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Abstract: The notion of blood coagulation dates back to the ancient Greek civilization. However, the
emergence of innovative scientific discoveries that started in the seventeenth century formulated the
fundamentals of blood coagulation. Our understanding of key coagulation processes continues to
evolve, as novel homeostatic and pathophysiological aspects of hemostasis are revealed. Hemostasis
is a dynamic physiological process, which stops bleeding at the site of injury while maintaining normal
blood flow within the body. Intrinsic and extrinsic coagulation pathways culminate in the homeostatic
cessation of blood loss, through the sequential activation of the coagulation factors. Recently, the
cell-based theory, which combines these two pathways, along with newly discovered mechanisms,
emerged to holistically describe intricate in vivo coagulation mechanisms. The complexity of these
mechanisms becomes evident in coagulation diseases such as hemophilia, Von Willebrand disease,
thrombophilia, and vitamin K deficiency, in which excessive bleeding, thrombosis, or unnecessary
clotting, drive the development and progression of diseases. Accumulating evidence implicates
cell-derived and platelet-derived extracellular vesicles (EVs), which comprise microvesicles (MVs),
exosomes, and apoptotic bodies, in the modulation of the coagulation cascade in hemostasis and
thrombosis. As these EVs are associated with intercellular communication, molecular recycling, and
metastatic niche creation, emerging evidence explores EVs as valuable diagnostic and therapeutic
approaches in thrombotic and prothrombotic diseases.

Keywords: coagulation; history of coagulation; extracellular vesicles; exosomes

1. Introduction

Hemostasis is a dynamic physiological process, which controls bleeding at the site
of injury while maintaining normal blood flow within the body. This occurs through the
induction of blood coagulation, a process by which the activation of clotting factors forms
a blood clot that halts bleeding [1]. The concept of blood coagulation was recognized as
early as ancient Greece. However, Marcello Malpighi, an Italian scientist, observed and
documented the process of blood coagulation in the 1600s. The surge in interest in this field
resulted in the discovery of several coagulation factors, and accordingly, numerous theories
were presented. As such, the theory of hemostasis became well refined and understood
during the twenty-first century. The complex regulation of coagulation factors in hemostasis
relies on the interaction among a multitude of effectors such as platelets, blood vessels,
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and other coagulation factors. Coagulation is coordinated by pro-coagulation factors that
are countered by the process of fibrinolysis, which comprises a set of anti-coagulation
factors and inhibitors regulating the coagulation cascade and maintaining hemostasis while
preventing thrombosis [2,3]. However, states of hypo-coagulation and hyper-coagulation
emerge secondary to defects in the coagulation cascade leading to either abnormal bleeding
or abnormal clotting [4].

An exciting novel opportunity in studying coagulopathies is the implication of extra-
cellular vesicles (EVs), in the modulation of coagulation processes [5–8]. EVs comprise
micro-vesicles (MVs), exosomes, and apoptotic bodies. Studies on the mechanisms of EV
formation, cargo sorting, and release have witnessed a surge in the literature. Importantly,
platelet-derived EVs are highly implicated in the regulation of coagulation physiology and
the pathophysiology of hypercoagulable states. Here, we present a historical background
of coagulation up to the discovery of the cell-based model. We also describe the process of
hemostasis from injury occurrence to blood clot dispersion. Importantly, we focus on the
emerging evidence implicating cell-derived and platelet-derived EVs in the modulation of
hemostasis and coagulopathies.

2. Coagulation: A Historical Overview

Theories of blood clotting date back to ancient Greece when the words hema (blood)
and thrombus (clump) were introduced [9,10]. In the seventeenth century, novel concepts
regarding coagulation deviating from the “traditional Galen medicine” were tabooed,
contested, and disputed. However, Dr. Marcello Malpighi championed these revolutionary
theories and identified, using a single lense microscope, that blood consists of a combination
of red blood cells and a meshwork of fibrous material, now referred to as fibers [3,11]. In
the early 1720s, Jean-Louis Petit, a French surgeon, was the first to link coagulation with
hemostasis after observing patients healing from limb amputation, after whom Dr. William
Hewson, a young British surgeon, observed that blood coagulum arose from the liquid
part of the blood, which is now known as plasma. Moreover, he discovered that the plasma
contains different substances like albumin, globulin, and the precursor of fibrin [12,13].
In 1801, Fourcroy introduced the term “fibrin” and demonstrated that its precursor exists
in the plasma. Four decades later in 1847, Virchow identified the precursor of fibrin
and named it “fibrinogen” [14]. In 1872, Alexander Schmidt’s research showed that an
enzymatic process leads to the conversion of fibrinogen into fibrin, and he called the
enzyme “thrombin”. Schmidt realized that thrombin cannot exist in its active state in the
blood, thus he postulated the presence of a precursor, prothrombin [15]. These discoveries
laid the foundation of Paul Morawitz’s classic theory of coagulation in 1905, whereby the
schema of coagulation consisted of four factors “prothrombin, thrombin, fibrinogen, and
fibrin” in the presence of calcium [2,16].

This classic theory of coagulation persisted until Paul Owren introduced modern
insights on the biochemical processes of coagulation in 1947 [13], when he identified new co-
agulation factors including von Willebrand factor (vWF) [17], factor five (FV) [18], FVII [19],
FVIII [20], FIX [21], FXI [22], and FX [23]. In 1964, Macfarlane proposed the cascade model,
which introduces the order in which the clotting factors are activated. This model was
followed by the waterfall model by David and Ratnoff in which each clotting factor is a
proenzyme (zymogen) awaiting predecessor-mediated proteolytic cleavage to initiate its
activity thus preventing indiscriminate activation or degradation [24–26]. Coagulation can
be initiated by two different pathways; the intrinsic pathway secondary to vascular en-
dothelium damage and sub-endothelial collagen exposure and the TF-dependent extrinsic
pathway. However, the initiation of either pathway results in the activation of FX of the
cascade, leading to the formation of a fibrin clot [27].

In 1935, Henrik Dam discovered that vitamin K was an important player in coagula-
tion [28]. Indeed, vitamin K plays a role in the activation of prothrombin, factors VII, IX, and
X, and the production of proteins C, S, and Z [29]. Another key player in coagulation is cal-
cium, which is required for the conversion of prothrombin into thrombin [13]. Recent work
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on coagulation led to the development of a new model “the cell-based model” in which
the exposure of cells expressing TF on their surface initiates blood coagulation in vivo.
This model pinpoints that the intrinsic pathway does not have a proper physiological
role in hemostasis, adjusts the role of FXII, and highlights its contribution to pathological
thrombosis [30,31].

