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Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of

several antineoplastics. It can lead to detrimental dose reductions and discontinuation

of treatment, and severely affects the quality of life of cancer survivors. Clinically,

chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor,

and autonomic function which develop in a glove and stocking distribution due to

preferential effects on longer axons. The pathophysiological processes are multi-factorial

and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis,

axon degeneration and membrane remodeling as well as immune processes and

neuroinflammation. This review focusses on the commonly used antineoplastic

substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere

with the cancer cell cycle—leading to cell death and tumor degradation—and cause

severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action

and pharmacokinetic disposition relevant to the development of peripheral neuropathy,

the epidemiology and clinical presentation of chemotherapy-induced neuropathy,

emerging insight into genetic susceptibilities as well as current understanding of the

pathophysiology and treatment approaches.
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INTRODUCTION

Chemotherapy-induced peripheral neuropathy (CIPN) is an adverse effect of many
chemotherapeutic agents and a major cause of ongoing pain in cancer survivors (Farguhar-
Smith and Brown, 2016). There are six main substance groups that cause damage to peripheral
sensory and motor neurons, resulting in development of CIPN: the platinum-based antineoplastics
(particularly oxaliplatin and cisplatin), the vinca alkaloids (particularly vincristine and vinblastine),
the epothilones (ixabepilone), the taxanes (paclitaxel, docetaxel), the proteasome inhibitors
(bortezomid) and immunomodulatory drugs (thalidomide). The high success rate of these drugs
in cancer treatment has led to a steady increase in the survival rates of patients. Consequently, the
number of cancer survivors suffering from neuropathic pain conditions is rising as well. Overall,
approximately 68% of patients receiving chemotherapy develop CIPN within the first month
of treatment (Seretny et al., 2014), the development of which is related to both single as well
as cumulative drug doses. Additionally, various conditions like pre-existing nerve damage, for
example in diabetic patients, can be linked to an increased risk of developing CIPN.
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Although the mechanisms of action andmolecular target(s) of
these chemotherapeutic agents are diverse and include both DNA
and microtubular targets to arrest cell division and induce cell
death, the pathobiology of chemotherapy-induced neuropathy,
irrespective of the causative agent, shares some important
similarities. Notably, CIPN is characterized by predominantly
sensory axonal peripheral neuropathy (Quasthoff and Hartung,
2002) that typically develops in a “stocking and glove” type
distribution, with longer axons affected first (Han and Smith,
2013). The histopathological changes associated with CIPN
commonly involve large myelinated fibers, although bortezomib-
induced neuropathy also involves small fibers (Cata et al., 2007;
Wilkes, 2007; Gutierrez-Gutierrez et al., 2010). These changes to
themorphological andmolecular physiology of peripheral nerves
result in the development of sensory andmotoric symptoms such
as hypersensitivity to mechanical stimuli or distal weakness due
to mechanisms which are not entirely understood.

The symptoms of CIPN can be severe; management with
common analgesic approaches are often unsatisfactory;
and despite increasing insights into the underlying
pathophysiological mechanisms, the development of CIPN
is currently not preventable. Thus, the increasing incidence of
CIPN is a highly relevant and growing clinical issue that leads
to dose reduction, changes to less effective chemotherapeutic
agents or even cessation of the therapy resulting in suboptimal
cancer treatment (Areti et al., 2014). This review focusses on the
commonly used antineoplastic substances oxaliplatin, cisplatin,
vincristine, docetaxel, and paclitaxel which interfere with the
cancer cell cycle, leading to cell death and tumor degradation,
and cause severe acute and chronic peripheral neuropathies.

CANCER CHEMOTHERAPY: DRUG
MECHANISM OF ACTION AND
METABOLITES

The mechanism of action of chemotherapeutic agents that lead
to potent effects on tumor cell proliferation and cell death are
well-studied and relatively well understood (Figure 1). However,
it is not entirely clear whether these (mostly) desirable effects
on rapidly proliferating cells are also responsible for causing
undesirable effects on non-proliferating sensory neurons, or
whether additional pharmacological effects contribute to the
development of CIPN. While many chemotherapeutic agents
can cause peripheral neuropathy, this is not a universal
feature of all such compounds, suggesting that at least
some additional mechanisms likely contribute. For example,
carboplatin affects predominantly the hematopoeic system, while
cisplatin and oxaliplatin both cause CIPN, albeit with different
symptomatology. Similarly, while all vinca alkaloids can cause
CIPN, this side effect is most common with vincristine, and less
common with vinblastine, vinflunine, and vinorelbine (Grisold
et al., 2012). These effects cannot be solely explained by different
drug potencies, metabolites and pharmacokinetic properties.
Nonetheless, the pathophysiology of CIPN is likely multi-
factorial and contribution of at least some specific anti-cancer
mechanisms, discussed below, is probable.

Oxaliplatin and Cisplatin
The platinum-based chemotherapeutic agents oxaliplatin and
cisplatin, both of which are listed on the World Health
Organization’s List of Essential Medicines, are used for the
treatment of various solid tumors. Oxaliplatin is used in
combination with folinic acid and 5-fluorouracil as a part of the
FOLFOX regimen for first-line and adjuvant colorectal cancer
therapy, while cisplatin is one of the most effective treatments for
solid tumors including small cell lung cancer, testicular, ovarian,
brain, and bladder cancer. The intracellular concentration of
platinum-based antineoplastics is maintained via several active
transporters, including the copper transporter CTR1 which
mediates drug uptake (Song et al., 2004) as well as copper-
transporting ATPases that mediate efflux, such as ATP7A and
ATP7B (Safaei and Howell, 2005).

Like other platinum-based compounds, oxaliplatin and
cisplatin interfere with tumor cell proliferation via the formation
of deoxyribonucleic acid (DNA)-platinum adducts. Cisplatin is
converted to a strong electrophile after hydrolysis of its two
chloride atoms, which are displaced by two molecules of water
once the platinum complex enters the cell. Activated cisplatin
then crosslinks two purine bases (adenine/guanine) of DNA
by reacting with nitrogens at position seven of the purine
rings, thus interfering with cell division and transcription of
messenger ribonucleic acid (mRNA) (Dasari and Tchounwou,
2014). Similarly, the mono- and di-aquated oxaliplatin creates
DNA intra-strand crosslinks by binding two guanine bases or a
guanine-adenine pair of GC-rich regions of DNA (Faivre et al.,
2003). Additionally, oxaliplatin causes inter-strand crosslinks
and DNA-protein crosslinks which may contribute to the mode
of action of oxaliplatin (Zwelling et al., 1979). These DNA
mono- and bi-adducts in turn inhibit DNA replication and
transcription, a fatal effect on cells in the S-phase of the cell cycle
(when chromosomes are replicated; Alcindor and Beauger, 2011).
Oxaliplatin also inhibits DNA transcription/mRNA production
by interacting with transcription factors, inhibition of RNA
polymerases and by creating nucleosomal DNA adducts leading
to cell death (Todd and Lippard, 2009). In addition, activation
of the immune system may be involved in the anticancer
effects of oxaliplatin, with production of interferon γ by T-
cells and resultant immunogenic cell death via TLR4 activation
observed in both murine and human colon cancer cells (Tesniere
et al., 2010). Likewise, cisplatin causes additional non-genomic
effects including the production of reactive oxygen species
resulting in alteredmitochondrial function and activation of both
intrinsic and extrinsic apoptosis pathways. Cisplatin also affects
calcium signaling pathways and the function of several protein
kinase families, including the MAPK (mitogen activated protein
kinases), JNK (c-Jun N-terminal kinase o), PKC (protein kinase
C) and AKT (serine/threonine kinases) leading to cell death
(Dasari and Tchounwou, 2014).

