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Abstract Cardiovascular disease is a major cause of morbid-

ity and mortality in patients with type 2 diabetes mellitus, with

a two- to fourfold increase in cardiovascular disease risk com-

pared with non-diabetic individuals. Abnormalities in lipid

metabolism that are observed in the context of type 2 diabetes

are among the major factors contributing to an increased car-

diovascular risk. Diabetic dyslipidaemia includes not only

quantitative lipoprotein abnormalities, but also qualitative

and kinetic abnormalities that, together, result in a shift to-

wards a more atherogenic lipid profile. The primary quantita-

tive lipoprotein abnormalities are increased triacylglycerol

(triglyceride) levels and decreased HDL-cholesterol levels.

Qualitative lipoprotein abnormalities include an increase in

large, very low-density lipoprotein subfraction 1 (VLDL1)

and small, dense LDLs, as well as increased triacylglycerol

content of LDL and HDL, glycation of apolipoproteins and

increased susceptibility of LDL to oxidation. The main kinetic

abnormalities are increased VLDL1 production, decreased

VLDL catabolism and increased HDL catabolism. In addition,

even though LDL-cholesterol levels are typically normal in

patients with type 2 diabetes, LDL particles show reduced

turnover, which is potentially atherogenic. Although the path-

ophysiology of diabetic dyslipidaemia is not fully understood,

the insulin resistance and relative insulin deficiency ob-

served in patients with type 2 diabetes are likely to

contribute to these lipid changes, as insulin plays an

important role in regulating lipid metabolism. In addi-

tion, some adipocytokines, such as adiponectin or

retinol-binding protein 4, may also contribute to the

development of dyslipidaemia in patients with type 2

diabetes.
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LRP LDL receptor–related protein

MTP Microsomal triacylglycerol transfer protein

PERPP Post-ER presecretory proteolysis

PI3K Phosphatidylinositol 3-kinase
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PLTP Phospholipid transfer protein
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PTP-1B Protein-tyrosine phosphatase 1B
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Introduction

The risk of cardiovascular disease and cardiovascular mortal-

ity is significantly increased in patients with type 2 diabetes

mellitus relative to healthy individuals [1, 2]. A major contrib-

utor to the increased cardiovascular risk associated with type 2

diabetes is dyslipidaemia, which encompasses abnormalities

in all lipoproteins [3–5]. Lipid abnormalities observed in type

2 diabetes are not only quantitative, but also qualitative and

kinetic in nature [6–8]. A number of factors may contribute to

the changes in lipid metabolism in patients with type 2

diabetes, including insulin resistance and/or relative

insulin deficiency, adipocytokines (e.g. adiponectin), and

hyperglycaemia [6–8]. The aim of this review is to briefly

describe normal lipoprotein metabolism, including the role

of insulin, to describe the pathophysiology of the lipid abnor-

malities observed in individuals with type 2 diabetes, and to

discuss how these lipid abnormalities relate to the develop-

ment of cardiovascular disease.

Overview of normal lipoprotein metabolism

Lipids are transported within body fluids in the form of lipo-

protein particles, which are classified according to their

density, ranging from chylomicrons to VLDL, intermediate-

density lipoprotein (IDL), LDL and HDL (Fig. 1).

Postprandial lipidaemia and chylomicrons

Dietary lipids are absorbed by the enterocytes via pas-

sive diffusion or specific transporters (e.g. CD36 for

NEFA and Niemann-Pick C1-like 1 protein [NPC1L1]

for cholesterol). Within the enterocytes, triacylglycerols

(triglycerides), cholesteryl esters and other lipids (phos-

pholipids and small amounts of unesterified cholesterol)

are associated with apolipoprotein (Apo)B-48 (as well

as ApoA-IV and ApoA-I) to form chylomicrons in a

process involving microsomal triacylglycerol transfer

protein (MTP) and fatty acid transport proteins.

Chylomicrons are then exported into lymph and subse-

quently into the blood. ApoB-48 synthesis by the gut

occurs continuously; however, lipidation to form chylo-

microns is dependent on the availability of lipids and

occurs mainly after meals.

Lipoprotein lipase (LPL), which is attached to the

luminal surface of endothelial cells and present mostly

in muscles, the heart and the adipose tissue, plays a

major role in chylomicron clearance by hydrolysing tri-

acylglycerols and liberating NEFA into the circulation.
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Fig. 1 An overview of human lipoprotein metabolism and the effects of

insulin on lipoprotein metabolism. (1) Insulin inhibits hormone-sensitive

lipase. (2) Insulin inhibits hepatic VLDL production. (3) Insulin activates

LPL. (4) Insulin increases LRP expression on the plasma membrane. (5)

Insulin increases LDL receptor (LDL-R) expression. CE, cholesterol ester;

CETP, cholesteryl ester transfer protein; HDLn, nascent HDL HL, hepatic

lipase; HSL, hormone-sensitive lipase; LPL, lipoprotein lipase; SR-B1,

scavenger receptor B1; TAG, triacylglycerol
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The chylomicron remnants produced by the lipolysis of

chylomicrons are taken up by the liver via the LDL

receptor (Fig. 1) in conjunction with the LDL

receptor-related protein (LRP), both of which bind

ApoE.

VLDLs and IDLs

Lipids are exported from the liver into the blood as VLDLs.

