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JACK EDMONDS 

1. Introduction. A graph G for purposes here is a finite set of elements 
called vertices and a finite set of elements called edges such that each edge 
meets exactly two vertices, called the end-points of the edge. An edge is said 
to join its end-points. 

A matching in G is a subset of its edges such that no two meet the same 
vertex. We describe an efficient algorithm for finding in a given graph a match
ing of maximum cardinality. This problem was posed and partly solved by 
C. Berge; see Sections 3.7 and 3.8. 

Maximum matching is an aspect of a topic, treated in books on graph 
theory, which has developed during the last 75 years through the work of 
about a dozen authors. In particular, W. T. Tutte (8) characterized graphs 
which do not contain a perfect matching, or 1-factor as he calls it—that is a 
set of edges with exactly one member meeting each vertex. His theorem 
prompted attempts at finding an efficient construction for perfect matchings. 

This and our two subsequent papers will be closely related to other work on 
the topic. Most of the known theorems follow nicely from our treatment, 
though for the most part they are not treated explicitly. Our treatment is 
independent and so no background reading is necessary. 

Section 2 is a philosophical digression on the meaning of "efficient algorithm." 
Section 3 discusses ideas of Berge, Norman, and Rabin with a new proof of 
Berge's theorem. Section 4 presents the bulk of the matching algorithm. 
Section 7 discusses some refinements of it. 

There is an extensive combinatorial-linear theory related on the one hand 
to matchings in bipartite graphs and on the other hand to linear programming. 
It is surveyed, from different viewpoints, by Ford and Fulkerson in (5) and 
by A. J. Hoffman in (6). They mention the problem of extending this relation
ship to non-bipartite graphs. Section 5 does this, or at least begins to do it. 
There, the Kônig theorem is generalized to a matching-duality theorem for 
arbitrary graphs. This theorem immediately suggests a polyhedron which in a 
subsequent paper (4) is shown to be the convex hull of the vectors associated 
with the matchings in a graph. 

Maximum matching in non-bipartite graphs is at present unusual among 
combinatorial extremum problems in that it is very tractable and yet not of 
the "unimodular" type described in (5 and 6). 
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Section 6 presents a certain invariance property of the dual to maximum 
matching. 

In paper (4), the algorithm is extended from maximizing the cardinality 
of a matching to maximizing for matchings the sum of weights attached to the 
edges. At another time, the algorithm will be extended from a capacity of one 
edge at each vertex to a capacity of dt edges at vertex vt. 

This paper is based on investigations begun with G. B. Dantzig while at 
the RAND Combinatorial Symposium during the summer of 1961. I am 
indebted to many people, at the Symposium and at the National Bureau of 
Standards, who have taken an interest in the matching problem. There has 
been much animated discussion on possible versions of an algorithm. 

2. Digression. An explanation is due on the use of the words "efficient 
algorithm." First, what I present is a conceptual description of an algorithm 
and not a particular formalized algorithm or "code." 

For practical purposes computational details are vital. However, my 
purpose is only to show as attractively as I can that there is an efficient 
algorithm. According to the dictionary, "efficient" means "adequate in opera
tion or performance." This is roughly the meaning I want—in the sense that 
it is conceivable for maximum matching to have no efficient algorithm. Perhaps 
a better word is "good." 

I am claiming, as a mathematical result, the existence of a good algorithm 
for finding a maximum cardinality matching in a graph. 

There is an obvious finite algorithm, but that algorithm increases in difficulty 
exponentially with the size of the graph. It is by no means obvious whether 
or not there exists an algorithm whose difficulty increases only algebraically 
with the size of the graph. 

The mathematical significance of this paper rests largely on the assumption 
that the two preceding sentences have mathematical meaning. I am not 
prepared to set up the machinery necessary to give them formal meaning, nor 
is the present context appropriate for doing this, but I should like to explain 
the idea a little further informally. I t may be that since one is customarily 
concerned with existence, convergence, finiteness, and so forth, one is not in
clined to take seriously the question of the existence of a better-than-finite 
algorithm. 