A unique feature of oxaliplatin is its rapid non-enzymatic
transformation to the reactive dichloro 1,2-diaminocyclohexyl-
platinum complex and oxalate which occurs via replacement
of the oxalate moiety with chloride ions in the blood plasma.
Indeed, the generation of the oxalate metabolite is one of the few
features distinguishing oxaliplatin from cisplatin, and has been
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FIGURE 1 | Mechanism of action of vincristine, paclitaxel, oxaliplatin and cisplatin. Anti-tumor mechanism of action of vincristine, paclitaxel, oxaliplatin and cisplatin

leading to cell arrest and cell death. (A) Vincristine prevents microtubule aggregation, whereas paclitaxel prevents microtubule disaggregation, an effect leading to

cancer cell division arrest and cell death. (B) Oxaliplatin and cisplatin bind to nuclear DNA (deoxyribonucleic acid) of cancer cells, causing disruption of DNA replication

and RNA (ribonucleic acid) transcription and subsequent arrest of cancer cell division. The DNA adducts activate apoptotic pathways that induce cell death and tumor

degradation. (C) All four anti-tumor agents alter the function of mitochondria, followed by disruption of respiratory chain function and increased production of reactive

oxygen species (ROS). Additionally, oxaliplatin and cisplatin cause damage to cancer cell mitochondria by binding to mitochondrial DNA, altering mDNA replication

and transcription. (D) All four agents cause activation of immune cells, an effect likely contributing to tumor cell degradation. Only a few representative immune

cell-types are shown.

proposed as one mechanism accounting for the differences in
clinical presentation—most notably the presence of cold-induced
neuropathy after treatment with oxaliplatin, but not cisplatin.
However, a contribution of oxalate to oxaliplatin-induced cold
pain has not been shown consistently (Deuis et al., 2013), and
it is plausible that additional metabolites—including platinum
complexes that bind to cellular proteins—may contribute to the
development of CIPN.

Vincristine
Vincristine is one of the most important antineoplastic
substances used for chemotherapy of several childhood and

adult tumors, and is—administered by intravenous infusion—
a component of several different chemotherapy regimens
(e.g., MOPP, COPP and BEACOPP regimen for therapy of
Hodgkin’s disease). While the mechanisms of vincristine
transport into the cell are still unclear, a carrier-mediated
transport mechanism characterized by Michaelis-Menten
kinetics, temperature dependence and competitive inhibition
was demonstrated in different murine leukemia cells (Bleyer
et al., 1975). The adenosine triphosphate (ATP) binding cassette
(ABC) transporter family, ABCB1, ABCC1, ABCC2, and ABCC3
contribute to vincristine efflux from the cell cytosol and to the
development of cancer cell resistance to the therapy (Huang
et al., 2006). Additionally, a relationship between cholesterol and
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phospholipid levels and vincristine uptake into murine leukemia
cells has been demonstrated, showing that increased levels of
cholesterol and phospholipids in the cell membrane accounts for
lower vincristine accumulation (Pallares-Trujillo et al., 1993).

Vincristine binds to the β-subunit of tubulin and inhibits
microtubule formation. The microtubules are cytoskeletal
proteins that are involved in several important cell functions,
for instance the regulation of cell shape, mitosis, chromosome
segregation, cell division and retrograde as well as anterograde
cellular transport. The proper function of microtubules depends
on a balance between permanent aggregation and disaggregation
of the α- and β-tubulin subunits. Therefore, the disruption
of microtubule aggregation by bound vincristine can lead to
mitotic arrest and cell death (Gan et al., 2010). The structure
of the catharnine ring of the vinca alkaloids seems to be
important for binding to axonal and cytoskeletal microtubules.
Vinorelbine, composed of an eight-membered catharnine ring,
shows a preference in binding to mitotic spindles over axonal
microtubules, resulting in decreased neurotoxicity compared to
vincristine, which is composed of a nine-membered catharnine
ring (Gregory and Smith, 2000).

Paclitaxel and Docetaxel
Paclitaxel and docetaxel belong to the family of taxanes;
chemotherapeutic agents used in the treatment of breast,
prostate, lung, pancreatic, gynecological and other solid tumors
that act by inhibiting disassembly of tubulin from the
microtubule polymer. However, despite a similar mechanism
of action, subtle differences in their molecular pharmacology,
pharmacokinetics and pharmacodynamics result in distinct
clinical effects. Docetaxel binds to tubulin with greater affinity
than paclitaxel, and causes cell cycle arrest in the S rather
than G2-M phase junction as is the case for paclitaxel (Dorr,
1997). Both compounds do not cross the blood-brain-barrier
(BBB), although paclitaxel is accumulated in dorsal root ganglion
neurons—which lie outside the BBB—via largely unknown
mechanisms (Cavaletti et al., 1997, 2000; ten Tije et al.,
2004; Wozniak et al., 2016). Both paclitaxel and docetaxel
are extensively metabolized, via cytochrome P 2C8 and 3A4,
respectively, albeit pharmacological activity of these metabolites
is modest at best and their contribution to the development of
CIPN is unknown.

Cancer Chemotherapy-Induced Peripheral
Neuropathy: Epidemiology and Clinical
Presentation
Chemotherapy-induced neuropathy is a common, dose-
dependent side effect of many antineoplastics that not only
leads to dose reduction or discontinuation of treatment, but also
severely reduces the quality of life of patients (Bodurka-Bevers
et al., 2000; Grisold et al., 2012). While the incidence of CIPN
is compound-specific (Seretny et al., 2014), it also depends
on patient co-morbidities and can, presumably, increase with
concomitant treatment with other neurotoxic drugs (Johnson
et al., 2015), although this effect has not been systematically
investigated. Invariably, the percentage of patients suffering

from CIPN as well as the severity of the condition increases with
the (cumulative) dose (Dougherty et al., 2004; Seretny et al.,
2014). Accordingly, the incidence of CIPN approaches nearly
100% for some agents at higher doses (Seretny et al., 2014),
although differences in the definition, evaluation and reporting
of peripheral neuronal deficits can lead to large variability in
the reported occurrence. Notably, many studies rely on detailed
clinician-administered grading scales or patient-reported
outcomes using a range of questionnaires developed to evaluate
the development of CIPN, while more objective assessments
such as nerve conduction studies, nerve excitability studies, or
quantitative sensory testing are used more rarely (Park S. B. et al.,
2013). Importantly, CIPN is viewed by many clinicians as an
unavoidable side effect of cancer chemotherapy, and one that is
acceptable in light of the often greatly extended life-span offered
by these chemotherapeutic agents (Cavaletti et al., 2011). In
contrast, patients often view CIPN as a particularly troublesome
side effect of cancer treatment that interferes significantly with
their quality of life (Jones et al., 2015).

Clinically, CIPN presents as deficits in sensory, motor, and
autonomic function which develop in a compound-specific
manner (Park S. B. et al., 2013). Sensory symptoms usually
develop first in the feet and hands—reflective of the axon
length, with longer neurites affected first—and manifest as
numbness, tingling, paresthesias and dysesthesias induced by
touch, warm or cool temperatures, impaired vibration and altered
touch sensations. In addition, painful sensations including non-
evoked burning, shooting or electric shock-like pain as well
as mechanical or thermal allodynia or hyperalgesia frequently
occur (Postma et al., 1993; Sahenk et al., 1994; Becouarn
et al., 1998; Bernhardson et al., 2007). In severe cases, these
symptoms can progress to loss of sensory perception, which can
be disabling (Strumberg et al., 2002). Motor symptoms include
distal weakness, gait and balance disturbances and impaired
fine movements. While rarer than sensory symptoms, motor
impairment can progress to paralysis and cause significant
functional disruption (Hile et al., 2010; Mols et al., 2016). In
contrast, autonomic symptoms occur less frequently and may
involve orthostatic hypotension, constipation and altered sexual
or urinary function (Mols et al., 2016). With the exception of
paclitaxel and oxaliplatin, which cause an acute neuropathy that
emerges either during or shortly after infusion (Loprinzi et al.,
2011; Argyriou et al., 2013b), the onset of CIPN is usually
delayed and appears to depend on the total cumulative dose
(Maestri et al., 2005). Some chemotherapeutics cause “coasting”
of symptoms, the progressive worsening of neuropathy after
cessation of treatment, and in severe cases CIPN can develop into
an irreversible sensory neuron deficit.