3. Hemostasis

Hemostasis is achieved through an intricate balance between the levels of procoag-
ulant and anti-coagulant factors [32,33]. Blood vessels are lined by endothelial cells that
exhibit intrinsic antithrombotic properties. However, secondary to vascular injury, the
sub-endothelial matrix comprising collagens, VWF, and adhesion proteins, makes the envi-
ronment highly thrombogenic to blood [34]. Hemostasis comprises primary and secondary
phases that culminate in the formation and stabilization of fibrin strands forming the
platelet plug [35]. Key hemostatic mechanisms are described in Figure 1.
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Figure 1. The hemostatic pathways include the intrinsic and the extrinsic coagulation pathways. In
the healthy state, endothelial cells maintain an antithrombotic property that ensures normal blood
flow. Following vascular injury and the disruption of vascular endothelial integrity, FXII is activated by
proteolytic cleavage resulting in the formation of FXIIa. FXIIa activates FXI into FXIa, which then activates
FIX into FIXa in the presence of calcium. FIXa activates FX into FXa which binds thrombin-activated FVa



J. Clin. Med. 2022, 11, 4932 4 of 29

forming the FXa/FVa complex that activates prothrombin into thrombin. Then, thrombin cleaves
fibrinogen into fibrin forming the fibrin mesh and causing the cessation of blood loss. Thrombin
also cleaves PAR1/4 and activates FV into FVa and FXI into FXIa, thus reinforcing the coagulation
cascade. Thrombin also inhibits the binding of the endothelial-derived FVIII to exposed vWF and
thus, accelerates the formation of the FVIII/vWF complex and the subsequent activation of FVIII
into FVIIIa, which activates FIX into FIXa. Additionally, thrombin activity can be inhibited by ATIII.
Parallel to the intrinsic pathway, the extrinsic pathway is activated in response to vascular trauma,
which results in the secretion of TF. TF activates FVII into FVIIa and subsequently forms the TF-FVIIa
complex, which activates FIX into FIXa. Activated platelets play a major role in the potentiation of both
pathways by providing negatively charged surfaces following phospholipid bilayer rearrangement,
which supports coagulation. Following primary and secondary hemostasis, fibrinolysis takes place.
Fibrin degradation leads to the formation of FDP, which activates plasminogen into plasmin. TAFI,
which is activated by low TM and the TM/thrombin complex into TAFIa, inhibits plasmin activity.
TAFIa is inhibited by both high TM and protein C. Finally, protein C activates APC, which binds
to protein S forming the APC/protein S complex, which inhibits the activity of FVa and FVIIIa.
Abbreviations: APC, active protein C; ATIII, anti-thrombin III; EPCR, endothelial cell protein C
receptor; F, factor; FDP, fibrin degradation products; GP, glycoprotein; PAR, protease-activated
receptor; TAFI, thrombin-activatable fibrinolysis inhibitor; TF, tissue factor; TM, thrombomodulin;
vWF, von Willebrand factor.

3.1. Primary Hemostasis, Secondary Hemostasis, and the Cell-Based Model of Coagulation

During primary hemostasis, platelets and vWF accumulate rapidly at the sub-endothelial
matrix following endothelial damage. Platelet adhesion to collagen is facilitated by injured
tissue-released vWF. This occurs following platelet activation and the interaction of platelet
surface glycoproteins receptors GPIb-IX-V and GPVI with immobilized vWF, and sub-
endothelial collagen, respectively [35,36]. Both receptors are critical for platelet adhesion
to the sub-endothelial matrix at the site of injury [37–41]. Activated platelets exhibit
increased activity of surface integrins, αIIbβ3, α2β1, and αvβ3, that ensure platelet-platelet
interactions, as well as their binding to collagen, VWF, fibrinogen, and fibronectin [42,43].
Moreover, the platelet phospholipid bilayer membrane is rearranged following platelet
activation and becomes negatively charged to support the coagulation cascade later during
secondary hemostasis [44]. The platelet membrane acts as a surface for the assembly of
activated coagulation cascade during secondary hemostasis.

Concurrently, and during secondary hemostasis, extravascular cells including smooth
muscle, fibroblastic, and endothelial cells, release TF (also known as FIIIa). Platelet-released
polyphosphates activate FVII into FVIIa, which then binds TF forming the FVIIa/TF
complex. In the presence of calcium, the FVIIa/TF complex activates FX into FXa, which
consequently activates prothrombin into thrombin in the presence of its cofactor FVa [45,46].
In the extrinsic pathway, FXII is activated into FXIIa by the negatively charged membrane
phospholipid surface of the platelets. FXIIa then cleaves FXI producing FXIa, which
activates, in the presence of calcium, FIX to FIXa. FIX can also be activated by FVIIa through
the intrinsic pathway. FVIII is a cofactor produced by endothelial cells and hepatocytes and
is found as a complex with circulating vWF. Following vascular injury, FVIIIa dissociates
from the complex with vWF and interacts with FIX, forming a new complex in the presence
of calcium ions and negatively charged membrane phospholipids that activate FX into
FXa [47,48].

The extrinsic and intrinsic pathways culminate at FXa which activates the serine
protease thrombin, which cleaves fibrinogen into fibrin [49]. Thrombin further activates
platelets through the proteolytic processing of the G-coupled membrane receptors, protease-
activated receptor 1 (PAR1) and PAR4 [50]. Thrombin also activates FXI, which later
activates FIX through the intrinsic pathway; but also FVIII and FV, creating a positive
feedback activation loop for coagulation [49].

More recently, a cell-based model of coagulation was proposed implicating elaborate
interactions between platelets, vessel walls, and the coagulation system, and better de-
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scribes the in vivo coagulation processes [34]. This model comprises three distinct phases;
initiation, amplification, and propagation rather than independent pathways [31]. An exam-
ple of such intricate processes includes FXa interaction with FVa, which produces limited
amounts of thrombin that plays a key role in the activation of FXI, FVIII, FV, and platelet
PARs during amplification [30,51–53]. Following its activation by thrombin, FVa is released
from the fully-activated platelets and interacts with FXa (activated by the FVIIIa/FIXa
complex) forming a complex that further activates thrombin. This process is referred to as
the thrombin burst [54–58]. Thrombin can be directly inhibited by anti-thrombin III, which
also inhibits FXa, FIXa, and FXIIa [59], and thrombin production could be halted by the
tissue factor pathway inhibitor (TFPI), which inhibits the TF/FVIIa complex [60]. Finally,
and in the presence of calcium, fibrin forms fibrin polymers [61], and thrombin activates
FXIII to form FXIIIa, which crosslinks and strengthens fibrin polymers forming a fibrin
mesh that strengthens the blood clot [62].

