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ABSTRACT 

Current computational approaches, such as Artificial Intelligence, artificial neural networks, expert systems, fuzzy logic, 

fuzzy-cognitive maps, other rule-based approaches, etc., fundamentally do not lend themselves to building non-

deterministic autonomous reasoning systems. Especially for AI, high hopes were raised more than 50 years ago, but AI 

has largely failed to deliver on its promises and still does. As such, the paper discusses different ingredients and 

approaches towards completely non-deterministic autonomous systems that are based on and exhibit critical capabilities, 

such as, but not limited to, self-organization, self-configuration, and self-adaptation. As such, any two initially identical 

autonomous systems will exhibit diverging and ultimately completely unpredictable developmental trajectories over 

time, once exposed to the same or similar environment, and even more so, once exposed to different environments. 

Keywords: Non-deterministic autonomy, true randomness, objective global feature extraction and analysis, stochastic 

optimization framework, self-organization, self-configuration, self-adaptation, working hypothesis generation 

 

1. INTRODUCTION AND MOTIVATION 

Current computational approaches, such as Artificial Intelligence (AI), artificial neural networks (ANNs), expert 

systems, fuzzy logic, fuzzy-cognitive maps, other rule-based approaches, etc., fundamentally do not lend themselves to 

building non-deterministic autonomous reasoning systems. Especially for AI, high hopes were raised more than 50 years 

ago, but AI has largely failed to deliver on its promises and still does. In the following we will discuss ingredients and 

approaches towards completely non-deterministic autonomous systems that are based on and exhibit critical capabilities, 

such as, but not limited to, self-organization, self-configuration, and self-adaptation. 

Although by far not the only area of application, most of the following will be put in the context of current and future 

autonomous robotic space exploration missions (Fig. 1) that will be necessary as we venture out into deep space. 
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Figure 1. Required degrees of operational autonomy for past, current, and future robotic space exploration missions    

[Mission Images credit: NASA, CMU, UT Austin, Colorado School of Mines, SRI, Breakthrough]. 
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2. NSF’S DEFINITION OF “SMART” SERVICE SYSTEMS – A USEFUL BASELINE 

DEFINITION OF NON-DETERMINISTIC AUTONOMOUS SYSTEMS 

The National Science Foundation (NSF) defines a “smart” service system as follows [NSF PFI:BIC 2015
1
]: “A "smart" 

service system is a system capable of learning, dynamic adaptation, and decision making based upon data received, 

transmitted, and/or processed to improve its response to a future situation. […] These capabilities are the result of the 

incorporation of technologies for sensing, actuation, coordination, communication, control, etc. The system may exhibit 

a sequence of features such as detection, classification, and localization that lead to an outcome occurring within a 

reasonable time.” Especially the first sentence of this definition provides a useful baseline for non-deterministic 

autonomous systems as it names the key characteristics of learning, dynamic adaptation, and decision making – all 

based on/influenced by received, transmitted, and/or processed data. 

Along similar considerations we postulate that a non-deterministic autonomous system, for the purposes of this 

publication, exhibits the following characteristics (note: non-exhaustive list and in no particular order): 

• Non-reproducible, i.e., unique development over time; 

• Can sense/assess environment through onboard sensors; 

• Assesses environment objectively in sensor feature-space only rather than based on user-bias; 

• Can be influenced by environment; 

• Can make decisions based on sensor input and potential overall mission goal(s) and/or behavior(s); 

• Can effectuate change to its environment and to itself (e.g., mobility); 

• Only provided with atomic law(s), behavior(s), and tool(s) a priori; 

• May be provided with mission goal(s) a priori or not; 

• Can self-modify its behavior(s) and decision making and thereby “evolve”; 

• May exhibit forms of “self-awareness” but not expected to develop it. 