The first step of VLDL assembly takes place in the rough

endoplasmic ret iculum (ER) where ApoB-100 is

cotranslationally and post-translationally lipidated by MTP,

forming pre-VLDL [9, 10]. In the absence of adequate core

lipids and/or MTP, partially translocated ApoB is exposed to

the cytosol and subjected to degradation via the ubiquitin–

proteasome system. During the second step, pre-VLDL is fur-

ther lipidated late in the ER compartment to form VLDL2,

exiting the ER compartment via Sar1 (a GTPase)/coat protein

II (COPII) vesicles that fuse to the cis side of the Golgi appa-

ratus. In the Golgi apparatus, VLDL2 can be converted into

larger VLDL1 by the addition of lipids (Fig. 2). At this stage,

VLDL particles may also be degraded via post-ER

presecretory proteolysis (PERPP) [11]. The formation of

VLDL1 depends on factors such as ADP ribosylation factor

1 (ARF-1), phospholipase D1 and extracellular signal-

regulated kinase 2 (ERK2), which are involved in membrane

trafficking between the ER and the Golgi apparatus or in the

formation of cytosolic lipid droplets [10].

As with chylomicrons, triacylglycerols from VLDLs are

hydrolysed by LPL in plasma, producing NEFA to be used

as fuel in the heart and skeletal muscle or for storage within

adipocytes (as triacylglycerols). The progressive triacylglyc-

erol depletion of VLDLs induces the transfer of a portion of

the lipoprotein surface layer (including phospholipids, ApoC

and ApoE) to HDLs and leads to the formation of IDLs [8].

Approximately 90% of IDLs are converted into LDL through

further lipolysis involving hepatic lipase, which has both tri-

acylglycerol lipase and phospholipase activities, whereas the

rest is cleared by the liver (via LRP or LDL receptors).

LDLs

LDL, the major transporter of cholesterol within the blood,

comprises a core of esterified cholesterol molecules enclosed

in a shell of phospholipids and unesterified cholesterol, to-

gether with a single molecule of ApoB-100. LDL is taken up

into cells via receptor-mediated endocytosis, which involves,

first, the binding of LDL–ApoB-100 to the LDL receptor on

the plasma membrane of hepatic and other tissues, then the

internalisation of the LDL-receptor complex via endocytosis,

followed by fusion with lysozymes, which contain a number

of catabolic enzymes. Proprotein convertase subtilisin/kexin

type 9 (PCSK9) plays a key role in regulating LDL-receptor

activity by binding the LDL-receptor/LDL complex and

directing the receptor away from recycling back to the surface

and into the lysosomal catabolic pathway.
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Fig. 2 An overview of VLDL

assembly and secretion. Step 1: In

the rough ER, ApoB is lipidated

by MTP, leading to the formation

of pre-VLDL, then VLDL2 by

further lipidation. VLDL2 exits

the ER compartment via

Sar1/COPII vesicles, which are

directed to the Golgi apparatus.

ARF-1 is involved in VLDL2
trafficking between the ER and

the Golgi apparatus. Step 2: In the

Golgi apparatus, VLDL2 is

converted into larger VLDL1 by

the addition of lipids. This step is

promoted by phospholipase D1

and extracellular signal-regulated

kinase 2 (ERK2). At this stage

degradation by PERPP may

occur. COPII, coat protein II;

FA, fatty acid; MTP, microsomal

triglyceride transfer protein; TAG,

triacylglycerol
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HDLs

The atheroprotective effect of HDLs related to their role

in reverse cholesterol transport is well known, but these

lipoprotein particles also have anti-inflammatory, anti-

oxidative, anti-thrombotic and anti-apoptotic properties.

HDLs are synthesised by both the liver and the intes-

tine. Newly secreted or nascent HDLs contain only apo-

lipoproteins (mainly ApoA-I) and rapidly recruit non-

esterified cholesterol and phospholipids from peripheral

cells through the binding of ApoA-I to the membrane-

associated ATP-binding cassette protein 1 (ABCA1)

transporter, allowing for the transport of non-esterified

cholesterol and phospholipids from the cytoplasm into

HDL (Fig. 1) [12]. Within the HDL particle, non-

esterified cholesterol is esterified by lecithin–cholesterol

acyltransferase (LCAT). In the circulation, HDLs acquire

more cholesterol from peripheral tissues, including mac-

rophages within artery walls, again through the ABCA1

transporter, as well as the ATP-binding cassette G1

(ABCG1) transporter. During this process, small-size

HDL (usually called HDL3) becomes larger (usually

called HDL2). HDL returns cholesterol to the liver via

both direct and indirect mechanisms. Through scavenger

receptor B1 (SR-B1), HDL-cholesteryl esters are directly

taken up by the liver, where they are hydrolysed. HDL

also exchanges lipids with VLDL and LDL in a process

involving cholesteryl ester transfer protein (CETP),

whereby cholesteryl esters are transferred from HDL to

VLDL and, reciprocally, triacylglycerols are transferred

from VLDL to HDL. In the circulation, HDL also re-

ceives ApoC and ApoE from VLDL. In addition, phos-

pholipid transfer protein (PLTP) promotes the transfer of

phospholipids from VLDL to HDL. During this process,

HDL becomes enriched in triacylglycerols and phospho-

lipids that are both degraded by hepatic lipase, thus

forming smaller HDL particles that can be cleared by

the liver or again participate in reverse cholesterol trans-

port. During the catabolic process, lipid-poor ApoA-I is

formed that can be filtered at the level of the glomeru-

lus and then catabolised by proximal renal tubular epi-

thelial cells after binding to cubilin, a protein localised

to the apical surface of the renal tubular cell [13].