3.2. Fibrinolysis, Anti-Coagulation Factors, and Coagulation Inhibitors

Fibrinolytic mechanisms are activated following fibrin mesh formation. Plasminogen,
the precursor of plasmin, an anti-coagulation proteolytic enzyme, is activated into plasmin
by the urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator
(tPA). PAs have a short half-life in circulation due to the presence of circulating inhibitor
plasminogen activator inhibitors (PAIs). Plasmin cleaves fibrin into soluble fibrin degra-
dation products (FDP). Plasminogen and PAs bind FDP exposed carboxy-terminal lysine
amino acid, which leads to the activation of plasmin and the cleavage of fibrin to form FDP.
Moreover, newly activated plasmin activates PAs by converting single-chain PAs to their
two chain counterparts, exerting positive feedback on plasmin activation [63–65]. Thrombin
activated fibrinolysis inhibitor (TAFI) is another zymogen that is activated by the thrombo-
modulin (TM)/thrombin complex to form TAFIa [66]. TAFIa downregulates fibrinolysis by
removing the C-terminal lysine from the FDP, thus preventing tPA/plasminogen/fibrin
complex formation and inhibiting further plasmin activation [66]. It is however worth
noting that TM can act as a cofactor for APC activation and upregulate fibrinolysis by
attenuation of thrombin production [67,68]. Thus, TAFIa and fibrinolysis regulation are
linked to TM levels of the vasculature [69]. Moreover, the inhibition of coagulation is
achieved through the presence of circulating protease inhibitors such as anti-thrombin,
heparin cofactor II, TFPI, and CI inhibitors. Anti-thrombin targets thrombin, FXa, FIXa,
FXIa, and FXIIa, while TFPI targets FXa and the TF/FVIIa complex. Heparin cofactor II
and protein C target thrombin [34].

Protein C (PC), a vitamin K-dependent glycoprotein, exerts a pro-fibrinolytic effect by
regulating thrombin formation and TAFI activation. Particularly, increasing thrombin for-
mation leads to the binding and activation of PC-forming active protein C APC, secondary
to increased thrombin interaction with TM [68]. PC activation is enhanced when bound to
the endothelial cell protein C receptor (EPCR) [70]. Following APC formation, APC breaks
from the EPCR and TM/thrombin complex, binds to its cofactor protein S (PS), and targets
FVa and FVIIIa, thus preventing FXa formation and limiting the thrombin activity [68,71].

3.3. Pathophysiology of Coagulopathies

Two common hereditary hypercoagulable conditions include hemophilia and von
Willebrand disease. Hemophilia A is the most frequent type of hemophilia and is correlated
with FVIII deficiency, while Hemophilia B is correlated with FIX deficiency. Hemophilia
C is the least frequent of the three hemophilia subtypes and is correlated with factor XI
deficiency [72,73]. Von Willebrand disease is associated with the abnormal production of
vWF [74]. Vitamin K is a crucial cofactor for the synthesis and activation of the coagulation
factors FII, FIX, and FX, and the anticoagulation proteins (C and S). The lack of Vitamin K
leads to the production of under-carboxylated factors that cannot bind to calcium [75].

Hypercoagulable conditions are associated with thrombophilia and are categorized
into acquired and inherited conditions [4,76]. The majority of thrombosis is due to throm-
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bophilia, especially in the case of deep vein thrombosis (DVT) [77]. DVT and pulmonary
embolism (PE), both known as venous thromboembolism (VTE), are the most frequent
conditions correlated with thrombophilia. Major inherited conditions causing throm-
bophilia include FV Leiden mutation, anti-thrombin III deficiency, PC-PS deficiency, and
prothrombin-related thrombophilia [78]. FV Leiden thrombophilia is the most common type
of thrombophilia and is associated with the emergence of an APC-resistant FV mutant [79].
Prothrombin-related thrombophilia is the second most common type of thrombophilia
and arises from a prothrombin G20210A gene mutation, which enhances DVT occurrence
secondary to increased thrombin levels [80]. Anti-thrombin deficiency is also associated
with an increased incidence of thrombotic episodes [78,81]. Finally, PC and PS deficiencies
enhance the development of DVT and PE [82,83]. There exist two major types of PC defi-
ciencies, type I which is correlated with reduced circulating PC concentrations, and type II
which is correlated with a reduction in PC functional activity [84].

4. Novel Avenues in Thrombosis Research

In addition to inherent disorders of coagulation, several pathological conditions such
as cancer and sepsis are associated with a hypercoagulable state, to which extracellular
vesicles significantly contribute. Extracellular vesicles can transfer prothrombotic molecules
inter-cellularly and mediate the dissemination of coagulation resulting in arterial and
venous thrombosis. As the role of cell-derived and platelet-derived EVs in physiological
and pathophysiological states is being continuously revealed, an increased interest in the
therapeutic manipulation of these entities is emerging [85]. The cellular release of vesicles
is a common and evolutionary-conserved process [86]. The underlying mechanisms of
vesicle formation, component sorting, and release have witnessed extensive research within
the past decade. Here, we review key concepts of EV biology and thoroughly discuss
the implication of cell-derived and platelet-derived EVs in hypercoagulable disease states,
especially in cancer and sepsis.

4.1. Extracellular Vesicles as Novel Modulators of Coagulation

The term extracellular vesicle denotes numerous subpopulations of cell-shed, non-
replicative lipid bilayer-enclosed vesicles [5–7]. EV subtypes are characterized by distinct
cellular origins and different mechanisms of biogenesis, insights which were provided
by means of transmission and immune-electron microscopy. EVs are widely distributed
in human bodily fluids including urine, blood, saliva, and synovial and cerebrospinal
fluids [86]. Advances in the standardization of EVs isolation and characterization are com-
prehensively reviewed elsewhere [5,86]. EVs, which include MVs, exosomes, membrane
particles, and apoptotic bodies [8], have attracted significant interest as they are implicated
in the regulation of coagulation physiology and the pathophysiology of hypercoagulable
states. Although early observations highlighted procoagulant properties of EVs in healthy
individuals by supporting low-grade thrombin formation [86], emerging evidence supports
a fibrinolytic rather than a procoagulant activity of EVs in healthy humans [87].

Procoagulant EVs are released by a plethora of cells including endothelial cells,
adipocytes, and macrophages among others implicating these entities in the pathogene-
sis of cardiovascular diseases and their associated procoagulant states as summarized in
Table 1. [88–91]. The concentration of EVs in healthy individuals amounts to 103–1011 per mL
depending on the methodologies used for EV quantification and their respective sensitivi-
ties [92,93]. The abundance of circulating EVs was shown to regress in an age-dependent
manner [94]. It was, however, demonstrated that endothelial EVs from elderly subjects
maintain a procoagulant activity contrary to that of young control subjects [95]. More-
over, increased EV plasma levels are observed in diseases associated with a procoag-
ulant state such as thrombotic thrombocytopenic purpura [96], sickle cell disease [97],
and heparin-induced thrombocytopenia [98]. Enhanced circulating EV levels are also ob-
served in established cardiovascular diseases including acute coronary syndrome [99] and
stroke [100,101], but also in metabolic disorders predisposing to cardiovascular dysfunction
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such as type 2 diabetes and metabolic syndrome [102–104]. Recent evidence suggests that
cellular-derived and platelet-derived EVs modulate thrombogenicity in patients with atrial
fibrillation [105]. AF is associated with elevated circulating levels of platelet-derived and
mononuclear cell-derived EVs and reduced endothelial cell-derived EVs [105]. Elevated
EVs including procoagulant TF-expressing, P-selectin-expressing, or PS-expressing EVs
were demonstrated in AF patients and were suggested to contribute to AF-associated
thrombogenicity [106–108]. Whether this increase in EVs concentration associated with
these disorders drives their pathogenesis or is secondary to disease development requires
further investigation. Importantly, the mechanisms by which coagulation factors modulate
the release of EVs remain largely unknown. Nevertheless, recent evidence implicates
FVIIa/EPCR/PAR1-mediated signaling in the induction of the release of procoagulant EVs
from endothelial cells primarily through a ROCK-dependent pathway [88,89].