Cisplatin
Cisplatin causes a wide range of side effects including ototoxicity
(hearing loss and tinnitus), nephrotoxicity, myelotoxicity and
neuropathy. One of the most dose-limiting of these is peripheral
neuropathy, which occurs in a dose- and time-dependent
manner (Ozols and Young, 1985). The onset of cisplatin-induced
neuropathy is variable, with some patients reporting the first
appearance of symptoms after the first dose, and others after
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12 cycles of therapy (Cersosimo, 1989; Vanderhoop et al.,
1990). Generally, cisplatin-induced neuropathy develops after
cumulative doses above 350 mg/m2, with approximately 92%
of patients developing neurotoxic symptoms—characterized by
tingling, numbness and mechanical and thermal hyperalgesia—
at cumulative doses of 500–600 mg/m2 cisplatin (Roelofs et al.,
1984; Thompson et al., 1984; Krarup-Hansen et al., 2007).
Cisplatin-induced CIPN affects mostly the lower and upper
limbs and includes mixed sensory and motor effects, including
loss of vibration sense and taste, paresthesia, weakness, and
tremor (Lomonaco et al., 1992; Amptoulach and Tsavaris, 2011).
Motor nerve conduction velocity measurements in patients
with decreased vibration sensitivity, loss of ankle jerks and
paresthesias showed loss of sural nerve responses (Thompson
et al., 1984), with emergence of reduced sensory nerve action
potentials and loss of large myelinated fibers at higher cisplatin
doses (Krarup-Hansen et al., 2007). The symptoms of cisplatin-
induced neuropathy may persist for several months and can
progressively worsen over time, a phenomenon called “coasting”
(Siegal and Haim, 1990). With higher cumulative doses and
longer times of exposure to cisplatin, the severity of CIPN
increases, as does the likelihood of development of a chronic,
irreversible neuropathy (Cersosimo, 1989; Gregg et al., 1992).
Chronic cisplatin-induced neuropathy—the development of
which appears to be independent of pre-treatment, vibration
perception threshold, age, sex, tumor type or co-treatment with
other chemotherapeutics—has been reported in approximately
5–20% of patients at 12 months (Hilkens et al., 1994; Hoskins
et al., 1994; Bogliun et al., 1997; Schmoll et al., 2003; Park S. B.
et al., 2013).

Several mechanisms contributing to cisplatin-induced
neurotoxicity have been suggested (Figure 2), including the loss
of peripheral sensory neurons, changes in cell signaling cascades,
changes to calcium homeostasis and signaling, oxidative stress,
mitochondrial dysfunction and induction of apoptosis as a result
of DNA platination (Meijer et al., 1999).

Oxaliplatin
Treatment with oxaliplatin induces various side effects including
myelotoxicity and peripheral neuropathy, albeit it lacks the
ototoxic and nephrotoxic effects commonly observed after
treatment with cisplatin. The neurotoxic effects of oxaliplatin
include the development of an acute, transient neuropathy that
occurs in almost 90% of patients within hours of infusion
and is characterized by dysesthesias and paresthesias of the
hands, feet and the perioral region. These symptoms are
often induced by exposure to cool temperatures and are a
key feature of oxaliplatin-induced cold allodynia (Argyriou
et al., 2013a). In addition, motor symptoms including tetanic
spasms, fasciculations, and prolonged muscular contractions
commonly occur (Saif and Reardon, 2005). Acute oxaliplatin-
induced neuropathy generally subsides between treatment
cycles (Extra et al., 1998), although continued exposure
to oxaliplatin can lead to the development of a severe
chronic neuropathy. The incidence of chronic peripheral
neuropathy following oxaliplatin treatment has been estimated
as approximately 70%, with development of the condition usually

occurring at cumulative doses exceeding 540 mg/m2 (Cersosimo,
2005; Argyriou et al., 2013a). Clinically, the symptoms of
chronic oxaliplatin-induced neuropathy closely resemble those
of the acute condition and include temperature-insensitive
paresthesias, hypoesthesias and dysesthesias of the hands and
feet. Additionally, changes in proprioception, which may affect
normal daily activities requiring fine motor coordination,
reportedly occur at cumulative doses exceeding 780 mg/m2

(Cersosimo, 2005; Saif and Reardon, 2005).
Oxaliplatin-induced central neuropathy is rare and is

characterized by Lhermitte’s sign (an electric sensation
experienced with flexing of the neck), proprioception deficiencies
and urinary retention (Cersosimo, 2005). Risk factors for the
development of both acute and chronic neuropathy include the
cumulative dose, low body weight, a body-surface area >2.0,
young age, persistent neuropathy in a past cycle, and variations
in genes such as glutathione-S-transferase genes P1 [GSTP1] and
glutathione-S-transferase genesM1 [GSTM1], as discussed below
(Saif and Reardon, 2005; Alejandro et al., 2013). Furthermore,
oxaliplatin induced neuropathy may be exacerbated by surgery
(Gornet et al., 2002).

The mechanisms contributing to development of oxaliplatin-
induced CIPN (Figure 2) include alteration in axonal excitability
due to ion channel dysfunction, dysregulation of calcium
homeostasis and altered function of transient receptor potential
channels. Additionally, oxidative stress leading to neuronal
and glial cell dysfunction and cell death induced by caspases,
mitogen-activated protein kinases and protein kinase C may
contribute to development of oxaliplatin-induced CIPN (Carozzi
et al., 2015).

Vincristine
Despite widespread use of vincristine for the treatment of
pediatric cancers including acute lymphoblastic leukemia,
sarcoma, medulloblastoma and neuroblastoma as well as a range
of tumors in adults, the epidemiology of vincristine-induced
peripheral neuropathy (VIPN) is relatively poorly defined. While
the reported incidence rates vary considerably—depending on
the severity of symptoms, diagnostic criteria and concomitant use
of other neurotoxic agents—most patients receiving vincristine
develop some degree of sensory peripheral neuropathy at a
cumulative dose of >4 mg/m2 (Ramchandren et al., 2009;
Toopchizadeh et al., 2009; Seretny et al., 2014; Lavoie Smith et al.,
2015; Tay et al., 2017).

Symptoms of neuropathy can be present soon after initiation
of vincristine therapy but usually develop within several weeks,
and generally worsen with increasing cumulative doses of the
drug. In addition, genetic factors can enhance the susceptibility
to develop vincristine-induced neuropathy. An increased severity
of VIPN was also observed in older compared with younger
children, suggesting that age can be a risk factor for development
of VIPN (Lavoie Smith et al., 2015).

VIPN can be divided into sensory, motoric and autonomic
components, with tendon reflexes, vibration sensitivity and
strength most affected in the first year of treatment (Lavoie
Smith et al., 2015). Vincristine-induced sensory neuropathy
is characterized by numbness, tingling and neuropathic pain
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FIGURE 2 | Putative mechanisms involved in the development of cisplatin- and oxaliplatin-induced peripheral neuropathy. Overview of possible effects of oxaliplatin

and cisplatin on the immune system (Raghavendra et al., 2003; Callizot et al., 2008; Boyette-Davis and Dougherty, 2011; Wang et al., 2012; Di Cesare Mannelli et al.,

2014; Janes et al., 2015), microglia (Di Cesare Mannelli et al., 2014) and peripheral neurons (Zwelling et al., 1979; Thompson et al., 1984; Faivre et al., 2003;

Tomaszewski and Busselberg, 2007; Todd and Lippard, 2009; Tesniere et al., 2010; Alcindor and Beauger, 2011; Boyette-Davis and Dougherty, 2011; Deuis et al.,

2013; Areti et al., 2014; Boehmerle et al., 2014; Dasari and Tchounwou, 2014; Canta et al., 2015; Leo et al., 2017) leading to neuronal inflammation (Janes et al.,

2015) and altered neuronal excitability (Adelsberger et al., 2000; Krishnan et al., 2005; Kagiava et al., 2008; Gauchan et al., 2009; Ta et al., 2010; Descoeur et al.,

2011; Nassini et al., 2011; Schulze et al., 2011; Sittl et al., 2012; Deuis et al., 2013, 2014; Yamamoto et al., 2015; Mizoguchi et al., 2016). TNFα, Tumor necrosis

factor alpha; DNA, deoxyribonucleic acid; ROS, Reactive oxygen species; NaV, Voltage-gated sodium channel; KV, Voltage-gated potassium channel; TRP, Transient

receptor potential channel; CaV, Voltage-gated calcium channel.

in the upper and lower extremities. In addition, patients
receiving vincristine experience loss of sensory discrimination,
specifically an inability to detect light touch, pinprick sensations
or vibration, and an inability to differentiate between hot and cold
temperatures (Barton et al., 2011). Vincristine-induced motor
neuropathy is characterized by weakness in the upper and lower
extremities and the development of wrist- or foot-drop due
to impaired dorsiflexion that arises from damage to peripheral
nerves. This is accompanied by gait abnormalities, cramps, and
loss of or reduction in deep tendon reflexes which can be severe
(Mora et al., 2016). Typical symptoms of autonomic neuropathy
are constipation, urinary retention, and orthostatic hypotension.
As would be expected, these symptoms can significantly reduce
the quality of life of these patients (Lavoie Smith et al., 2013).