Lipid transfer proteins

CETP and PLTP play key roles in lipoprotein metabo-

lism. CETP facilitates the transport of cholesteryl esters

and triacylglycerols between the lipoproteins, resulting

in: (1) a net loss of cholesterol esters and gain of tri-

acylglycerols by HDL and LDL; and (2) a reciprocal

net gain of cholesterol esters and loss of triacylglycerols

by chylomicrons and VLDL. CETP activity is increased

by triacylglycerol-rich lipoproteins, NEFA and some

phospholipids (phosphatidylcholine) and is inhibited by

ApoC-I [14]. Any changes in CETP activity significant-

ly modify the composition and metabolism of lipopro-

teins. PLTP circulates in the plasma bound to HDL,

mediating the transfer of phospholipids (e.g. from

VLDL remnants) into these particles, and also the ex-

change of phospholipids between lipoproteins.

Adiponectin

Adiponectin is thought to play a direct role in influenc-

ing lipid metabolism. Adiponectin has been shown to be

inversely correlated with fasting and postprandial triac-

ylglycerols [15, 16]. It facilitates ApoA-I-mediated cho-

lesterol efflux from macrophages by upregulating

ABCA1 expression [17]. In addition, adiponectin is pos-

itively correlated with plasma HDL-cholesterol levels,

and some data indicate that adiponectin may directly

reduce HDL catabolism [18].

The role of insulin in lipoprotein metabolism

Insulin is a key hormone in the regulation of lipid me-

tabolism. The main sites of action of insulin on lipopro-

tein metabolism are shown in Fig. 1. In adipose tissue,

insulin has an antilipolytic effect, inhibiting hormone-

sensitive lipase. Thus, it promotes storage of triacylglyc-

erols in adipocytes and reduces secretion of circulating

NEFA from adipose tissue. This inhibition of lipolysis

by insulin is particularly effective during the postpran-

dial period.

Insulin directly inhibits hepatic VLDL production. In

individuals with normal lipid metabolism, insulin has

been shown to induce a 66% decrease in VLDL-

triacylglycerol production and a 53% decrease in

VLDL-ApoB production [19]. Insulin reduces VLDL

production by diminishing circulating levels of NEFA,

which are substrates for VLDL, and by exerting a direct

inhibitory effect on VLDL production in hepatocytes

[20]. There are several findings indicating that the phos-

phatidylinositol 3-kinase (PI3K) pathway is involved in

the inhibitory effect of insulin on VLDL secretion. The

binding of insulin to its receptor induces tyrosine phos-

phorylation of insulin receptor substrates leading to ac-

tivation of PI3K, which, once activated, induces the

transformation of phosphatidylinositol 4,5-bisphosphate

(PIP2) into phosphatidylinositol 3,4,5-trisphosphate

(PIP3), leading to promotion of the activation of Akt,

a serine/threonine kinase implicated as an effector of

metabolic actions of insulin. Indeed, insulin has been

shown to inhibit, via PI3K, the maturation phase of

Diabetologia (2015) 58:886–899 889



VLDL assembly by preventing bulk lipid transfer to

VLDL precursors [21, 22]. This effect could be partly

explained by the inhibition by insulin of phospholipase

D1 and ARF-1, two factors involved in the formation of

VLDL1 [6, 10]. In addition, insulin activation promotes

the PERPP of ApoB via PI3K [23]. It has also been

shown that insulin reduces the synthesis of ApoB by

inhibiting ApoB mRNA translation [24]. Furthermore,

insulin negatively regulates MTP (also known as

MTTP) gene expression [10]. Insulin is a potent activa-

tor of LPL, promoting the catabolism of triacylglycerol-

rich lipoproteins (e.g. chylomicrons, VLDL) [15].

Insulin also inhibits the expression of ApoC-III, an in-

hibitor of LPL [25]. In addition, it induces the translo-

cation of LRP to the plasma membrane, increasing the

uptake and clearance of chylomicron remnants [26].

Insulin also promotes the clearance of LDL by in-

creasing LDL-receptor expression and activity [27].

Some data indicate that insulin may stimulate the activ-

ity of hepatic lipase [28], but hepatic lipase responsive-

ness to insulin is still controversial [29]. A study on

individuals without diabetes reported that insulin

infusion did not exert any significant effects on LCAT

or CETP activity [30].

Lipid abnormalities in type 2 diabetes

Dyslipidaemia in individuals with type 2 diabetes is very com-

mon, with a prevalence of 72–85% [3, 31]. This phenomenon

is associated with a significantly increased risk of coronary

artery disease relative to individuals without diabetes [3].

Lipid abnormalities observed in patients with type 2 diabetes

play a central role in the development of atherosclerosis.