The relative cost, in time or whatever, of the various applications of a 
particular algorithm is a fairly clear notion, at least as a natural phenomenon. 
Presumably, the notion can be formalized. Here "algorithm" is used in the 
strict sense co mean the idealization of some physical machinery which gives 
a definite output, consisting of cost plus the desired result, for each member of 
a specified domain of inputs, the individual problems. 

The problem-domain of applicability for an algorithm often suggests for 
itself possible measures of size for the individual problems—for maximum 
matching, for example, the number of edges or the number of vertices in the 
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graph. Once a measure of problem-size is chosen, we can define FA(N) to be 
the least upper bound on the cost of applying algorithm A to problems of size N. 

When the measure of problem-size is reasonable and when the sizes assume 
values arbitrarily large, an asymptotic estimate of FA(N) (let us call it the 
order of difficulty of algorithm A) is theoretically important. It cannot be rigged 
by making the algorithm artificially difficult for smaller sizes. It is one criterion 
showing how good the algorithm is—not merely in comparison with other 
given algorithms for the same class of problems, but also on the whole how 
good in comparison with itself. There are, of course, other equally valuable 
criteria. And in practice this one is rough, one reason being that the size of a 
problem which would every be considered is bounded. 

It is plausible to assume that any algorithm is equivalent, both in the 
problems to which it applies and in the costs of its applications, to a * 'normal 
algorithm" which decomposes into elemental steps of certain prescribed types, 
so that the costs of the steps of all normal algorithms are comparable. That is, 
we may use something like Church's thesis in logic. Then, it is possible to ask: 
Does there or does there not exist an algorithm of given order of difficulty for 
a given class of problems? 

One can find many classes of problems, besides maximum matching and its 
generalizations, which have algorithms of exponential order but seemingly 
none better. An example known to organic chemists is that of deciding whether 
two given graphs are isomorphic. For practical purposes the difference between 
algebraic and exponential order is often more crucial than the difference 
between finite and non-finite. 

It would be unfortunate for any rigid criterion to inhibit the practical 
development of algorithms which are either not known or known not to con
form nicely to the criterion. Many of the best algorithmic ideas known today 
would suffer by such theoretical pedantry. In fact, an outstanding open 
question is, essentially: "how good" is a particular algorithm for linear pro
gramming, the simplex method? And, on the other hand, many important 
algorithmic ideas in electrical switching theory are obviously not "good" in 
our sense. 

However, if only to motivate the search for good, practical algorithms, it 
is important to realize that it is mathematically sensible even to question their 
existence. For one thing the task can then be described in terms of concrete 
conjectures. 

Fortunately, in the case of maximum matching the results are positive. 
But possibly this favourable position is very seldom the case. Perhaps the 
twoness of edges makes the algebraic order for matching rather special in 
comparison with the order of difficulty for more general combinatorial extre-
mum problems (cf. 3). 

An upper bound on the order of difficulty of the matching algorithm is n4, 
where n is the number of vertices in the graph. The algorithm consists of 
"growing" a number of trees in the graph—at most n—until they augment or 
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become Hungarian. A tree is grown by branching from a vertex in the tree to 
an edge-vertex pair not yet in the tree—at most n times. Such a branching 
may give rise to a back-tracing through at most n edge-vertex pairs in the 
tree in order to relabel some of them as forming a blossom or an augmenting 
path. At each of these three levels there may be other labelling work involved— 
but it is majorized by the work already cited. The work of identifying and 
labelling the vertex at the other end of some edge to a given vertex need not 
increase more than linearly with n. 

An upper bound on the order of magnitude of memory needed for the 
algorithm is n2—the same order of magnitude of memory used to store the 
graph itself. 

