treatment and placebo groups in that study.'*® Another
Japanese study also did not demonstrate meaningful
efficacy of ustekinumab on AD,'” although it is known
to be effective for psoriasis."'® Nemolizumab (anti-IL-
31R mADb), lebrikizumab (anti-IL-13 mAb), and traloki-
numab (anti-IL-13 mAb) revealed promising results.'
Other biologic agents, such as Bristol-Myers Squibb-
981164 (anti-IL-31 mAb), Tezepelumab (anti-TSLP
mADb), and MK-8226 (anti-TSLP receptor mAb), are
studied and may offer a range of new therapeutic
options of AD. In addition, topical tofacitinib (JAK1/
JAK 3 inhibitor) and oral baricitinib (JAK1/ JAK2 in-
hibitor) were reported to have reduced skin inflamma-
tion and pruritus in patients with AD.'""!''?

Although topical and systemic antibiotics have been
used to eradicate bacteria from AD skin, long-term use
has limitations due to the induction of resistant micro-
organisms and the negative impact on host commensal
bacteria. Recent studies reported that a bleach bath is
effective for the restoration of skin microbiome and the
treatment of AD."">''"* However, a recent meta-analy-
sis did not show its additional benefits compared with
water bath alone.'” Interestingly, Nakatsuji et al.''®
found targeted autologous skin microbiome transplan-
tation of S. hominis and S. epidermidis decreased S.
aureus from AD skin. Another recent study showed
that the topical transplantation with Roseomonas mucosa
improved AD severity and reduced Staphylococcus au-
reus colonization.""”

Recent studies demonstrated that appropriate probi-
otics are beneficial in the prevention and treatment of
AD through the modulation of host immune re-
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Figure 2. Prevention and treatment of AD. Skin barrier defects are the initial steps in the development of AD. Moisturizer prevents skin
barrier defects and inhibits Staphylococcus aureus colonization in the skin. Oral probiotics may prevent the development of AD and correct
gut microbial dysbiosis. Various biologics, e.g., dupilumab, target immune dysregulation. Antibiotics, bleach batch, and skin microbiome
transplantation inhibit S. aureus colonization and improve cutaneous dysbiosis. AD = atopic dermatitis; Th = T helper.

sponses.’®'!811? However, there have still been contro-
versies regarding these clinical effects of probiotics in
patients with AD, which might be due to a difference
in the strains of probiotics and the characteristics of the
host. It is noteworthy that the response to probiotics is
greater in patients with an immunologically active
state characterized by high total immunoglobulin E
levels and increased expression of transforming growth
factor B and Treg cells.”® Analysis of these emerging data
indicated that identification of adequate AD phenotypes
for the specific therapeutic option could be a key to
achieve a good clinical outcome (Fig. 2).

CONCLUSION

Multiple factors, including epidermal gene muta-
tions, skin barrier dysfunction, immune dysregulation,
neuroinflammation, altered lipid composition, and mi-
crobial imbalance, can contribute to the development
of AD. Various strategies have been used to restore
skin barrier function and control skin inflammation in
patients with AD. To overcome limitations of topical
anti-inflammatory drugs and systemic immunosup-
pressants, substantial effort has been committed to the
development of new therapeutic options, including bi-
ologics and microbiome transplantation. In addition,
moisturizers and probiotics may prevent the develop-
ment of AD in infants at high risk. Further advances in
our understanding of AD pathophysiology will allow
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us to achieve a precision medicine approach to the
prevention and the treatment of AD.
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