These lipid abnormalities are not only quantitative, but also

qualitative and kinetic in nature [6–8]. Increased triacylglyc-

erols and reduced HDL-cholesterol are the main quantitative

lipid abnormalities of diabetic dyslipidaemia. In addition, pa-

tients with type 2 diabetes show qualitative and kinetic abnor-

malities for all lipoproteins (see Text box) [6–8, 32]. All of

these abnormalities are known to be risk factors for the devel-

opment of atherosclerosis [33]. The main lipid abnormalities

observed in type 2 diabetes are shown in Fig. 3.
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Fig. 3 Main lipid abnormalities in type 2 diabetes. Triacylglycerols

(hypertriglyceridaemia, qualitative and kinetic abnormalities): (1)

increased VLDL production (mostly VLDL1), (2) increased chylomicron

production, (3) reduced catabolism of both chylomicrons and VLDLs

(diminished LPL activity), (4) increased production of large VLDL

(VLDL1), preferentially taken up by macrophages; LDL (qualitative

and kinetic abnormalities): (5) reduced LDL turnover (decreased LDL

B/E receptor), (6) increased number of glycated LDLs, small, dense

LDLs (TAG-rich) and oxidised LDLs, which are preferentially taken up

by macrophages; HDL (low HDL-cholesterol, qualitative and kinetic

abnormalities): (7) increased CETP activity (increased transfer of triac-

ylglycerols from TAG-rich lipoproteins to LDLs and HDLs), (8) in-

creased TAG content of HDLs, promoting HL activity and HDL catabo-

lism, (9) low plasma adiponectin favouring the increase in HDL catabo-

lism. CE, cholesterol esters; CETP, cholesteryl ester transfer protein;

dLDL, small, dense LDL; HDLn, nascent HDL; HL, hepatic lipase;

HSL, hormone-sensitive lipase; LPL, lipoprotein lipase; sLDL-R, LDL

receptor; SR-B1, scavenger receptor B1; TAG, triacylglycerol
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It is important to note that many of the lipid abnormalities

observed in patients with type 2 diabetes exist before the onset

of diabetes as part of the insulin-resistant metabolic syndrome

which is characterised by the accumulation of triacylglycerol-

rich lipoproteins and small, dense LDL particles with reduced

HDL-cholesterol in plasma. These lipid abnormalities are

known to promote cardiovascular disease in individuals with

the metabolic syndrome [34]. This emphasises the important

role of insulin resistance in the pathophysiology of diabetic

dyslipidaemia, which is also highlighted by the presence of

lipid abnormalities typical of diabetic dyslipidaemia in non-

diabetic insulin-resistant first-degree relatives of patients with

type 2 diabetes [35, 36].

Cholesterol absorption and synthesis

Patients with type 2 diabetes have a reduced plasma level of

campesterol, a marker of cholesterol absorption, and increased

plasma levels of lathosterol, a marker of cholesterol synthesis

[37]. Using peroral administration of isotopes, reduced cho-

lesterol absorption and increased cholesterol synthesis have

been demonstrated in patients with type 2 diabetes [38]. The

mechanisms responsible for these changes in cholesterol ho-

meostasis are not yet clarified. In a study performed in 263

patients with type 2 diabetes, liver fat content was indepen-

dently associated with plasma lathosterol [39]. It has been

suggested that this could be due to increased expression of

SREBP2, encoding sterol regulatory element-binding protein,

a factor regulating cholesterol uptake and synthesis, observed

under conditions of increased liver fat content [40].

Postprandial hyperlipidaemia and chylomicrons

In individuals with type 2 diabetes and insulin resistance, an

increase in chylomicron production is observed, contributing

to the postprandial hyperlipidaemia observed in this popula-

tion [41]. Indeed, patients with type 2 diabetes have an in-

creased rate of intestinal ApoB-48 secretion [42] and aug-

mented expression of MTP (responsible for the addition of

triacylglycerols to ApoB-48) within the intestine [43].

Insulin resistance is likely to be involved in the increased

chylomicron production, since the normal acute suppression

of postprandial chylomicron secretion, by insulin, is absent in

patients with type 2 diabetes [44]. In addition, increased

plasma NEFA concentrations (as a result of reduced inhi-

bition of hormone-sensitive lipase in type 2 diabetes [45])

may further drive ApoB-48 secretion [46]. The clearance

of chylomicrons is also impaired in type 2 diabetes [47].

Several mechanisms are responsible for this delayed chy-

lomicron catabolism. The activity of LPL, the enzyme

responsible for chylomicron hydrolysis, is significantly

reduced in patients with type 2 diabetes [15, 48]. Insulin

resistance is also associated with increased plasma levels

of ApoC-III, an inhibitor of LPL [49]. Furthermore, the

activation of LRP (one of the hepatic receptors responsible for

chylomicron remnant uptake) by insulin is abolished in

insulin-resistant mice [26]. The net result of all these

changes is a significantly larger pool of chylomicrons

(hypertriglyceridaemia) (Fig. 3). Moreover, patients with

type 2 diabetes show increased levels of atherogenic remnant

particles, including chylomicron remnants and VLDL rem-

nants [50].