3. Alternating paths. 

3.0. A subgraph of graph G is a graph consisting of a subset of vertices in G 
and a subset of edges in G under the same incidences which hold for them in G. 
A non-empty graph G is called connected if there is no pair of non-empty 
subgraphs of G such that each vertex of G and each edge of G is contained in 
exactly one of the subgraphs. The vertices and edges of any graph partition 
uniquely into zero or more connected subgraphs, called its components. 

Maximum, minimum, and odd will refer to cardinality unless otherwise 
stated. 

3.1. The graph E, formed from a set E of edges in G, is the subgraph of G 
consisting of edges E and their end-points. Any graph H, unless it has a single-
vertex component, is formed by its edges. Thus in some contexts it causes no 
confusion to make no explicit distinction between a graph and its edge-set. 
In particular, a matching in G may be thought of as a subgraph of G whose 
components are distinct edges. The sum of two sets D and E is commonly 
defined as D + E = (D — E) \J (E — D). The sum D + E of two graphs 
D and E, formed by edge-sets D and E, is defined to be the graph formed by 
the edge-set D + E. 

3.2. There are two other kinds of subtraction for graphs besides the set-
theoretic difference used above. With these we must distinguish between a 
subgraph and the edges which form it. Where G is a graph and £ is a set of 
edges, G — E is the subgraph of G consisting of all the vertices of G and the 
edges of G not in E. For two graphs G and H, G — H is the subgraph of G 
consisting of the vertices of G not in H and the edges of G not meeting vertices 
of H. 

Graph G VJ H (graph G C\ H) consists of the union (intersection) of the 
vertex-sets and the edge-sets of graphs G and H, with incidences in G VJ H 
(graph G O H) the same as in G and H. We may also take the intersection or 
union of a graph with a set of edges to get, respectively, a set of edges or a 
graph. In the latter case the end-points of the edges being adjoined to the 
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graph must be specified. We shall have occasion to give the same edge different 
end-points in different graphs. 

3.3. A circuit B in graph G is a connected subgraph in which each vertex of 
B meets exactly two edges of B. A (simple) path P in G is either a single vertex 
(joining itself to itself) or else a connected subgraph whose two end-points 
each meet one edge, an end-edge, of P and whose other vertices each meet 
two edges of P. A path is said to join its end-points. 

3.4. For the pair (G, M), where M is a matching in G, a vertex is called 
exposed if it meets no edge of M. Let M denote the edges of G not in M. Define 
an alternating path or alternating circuit, P , in (G, M) to be such that one edge 
in M C\ P and one edge in M C\ P meets each vertex of P , except the end-
points in the case of a path. Several authors, beginning with J. Peterson in 
1891, have used alternating paths to prove the existence of * 'factors" in certain 
kinds of graphs. 

3.5. For any two matchings M\ and M2 in G, the components of the subgraph 
formed by Mi + M2 are paths and circuits which are alternating for (G, Mi) 
and for (G, M2). Each path end-point is exposed for either Mi or M2. 

A vertex of G meets no more than one edge, each, of Mi and M2—and thus 
no more than two edges of Mi + M2, one in Mi Pi M2 and one in M2 P Mlm 

An end-point v of a path in graph Mi + M2, meeting an end-edge in Mi P M2i 

say, meets no other edge of Mi. Hence, if an edge of M2 meets v, it does not 
belong to Mi and so it does belong to Mi + M2. But then v is not an end-point. 
Therefore v is exposed for M2. This completes the proof. 

3.6. An alternating path A in (G, M) joining two exposed vertices contains 
one more edge of M than of M. M + A is a matching of G larger than M by 
one. Such a path is called augmenting. Thus matching M is not maximum if 
(G, M) contains an augmenting path. The converse also holds: 

3.7 (Berge, 1). A matching M in G is not of maximum cardinality if and only 
if (G, M) contains an alternating path joining two exposed vertices of M. 

If M2 is a larger matching than M, some component of graph M + M2 

must contain more M2-edges than M. By 3.5, such a component is an aug
menting path for (G, M). 