EVs represent a novel mechanism in intercellular communication in both physiological
and pathophysiological states [109], carrying a cargo of bioactive molecules, such as lipids,
proteins, messenger RNAs (mRNA), cellular metabolites, DNA, and non-coding RNA
molecules including microRNAs (miRs), long non-coding RNAs (lncRNAs), and circular
RNAs (circRNAs) into target cells (Figure 2) [110,111]. Particularly, intact EV-enclosed
non-coding RNA molecules can be isolated from the circulation despite the presence of sig-
nificant RNase activity [112,113]. Indeed, EVs enclosing miRNAs have been demonstrated
to participate in the modulation of various diseases as miRNAs regulate key factors of
hemostasis [114]. It is worth mentioning that platelets inherit a diverse array of coding and
non-coding sequences and translational machinery from megakaryocytes and represent a
major source of circulating miRs [115]. Nevertheless, the contribution of activated platelet-
derived EVs to the pool of circulating non-coding RNAs requires further investigation
and surely adds to the complexity of studying thrombosis-associated EV-encapsulated
non-coding RNAs.

Table 1. Cardiovascular diseases are associated with increased levels of procoagulant circulating
extracellular vesicles. Clinical evidence implicates procoagulant cellular-derived and platelet-derived
extracellular vesicles in the promotion of cardiovascular disease-associated thrombogenicity. EVs,
extracellular vesicles; MVs, microvesicles; PS, phosphatidylserine; TF, tissue factor.

Disease Alteration of the Abundance of Circulating
Procoagulant Extracellular Vesicles References

Thrombotic thrombocytopenic
purpura (TTP)

Increased levels of circulating platelet-derived
EVs [96]

Idiopathic thrombocytopenic
purpura (ITP)

Increased levels of circulating platelet-derived
EVs [116]

Heparin-induced
thrombocytopenia (HIT)

Increased levels of circulating TF- expressing
platelet-derived EVs [98,117]

Sickle cell anemia
Elevated circulating levels of erythrocyte,
platelet, monocyte, and endothelial
cell-derived EVs

[93,118,119]

Disseminated intravascular
coagulation (DIC)

Increased levels of circulating endothelial
cell-derived EVs (suggested as a biomarker of
DIC caused by septic shock)

[120–122]

Acute coronary syndromes
(ACS)

Elevated platelet and monocyte-derived MVs
Increased levels of circulating CD31+ CD42b−

MVs
[99,123,124]

Venous thromboembolism
(VTE)

Elevated levels of circulating endothelial cell
and platelet-derived PSGL-1 and
CD62P-expressing MVs

[125,126]

Acute ischemic stroke (AIS) Elevated levels of circulating endothelial
cell-derived MVs [127]
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Table 1. Cont.

Disease Alteration of the Abundance of Circulating
Procoagulant Extracellular Vesicles References

Paroxysmal nocturnal
hemoglobinuria (PNH)

Increased levels of circulating platelet,
monocyte, and endothelial cell-derived EVs [128,129]

Coronary heart disease (CHD) Elevated levels of CD31+, CD42−, and CD144+

endothelial cell-derived EVs [124]

Acute myocardial ischemia Elevated levels of circulating CD66b+, CD62E+,
and CD142+ EVs [130]

ST-segment elevation
myocardial infarction (STEMI)

Elevated levels of circulating
leukocyte-derived CD11+, endothelial
cell-derived
CD105+, and TF-bearing MVs
Increased levels of erythrocyte-derived but not
platelet-derived MVs

[131]

Acute stroke (AS) Elevated levels of circulating CD62E+

endothelial cell-derived EVs [101]

Acute pulmonary embolism
(APE).

Increased levels of circulating TF-expressing
MVs [132,133]

Atrial Fibrillation (AF)

Increased levels of circulating platelet-derived
and mononuclear cell-derived EVs and
reduced levels of circulating endothelial
cell-derived EVs
Increased levels of circulating procoagulant
EVs expressing TF, PS, and P-selectin

[105–108]