 

3. TECHNICAL CORE INGREDIENTS FOR NON-DETERMINISTIC AUTONOMY 

Rather than designing non-deterministic autonomous systems, which would constitute a borderline oxymoron, we 

propose to provide/instill basic atomic governing law(s), behavior(s), and tool(s) or process(es) as technical core 

ingredients for non-deterministic autonomy to develop subsequently and in consequence as a result, such as, but not 

limited to: 

• Basic laws of physics, e.g., principle of least action or Hamilton’s principle (Fig. 2);
2
 

• Atomic behavior motifs, e.g., for Lidar-supported mobility;
3
 

• Stochastic optimization as a tool, e.g., Stochastic Optimization Framework (SOF; Fig. 3);
4
 

• Mathematical framework for manipulating/analyzing heterogeneous sensor data sets;
5,6

 

as well as capabilities to: 

• Sense/assess the environment (i.e., through sensors and/or instruments); 

• Self-modify (especially the decision making aspect); 

• Actuate/influence/move about the environment (e.g., through actuators). 

 

 

 

Proc. of SPIE Vol. 10982  1098225-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 15 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 

 

 

Figure 2. Basic law of physics example: principle of least action or Hamilton’s principle as the most general formulation of 

the law governing the motion of mechanical systems, leading to Lagrange’s and Hamilton’s equations of motion [Excerpt 

from Landau-Lifshitz “Mechanics”, 1976
2
]. 

 

Figure 3. Functional schematic of a Stochastic Optimization Framework (SOF; after Fink, 2008
4
). SOFs allow for efficient 

sampling of the entire model/process/system-intrinsic parameter space of the model/process/system to be optimized by 

repeatedly running the respective model/process/system forward, comparing the outcomes against the desired outcome, 

which results in a fitness measure to be optimized, and by modifying the parameters via stochastic optimization algorithms, 

such as Simulated Annealing (SA),
7,8

 Genetic Algorithms (GA),
9,10

 Evolutionary Algorithms (EA), and Genetic 

Programming (GP),
11

 etc. 

These ingredients enable the self-development of higher order, more complex behavior(s), such as, but not limited to: 

• “Self-awareness”: 

o For example, through a combination of basic laws of physics and onboard sensor feedback, such that 

motion and reconfiguration experiments conducted onboard the autonomous robotic entity can yield 

the formulation of an “emergent self-model” about its makeup,
12

 e.g., determining the number of 
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robotic legs and their configuration/arrangement with respect to the body of the robot without a priori 

knowledge; 

• Advanced Mobility: 

o Robotic limb actuation without prior knowledge, e.g., learning how to walk from scratch;
12

 

• Self-preservation: 

o Collision avoidance;
3
 

• Unlimited/enhanced mobility, e.g., NASA’s Space Technology Grand Challenge: “All Access Mobility”:
13

 

o Multi-objective path/traverse planning and optimization;
14-16

 

o Maximized exploration, e.g., deepest path exploration;
3
 

o Autonomous tele-commanding of robotic agents towards target areas or to avoid obstacles;
16-25

 

o Autonomous robotic agent redeployment/reconfiguration;
18-25

 

• Answer (science) questions, e.g., through detection/identification of (feature-based) anomalies and/or regions of 

interest, such as, but not limited to, heat sources, locales of methane outgassing, subsurface water ice deposits, 

etc.
26-28,5,6

 

o Autonomous characterization of and anomaly detection in an operational area;
26,27,5,6

 

o Autonomous target prioritization;
28

 

o Autonomous robotic limb/actuator deployment towards target areas, e.g., for sampling or probing.
29

 

 

3.1 Examples of Non-designed, Non-architected Locomotion Behavior 

In the following, several examples of non-designed, non-architected locomotion behavior are briefly listed (with 

respective references for details), which were developed at the Visual and Autonomous Exploration Systems Research 

Laboratory (autonomy.arizona.edu): 

• Robotic limb deployment via SOF;
29

 

• Adaptive hierarchical Lidar-based autonomous robotic navigation through atomic behavior motifs;
3
 

• Robotic multi-objective path/traverse planning and optimization via SOF;
14-16

 