Key changes in lipoprotein metabolism in type 2 diabetes

Lipoprotein Quantitative changes Qualitative changes Kinetic/metabolic changes

Chylomicron • Increased plasma

concentration

• Very few data (decreased ApoE content in

diabetic rabbits)

• Increased production

• Decreased catabolism

VLDL • Increased plasma

concentration

• Greater proportion of larger particles

(VLDL1)

• Increased palmitic acid-containing species

and diacylglycerol, reduced sphingomyelin

• Glycation

• Increased production

• Decreased catabolism

LDL • No change or slightly

increased plasma

concentration

• Greater proportion of small, dense particles

(triacylglycerol enrichment)

• Increased LDL oxidation

• Increased palmitic acid-containing species

and diacylglycerol, reduced sphingomyelin

• Glycation

• Decreased catabolism

HDL • Decreased plasma

concentration

• Triacylglycerol enrichment

• Reduced phospholipids, ApoE and ApoM

• Glycation

• Increased catabolism
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Postprandial hyperlipidaemia is likely to promote athero-

sclerosis and the occurrence of cardiovascular events in pa-

tients with type 2 diabetes. The increase in postprandial triac-

ylglycerols has been shown to be correlated with the increase

in TNFα, IL-6 and vascular cell adhesion molecule 1

(VCAM-1) values, in patients with type 2 diabetes, indicating

a deleterious proinflammatory effect of postprandial hyperlip-

idaemia [51]. Furthermore, the magnitude of postprandial

hypertriglyceridaemia is strongly correlatedwith the reduction

in flow mediated dilatation, in patients with type 2 diabetes,

indicating a role for postprandial hyperlipidaemia in endothe-

lial dysfunction [52].

VLDLs and IDLs

Increased plasma triacylglycerol levels in patients with type 2

diabetes are largely due to an increased number of VLDLs,

particularly large VLDL1 particles [6]. Both increased produc-

tion and delayed catabolism of VLDL are responsible for the

increased VLDL pool. In vivo kinetic studies in patients with

type 2 diabetes have shown an augmented production of both

VLDL-ApoB and VLDL-triacylglycerols [53–55]. More pre-

cisely, it has been demonstrated that type 2 diabetes is associ-

ated with increased production of large VLDL1 particles [56,

57]. Similar increases in VLDL production have been ob-

served in obese, non-diabetic, insulin-resistant individuals,

suggesting a critical role of insulin resistance in the patho-

physiology of VLDL overproduction in type 2 diabetes [58,

59]. It has been shown that the VLDL1 production rate is

correlated with insulin resistance and liver fat in patients with

type 2 diabetes [57, 60].

Insulin resistance is associated with reduced inhibition of

hormone-sensitive lipase in adipose tissue by insulin, leading

to increased lipolysis and, thereby, augmented NEFA portal

flux to the liver. This has been shown to stimulate synthesis of

triacylglycerols in hepatocytes [10]. Furthermore, the normal

suppressant effect of insulin on postprandial VLDL (more

specifically, VLDL1) production is blunted by hepatic insulin

resistance [45, 56, 61]. Several mechanisms seem to be in-

volved in the overproduction of hepatic VLDL relative to

the reduced inhibitory effect of insulin (Fig. 4). First, data

from animal studies have provided evidence that insulin resis-

tance is associated with a reduction in ApoB degradation in

hepatocytes, leading to an increase in the ApoB pool available

for VLDL assembly [62, 63]. Reduced PI3K activity in animal

models, secondary to insulin resistance, has been reported to

increase the expression of protein-tyrosine phosphatase 1B

(PTP-1B), leading to suppression of ER60, a protease associ-

ated with the ER, which promotes ApoB degradation via a

non-proteasomal pathway [62, 64]. In addition, an increased

NEFA level in hepatocytes reduces the post-translational deg-

radation of ApoB. Second, MTP expression is increased in

insulin-resistant states and type 2 diabetes [65]. In insulin

resistance, the reduced activation of PI3K leads to increased

forkhead box protein O1 (FOXO1) activation, which is nor-

mally inhibited by activated PI3K. This increased activation

of FOXO1 is responsible for augmented transcription of the

MTP gene [66]. Third, it has been suggested that insulin re-

sistance could be responsible for the increased activity of two

factors involved in the formation of VLDL1: phospholipase

D1 and ARF-1 [21]. It has also been suggested that decreased

PIP3, secondary to reduced PI3K activation, may also be in-

volved, since PIP3, a highly negatively charged phospholipid,

reduces lipid transfer to VLDL precursor and, thus, the forma-

tion of VLDL1 [22]. It is possible that the increased formation

of VLDL1 automatically reduces the amount of VLDL pre-

cursors available for PERPP and, thus, decreases the rate of

ApoB degradation [22].

In addition, de novo lipogenesis is increased in individuals

with insulin resistance [67]. This increased de novo lipogene-

sis is secondary to augmented expression of both carbohydrate

responsiveness element-binding protein (ChREBP) and sterol

regulatory element-binding protein (SREBP)-1c in insulin re-

sistance and type 2 diabetes [10]. It is suspected that, in pa-

tients with type 2 diabetes, hyperglycaemia directly activates

ChREBP [68]. The increase in SREBP-1c expression could be

related to the augmented ER stress observed in insulin resis-

tance and type 2 diabetes [69]. Based on animal studies, it has

been proposed that hyperinsulinaemia observed in insulin re-

sistance and type 2 diabetesmight be responsible for increased

SREBP-1c expression because insulin stimulates SREBP-1c

transcription. However, this is not supported by data in

humans, since hyperinsulinaemia in patients with insulinoma

is not associated with increased VLDL production [70].

Furthermore, insulin treatment in patients with type 2 diabetes

induces a reduction in liver fat rather than an increase [71].