The mechanisms contributing to development of VIPN
include disruption of calcium homeostasis, activation of the
immune system and subsequent neuroinflammation, membrane
remodeling of peripheral neurons and loss of large myelinated
fibers (Figure 3) (Devor, 2006; Boehmerle et al., 2014; Carozzi
et al., 2015).

Taxanes (Paclitaxel, Docetaxel)
CIPN is also a dose-limiting adverse effect of treatment with
taxanes, particularly paclitaxel, and occurs in a dose- and
treatment duration-dependent manner. The threshold dose for
development of taxane-induced peripheral neuropathy lies close

to standard doses used in a range of chemotherapy regimens
at approximately 300 mg/m2 for paclitaxel, and 100 mg/m2

for docetaxel (Forsyth et al., 1997; Winer et al., 2004; Park S.
B. et al., 2013). Accordingly, this symptom is very common,
occurring in as many as 90% of patients, although it usually
remains relatively mild until cumulative paclitaxel doses exceed
1,400 mg/m2 (Lipton et al., 1989; van Gerven et al., 1994; Pace
et al., 2007). Overall, while paclitaxel is slightly less potent than
docetaxel, it is more commonly associated with the development
of CIPN (Hilkens et al., 1997; Chon et al., 2009). Consistent
with CIPN being a direct consequence of the pharmacological
effects of the taxanes on sensory neurons, higher single as well
as higher cumulative doses are associated with both a greater
risk for development of this side effects, as well as increased
severity of symptoms (Pace et al., 2007; Baldwin et al., 2012;
Ghoreishi et al., 2012). In addition, concomitant treatment
with other neurotoxic chemotherapeutic agents, or pre-existing
neuropathies, may additionally increase the risk of developing
CIPN (Chaudhry et al., 2003). While symptoms usually develop
within several weeks of treatment initiation, paclitaxel and
docetaxel can also induce an acute painful neuropathy—peaking
approximately 3 days after infusion—that is characterized by
pain, numbness and tingling, and which can be a predictor for
the development of chronic neuropathy (Loprinzi et al., 2007,
2011; Reeves et al., 2012; Tanabe et al., 2013; Fernandes et al.,
2016).
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FIGURE 3 | Putative mechanisms involved in the development of vincristine-induced peripheral neuropathy. Overview of possible effects of vincristine on the immune

system (Callizot et al., 2008; Kiguchi et al., 2008; Wang et al., 2012; Chatterjee et al., 2014; Old et al., 2014; Makker et al., 2017), peripheral tissues (Old et al., 2014)

and sensory neurons (Kaba et al., 1985; Topp et al., 2000; Gan et al., 2010; Areti et al., 2014; Canta et al., 2015; Carozzi et al., 2015; Xu et al., 2017) leading to

neuronal inflammation (Chatterjee et al., 2014; Xu et al., 2017) and altered excitability of peripheral neurons (Alessandri-Haber et al., 2008; Old et al., 2014) which may

be considered as the main mechanisms contributing to the development of vincristine-induced CIPN. CXCL12, C-X-C Motif Chemokine Ligand 12; CX3CR, C-X-3-C

motif chemokine receptor; TNF α, Tumor necrosis factor alpha; ILs, Interleukins; CXCR4, C-X-C motif chemokine receptor 4; ROS, Reactive oxygen species; NaV,

Voltage-gated sodium channel; KV, Voltage-gated potassium channel; TRP, Transient receptor potential channel; CaV, Voltage-gated calcium channel.

Symptoms of taxane-induced neuropathy are consistent
with a predominantly sensory neuropathy, although motor
effects (particularly distal weakness, muscle cramps, and muscle
aches) and autonomic dysfunction (including arrhythmias
and orthostatic hypotension) can occur with higher doses.
Specifically, numbness, tingling, mechanical allodynia, and
neuropathic pain developing symmetrically in the digits and
extending to the extremities usually predominate; cold allodynia,
loss of pinprick sensation as well as altered reflexes can also occur
(Dougherty et al., 2004; Park et al., 2011; Tofthagen et al., 2013).

Mechanisms that contribute to paclitaxel-induced neuropathy
include immune-mediated processes, loss of peripheral fibers,
demyelination and axon degeneration, altered retrograde and
anterograde transport as well as mitochondrial dysfunction
(Figure 4).

THE GENETICS OF
CHEMOTHERAPY-INDUCED PERIPHERAL
NEUROPATHY

In recent years, several studies have identified genetic risk
factors associated with the development of CIPN in cancer

patients. Many of these are pharmacogenomic in nature, affecting
either the absorption, distribution, metabolism or excretion of
these chemotherapeutic agents. For instance, polymorphisms in
glutathione transferases, cytochrome P450 enzymes and ATP
binding cassette transportersmay be involved in the development
of varying types of CIPN as they affect the uptake and disposition
of various cytotoxic drugs (Broyl et al., 2010; Johnson et al., 2011).

Specifically, the polymorphism Ile105Val of the GSTP1
gene, encoding glutathione transferase P1, has been associated
with a decreased risk of developing severe oxaliplatin-related
cumulative neuropathy. This mutation is thought to increase
the activity of glutathione transferase P1, an enzyme that
catalyzes the conjugation of hydrophobic and electrophilic
compounds with glutathione, thus reducing the toxicity level of
the bound substances. Indeed, in vitro experiments in Escherichia
coli carrying different GSTP1 mutations demonstrated altered
cytotoxicity, suggesting that GSTP1 polymorphisms could be
predictors for the development of cumulative neuropathy
(Ishimoto and Ali-Osman, 2002; Lecomte et al., 2006). Similarly,
polymorphisms in GSTM1, the gene encoding the enzyme
Glutathione S-Transferase Mu 1, have been associated with
a lower incidence of cisplatin-induced neuropathy (Khrunin
et al., 2010), while polymorphism of the CYP450 3A enzyme
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FIGURE 4 | Putative mechanisms involved in the development of paclitaxel-induced peripheral neuropathy. Overview of possible effects of paclitaxel on the immune

system (Ledeboer et al., 2007; Loprinzi et al., 2007, 2011; Callizot et al., 2008; Doyle et al., 2012; Wang et al., 2012; Zhang et al., 2012, 2016; Pevida et al., 2013;

Janes et al., 2014a,b; Liu et al., 2014; Li et al., 2015; Krukowski et al., 2016; Zhang et al., 2016; Makker et al., 2017), microglia (Burgos et al., 2012; Ruiz-Medina

et al., 2013; Makker et al., 2017) and peripheral neurons (Sahenk et al., 1994; Cavaletti et al., 1997, 2000; Dorr, 1997; Kidd et al., 2002; ten Tije et al., 2004; Mironov

et al., 2005; Flatters and Bennett, 2006; Argyriou et al., 2008; Doyle et al., 2012; Areti et al., 2014; Boehmerle et al., 2014; Griffiths and Flatters, 2015; Duggett et al.,

2016; Wozniak et al., 2016) leading to neuronal inflammation (Ledeboer et al., 2007; Loprinzi et al., 2007, 2011; Callizot et al., 2008; Doyle et al., 2012; Wang et al.,

2012; Zhang et al., 2012, 2016; Pevida et al., 2013; Janes et al., 2014a,b; Liu et al., 2014; Li et al., 2015; Krukowski et al., 2016; Zhang et al., 2016; Makker et al.,

2017) and altered excitability of peripheral neurons (Materazzi et al., 2012; Zhang and Dougherty, 2014). TLR4, Toll-Like Receptor 4; TNFα, Tumor necrosis factor

alpha; ROS, Reactive oxygen species; NaV, Voltage-gated sodium channel; KV, Voltage-gated potassium channel; TRP, Transient receptor potential channel; CaV,

Voltage-gated calcium channel.

system can necessitate vincristine dose adjustments to prevent
neurotoxicity (Mora et al., 2016).