4.1.1. Microvesicles

First documented in the late 1960s and thought to be “cell dust”, microvesicles, also
known as ectosomes or microparticles, are lipid bilayer-enclosed sacs ranging in diameter
between 50 nm to 1.0 µm [8,134]. Although initially thought to be plasma membrane
fragments released from platelets as part of the coagulation process [135,136], MVs are
now believed to be important players in intercellular communication. Importantly, MVs
were shown to transfer bioactive molecules such as hormones, cytokines, and coagula-
tion factors, and are implicated in the modulation of coagulation processes [135]. Indeed,
it was demonstrated that neutrophils and monocytes release TF-expressing MVs in cir-
culating blood near the surface of platelets [137]. Two different mechanisms elicit MVs
formation, apoptosis, and cell activation. During apoptosis, DNA fragments and the cell
contracts resulting in an actin-myosin cytoskeleton-mediated membrane blebbing [138].
These blebs are distinct from those generated through cellular activation in size and protein
composition. As the bleb formation continues, cells shrink into small apoptotic bodies
as polymerized actin undergoes dissolution (Figure 2). The shedding of MVs can also
occur in an apoptosis-independent manner following the exposure to certain physiolog-
ical and pathophysiological stimuli among which are stimulation by proinflammatory
cytokines, ROS, PMA, LPS, complement C5b-9, PAI-1, thrombin, and collagen [139,140]. It
is worth mentioning that the mechanism by which cellular-derived and platelet-derived
MVs release is induced determines their phenotype and function. Upon cellular activation,
MVs are released in a calcium-dependent mechanism which triggers dynamic cytoskeletal
rearrangement of the plasma membrane mediated by a consortium of enzymes including
flippases, floppases, and scramblases [8]. Calcium also activates enzymes that modulate
the cytoskeleton and promote the disassembly of sub-plasma membrane-localized actin
such as gelsolin and calpain. All these changes in the structure and dynamics of the plasma
membrane result in alterations of the membrane curvature and the formation of protru-
sions allowing the MVs to detach [141]. Dramatic extremes of temperature reduce the
cellular capacity to internalize EVs and were shown to abolish the procoagulant activity of
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endothelial cell-derived MVs [142,143]. Moreover, calcium chelation, formalin fixation, and
cytoskeleton disruption have been shown to reduce EVs cellular uptake [143].
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including microvesicles, apoptotic bodies, and exosomes. Microvesicles are 100 nm–1 µm in size and
are secreted following cellular activation. Several stimuli promote microvesicle formation including
shear stress, oxidative stress, several cytokines, as well as lipopolysaccharides, thrombin, and high
plasma levels of homocysteine. Following cellular activation, flippases, floppases, and scramblases
mediate the loss of the phospholipid bilayer integrity. Simultaneously, calcium-dependent, gelsolin
and calponin-executed cytoskeletal rearrangement occur resulting in the alteration of the membrane
curvature. This allows for the emergence of plasma membrane protrusions and the detachment of
MVs. MVs contain several molecules such as miRNAs, lipids, proteins, and cellular metabolites that
potentially modulate key functions in target cells. Apoptotic bodies, which have poor procoagulant
activity, are released from apoptotic cells following membrane blebbing. Exosomes originate from an
endocytotic extracellular vesicle that passes through the endosomal pathway, leading to the formation
of multi-vesicular bodies. Exosomes are released from multi-vesicular bodies where they interact
with target cells either by binding their surface receptors or through exosome-carried molecules
following exosomal degradation. EV, extracellular vesicle; ICAM-1, intracellular adhesion molecule-1;
LFA-1, leukocyte function-associated antigen-1; miRNA, micro RNA; MMP, matrix metalloproteinase;
MV, microvesicle; RAL-1, Ras-related GTPase homolog; VCAM-1, vascular cell adhesion molecule-1;
VLA-4, very late antigen-4.
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The concentration of MVs in plasma has been estimated at 2–4 × 108 per mL [135].
Although the majority of these MVs are platelet-derived [144,145], MVs deriving from
granulocytes, ECs, monocytes, and erythrocytes have been identified in states of health
and disease. Indeed, human blood enrichment with circulating MVs from healthy subjects
enhances platelet adhesion and fibrin deposition on the damaged porcine aorta and human
atherosclerotic arteries [146]. Additionally, circulating thrombin-generating cell-derived
MVs occur in healthy subjects and their procoagulant effects occur through TF-independent
pathways and were inhibited, at least in part, through FXII, FXI, or FVIII-targeting antibod-
ies [86]. Platelet-derived MVs express TF and contain procoagulant membrane components
that potentiate coagulation due to their unusual lipid arrangements, including the externaliza-
tion of phosphatidylserine (PS) [147–149]. Defects in systemic PS-expressing MVs clearance
were found to instigate hypercoagulation in lactadherin-deficient mice [142,150–152]. TF-
exposing MVs were shown to derive from platelets, neutrophils, erythrocytes, granulocytes,
and monocytes, while their capacity to induce thrombin generation was reduced following
the incubation of TF-neutralizing antibody [153]. In addition to TF and TFPI, other proco-
agulant molecules and receptors carried by MVs include P-selectin glycoprotein ligand-1
(PSGL-1), which mediates the interaction between MVs and CD62P expressed on activated
platelets and endothelial cells [154]. Moreover, an increased number of circulating MVs was
demonstrated in patients with vascular inflammation and heart failure, stroke, and myocar-
dial infarction, at least in part secondary to platelet activation [124,150,151,155–157]. The
abundance of circulating procoagulant MVs is also increased in ACS, chronic ischemic heart
disease patients, CAD, heart failure, as well as atrial fibrillation patients, and following
vascular stent implantation [130,151,157–160]. Particularly, increased procoagulant MVs in
CAD and ACS are suggested to be endothelial cell-derived [99,124,161]. Indeed, the proco-
agulant potential of monocyte-derived MVs is the highest, followed by that of endothelial
cells, platelets, and erythrocytes-derived MVs [162]. Indeed, several studies have shown
that TF-expressing MVs derive from monocytes [163–165], while platelet-derived MVs were
shown not to support FXa generation and to exhibit reduced procoagulant activity [166].
Furthermore, emerging evidence suggests that cellular phenotypes and polarization, such
as the proinflammatory and anti-inflammatory polarization modalities of macrophages,
modulate the procoagulant potential of their secreted MVs [167].

4.1.2. Platelet-Derived Microvesicles

Platelet-derived MVs can be distinguished by their expression of the surface markers
CD41 and CD42b [168,169]. Platelet-derived MVs encompass a broad vesicle size range
depending on their content of growth factors, chemokines, and plasma membrane recep-
tors [170]. It is suggested that smaller MVs originate from α-granules, while larger ones
derive from the plasma membrane. It was demonstrated that the number of MVs released
from activated platelets does not match the number of MVs released by platelets in healthy
subjects in vivo. This led scientists to theorize that MVs are derived from circulating qui-
escent platelets following shear stress exposure [171]. However, it is now hypothesized
that CD41+, filamin-A-expressing MVs continuously derive from megakaryocytes and
simultaneously exist with regular platelet-derived MVs in healthy humans [172]. Impor-
tantly, CD41+ MVs were shown not to be associated with an increased risk of CVDs, which
reinforces the speculation that the non-active form of MVs possibly derives from megakary-
ocytes [173–175]. Nevertheless, it is suggested that following the activation of platelets,
increased levels of platelet-derived MVs are released as depicted in Figure 3 [176]. Indeed,
platelets activated by ADP, thrombin, and collagen were shown to release an enhanced num-
ber of MVs [177–181]. Anti-coagulant drugs including clopidogrel, which targets adenosine
P2Y12 ADP receptor or ticagrelor, or the antiplatelet aspirin reduce the release of procoagu-
lant platelet-derived EVs [182–184]. Direct thrombin inhibitors including dabigatran and
melagatran reduce TF-expressing platelet-derived MVs release in response to thrombin
or ADP stimulation [185]. Additionally, monoclonal antibodies targeting GPIbαinhibit
procoagulant platelet-derived MVs release under high shear stress more efficiently than