3.8. Berge proposed searching for augmenting paths as an algorithm for 
maximum matching. In fact, he proposed to trace out an alternating path 
from an exposed vertex until it must stop and, then, if it is not augmenting, to 
back up a little and try again, thereby exhausting possibilities. 

His idea is an important improvement over the completely naive algorithm. 
However, depending on what further directions are given, the task can still 
be one of exponential order, requiring an equally large memory to know when 
it is done. 
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Norman and Rabin (7) present a similar method for finding in G a minimum 
cover-by-edges, C, a minimum cardinality set of edges in G which meets every 
vertex in G. The Berge-Norman-Rabin theorem (2) is generalized in (3), but a 
corresponding generalization of the algorithm presented here in Section 4 is 
unknown. 

3.9. Norman and Rabin also show that the maximum matching problem and 
the minimum cover-by-edges problem are equivalent. 

Assuming every vertex meets an edge, the minimum cardinality of a cover 
of the vertices in G by a set of edges equals the minimum cardinality of a cover 
of the vertices in G by a set of edges and vertices, where a vertex is regarded 
as covering itself. By replacing edges by vertices or vice versa, one can go 
back or forth between a minimum cover by a set of edges and a minimum 
cover by a set of edges and vertices, where the latter set consists of a maximum 
matching together with its exposed vertices. 

4. Trees and flowers. 

4.0. A tree may be defined as (1) a graph T every pair of whose vertices is 
joined by exactly one path in T\ (2) inductively, as either a single vertex or 
else the union of two disjoint trees together with an edge which has one end-
point in each; (3) as a connected graph with one more vertex than edges; and 
so on. 

4.1. An alternating tree J is a tree each of whose edges joins an inner vertex 
to an outer vertex so that each inner vertex of J meets exactly two edges of / . 
An alternating tree contains one more outer vertex than inner vertices. This follows 
from the third definition of tree by regarding each inner vertex with its two 
edges as a single edge joining two outer vertices. 

4.2. For each outer vertex v of an alternating tree J there is a unique maximum 
matching of J which leaves v exposed and the only exposed vertex in J. Every 
maximum matching of J is one of these. 

Definition (2) of tree can be strengthened to the statement that a tree minus 
any one of its edges is two trees. Thus / minus any one of its inner vertices, 
say u, is two alternating trees. One of these, J i , contains v as an outer vertex. 
Assume inductively that J\ can be matched uniquely so only v is exposed and 
that J2, the other subtree, can be matched uniquely so only the vertex v2, 
joined in J to u by edge e2j is exposed. Then the union of e2 and these two 
matchings is a matching of / which leaves only v exposed. Since every edge of 
/ has one inner and one outer end-point, every maximum matching leaves only 
an outer vertex exposed. 

4.3. A planted tree, J = J(M), of G for matching M is an alternating tree in 
G such that M P\ / is a maximum matching of / and such that the vertex r 
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in / which is exposed for M C\ J is also exposed for M. That is, all matching 
edges which meet / are in J. Vertex r is called the root of J(M). 

In planted tree J(M) every alternating path P(M), which has outer vertex v 
and the matching edge to v at one of its ends, is a subpath of the alternating path 
PV(M) in J(M) which joins v to the root r. 

For k > 1, assume that P^k-i is the unique path P(M) which contains 
2& — 1 edges and assume that at its non-y end it has an inner vertex uk and a 
matching edge. Then P2k, consisting of P2/c-i together with the unique non-
matching edge in J which meets uk, is the unique path P{M) with 2k edges. 
It has outer vertices vk and v at its two ends. If vk ^ r, then P2yfc+i> consisting 
of Pik together with the unique matching edge which meets vk, is the unique 
path P(M) with 2& + 1 edges. It has an inner vertex uk+1 and a matching 
edge at its non-y end. Since our assumption is true for k = 1 and since k cannot 
become infinite, the theorem follows by induction. 