Moreover, reduced plasma adiponectin levels observed in type

2 diabetes may also promote VLDL production by increasing

plasma NEFA levels, as a consequence of reduced muscle

NEFA oxidation, and by inducing a decrease in AMP-kinase

activation in the liver, which promotes de novo lipogenesis

[10].

As assessed by kinetic studies using radioisotopes [54] and

stable isotopes [53], catabolism of VLDLs is reduced in pa-

tients with type 2 diabetes, which also promotes

hypertriglyceridaemia. This defect in VLDL catabolismmainly

reflects the reduced activity of LPL in type 2 diabetes, particu-

larly in adipose tissue [48]. Since insulin is an activator of LPL,

it has been suggested that the diminution of LPL activity may

be due to a relative insulin deficiency and/or insulin resistance.

In addition, increased plasma levels of ApoC-III (an inhibitor of

LPL) could also contribute to the decreased catabolism of

VLDL in patients with type 2 diabetes, since increased plasma

levels of ApoC-III were associated with impaired VLDL clear-

ance in obese insulin-resistant men [72]. Moreover, postpran-

dially, chylomicrons and VLDL compete for LPL, which
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exacerbates postprandial hypertriglyceridaemia. Most of the

time, hypertriglyceridaemia observed in patients with

type 2 diabetes is mild to moderate but the severity of

hypertriglyceridaemia is also influenced, in each patient,

by the genetic susceptibility [73]. In some sporadic cases of

high genetic susceptibility, severe hypertriglyceridaemia may

develop, with attendant risk of pancreatitis, particularly in

hyperglycaemia [73].

The type of VLDL particles produced in type 2 diabetes is

also altered, with a shift towards a greater proportion of those

of a larger particle size (VLDL1) [32, 74]. Relative to smaller

VLDL particles, these are enriched with cholesterol esters and

phospholipids. Larger triacylglycerol-enriched VLDL parti-

cles are potentially more atherogenic, as indicated by their

significant association with endothelial dysfunction [52],

and their preferential uptake by macrophages, leading to the

formation of foam cells in vessel walls [75]. It has recently

been demonstrated that VLDL from patients with type 2 dia-

betes has increased diacylglycerol content and reduced

sphingomyelin, as well as increased palmitic acid-containing

species [76]. Since palmitate is the major fatty acid synthe-

sised during de novo lipogenesis, the increased palmitic acid

content in VLDL-triacylglycerols might be a consequence of

increased de novo lipogenesis, as suggested by a recent study

that reported increased levels of circulating triacylglycerol-

containing palmitic acid in insulin-resistant obese individuals

with non-alcoholic fatty liver disease [77]. In addition, in-

creased palmitic acid in VLDL-triacylglycerols has been

shown to promote secretion of proinflammatory mediators

by human smooth muscle cells [76]. Glycation of apolipopro-

teins in VLDL (ApoB, ApoCs, ApoE) may occur in diabetes.

This may reduce VLDL binding to the ApoB/E receptor and

hence impair its catabolism [78]. Furthermore, it has been

suggested that glycation of ApoC-II, a cofactor of LPL, could

contribute to lesser LPL activation [79].

LDLs

In patients with type 2 diabetes, the mean LDL-cholesterol

level is comparable or slightly elevated relative to that in in-

dividuals without diabetes [6, 8, 32]. However, the catabolism

of LDL is substantially reduced [53, 80], inducing a longer

duration of LDL in plasma that may promote lipid deposition

within artery walls. In patients with type 2 diabetes, the num-

ber of LDL B/E cell-surface receptors is significantly reduced,

which may be due to reduced insulin-mediated expression and

could be responsible for observed impairments in LDL catab-

olism [81]. It has also been suggested that reduced LDL ca-

tabolism could be partly attributed to a decreased affinity of

LDL for its receptor following ApoB glycation [82].
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degradation, leading to an increased ApoB level in hepatocytes (including

ApoB degradation by PERPP); (b) increased MTP expression; and

(c) increased activity of two factors involved in the formation of VLDL1,

phospholipase D1 and ARF-1. Moreover, peripheral insulin resistance is

responsible for increased levels of NEFA, which activate VLDL produc-

tion (see a′′). 2. Increased de novo lipogenesis secondary to: (a′) increased

activation of SREBP-1c (by ER stress); and (b′) increased activation

ChREBP (by hyperglycaemia). 3. Reduced plasma adiponectin level re-

sponsible for: (a′′) increased plasma NEFA levels as a consequence of

reduced muscle NEFA oxidation; and (b′′) a reduction in AMP-kinase

activation in the liver, which promotes de novo lipogenesis. COPII, coat

protein II; ERK2, extracellular signal-regulated kinase 2; FA, fatty acid;
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As a consequence of hyperglycaemia, increased glycation

of LDL is observed in individuals with type 2 diabetes [83].

Glycated LDL has reduced affinity for LDL B/E receptors

[84] and is preferentially taken up by macrophages, leading

to the formation of foam cells [85]. Another lipoprotein mod-

ification observed in type 2 diabetes that has marked athero-

genic potential is increased LDL oxidation. Patients with type

2 diabetes show increased oxidisability of LDLs and have an

augmented number of oxidised LDL particles in their plasma

[8]. Oxidised LDLs demonstrate a decreased affinity for the

LDL receptor, and are preferentially taken into macrophages

via specific oxidised LDL receptors prior to foam cell devel-

opment [86]. In addition, they have chemoattractant effects on

monocytes by increasing the formation of adhesion mole-

cules, such as intercellular adhesion molecule 1 (ICAM-1),

by endothelial cells, and by stimulating the formation of cy-

tokines, such as TNFα or IL-1, by macrophages, which am-

plifies the inflammatory atherosclerotic process [86].