J. Clin. Med. 2022, 11, 4932 11 of 29

does the GPIIb/IIIa antagonist abciximab [186]. Moreover, activated platelet-derived MVs
are 50–100 fold more procoagulant than the negatively-charged surface of platelets [187].
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Figure 3. General pathways through which extracellular vesicles participate in disease-associated
procoagulant states. (A) Activated platelets secrete procoagulant microvesicles that increase in differ-
ent cardiovascular disorders. Impaired production of platelet-derived microvesicles was shown to
participate in different bleeding disorders such as Scott’s and Castman’s Syndromes. On the other
hand, activated platelet-derived exosomes are thought to counteract the progression of atherosclerosis.
(B) Cancer cell-derived extracellular vesicles are procoagulant through different pathways that initiate
TF-dependent or independent platelet activation leading to disseminated coagulopathy. (C) Sepsis
causes end-organ damage mainly through activating the coagulation system. In sepsis, proinflam-
matory and procoagulant EVS are released into the circulation, while procoagulant exosomes are
released for activated platelets, where both participate in sepsis-associated mortality.
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Although a balanced production of platelet-derived MVs is pivotal to the induction
of angiogenesis and endothelial cell proliferation in vivo [175,188], aberrantly low or high
production of platelet-derived MVs has been demonstrated in several pathological states.
Individuals with Scott’s Syndrome, Glanzmann’s thrombasthenia, and Castaman defect
have an impaired basal capacity to generate MVs resulting in an enhanced susceptibility
for hemorrhage [189–192]. Alternatively, elevated levels of platelet-derived MVs were
demonstrated in several thrombosis-associated diseases including arterial thrombosis [189],
sickle cell disease [97], and CVDs such as angina and hypertension [189]. It has also been
suggested that platelet-derived MVs transfer miRs to target cells as a form of intercellular
communication [193,194]. For example, the transport of miRNA-133a, whereby levels are
significantly elevated in patients with acute MI and angina pectoris occurs via MVs reaching
target cells in the heart as well as other organs following these cardiovascular events [195,196].
Moreover, miR-containing platelet-derived MVs function beyond coagulation. For example,
platelet-derived miR-1915-3p-containing MVs suppress the expression of Rho GTPase
family member B, inducing megakaryopoiesis [197].

Exosomes

Exosomes are nano-sized particles that range in diameter between 50 and 150 nm
and are secreted by almost all mammalian cells [85,198,199]. Exosomes’ protein content
is characterized by a consortium of transmembrane and non-membrane bound proteins
including Annexin V, GTPases, Rab, and flotillin, as well as protein components of the
endosomal sorting complexes required for transport (ESCRT), such as AGLT-2-interacting
protein X (Alix), heat shock proteins (HSPs), tumor susceptibility gene 101 (TSG101),
tetraspanins (CD63, CD81, and CD9), and integrins (e.g., α4β1 and VCAM-1 on endothelial
cells and αLβ2 on leukocytes) [8,200–203]. As such, patient treatment with abciximab,
which targets the integrin αIIβ3, inhibits the uptake of PS-expressing EVs by human
endothelial cells [204].

Exosomes derive from the fusion of the plasma membrane with the endosomal net-
work. However, the mechanisms of exosome biogenesis, formation, and release are quite
complicated, and only partly unraveled [8,205]. It has been proposed that exosomal biogen-
esis starts with the formation in specialized regions of the plasma membrane of endocytic
EVs, which is followed by the formation of intraluminal vesicles (also called exosome
precursors) within multi-vesicular bodies. Intraluminal vesicles then detach from the
plasma membrane and move to the early endosome, where they fuse. In this compartment,
internalized membrane receptors undergo conformational changes and dissociate from
their ligands. The dissociated ligands are destined for degradation after their sorting
into lysosomes. Alternatively, internalized receptors and retained ligands can be recycled
to the plasma membrane or transferred to late endosomes. In late endosomes, proteins
are either degraded through the lysosomal pathway or are incorporated in intraluminal
vesicles, which upon budding from multi-vesicular bodies, are conveyed to the plasma
membrane and are released (Figure 2) [8,206]. It is worth noting that the inhibition of exo-
some biosynthesis and release in senescent cells promoted DNA damage and accelerated
cellular apoptosis-like cell death [207], suggesting that exosome-mediated release of detri-
mental DNA fragments as well as other cellular components during cellular senescence
may play a protective role preventing the development of innate immune responses.

Accumulating evidence suggests the implication of various molecules in the mem-
brane fusion and release of exosomes. Small Rab GTPases were shown to drive exosome
secretion, while Rab27a and Rab27b are implicated in multi-vesicular body docking to the
plasma membrane [208]. Multi-vesicular body formation and exosome secretion are also
controlled by Ras-related GTPase homolog (RAL-1) [209]. Following secretion, circulating
exosomes can be taken up by target cells by three different mechanisms; fusion, bind-
ing, and endocytosis [143]. In that sense, exosomes expressing membrane-bound ligands
may bind to receptors of target cells to activate intracellular signaling [210]. For example,
the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion
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molecule-1 (VCAM-1) on the surface of EVs allows their binding to recipient cells through
receptor interactions with leukocyte function-associated antigen-1 (LFA-1) and very late
antigen-4 (VLA-4), respectively [211,212]. Moreover, proteoglycans such as heparan sulfate
proteoglycan receptors and glycoproteins such as the hyaluronan receptor CD44, or lectins
present other protein groups implicated in the uptake of EVs by recipient cells [139]. Vari-
ous mechanisms of endocytosis, being the major type of exosome uptake, exist and include
micropinocytosis, phagocytosis, clathrin-mediated and clathrin-independent endocytosis,
lipid raft-mediated endocytosis, and caveolae-mediated endocytosis [143,213]. As such,
inhibiting clathrin-dependent endocytosis in endothelial cells reduces the uptake of PS-
expressing EVs [204]. Moreover, it was demonstrated that inhibiting caveolae endocytosis,
either pharmacologically or through knocking down caveolin-1, as well as cholesterol
depletion, reduces exosomes and MVs uptake by target cells [163]. It is proposed that exo-
somes actively contribute toward a procoagulant phenotype through carrying key effectors
of coagulation such as fibrinogen [214]. Nevertheless, exosomes were demonstrated to be
less efficient in promoting coagulation than MVs [215].

4.1.3. Platelet-Derived Exosomes

Platelet-derived exosomes were shown to suppress athero-thrombotic processes by
enhancing the proteolytic degradation of CD36 and by inhibiting platelet activation and
subsequent thrombosis [216]. It was also shown that thrombin-activated platelets secrete
miR-223 during inflammation, which downregulates the expression of ICAM-1 in endothe-
lial cells [217]. Moreover, exosomes derived from thrombin-stimulated platelets contain
miR-223, miR-339, and miR-21 and inhibit the expression of platelet-derived growth factor
receptor-β in VSMCs [218]. In an miR-223-deficient mouse model of carotid thrombosis,
prolonged times to occlusive thrombosis were observed demonstrating a protective effect
of miR-223 deficiency [219]. The transfusion EVs from WT mice to miR-223-deficient mice
reversed the reduction in thrombosis time. Another study suggested that platelet miR-223
levels were significantly lower in hypertensive patients and these levels were suggested as
prognostic markers for cardiovascular disease in these patients [220]. Moreover, miR-233
platelet levels were elevated while their content in platelet-derived MVs decreased in a
hypertensive, hyperlipidemic animal model of atherosclerosis [221]. This indicates an
active mechanism of selective miR packing into platelet-derived MVs in different patholo-
gies, which provides novel targets for the treatment of cardiovascular diseases. It was
also demonstrated ex vivo that platelets support gymnosis, that is, the internalization of
ectopic miRs in absence of conventional transfection reagents and their incorporation into
RNA-induced silencing complexes (RISCs) by endocytic pathways [222]. The uptake of
miR-223-3p by thrombin or fibrinogen-induced platelets inhibited exosome and MVs gener-
ation [222]. A recent study demonstrated that senescent platelets in vitro include miRNAs
relevant to atherosclerosis and inflammation [223]. Moreover, senescent platelet-derived
EVs contain upregulated levels of miRs involved in obesity, diabetes, and metabolic and
vascular diseases (Figure 3) [223]. Although the multifaceted roles of EVs in atherosclero-
sis development and progression are appreciated [224,225], further investigation into the
possible roles of platelet-derived exosomes in driving the pathogenesis of coagulopathies
is warranted.