• Round-robin overhead autonomous tele-commanding
18-25,16,17

 for tier-scalable reconnaissance missions;
18-25

 

• Design and optimization of low-thrust orbit transfers and associated mission trade studies for ion-engine 

propelled spacecraft via SOF.
30,31

 

 

3.2 Approaches for True Randomness vs. Pseudo Random Number Generation for Stochastic Optimization 

Stochastic optimization in general and Simulated Annealing (SA),
7,8

 Genetic Algorithms (GA),
9,10

 Evolutionary 

Algorithms (EA), and Genetic Programming (GP)
11

 in particular, make heavy/heaviest use of random numbers. All 

computer-based pseudo random number generators (PRNGs) suffer from several challenges, such as, but not limited to: 

(a) Finite periodicity of random number generators, i.e., pseudo random number sequences of finite length (albeit 

sometimes relatively long, e.g., ran2() random number generator:
32

 ~ 2 x 10
18

); 

(b) Only pseudorandom number sequences, i.e., algorithm-based and therefore completely deterministic; 

(c) Fully reproducible random number sequences given same random number seed. 

These limitations steer away from a possible uniqueness of the temporal trajectory development of an autonomous 

system that uses stochastic optimization. A partial solution is the use of timestamps as random number seeds. However, 
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limitations (a) and (b) still remain in effect. Hence, overall, PRNGs generate random numbers that are entirely 

predictable/deterministic, and, given the same random number seed, even repeatable exactly. As such, no unexpected 

behavior can result from these PRNGs. Thus, for the development of non-deterministic autonomous systems, true 

randomness as a key requirement is postulated. 

As a potential solution we propose to replace pseudo random number generators with processes that are “truly random,” 

i.e., at least as far as we currently know. One such example is radioactive decay, which is currently still considered 

“truly random” since we do not know the exact physics laws that determine when a particular nucleus is going to decay. 

On the other hand, a single radioactive sample may not deliver random events fast and plentiful enough to sustain the 

huge demands of a Stochastic Optimization Framework. Half-lives can range from 10
-24 

seconds to 10
30

 seconds [Source: 

Wikipedia]. For example, Polonium-215 has a half-life of 0.0018 seconds and Uranium-238 has a half-life of 4.5 billion 

years [Source: Wikipedia]. As a possible solution one can use radioisotopes with very short half-lives, and/or multiple, 

i.e., N samples of the same radioisotope simultaneously. The proposed procedure would then be to measure inter-decay-

event time via, e.g., a Geiger-Mueller-counter or similar devices, and to convert this time to a random number, or, to use 

the timestamp for each decay event as a random number. The detection rate, i.e., the temporal resolution of the detector 

will determine, which radioisotopes may be useable. 

Alternatively, quantum random number generators (QRNGs) have become increasingly popular, exploiting quantum 

indeterminism, such as, but not limited to: 

• ID Quantique’s Quantis Random Number Generator:
33

 exploiting the fundamentally random nature of quantum 

optics; 

• Australian National University (ANU) Quantum Random Numbers Server:
34

 measuring the quantum 

fluctuations of the vacuum; 

• Joint R&D effort of PicoQuant GmbH and the Nano-Optics groups at the Department of Physics of Humboldt 

University:
35

 QRNG based on quantum randomness of photon arrival times; 

• National Institute of Standards and Technology (NIST) Randomness Beacon:
36,37

 An intense laser hits a special 

crystal that converts laser light into pairs of photons that are entangled, a quantum phenomenon that links their 

properties. These photons are then measured to produce a string of truly random numbers. 

 

3.3 Approaches for Objective Global Feature Extraction, Analysis, Anomaly Detection, and Target Prioritization 

Systems such as the Caltech-patented Automated Global Feature Analyzer
TM

 (AGFA
TM

)
26-28,5,6

 can be employed as a 

driver for operational autonomy, comprising, but not limited to, the following fundamental characteristics:
25

 

(1) Automatic characterization of operational areas from different vantages (e.g., space, air, ground, subsurface); 

(2) Automatic sensor deployment and data gathering; 

(3) Automatic feature extraction, anomaly detection, and region-of-interest or target identification; 

(4) Automatic region-of-interest or target prioritization; 

(5) Subsequent automatic redeployment and navigation of robotic agents to regions or targets of interest. 