An important contributing factor to the development of
CIPN is thought to be the cellular uptake and accumulation
of platinum-derivatives in sensory neurons (Liu et al., 2009,
2012, 2013). Specifically, the copper transporter 1 (CTR1),
members of the organic cationic transporter family (OCT),
and copper-transporting ATPases have been proposed as key
transporters maintaining the intracellular concentration of
platinum derivatives via active uptake and efflux processes
(Holzer et al., 2006; Liu et al., 2012; Sprowl et al., 2013; Cavaletti
et al., 2014). Several of these transporters are also expressed
on the plasma membrane of dorsal root ganglion cells, where
they presumably contribute to the development of CIPN. While
the human CTR1 plays a particularly important role in both
resistance to platinum drugs and uptake in sensory neurons
in vivo and in vitro (Song et al., 2004; Liu et al., 2009, 2013),
residual oxaliplatin accumulation inmurine embryonic fibroblast
from CTR1−/− animals suggests the existence of additional

transport mechanisms leading to accumulation of platinum-
based compounds (Holzer et al., 2006). These likely include
the organic cationic transporters belonging to the solute carrier
family. In particular, OCT1 (SLC22A1) and OCT2 (SLC22A2)
and the cation and carnitine transporters OCTN1 (SLC22A4)
andOCTN2 (SLC22A5) have been suggested to be involved in the
cellular uptake of platinum drugs (Ceresa and Cavaletti, 2011).
OCT2 in particular contributes significantly to accumulation
of oxaliplatin, and genetic or pharmacological knockout of
OCT2 prevented the development of cold and mechanical
hypersensitivity following treatment with oxaliplatin, suggesting
that the OCT2 transporter plays a crucial role in oxaliplatin-
induced cytotoxicity (Sprowl et al., 2013).

Notably, a polymorphism in the ABCC2 gene has also been
suggested to lead to higher oxaliplatin concentration in neurons,
and was associated with oxaliplatin induced neuropathy (Mori
et al., 2008). Two additional SNPs in the same gene, rs3740066
GG and rs12826 GG, have been associated with an increased
risk to develop neuropathy following vincristine treatment,
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presumably due to increased accumulation of vincristine
in neuronal cell bodies leading to increased neurotoxicity
(Lopez-Lopez et al., 2016). In contrast, ABCB1, CYP1B1, and
CYP2C8 gene mutations were associated with paclitaxel-induced
neuropathy (Boora et al., 2016).

In addition to genetic factors affecting the pharmacokinetics
of chemotherapeutic agents, several polymorphisms relating to
pharmacodynamic effects have been causally implicated in the
development of CIPN. These include genetic risk factors that
alter sensitivity to cytotoxic effects, cellular repair mechanisms,
and excitability of sensory neurons. For example, polymorphisms
that alter the expression of the DNA excision repair protein
ERCC-1 (excision repair cross-complementing group 1) have
been suggested to be involved in cisplatin- and oxaliplatin-
induced cytotoxicity, though no clinical study to date has
shown an association with CIPN (Inada et al., 2010). Genetic
variants of alanine glyoxylate aminotransferase (AGXT), an
enzyme involved in oxalate metabolism, have been correlated
with the severity of oxaliplatin-induced CIPN (Gamelin et al.,
2007). Similarly, a polymorphism in the ITGB3 gene—encoding
for Integrin B3—was not correlated with the development of
oxaliplatin-induced CIPN, although it appeared to be related
to the severity of this symptom (Antonacopoulou et al., 2010).
This effect may be mediated via the differential activation of the
mitogen activated protein kinases MAPK3 and MAPK1 that are
induced by these ITGB3 variants, and which may contribute to
development of CIPN (Scuteri et al., 2009). Altered development
of acute oxaliplatin-induced peripheral neuropathy was also
reported in patients with single nucleotide polymorphisms
(SNPs) in SCNA genes encoding the voltage-gated sodium
channels, which are essential for the initiation and propagation
of action potential in neurons. Specifically, polymorphisms in
the NaV1.4 (SCN4A-rs2302237) and NaV1.8 genes (SCN10A-
rs1263292) have been associated with increased incidence of
acute oxaliplatin-induced neuropathy (Argyriou et al., 2013a),
while patients carrying a polymorphism (rs6746030) in the
SCN9A gene encoding for NaV1.7 seem to develop less severe
neuropathy than patients carrying other SCN9A gene variants
(Sereno et al., 2017).

Genetic variants associated with the development and severity
of taxane-induced neuropathy include low-frequency variants
in the ephrin receptor genes EPHA6, EPHA5, and EPHA8
(Leandro-Garcia et al., 2013; Apellaniz-Ruiz et al., 2017), the
Charcot-Marie-Tooth disease gene ARHGEF10 (Boora et al.,
2015), the glycogen synthase kinase-3β (GSK3β) gene (Park et al.,
2014), the DNA repair pathway genes XPC (Lamba et al., 2014),
the congenital peripheral neuropathy gene FGD4 (Baldwin
et al., 2012), the β-tubulin IIa gene (TUBB2A) (Leandro-Garcia
et al., 2012) and VAC14, a gene coding for a component
of a trimolecular complex that tightly regulates the level of
phosphatidylinositol 3,5-bisphosphate (Hertz et al., 2016).

A SNP in the centrosome protein encoded by CEP72 gene
has been associated with development of vincristine-induced
neuropathy in the later phases of therapy. This protein is
important for microtubule formation and appears to increase the
sensitivity of neuronal cells to vincristine damage (Diouf et al.,
2015). Additionally, several other SNPs, including in CAMKK1

(Calcium/Calmodulin Dependent Protein Kinase 1, involved in
regulation of apoptosis), CYP2C8 (Cytochrome P450 Form 1)
and CYP2C9 (Cytochrome P450 PB-1, both involved in hepatic
drug clearance), NFATC2 (Nuclear Factor of Activated T-Cells
2), ID3 (Inhibitor Of Differentiation 3) and SLC10A2 (apical
sodium-dependent bile acid transporter) have been suggested to
be involved in vincristine-induced neuropathy (Johnson et al.,
2011).

PATHOLOGICAL MECHANISMS
CONTRIBUTING TO CIPN

The pathological mechanisms underlying the development of
CIPN have been studied extensively, and likely involve direct
effects on the viability of sensory neurons, as well as cell-type
specific consequences that occur downstream of on-target
pharmacological activity of these cytotoxic drugs. In addition,
off-target effects and additional mechanisms may also be
involved, although the relative causative contribution remains
unclear. Overall, despite diverse pharmacological mechanisms,
a number of common pathologies have been proposed,
including oxidative stress, altered calcium homeostasis, axon
degeneration, membrane remodeling, and inflammatory
processes (Figures 2-4).

Oxidative Stress and Apoptotic Pathways
Mitochondria are small organelles involved in many important
cellular processes including energy production, storage of
intracellular calcium and calcium signaling, apoptosis, regulation
of membrane potential and cell metabolism. The main function
of mitochondria is to produce adenosine triphosphate (ATP)
via aerobic respiration. In healthy tissues, mitochondria produce
small amounts of reactive oxygen species (ROS) such as peroxide,
superoxide, hydroxyl radicals and singlet oxygen as a by-product
of oxygen metabolism. These radicals carry out important
functions in cell signaling.