4.1.4. Apoptotic Bodies

Apoptotic bodies are large, permeable vesicles released following cellular apoptosis,
with sizes ranging from 50 nm to 5.0 µm in diameter [150,226]. Importantly, apoptotic bod-
ies are less regular in shape in comparison to MVs and are released in advanced stages of
apoptosis as a result of cellular contractions and the increased hydrostatic pressure in dying
cells [227,228]. Some MVs may also be released during this stage of membrane blebbing.
These bodies can contain various cellular contents, cellular organelles, and DNA fragments
and can thus participate in processes ranging from tissue regeneration to horizontal DNA
transfer. For example, the DNA content of endothelial cell-derived apoptotic bodies was
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shown to promote the proliferation and differentiation of human endothelial progenitor
cells [229]. Similarly, macrophage-derived apoptotic bodies were shown to contain miR-
221/222 which promotes the proliferation of lung epithelial cells [230]. Fibroblast-derived
apoptotic bodies were also demonstrated to contain amino acids that induce gene recombi-
nation in target cells [231]. Apoptotic bodies are cleared through phagocytosis by cells of the
innate immune system and endothelial cells [232,233]. In comparison with MVs, apoptotic
bodies have poor prothrombotic properties and were suggested to use phosphatidylserine
for the recruitment of phagocytes to sites of cellular death rather than for platelet activation
(Figure 2) [234]. Nevertheless, PS-expressing apoptotic EVs were shown to directly asso-
ciate with FXII and support thrombin generation [149]. As such, the procoagulant roles of
apoptotic bodies are yet to be elucidated and require further investigation.

4.2. Extracellular Vesicles as Drivers of Hypercoagulable States
4.2.1. Extracellular Vesicles in the Cancer-Associated Prothrombotic States

A significantly higher risk for the development of venous thrombosis in cancer patients
is well documented [235]. Cancer-associated thrombosis is a multi-factorial process in
which several mechanisms are implicated, the molecular underpinnings of which are still
obscure [236]. Several studies highlighted a role for tumor-derived EVs expressing TF and
PS in the thrombotic manifestations of many cancers including multiple myeloma, and
breast and prostate cancers [237–239]. Indeed, procoagulant, PS-expressing tumor-derived
EVs provide initiation sites for blood coagulation and tumor-derived EVs may activate
platelets and promote their aggregation through both TF-dependent and TF-independent
mechanisms [109,240–242]. TF-expressing EVs were first isolated from plasma samples of
advanced colorectal cancer patients [243] and were then detected in the plasma of pancreatic,
lung, ovarian, colorectal, prostate, and breast cancer patients [244–247]. Moreover, one
study showed that tumor-derived TF-expressing EVs induce DVT and that these EVs
cooperate with host TF in order to cause the prothrombotic state in pancreatic cancer [248].

Emerging evidence provides conflicting perspectives on the implication of tumor-
derived and platelet-derived procoagulant EVs in the pathogenesis of cancer-associated
thrombosis and their use as biomarkers predicting coagulopathy [249–255]. Whereas a
strong correlation between TF-expressing EVs and VTE was demonstrated in patients with
pancreatic cancer [256,257], other studies in different cancers failed to arrive at similar
associations [256,258–261]. Particularly, a prospective cohort study demonstrated an associ-
ation between MVs TF activity in cancer patients and total mortality and prognosis, but not
thrombosis [260]. These conflicting outcomes probably arise from the differential use of
various techniques for TF measurement, different EV purification methods, and variable
antibody and assay sensitivity. As novel assays measuring the activity of TF in plasma EVs
are developing, a better comprehension of the association between TF-expressing EVs and
cancer-associated thrombosis will become possible. It is noteworthy that although cancer
cell-derived exosomes and MVs display fibrinolytic activities, only cancer cell-derived MVs
display prothrombotic activities [262]. Importantly, neither exosomes nor MVs displays
fibrinolytic activity under physiological conditions.

As vascular and tumor cell-derived, TF-bearing EVs were shown to drive coagulopa-
thy [263,264], it was shown that TF-expressing EVs promote prothrombotic states in murine
models of Lewis lung carcinoma, melanoma, pancreatic cancer [200,264–267]. Mice bearing
TF-positive tumors and elevated levels of circulating TF-expressing EVs were shown to
exhibit enhanced thrombosis [268]. Mice injected with TF-overexpressing ovarian cancer
cells exhibited enhanced venous thrombus formation following experimental stenosis [269],
while mice bearing tumors under-expressing TF exhibited halted coagulation, platelet
aggregation, and thrombus formation [270]. Coculturing prostate cancer cells with high
TF expression with peripheral blood mononuclear cells and platelets enhanced EVs TF
activity while no such observation was shown in prostate cancer cells with low TF expres-
sion [247]. It was also suggested that glioma-derived podoplanin and TF coexpressing
EVs cooperatively enhance micro-thrombosis in glioma xenograft murine models [271].



J. Clin. Med. 2022, 11, 4932 15 of 29

It is worth noting that the procoagulant potential of TF-expressing MVs derived from
human tumor cell lines is reduced in PAR2−/− mice following clopidogrel treatment. More-
over, recent evidence suggests that cancer cell-derived EVs expressing polyphosphates
induce blood coagulation by activating FXII, with pancreatic and lung cancer cell lines
exhibiting the most potent activity [272,273]. Degrading EV’s polyphosphates inhibits
FXII activation [273] while blocking the polyphosphate/FXII pathway protects against
thromboembolism without promoting hemorrhage in mice [274]. It was therefore sug-
gested that the polyphosphate/FXII axis could be targeted to decrease cancer-associated
thrombosis [275].

Moreover, cancer cells and their secreted EVs promote the formation of neutrophil
extracellular traps (NETs), which in addition to modulating cancer growth and metastasis,
contribute to cancer-associated coagulopathy [109,276–279]. NETs represent a molecular
trap that is formed by DNA chromatin, histones, and serine proteases in addition to other
components, and these components, rather than intact NETs are suggested to drive NETosis-
associated coagulopathies [280,281]. Peptidylarginine deiminase 4 (PAD4), an enzyme that
mediates chromatin decondensation, was shown to regulate NETosis and coagulopathy
where PAD4−/− mice exhibit impaired NETs formation [282–285]. While P-selectin was
shown to promote NETosis through binding to PSGL-1 [286], fibrin and APC were shown
to inhibit NETosis [287,288]. Activated platelets promote NETs formation, which forms a
viscous cycle that propagates thrombus formation [289–291].