AGFA is an extensible analysis and classification framework to perform automated target/region-of-interest 

identification and unbiased anomaly detection. AGFA performs superpixel-based image segmentation and analysis on 

images of operational areas under investigation with an array of heterogeneous sensors and/or instruments (including 

cameras), extracts features, and generates feature vectors for all identified targets. AGFA uses these feature vectors 

subsequently to (a) classify individual targets according to their extracted features; (b) summarize the operational area 

numerically for each extracted feature category; and (c) automatically flag significant anomalies within the feature space 

using a patented multi-stage normalization cascade
5,6

 followed by, e.g., agglomerative clustering and Principal 

Component Analysis (PCA). All this is done in an objective, i.e., exclusively feature-space-driven and thus unbiased 

manner, as opposed to a biased, human hypothesis-driven manner. As such, it lends itself as a technological core 

ingredient for an autonomous (space exploration) system, to accommodate the “maxim” of planetary exploration: “to 

expect the unexpected.” 

Proc. of SPIE Vol. 10982  1098225-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 15 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 

 

Moreover, AGFA is equipped with a mathematical prioritization framework
28

 that allows the determination of the most 

promising target(s) for in-situ follow-up investigation in an operational area that has previously been 

visited/examined/mapped from a distance. The underlying process, termed “hypothetical probing”
28

, seeks to minimize 

the clustering quality expressed as an objective function E(t): 

 

where K is the number of clusters, N the number of feature vectors, ci(t) the feature vector i, cck(t) the centroid vector of 

cluster k, Mki(t) the membership strength of feature vector i with respect to cluster k (accommodating both hard and soft 

clustering) – and all of that at time t. µ is a constant reward/penalty term. The minimization of E(t) is accomplished by 

hypothetically changing the respective membership strengths at the next time step, i.e., Mki(t+1), and checking whether 

ΔE = E(t+1) - E(t) is negative or positive (or zero).
28

 

 

3.4 Approaches for Self-Organization, Self-Configuration, and Self-Adaptation of Artificial Neural Networks in 

Support of Synthetic Reasoning 

Artificial Neural Networks (ANNs) are powerful methods for (1) the classification and analysis of multi-dimensional 

data, (2) the learning and generalization of rules underlying data, as well as (3) for the control of (highly non-linear) 

dynamic systems. ANNs are at the core of Machine Learning, Deep Learning, and Artificial Intelligence techniques, etc. 

To overcome the inherent challenge of choosing/designing a suitable architecture (e.g., number of neural layers and 

number of neurons for each layer), connectivity between neural layers, and associated neural coupling strengths for 

ANNs to solve complex classification or control tasks, a Stochastic Optimization Framework
4
 can be employed instead 

to auto-generate Artificial Neural Networks appropriate/sufficient for the task at hand.
38

 Hereby, the objective or fitness 

function to be minimized by the SOF is a measure of misclassification or misbehavior of the current version of the ANN 

against a training set or expected/desired behavior of a dynamic system, e.g., a legged robot relocating from point A to B 

by any means necessary. This SOF-based auto-generation mechanism for ANNs paves the way towards dynamic “self-

(re-)design”, especially when the ANN architecture, connectivity, and neural coupling strengths are subject to constant 

change over time while interacting with the environment, i.e., while influencing/being influenced by the environment. 

 

3.5 Approaches for Working Hypothesis Generation through General-Purpose Machine Learning Systems as 

Enablers of Higher Autonomy 

General-Purpose Machine Learning Systems (GPMLSs) that are designed to operate in real world environments need to 

exhibit the ability to adapt, i.e., to modify themselves based on feedback or successful assessment of situations or actions 

they take or cause, e.g., by interacting with the environment. A GPMLS, e.g., a Learning Classifier System (LCS; Figs. 