Most chemotherapeutic agents cause damage to neuronal and
non-neuronal mitochondria, leading to increased production of
ROS and thus to increased oxidative stress (Sangeetha et al.,
1990; Look and Musch, 1994; Weijl et al., 1998; McDonald and
Windebank, 2002). The pathological increase in ROS production
in turn can cause damage to intracellular biomolecules such as
enzymes, proteins and lipid molecules (Slater, 1984; Stadtman
et al., 2003; Valko et al., 2005), which in turn leads to
demyelination and disruption of the cytoskeleton of peripheral
nerves as well as sensitization of signal transduction processes
(Anderson et al., 1992; Zheng et al., 2011). Furthermore, ROS
can cause the activation of apoptotic pathways (Cashman and
Hoke, 2015) and increase production of pro-inflammatory
mediators (Bulua et al., 2011). These processes can cause further
damage to mitochondria, amplifying the production of ROS and
pathological processes of oxidative stress (Areti et al., 2014).

Oxaliplatin and cisplatin bind to mitochondrial DNA
(mDNA) and form mDNA adducts which cannot be repaired
since mitochondria do not express DNA repair systems. These
Pt-mDNA adducts impair mitochondrial DNA replication and
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transcription, leading to altered protein synthesis and functional
errors of the respiratory chain (Canta et al., 2015). Similarly,
vincristine causes dysregulation and structural modification
of neuronal mitochondria, leading to activation of apoptotic
pathways, alteration in neuronal excitability and dysfunction
of glial cells. In contrast to platinum-induced mitochondrial
dysfunction, the effects of vincristine on mitochondria likely
involves altered mitochondrial Ca2+ signaling (Canta et al.,
2015; Carozzi et al., 2015). This hypothesis is supported by the
observation that potentiation of vincristine-induced cytotoxicity
occurs in the presence of verapamil, a calcium channel blocker
(Kaba et al., 1985).

Like vincristine, paclitaxel does not directly affect
mitochondrial DNA, but nonetheless induces swollen and
vacuolated mitochondria in both myelinated and unmyelinated
sensory axons in the saphenous nerve (Flatters and Bennett,
2006). These changes in turn are accompanied by increased
ROS production in sensory neurons and spinal cord, although
the mechanisms leading to altered mitochondrial function are
relatively poorly understood (Doyle et al., 2012; Areti et al., 2014;
Griffiths and Flatters, 2015; Duggett et al., 2016).

Calcium Homeostasis
Calcium (Ca2+) is a key regulatory ion in many cellular
and physiological processes. Its free intracellular concentration,
which is usually maintained at nanomolar levels, is tightly
regulated by various transport and sequestration mechanisms,
including extracellular influx and release from internal stores,
as well as efflux via plasma membrane pumps and uptake
into the endoplasmic reticulum and mitochondria (Siau and
Bennett, 2006). Changes in the intracellular Ca2+ concentration
influence membrane excitability, neurotransmitter release and
gene expression of neuronal and glial cells (Carozzi et al.,
2015). Accordingly, dysregulation of Ca2+ homeostasis and Ca2+

signaling has been suggested to contribute to the development
of oxaliplatin-, cisplatin-, vincristine-, and paclitaxel-induced
CIPN.

The oxaliplatin metabolite oxalate is a well-known Ca2+

chelator that has been proposed to contribute to the development
of oxaliplatin-induced CIPN. Indeed, local injection of oxalate
into the footpad of mice induces spontaneous nocifensive
behavior as well as mechanical allodynia, albeit the dose required
to observe this effect is considerably higher than the dose
of oxaliplatin required to induce neuropathic pain (Deuis
et al., 2013). In addition, the phenotype of pain behaviors
induced by oxalate differs significantly from oxaliplatin-induced
neuropathy, which is characterized by cold allodynia and a
lack of spontaneous nocifensive behavior (Deuis et al., 2013).
Oxalate-induced pain likely arises as a consequence of chelation
of extracellular Ca2+ ions, which in turn leads to an increase
in Na+ conductance and a decrease of threshold potential and
membrane resistance (Deuis et al., 2013). In contrast, an increase
in extracellular Ca2+ concentration increases the probability of
Na+ channel closure and results in decreased excitability of
peripheral neurons (Armstrong and Cota, 1999). Accordingly,
the administration of Ca2+/Mg2+ prior to oxaliplatin infusion
has been evaluated in several clinical trials as a strategy to prevent

development of CIPN, although a consistent clinical benefit is
unfortunately not apparent (Jordan et al., 2016).

In contrast, although effects on intracellular Ca2+ levels
have been reported both in sensory neurons, renal tubular cells
and cancer cells, the contribution of Ca2+ to cisplatin-induced
neuropathy is relatively poorly understood. In sensory neurons,
cisplatin increased the expression of the N-type voltage-gated
Ca2+ channels (CaV2.2), although it differentially affects the
function of specific CaV channel subtypes (Tomaszewski and
Busselberg, 2007; Leo et al., 2017). However, the contribution
of these effects to the clinical presentation of cisplatin-induced
neuropathy remains unclear.

Contributions of Ca2+ signaling to the pathology of
CIPN have also been reported for paclitaxel, which causes
rapid mitochondrial depolarization and Ca2+ release in both
neuronal and non-neuronal cells, possibly via activation of the
mitochondrial permeability transition pore (mPTP) (Kidd et al.,
2002; Mironov et al., 2005). In addition, lower concentrations
of paclitaxel induce Ca2+ oscillations downstream of neuronal
calcium sensor 1 (NCS-1), a protein that regulates G protein-
coupled receptor phosphorylation in a calcium-dependent
manner (Boehmerle et al., 2006).

Axon Degeneration
Several studies in humans and animals have demonstrated
axon degeneration after long-term administration of
chemotherapeutic agents, including the loss of large myelinated,
small unmyelinated (more rarely), and intra-epidermal nerve
fibers (IENF) which may be connected to the development of
sensory-motoric peripheral neuropathy (Bradley et al., 1970;
Cavaletti et al., 1992; Sahenk et al., 1994; Bennett et al., 2011;
Boyette-Davis et al., 2011, 2013; Boehmerle et al., 2014). Intra-
epidermal nerve fibers are unmyelinated or thinly myelinated
nociceptors located in the dermis and are necessary for the
sensation of pain arising from the periphery. Additionally,
loss of myelin and changes to the axonal cytoskeleton likely
alters the structure and function of peripheral nerves, which
in turn may contribute to development of altered perception.
However, while correlation of nerve fiber loss with the degree
of neuropathy has been attempted in several conditions, and
functional deficits arising from axon degeneration appear
intuitive, the contribution of demyelination and peripheral nerve
degeneration to the pathobiology of CIPN is not entirely clear.

Clinical and electrophysiological studies have shown that
oxaliplatin causes moderate sensory-motor axon degeneration
and loss of intra-epidermal nerve fibers (Boyette-Davis
and Dougherty, 2011). Similarly, electron microscopy of
peripheral nerves from cisplatin-treated patients revealed axonal
degeneration of large myelinated fibers as well as secondary
myelin breakdown associated with loss of ankle jerks and
decreased vibration sensitivity (Thompson et al., 1984). In
mice, cisplatin damaged myelinated fibers of the sciatic nerve,
diminished the action potential amplitude and reduced the nerve
conduction velocity of the caudal sensory nerve (Boehmerle
et al., 2014). Degeneration of distal sensory axons, secondary
demyelination and nerve fiber loss have also been reported in
vincristine- and paclitaxel-induced neuropathy (Sahenk et al.,
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1994; Topp et al., 2000; Argyriou et al., 2008; Boehmerle et al.,
2014).