NETs are present in both arterial and venous thrombi of both human and experimental
mice and were shown to promote platelet activation and aggregation in histone-dependent
and independent pathways [289,292–294]. Increased markers of NETs formation were also
detected in cancer patients and were associated with an increased risk of thrombosis [295–299].
Interestingly, NETs can entrap tumor-derived pro-coagulant EVs which amplifies the
establishment of the prothrombotic state [266,295]. Indeed, mice orthotopically injected
with 4T1 breast cancer cells exhibit enhanced exosome-induced NETs formation, which is
associated with enhanced thrombosis [295]. Targeting NETs exerted an antithrombotic effect
which further stresses the importance of NETs generation on thrombus formation [283,289,295].
Epithelial-to-mesenchymal transition, another hallmark of cancer, may also promote the
release of TF-bearing EVs from tumor cells [263]. Although tumor-derived EVs activate
platelets, the platelets play a fundamental role in accumulating these vesicles at the site of
thrombosis through PSGL-1 in an EVs membrane integrins-dependent manner [266,270].

4.2.2. Extracellular Vesicles in the Sepsis-Associated Prothrombotic States

Sepsis is a major cause of thrombosis and organ failure with a mortality rate approach-
ing 50%, where early diagnosis and treatment are pivotal for patient survival. Elevated
levels of circulating procoagulant and proinflammatory EVs were documented in sepsis
and were suggested to contribute to coagulation disorders and organ dysfunction and
are correlated with mortality [300–306]. Several factors expressed on the vesicle surface
including TF and PS, and bioactive substances contained in vesicles such as nucleosomes
and high-mobility group box 1 (HMGB1), contribute to this prothrombotic state [307–309].
Although platelet-derived EVs represent the major population of EVs in sepsis [310,311],
endothelial cells, monocytes, neutrophils, and red blood cells were extensively studied and
shown to participate in TF-positive EV expression. Therefore, further investigation is still
required to delineate the exact cellular source of septic coagulopathy [312,313].

Although the procoagulant role of these EVs in sepsis is starting to unveil, the lack
of standardized assays and procedures for the characterization of these vesicles in sepsis
yielded inconclusive results [312]. The upregulation of TF expression in EVs was evident in
EVs released from activated monocytes [314], endothelial cells, and platelets, and predicts
the severity of sepsis [315–317]. Likewise, Zhang et al. reported that endothelial cells treated
with EV-containing serum from septic patients demonstrated increased levels of exposed PS
in comparison to controls [318]. In another study, Tripisciano et al. induced the generation
of thrombin in vesicle-free human plasma to which platelet-derived EVs were added [319].
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Importantly, this was abrogated by the PS-binding annexin V but not by anti-TF antibodies.
In sepsis, damage-associated molecular patterns (DAMPs) are released from activated
and damaged cells and are transferred by EVs [320]. Platelet-derived EVs were shown
to preferentially associate with circulating monocytes, contributing to sepsis-associated
prothrombotic state [321,322].

Exosomes play an important role in coagulation and inflammation processes as well as
organ dysfunction in sepsis. It was suggested that elevated exosome plasma level predicts
the severity of organ failure and mortality in septic patients [323]. Moreover, another study
demonstrated a differential, dysregulated miR profile in serum exosomes, total serum, and
platelets of sepsis patients [324]. This compartment-specific expression of sepsis-associated
miRs, especially in exosomes, was suggested as a novel biomarker in sepsis [325]. Platelets
also activate NET formation during sepsis. Treating neutrophils with septic shock patient-
derived exosomes significantly increased NET components and correlated positively with
disease severity and outcome [326]. This observation was also confirmed in an in vivo
model of sepsis. Mechanistically, exosomal HMGB1, miR-15b-5p and miR-378a-3p induced
NET formation through the Akt/mTOR pathway [327]. It was also suggested that IκB
kinase controls the secretion of platelet-derived exosomes in sepsis [327].

5. Conclusions and Future Perspectives

Major advances in our comprehension of coagulation pathways and hemostasis have
evolved since the early observations of Marcello Malpighi in the seventeenth century. As
hemostasis is defined through the balance of procoagulant and anticoagulant mechanisms,
a tilted balance towards either mechanism results in pronounced diseases such as hemor-
rhage and thrombosis, the magnitude of which depends on the scale of balance disruption.
Extracellular vesicles represent an exciting novel avenue in thrombosis research as cellu-
lar and platelet-derived extracellular vesicles mediate, at least in part, the procoagulant
phenotype observed in cardiovascular disorders, cancer, and sepsis. Indeed, clinical and
experimental evidence demonstrates that the procoagulant activity of these EVs extends
well beyond their exposure to TF or PS, but encompasses cellular components implicated in
the multiplication of coagulation surfaces and intercellular cross-linking at sites of vascular
injury. Their pervasive presence in all body fluids including blood and urine allows for
their promising utilization as fluid biopsies for the diagnosis and prognosis of diseases in
which EVs abundance and content are altered.

Nevertheless, it should be noted that clinical evidence more often than not derives
from studies employing relatively small patient cohorts, thus, validation in larger cohorts
of patients is warranted. Additionally, distinct methodologies utilized in the isolation and
characterization of EVs subtypes such as differential ultracentrifugation, size exclusion
chromatography, and density gradient chromatography, yield inconsistent EV preparations
with differential purity and composition, halting the collective translational potential of
these clinical findings. It is therefore of utmost importance that future endeavors into
characterizing the hemostatic roles of EVs occur in accordance with published recom-
mendations and guidelines [5]. Another limitation is presented by our incomprehensive
knowledge regarding the effects of concurrent antiplatelet and anticoagulant treatments
on the abundance of cellular-derived and platelet-derived EVs and the alteration in their
contents. Indeed, further investigation into these research avenues is warranted.

Promising evidence implicates EVs as a drug delivery system and the modulation
of their cellular uptake as an avenue in the design of future therapeutics [327]. As such,
EVs can be genetically engineered to display antithrombotic, fibrinolytic, or regenerative
properties achieving targeted in vivo effects with minimal off-target uptake [328,329]. Nev-
ertheless, and before these applications become available for clinical trials, assessments of
their limitations such as cytotoxicity, uptake kinetics, and half-life are warranted [330,331].
Given the overwhelming evidence implicating EVs in the modulation of hemostatic pro-
cesses, as biomarkers in procoagulant disorders, and as potential drug delivery systems,
it becomes evident that advancing our knowledge concerning the mechanisms underpin-
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ning EV formation and their pathological relevance will enhance their translation into
clinical practice.
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