We define a stem in (G, M) as either an exposed vertex or an alternating path 
with an exposed vertex at one end and a matching edge at the other end. The 
exposed vertex and the vertex at the other end are, respectively, the root and 
the tip of the stem. The preceding theorem tells us that (1) no trial-and-error 
search is required to find the path in J from any of its vertices back to the root 
and (2) the path Pv in / joining any outer vertex v to the root of J is a stem. 

4.4. An augmenting tree, JA = JA(M), in (G, M) is a planted tree J(M) plus 
an edge e of G such that one end-point of e is an outer vertex v\ of J and the 
other end-point V2 is exposed and not in J. The path in JA which joins V2 to the 
root of J is an augmenting path. This follows immediately from (4.3). 

4.5. For each vertex b of an odd circuit B there is a unique maximum 
matching of B which leaves b exposed. A blossom, B = B(M), in (G, M) is an 
odd circuit in G for which M C\ B is a maximum matching in B with say 
vertex b exposed for M C\B. A flower, F = F (M), consists of a blossom and 
a stem which intersect only at the tip of the stem (the vertex b). 

A flowered tree, JF, in (G, M) is a planted tree / plus an edge e of G which 
joins a pair of outer vertices of J. The union of e and the two paths which join 
its outer-vertex end-points to the root of J is a flower, F. 

Let Vi and V2 be these outer vertices, and P i and P2 be the paths in / joining 
them to r. We have seen that Pi and P 2 are stems (which are easily recovered 
from J). Since they intersect in at least r and since the path in J joining r to 
any other vertex is unique, Pb = P i Pi P 2 is an alternating path with an end 
at r. If its other end-point, say b, were inner, it would be distinct from r, vi, 
and V2- Thus r would be distinct from v\ and t;2, and b would meet three different 
edges of / , one in P6 , one in P i not in Ph, and one in P 2 not in P 6 . But an 
inner vertex meets only two edges in the tree. Therefore b is outer and Pb is a 
stem. Thus P / = P i — (P6 — b) and P2 = P 2 — (P& — b), unless one is a 
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vertex vi = b or v2 = b, have non-matching edges a t their ô-ends and matching 

edges a t their outer ends. I t follows in a n y case t h a t B = P / U P2 U g is a 

circuit with only b exposed for M C\B, and thus B is a blossom with £ô as 

i ts s tem. 

4.6. A Hungarian tree H in a. graph G is an a l ternat ing tree whose outer 

vert ices are joined by edges of G only to its inner vertices. 

4.7. For a matching M in a graph G, an exposed vertex is a planted tree. Any 

planted tree J(M) in G can be extended either to an augmenting tree, or to a 

flowered tree, or to a Hungarian tree (merely by looking a t most once a t each of 

the edges in G which join vertices of the final t ree) . 

An exposed vertex satisfies the definition of planted tree. Suppose we are 

given a planted tree J and a set D (perhaps empty) of edges in G which are 

not in J b u t which join outer to inner vertices of / . (1) If no outer ver tex of J 
meets an edge not in D \J J, then / is Hungar ian . Suppose outer ver tex v\ 
meets an edge e not in D VJ / , whose other end-point is, say, v2. (2) If v2 is an 

inner ver tex of J , we can enlarge D by adjoining e. (3) If v2 is an outer ver tex 

of J , then e U / is a flowered tree. (4) If v2 is exposed and not in / , then 

e VJ J is an augment ing tree. (5) Finally, if v2 is not exposed and not in J , 

then the iVf-edge e2 which meets v2 is not in / , and thus z/3, the other end-point 

of e2} is not in / by the definition of planted tree. Therefore, in this case we can 

extend / to a larger planted tree with new inner vertex v2 and new outer ver tex 

v-s by adjoining edges e and e2. For any J and D, one of the five cases holds. 

Therefore by looking a t any edge in G a t most once, we can reach one of the 

three cases described in the theorem, because the other two cases, (2) and (5), 

consume edges and G is finite. 