The molecular mechanisms leading to these observed
changes in axonal function and structure remain unclear.
Chemotherapeutics causing CIPN likely have direct toxic effects
on axons—evidenced by a lack of effect on axon integrity
when applied to neuronal cell bodies under compartmentalized
culturing conditions (Yang et al., 2009)—although indirect effects
due to altered gene expression cannot be ruled out. Altered
microtubule function can also impair the anterograde and the
retrograde axonal transport of synaptic vesicles loaded with
lipids, proteins and ion channels. This in turn causes a length-
dependent degeneration of axonal distal segments (Wallerian
degeneration) and axonal membrane remodeling of peripheral
nerves. However, these effects cannot adequately explain axon
degeneration induced by cisplatin and oxaliplatin, which target
cellular DNA. In addition, the different vinca alkaloids used
in chemotherapy display variable efficacies and side effects but
equally block tubulin polymerization, suggesting that additional
mechanisms contribute to the direct damage of peripheral nerves
(Himes et al., 1976).

Changes in Neuronal Excitability
In addition to axonal degeneration, chemotherapeutic agents also
cause changes to peripheral nerve excitability that contribute to
the development of sensory peripheral neuropathy. These are
likely caused by altered expression and function of a range of ion
channels—including voltage-gated sodium (NaV), voltage-gated
potassium (KV) and transient receptor potential (TRP) channels.

Changes in sensory nerve excitability in patients treated with
oxaliplatin, including a significant increase in the duration of
the relative refractory period, have been attributed to effects
on NaV channels expressed at the nodes of Ranvier (Krishnan
et al., 2005). Altered NaV channel function was also observed
in rodent peripheral axons as well as dorsal root ganglion
neurons, where oxaliplatin causes an increase in Na+ current,
inhibition of maximal amplitude, and the emergence of enhanced
resurgent and persistent current amplitudes (Adelsberger et al.,
2000; Sittl et al., 2012). Specifically, the NaV channel isoform
NaV1.6 appears to be involved in the development of oxaliplatin-
induced cold allodynia, with cooling-induced bursts of action
potential firing abolished in neurons from Scn8a(med/med)
mice lacking functional NaV1.6 (Sittl et al., 2012). Furthermore,
acute oxaliplatin-induced cold pain behaviors were abolished by
treatment with a selective NaV1.6 inhibitor, as was cisplatin-
induced mechanical allodynia, albeit cisplatin does not directly
affect the gating properties of NaV1.6 (Deuis et al., 2013, 2014).

Effects on neuronal potassium (K+) channels—of which four
major groups [voltage-gated K+ channels (KV), Ca

2+-activated
K+ channels (KCa), two-pore K

+ channels (K2P) and inwardly-
rectifying K+ channels (Kir)] are expressed in peripheral
nerves—further exacerbate altered neuronal excitability in CIPN.
Specifically, decreased expression of several K+ channels,
including the K2P channels TREK1 and TRAAK, were found
after oxaliplatin and paclitaxel treatment in rodent dorsal
root ganglion neurons (Descoeur et al., 2011; Zhang and
Dougherty, 2014). In addition, broadening of the repolarization

phase, repetitive firing and after-hyperpolarization, consistent
with effects on KV channels, were induced by treatment with
oxaliplatin in the isolated sciatic nerve of the adult rat (Kagiava
et al., 2008).

In addition to acute effects on sensory neuron excitability,
exposure to oxaliplatin and cisplatin has also been reported
to alter expression of several thermo- and mechano-sensitive
TRP channels, including TRPV1, TRPA1, and TRPM8 (Gauchan
et al., 2009; Ta et al., 2010; Descoeur et al., 2011; Nassini et al.,
2011; Schulze et al., 2011; Yamamoto et al., 2015; Mizoguchi
et al., 2016). The reported behavioral contributions of these
channels to CIPN, however, remain seemingly at odds, with
studies attributing functional effects to all, some, or none of
these transducer ion channels. Whether these discrepancies arise
from insufficient subtype selectivity of compounds with activity
at TRP channels, compensatory expression changes in knockout
animals, or difference between animal models, remains to be
determined. Paclitaxel- and vincristine-induced neuropathy has
also been attributed to activation of TRPA1 and TRPV4 via
the generation of reactive oxygen species (Alessandri-Haber
et al., 2008; Materazzi et al., 2012; Old et al., 2014), albeit
disruption of TRP channel function due to altered association
with microtubules may be an additional contributing mechanism
(Goswami, 2012).

Activation of the Immune System and
Inflammation
Chemotherapy agents are well known to cause profound
effects on the immune system, most notably a transient
immunosuppression due to inhibition of myeloproliferation.
However, activation of the immune system by chemotherapeutics
has increasingly received attention as an effect that is thought
to support the destruction of tumor cells (Zitvogel et al.,
2008; Westbom et al., 2015), but which may also lead to
neuroinflammation and thus contribute to the development of
CIPN. Specifically, effects of chemotherapeutics on the innate
(Kiguchi et al., 2008; Liu et al., 2014; Li et al., 2016) and adaptive
immune system (Zhang et al., 2008; Zhu et al., 2011; Krukowski
et al., 2016), as well as effects on peripheral and central neuronal
accessory cells—including satellite glial cells (Peters et al., 2007;
Kiya et al., 2011; Warwick and Hanani, 2013), Schwann cells
(Cavaletti et al., 1995), astrocytes (Zhang et al., 2012; Robinson
et al., 2014) andmicroglia (Burgos et al., 2012; Ruiz-Medina et al.,
2013)—have been observed, although most of these studies were
carried out using rodent models (Lees et al., 2017).

Consistent with a contribution of the immune system
to CIPN, oxaliplatin- and paclitaxel-induced mechanical
hyperalgesia and epidermal nerve fiber loss was prevented by
the tetracycline minocycline, an antibiotic known to inhibit
macrophages/monocytes and microglia (Raghavendra et al.,
2003; Liu et al., 2010; Boyette-Davis and Dougherty, 2011; Di
Cesare Mannelli et al., 2014). Both chemotherapeutic agents also
lead to increased levels of proinflammatory cytokines (IL-6, IL-8,
IL1β, TNF-α), which can lead to sensitization of nociceptors
(Ledeboer et al., 2007; Loprinzi et al., 2007, 2011; Callizot et al.,
2008; Doyle et al., 2012; Wang et al., 2012; Zhang et al., 2012,

Frontiers in Molecular Neuroscience | www.frontiersin.org 11 May 2017 | Volume 10 | Article 174

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Starobova and Vetter Chemotherapy-Induced Peripheral Neuropathy

TABLE 1 | List of clinically used neutraceutical agents for prevention of the development of CIPN.

Nutraceutical agent Class Chemotherapy

agent

Study outcome

NUTRACEUTICAL AGENTS

Vitamin E Vitamins Cisplatin +Decreased incidence and severity of peripheral neurotoxicity (Pace et al., 2003)

+Reduced risk of developing neurotoxicity (Pace et al., 2010)

+Neuroprotective effect (Argyriou et al., 2005)

Oxaliplatin −No significant decrease in the incidence of acute CIPN (de Afonseca et al., 2013)

Paclitaxel +Neuroprotective effect (Argyriou et al., 2005)

Glutamine α-amino acid Cisplatin ±Possible reduction of severity of CIPN symptoms (Huang et al., 2015)

Vincristine +Improvement in sensory function and self-reported overall quality of life (Sands et al., 2017).

Oxaliplatin ±Possible reduction of severity of CIPN symptoms (Huang et al., 2015)

+Reduction in incidence and severity of CIPN (Wang et al., 2007)

Paclitaxel ±Possible reduction in the severity of CIPN (Vahdat et al., 2001)

+Significant reduction of weakness, loss of vibratory sensation and toe numbness (Stubblefield

et al., 2005)

Alpha-lipoic acid Antioxidant Cisplatin −Ineffective at preventing neurotoxicity (Guo et al., 2014)

Oxaliplatin −Ineffective at preventing neurotoxicity (Guo et al., 2014)

+Reduced severity of CIPN (Gedlicka et al., 2002)

Glutathione Antioxidant Cisplatin +Prevention of neuropathy (Cascinu et al., 1995)

±Possible neuroprotection (Colombo et al., 1995)

±Possible decrease of severity of CIPN (Smyth et al., 1997)

Oxaliplatin ×Increased resistance to platinum agents (Arrick and Nathan, 1984)

+Possible prevention of CIPN (Cascinu et al., 2002)

Calcium/magnesium Ions Oxaliplatin ×Decreased antitumor efficacy of FOLFOX regimen in combination with Ca2+/Mg2+ infusions

(Khattak, 2011; Wen et al., 2013)

±Possible reduction in incidence and intensity of acute CIPN symptoms (Gamelin et al., 2004)

N-acetyl cysteine Antidot Oxaliplatin ±Possible reduction in incidence of CIPN (Lin et al., 2006)

Acetyl-L-carnitine Amino acid Taxanes ×Worsening of CIPN (Hershman et al., 2013)

The outcome of each study is marked with +, positive effect on CIPN; −, no effect on CIPN; ±, potential positive effect on CIPN; ×, negative effect on CIPN or antitumor therapy.