Small, dense, triacylglycerol-rich LDL particles (known as

subclass B particles) are more prevalent in type 2 diabetes

[87]. This is mainly related to hypertriglyceridaemia, and

VLDL1 triacylglycerol is the major predictor of LDL size in

patients with type 2 diabetes and in non-diabetic individuals

[6]. The characteristic hypertriglyceridaemia observed in pa-

tients with type 2 diabetes stimulates CETP, leading to the

preferential formation of triacylglycerol-rich small, dense

LDL particles over larger ones [74]. The presence of small,

dense LDL particles has been reported to be associated with

increased cardiovascular risk and progression of atherosclero-

sis [88]. Small, dense LDL particles are more atherogenic.

They are more likely to undergo glycation and oxidation than

larger LDL particles, which promotes the generation of foam

cells [8, 89]. In addition, they show increased affinity for

intimal proteoglycans, which may favour the penetration of

LDLs into the arterial wall [90]. Individuals with small, dense

LDL particles have an impaired response to the endothelium-

dependent vasodilator acetylcholine [91]. Furthermore, as

with VLDL, LDL from patients with type 2 diabetes shows

significant changes in both lipid class (increased diacylglyc-

erol and reduced sphingomyelin) and lipid species (increased

palmitic acid-containing species), and the level of palmitic

acid in LDL is correlated with insulin resistance [76].

HDLs

Plasma levels of HDL-cholesterol and ApoA-I are reduced in

patients with type 2 diabetes [6–8]. In particular, the proportion

of circulating smaller HDL particles (HDL3) is increased,

while there are far fewer large HDL particles (HDL2); there-

fore, the overall number of HDL particles is reduced [74].

Reduced levels of HDL2 in patients with type 2 diabetes have

been reported to be associated with both hypertriglyceridaemia

and obesity [92]. Kinetic studies using radioisotopes [93] and

stable isotopes [94] have demonstrated that the decrease in

HDL-cholesterol in patients with type 2 diabetes is due to

increased catabolism of HDLs. The activity of hepatic lipase,

the enzyme controlling HDL catabolism, is augmented

in insulin-resistant states, which is likely to be respon-

sible for the observed increase in HDL catabolism [95].

Hypertriglyceridaemia is a major contributing factor to the

accelerated HDL catabolism observed in type 2 diabetes. It

has recently been demonstrated that both increased VLDL1

production and reduced VLDL1 catabolism are independent

factors associated with increased HDL catabolism in insulin-

resistant states [96]. It is suggested that the increased pool of

triacylglycerol-rich lipoproteins (mainly VLDL1), observed in

type 2 diabetes, promotes CETP-mediated triacylglycerol en-

richment of HDL particles and, as a consequence, enhances

HDL catabolism, since HDL-rich particles are very good sub-

strates for hepatic lipase. The reduction in plasma adiponectin

levels observed in individuals with insulin resistance and type

2 diabetes may be another mechanism involved in the diminu-

tion of HDL-cholesterol levels. Indeed, a significant negative

correlation has been reported between the rate of HDL-ApoA-I

catabolism and plasma levels of adiponectin, independently of

abdominal obesity, insulin sensitivity, age, sex and plasma

lipids, suggesting a direct effect of adiponectin on HDL me-

tabolism [18]; however, its precise role has yet to be

determined.

Several qualitative abnormalities in HDLs have been de-

scribed in patients with type 2 diabetes. They are enriched in

triacylglycerols, and this enrichment is responsible for in-

creased HDL catabolism, as previously discussed.

Furthermore, HDLs are glycated in type 2 diabetes, although

the exact consequences of this glycation remain unknown.

The reduction in phospholipids in large HDL particles in pa-

tients with type 2 diabetes is associated with increased arterial

stiffness [97]. Patients with type 2 diabetes also have reduced

ApoE content in large HDL particles, which may have an

atherogenic effect, since large, ApoE-rich HDL usually pre-

vents LDL binding to proteoglycans in the vessel wall [97].

ApoM, which is mainly associated with HDL, is reduced in

patients with type 2 diabetes due to diabetes-associated obe-

sity [97, 98]. ApoM promotes the formation of pre–β-HDL

from α-HDL, and lower levels of ApoM may explain why

pre-β-HDL formation is not increased in type 2 diabetes, de-

spite increased PLTP activity. ApoMmediates the enrichment

in sphingosine-1-phosphate in HDL, which promotes arterial

vasodilation by stimulating endothelial nitric oxide formation

[99].

In patients with type 2 diabetes, HDL has a reduced capac-

ity to promote ex vivo cholesterol efflux from cells. This may

be due to reduced expression of ABCA1, which is the mem-

brane transporter responsible for the first step of cholesterol

transfer from cell membranes to HDL [100]. Furthermore,

glycation of ABCA1 has been shown to reduce its activity
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[101]. In addition, expression of ABCG1, another transporter

involved in reverse cholesterol transport, is reduced in mono-

cytes from patients with type 2 diabetes, and this is associated

with impaired cholesterol efflux [102].