4, 5),
39,40

 can start from a set of rules or classifiers that is being used to assess situations and/or the environment (Figs. 4, 

5). Based on the feedback or successful assessment of situations/environment, those rules that successfully contributed to 

the assessment are being rewarded (i.e., gain in strength; Fig. 5, top; for details see Farmer et al., 1986
41

), and those that 

did not contribute successfully are being penalized (i.e., lose strength; Fig. 5, middle; for details see Farmer et al., 

1986
41

). A similar process can be found in living brains – so-called Bonhoeffer-effect – where synaptic strengths increase 

or decrease over time depending on inter-neural “traffic.” In addition, an overall taxation scheme can be implemented as 

a Darwinian pressure term after a certain number of iterations of the GPMLS (Fig. 5, bottom; for details see Farmer et 

al., 1986
41

). This can lead to the elimination of some potentially unimportant or repeatedly unproductive rules. 

Conversely, new rules can be introduced into the system on a random, occasional basis that may improve the overall 

performance of the GPMLS over time, by introducing a new “perspective.” Moreover, rules can be modified in ways 

very similar to those used in Genetic Algorithms,
9,42,10

 such as point mutation, crossover, inversion, etc. – so-called 

genetic operators. As such, the rules underlying the GPMLS will evolve over time, and also change in number if not 

kept constant or increase if not capped, to assess situations and resulting decisions more successfully. Equipped with 

these capabilities, general-purpose machine learning systems are adaptive, and, as opposed to Artificial Intelligence-

based systems that are mostly or entirely based on a fixed set of unchangeable rules, e.g., Mamdani-type IF-THEN-

rules,
43,44

 GPMLSs are capable of continuously evolving and modifying themselves. Therefore, GPMLSs are promising 

candidates for the generation of working hypotheses,
45,46

 a concept used in predominantly abductive disciplines, such as 

Geology, Biology, and Medicine, as opposed to deductive-inductive disciplines, such as Physics and Mathematics. 
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Hereby, the equivalent of “working hypotheses” would be represented by the currently active set of rules/classifiers in 

the GPMLS at any point in time. By the nature of the dynamic update process underlying a GPMLS, some “working 

hypotheses” will be momentary (i.e., short-term), temporary (i.e., mid-term), or long-term (potentially permanent). 

Application Example: 

xi 
Message list is interface 

between outside world and 

system; can be potentially 

unlimited 

 

Condition, Action, and Effector 

are binary strings that match 

the length of messages. 

 

Condition is used to determine 

whether or how much posted 

messages by other classifier 

rules pertain to a classifier 

rule, i.e., the mutual overlap 

 

Actions and Effectors are 

message postings, where 

Action is internal and Effector 

is external  

 

Figure 4. General schematic overview of a Learning Classifier System (a),
47,41

 applied to a dynamic control problem (b), 

i.e., pressure control within a gas pipeline using pressure sensors and compressors
47

 [Schematic on the left from Goldberg, 

1983
47

 and Farmer et al., 1986
41

]. 

Strength decrease (bid) due to successful 

posting of own messages in response to 

messages of other rules 

Strength increase (pay back) due to own 

messages being read successfully by other 

rules 

Total change in strength taking decrease 

and increase, as well as overall global 

payoff and taxation terms into account 

 

Figure 5. Inner workings of Learning Classifier Systems: Governing equations for system trajectory,
41

 i.e., change of 

strengths of rules/classifiers over time/per iteration t [Equations on the right from Farmer et al., 1986
41

]: xi = strength of rule 

i, mij = match specificity between condition part of classifier i and message posted by classifier j, fi = index function whether 

classifier i posted action on message list, H() = Heaviside function, T = bid threshold, P = performance function, k2 = 

taxation, c = fractional constant. 
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4. CONCLUSIONS – DISCUSSIONS – OUTLOOK 