2016; Pevida et al., 2013; Janes et al., 2014a,b, 2015; Li et al.,
2015; Makker et al., 2017). In addition, oxaliplatin increases the
levels of circulating CD4+ and CD8+ lymphocytes in mice and
down-regulates regulatory T (T-reg) cells (Makker et al., 2017).

Vincristine induces the expression of integrins (immune

markers) on the surface of endothelial cells which allows

macrophages expressing the CX3CR receptor to adhere to the
endothelium and to migrate into nervous tissue. Activation of

monocyte-macrophages by the chemokine CX3CL1 also lead to
production of ROS and subsequent activation of TRPA1 (Old

et al., 2014). Additionally, vincristine and paclitaxel enhanced

the binding of the STAT3 (Signal Transducer and Activator of
Transcription 3) to the CXCL12 gene promotor (Xu et al., 2017),

causing up-regulation of C-X-C Motif Chemokine Ligand 12 in

dorsal horn ganglia. CXCL12 is a member of the integrin family
and acts as a ligand of the CXCR4 (CD184, C-X-C chemokine
receptor type 4) and as an attractant for T-lymphocytes and
monocytes. The activation of CXCR4 receptors in turn leads to an
increase in intracellular Ca2+ and chemotaxis of immune cells to
the site of inflammation (Chatterjee et al., 2014). Consequently,
activation of the immune system, recruitment of immune cells

and neuroinflammation should be considered as a putative
mechanism contributing to the development of vincristine-
induced neuropathy specifically, and CIPN more broadly.

PREVENTION THERAPIES AND
TREATMENTS

The development of CIPN is likely multifactorial and involves
several mechanisms as discussed above, although it is currently
unclear which effect(s) initiate the pathological cascade leading
to neuronal dysfunction. Despite clear similarities in both
the pathological mechanisms and clinical symptomatology of
CIPN, the pathophysiology of CIPN nonetheless is thought to
be compound-specific, with mechanism-specific prevention or
treatment being the overarching clinical aim. In addition to
providing targeted neuroprotection and relief from symptoms,
any putative treatment for CIPN also must not interfere with
the anti-tumor effects of the causative chemotherapeutic agent.
Unfortunately, while the efficacy of a range of approaches
preventing the development of CIPN including neuroprotectants
and nutraceuticals (Table 1) have been evaluated in clinical
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TABLE 2 | Summary of clinical studies investigating the efficacy of pharmacological agents for symptomatical treatment of CIPN.

Pharmacological

agent

Class Chemotherapy agent Study outcome

PHARMACOLOGICAL AGENTS

Amifostine Cyto-protective adjuvant Cisplatin +Reduction of neurotoxicity (Kemp et al., 1996; Planting et al.,

1999; Hilpert et al., 2005)

+Reduction in ototoxicity (Rubin et al., 1995; Fouladi et al., 2008)

±Possible reduction of neurotoxicity (Lorusso et al., 2003)

Oxaliplatin +Decrease of severity of CIPN (Penz et al., 2001)

Paclitaxel −Ineffective in preventing or reducing neurotoxicity (Gelmon et al.,

1999; Leong et al., 2003; Moore et al., 2003; Openshaw et al.,

2004)

+Reduction of neurotoxicity (Kanat et al., 2003; Lorusso et al.,

2003; De Vos et al., 2005; Hilpert et al., 2005)

Carbamazepine Anticonvulsant Oxaliplatin +Prevention of CIPN (Eckel et al., 2002; Argyriou et al., 2006)

Oxcarbazepine

−No prevention of CIPN (Wilson et al., 2002; von Delius et al.,

2007)

Calcium channel

blocker

− Oxaliplatin +Inhibits the development of acute peripheral neuropathy

(Tatsushima et al., 2013)

Gabapentin Anticonvulsant Vinca alkaloids, platinum derivates,

taxanes

−No prevention of CIPN (Rao et al., 2007)

Lamotrigine Anticonvulsant Paclitaxel, docetaxel, carboplatin,

cisplatin, oxaliplatin, vincristine and

vinblastine

−Not effective for relieving neuropathic symptoms (Rao et al.,

2008)

Etanercept Tumor necrosis factor (TNF)

blocker

Cisplatin ±Transient analgesia and delay in development of cisplatin

induced mechanical allodynia (Park H. J. et al., 2013; Vilholm

et al., 2014)

Pregabalin Anticonvulsant Oxaliplatin +Significant reduction of the severity of sensory neuropathy(Saif

et al., 2010)

Amitriptyline Tricyclic antidepressants vinca alkaloids, platinum derivatives or

taxanes

−No improvement of sensory neuropathic symptoms (Kautio

et al., 2008)

Nortriptyline Tricyclic antidepressants Cisplatin −No effect on paresthesia or pain (Hammack et al., 2002)

Venlafaxine Selective serotonin and

norepinephrine reuptake

inhibitor (SNRI)

Paclitaxel +Reduction of paresthesia (Durand and Goldwasser, 2002)

Oxaliplatin +Pain relief and a significant autonomy improvement (Durand

et al., 2005)

+Paresthesia improvement(Durand et al., 2003)

Duloxetine Selective serotonin and

norepinephrine reuptake

inhibitor (SNRI)

Vinca alkaloids, platinum derivatives or

taxanes

+Reduction in pain (Smith et al., 2013)

Topiramate Anticonvulsant Oxaliplatin +Pain relief and a significant autonomy improvement (Durand

et al., 2005)

trials, consistent beneficial effects have not as yet been shown
for any single agent. Accordingly, current treatment strategies
are predominantly based on modification of the chemotherapy
regimen, including alteration of the dose, treatment cycles,
timing, dosage form, and duration, as well as symptomatic
management using a range of pharmacological approaches
(Table 2). These include treatments targeting the neuropathic
component in CIPN, including anticonvulsants (gabapentin,
carbamazepine, oxcarbazepine, lamotrigine, topiramate) and
antidepressants (amitriptyline, nortriptyline, venlafaxine,
duloxetine). However, as is the case for many types of pain,
these agents do not provide a satisfactory level of relief for many

patients, with further research required to identify additional
preventative or curative approaches.

SUMMARY AND CONCLUSIONS

CIPN is a common side effect of cancer chemotherapy that
adversely affects the quality of life of patients. Although the
individual biological effects of these chemicals on cancer cells
are relatively well known and studied extensively, the precise
mode of action on peripheral nerves is not always clear. The
development of CIPN is likely multifactorial and involves effects
on neuronal and/or mitochondrial DNA and gene expression,

Frontiers in Molecular Neuroscience | www.frontiersin.org 13 May 2017 | Volume 10 | Article 174

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Starobova and Vetter Chemotherapy-Induced Peripheral Neuropathy

axonal transport, ion channel expression and function, as
well as neuroimmune mechanisms. While rodent models—
particularly those avoiding confounding physiological effects
of high systemic chemotherapy doses—have provided valuable
insight, validation of the mechanisms of CIPN in patients has
been difficult not least because of the extensive co-morbidities
usually present in this patient group. Nonetheless, significant
advances in our understanding of the pathophysiological
mechanisms of CIPN have been made, which will hopefully lead
to improved clinical management of this devastating side effect
in future.
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