Reductions in the antioxidative effects of HDLs, promoted

by hyperglycaemia and triacylglycerol enrichment, have been

reported in patients with type 2 diabetes [103]. Furthermore,

the ability of HDL to counteract the inhibition of endothelium-

dependent vasorelaxation induced by oxidised LDL is im-

paired in type 2 diabetes. This reduction in HDL vasorelaxant

effects is inversely correlated with HDL triacylglycerol con-

tent [104]. In line with these data, HDL from patients with

type 2 diabetes has a weaker stimulatory effect on endothelial

nitric oxide synthesis [105].

Lipid transfer proteins

The qualitative lipoprotein abnormalities observed in patients

with type 2 diabetes, such as increased triacylglycerol content

of LDL and HDL particles, indicate increased CETP activity

[106]. The main factor responsible for the increased CETP

activity in type 2 diabetes is the augmented pool of

triacylglycerol-rich lipoproteins (mainly VLDL), which di-

rectly stimulate CETP. However, hyperglycaemia per se could

also activate CETP, since glycation of lipoproteins increases

CETP activity [107]. In addition, a recent study in patients

with diabetes reported that glycation of ApoC-I reduces its

inhibitory effect on CETP [108]. Increased PLTP mass and

PLTP activity have also been reported in patients with type 2

diabetes [109], and this is associated with increased intima–

media thickness [110].

A putative role of some adipocytokines and proteins

in the pathophysiology of diabetic dyslipidaemia?

Adiponectin Adiponectin has a generally anti-atherogenic

profile that may be partly due to its beneficial action on lipid

metabolism [111]. However, adiponectin levels are reduced in

patients with type 2 diabetes, and so its cardioprotective ef-

fects are minimised.

In non-diabetic individuals, as in patients with type 2 dia-

betes, plasma adiponectin is negatively correlated with plasma

triacylglycerols and positively correlated with plasma HDL-

cholesterol, and these associations are independent of insulin

resistance [16, 112]. Low adiponectin plasma levels are asso-

ciated with augmented VLDL catabolism [113] and coupled

with reduced LPL activity in adipose tissue [114] indepen-

dently of insulin resistance, suggesting a possible direct action

of adiponectin on lipid metabolism, independent of its effects

on insulin sensitivity. Adiponectin may decrease plasma triac-

ylglycerols by enhancing NEFA oxidation or by stimulating

lipoprotein lipase [111, 115]. In addition, a significant nega-

tive correlation has been reported between HDL-ApoA-I

catabolism and plasma adiponectin, independent of insulin

resistance and plasma lipids, suggesting a direct effect of

adiponectin on HDL metabolism [18]. However, the exact

mechanisms that may explain a direct effect of adiponectin

on VLDL and HDL have not yet been clarified.

Retinol-binding protein 4 Levels of retinol-binding protein 4

(RBP4), an adipokine secreted by adipocytes and the liver, are

elevated in type 2 diabetes. An independent association be-

tween RBP4 and triacylglycerols has been reported [116,

117]. Moreover, a strong, independent, negative association

has been reported between plasma RBP4 and VLDL catabo-

lism in patients with type 2 diabetes, suggesting that RBP4

may b e i n v o l v e d i n t h e p a t h o p h y s i o l o g y o f

hypertriglyceridaemia in type 2 diabetes [117]. Further studies

are needed to clarify the potential role of RBP4 in diabetic

dyslipidaemia.

Conclusions

Abnormalities of lipoprotein metabolism are one of the

major factors contributing to cardiovascular risk in patients

with type 2 diabetes, and diabetic dyslipidaemia includes not

only quantitative but also qualitative and kinetic lipo-

protein abnormalities that are inherently atherogenic. The

primary (characteristic) quantitative abnormalities are

hypertriglyceridaemia, accompanied by prolonged postpran-

dial hyperlipidaemia and increased levels of remnant particles

(related to the increased production of triacylglycerol-rich li-

poproteins and a reduction in the rate of catabolism of

triacylglycerol-rich lipoproteins), and decreased HDL-

cholesterol levels secondary to an increased rate of HDL ca-

tabolism. The most frequent qualitative abnormalities, which

are potentially atherogenic, include an increase in large VLDL

particle size (VLDL1); a greater proportion of small, dense

LDL particles; an augmented susceptibility of LDLs to oxida-

tion; an increase in triacylglycerol content of both LDL and

HDL; and glycation of apolipoproteins. Although levels of

LDL may be normal in patients with type 2 diabetes, LDL

plasma residence time is increased due to a slower turnover

rate, and this may infer the promotion of lipid deposition

within artery walls. Furthermore, the usual cardioprotective

effects of HDL are reduced or abolished in type 2 diabetes.

Some factors, such as insulin resistance and possibly some

adipokines (e.g. adiponectin) and hyperglycaemia, are in-

volved in the pathophysiology of diabetic dyslipidaemia.

However, many questions remain unanswered (such as the

pathophysiology and the consequences of the qualitative lipid

abnormalities, the precise mechanisms and signalling path-

ways involved in the insulin resistance linked lipid abnormal-

ities, the potential role of adipose tissue and adipocytokines in

the pathophysiology of diabetic dyslipidaemia) and additional
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studies are needed to gain further insight into the precise

mechanisms of diabetic dyslipidaemia. Deeper understanding

of lipid disorders in type 2 diabetes should lead to better treat-

ment of diabetic dyslipidaemia.
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