A set of technical core ingredients were introduced that would enable a dynamic system to develop non-deterministic 

autonomy over time – as opposed to a priori design – through learning, dynamic adaptation, and decision making – all 

based on/influenced by received, transmitted, and/or processed data. In other words, rather than designing the “finished 

cake” a priori, only the ingredients and the “baking process” are provided to a dynamic system – both embedded in or 

guided by a Stochastic Optimization Framework, and constantly influenced by and influencing the environment – to 

leave it up to the system to dynamically “bake the cake” appropriate for the task(s) and operational environment(s) at 

hand, and, moreover, to adjust it on a need be basis to accommodate changes in the task(s) and operational 

environment(s) over time. 

Several approaches were briefly discussed to further support this developmental process, such as, but not limited to (in 

random order): (1) “true” randomness; (2) objective global feature extraction, analysis, and anomaly detection; (3) self-

organization, self-configuration, and self-adaptation of artificial neural networks in support of synthetic reasoning, and 

(4) working hypothesis generation through Learning Classifier Systems. In contrast to Artificial Intelligence (AI) 

schemes, these core ingredients and approaches outlined above neither depend on, nor operate within the confines of 

expert-defined rule sets. As such, any two initially identical autonomous systems, which embrace at least some of these 

technical core ingredients, will exhibit diverging and ultimately completely unpredictable developmental trajectories 

over time, once exposed to the same or similar environment, and even more so, once exposed to different environments. 

Especially through the use of uncapped, i.e., size-unlimited LCSs can the environment influence the autonomous system 

and vice versa. Using genetic operators, the “bucket brigade” and taxation framework inherent to LCSs,
39-41

 coupled with 

environmental factors and “true” randomness will provide for unique developmental and, most importantly, non-

deterministic trajectories for autonomous systems, which was the declared goal of this paper. 

Several of the above discussed ingredients and approaches have been implemented by the Visual and Autonomous 

Exploration Systems Research Laboratory, first at Caltech and now at UofA. In the context and for the purposes of 

autonomous robotic space exploration, these elements are being integrated in a robotic testbed (at present including 

aerial and surface based robotic agents) for Tier-Scalable Reconnaissance
18-25

 at the University of Arizona, and, paired 

with the integration of automated objective global feature analysis and anomaly detection,
26,27,5,6

 automated target 

prioritization,
28

 stochastic and/or globally optimal multi-objective traverse/path planning,
14-16

 round-robin overhead 

autonomous tele-commanding,
18-25,16,17

 Lidar behavior motifs,
3
 robotic limb deployment,

29
 etc., can now be fielded, 

studied, and validated with respect to operational autonomy for planetary exploration. 

Future work at the Visual and Autonomous Exploration Systems Research Laboratory is targeted towards the 

development of an entirely SOF-governed robotic agent as a steppingstone towards a non-deterministic autonomous 

system. Similar to, or as an extension of robotic limb deployment and multi-objective path planning, more complex 

behaviors would be formulated or cast as optimization tasks, and solved, i.e., executed through a Stochastic Optimization 

Framework.
4
 For example, if a robotic swarm pursued the goal of reaching a certain destination, the path to which is 

blocked by an obstacle (e.g., a wall), some of the robotic agents could be commanded to slam into the obstacle to destroy 

it and/or to clear a path for the remaining robotic agents of the swarm to reach their destination. On the outside looking 

in, this seemingly deliberate and selfless act could be construed as a remarkable gambit or self-sacrificial “behavior” for 

the “well-being” or success of the greater good of the collective. In reality, it is nothing more than the maximization of 

an objective function through multi-objective optimization, i.e., the reaching of the destination with as many robotic 

agents of the swarm as possible, taking the shortest distance possible, and in the shortest time possible. In a similar 

fashion, other complex, even more human-like behaviors can be emulated, i.e., cast as multi-objective optimization 

tasks, and solved, i.e., executed through a Stochastic Optimization Framework.
4 
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