4.8. T h e algorithm which is being constructed is efficient because it does not 

require tracing many various combinat ions of the same edges in order to find 

an augment ing pa th or to determine t h a t there are none. In fact we accomplish 

one or the other wi thout ever looking again a t the edges encountered in process 

(4.7), except to pick ou t from the tree the blossom or the augment ing pa th 

when case (3) or (4) occurs. We see from (4.3) and (4.5) how easy it is to 

retrieve the blossom or the pa th . When flowers arise we " sh r ink" the blossoms, 

and so if an augment ing pa th arises later, it will be in a " reduced" graph. 

However, only one other very simple kind of task t rans la tes the augmenta t ion 

to (G, M) itself. T h a t task is to expand a shrunken blossom to an odd circuit 

and find the maximum matching of the odd circuit which leaves a certain 

vertex exposed. Actually, we shall find in (7.3) t h a t it is desirable to leave odd 

circuits shrunk while looking in the reduced graph for as m a n y successive aug

menta t ions as possible since they are all reflected in augmenta t ions of (G, M). 

4.9. For H, a subgraph of G, G is the disjoint union (G - H) U ÔH U H+, 
where 5H is the set of the edges with one end-point in H and one end-point in 
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G — H, and where H+ = G — (G — H) is the subgraph consisting of H and 
all edges of G with both end-points in H. When H is connected, shrinking H 
means constructing the new graph G/H = (G — H) \J 8H U h by regarding 
H+ as a single new vertex, h = H/H, which meets the edges 8H = 8h. The 
end-points in G — H of the edges 8H do not change. 

4.10. If B is an odd circuit in G, then b' = B/B is called a pseudovertex of 
G IB. To expand b' means to recover G from G/B. The algorithm, after it 
expands a pseudovertex 6', will make use of the circuit B. In general, finding 
a "Hamiltonian" circuit in a graph B+ is difficult. Therefore, when the 
algorithm shrinks B to form G/B, it should remember circuit B as having 
effected the shrinking. Thus we call circuit B in G (rather than B+) the expansion 
of b''. In formal calculation shrinking B in G is an easy operation. Essentially, 
just assign all the vertices and edges of B SL label, b', and then, until b' is ex
panded by erasing these labels, ignore any distinction between vertices labelled 
b' and ignore edges joining them to each other. 

Where M is a matching set of edges in G, M/B is defined as M C\ (G/B). 
Clearly, if B is a blossom for (G, M), then M/B is a matching of G/B. 

4.11. Let Go = G, Gi = Gi-\/Bu and 6j = Bi/B i for z = 1, . . . , n, where 
5 j is an odd circuit in graph Gt-i. We inductively define the pseudovertices 
(with respect to G) of Gk (k = 1, . . . , n) to be ^ together with the pseudo-
vertices in Gt-i — Bk = Gk — £#. Of course not every bu i < &, will be a 
pseudovertex of Ĝ  because some will have been absorbed into others. The 
order in which the pseudovertices of a Gk arise is immaterial. That is, the order 
in which the odd circuits Bt are shrunk is immaterial except in so far as one 
shrunken B t is a vertex in another B t. Thus we can expand any pseudovertex 
bj of Gk to obtain a graph Gkj for which Gkj/Bj = Gk. The pseudovertices of 
Gkj (with respect to G) are the pseudovertices in Bj together with the pseudo-
vertices in Gk — bj] that is, graph Gkj can be obtained from G by shrinking 
in a proper order the odd circuits which wTere absorbed into these pseudo-
vertices. On the other hand, we do not expand a vertex bh in Bk until vertex 
b,c is expanded. 

There is a partial order on the b/s defined by the transitive completion of 
the relation bh < bk where bh is a vertex of Bk. (It is a special kind of partial 
ordering because each bh is a vertex of at most one Bk.) There is a partial order 
on the sets, Sa, Sp, . . . , of mutually incomparable b/s, where Sa < Sp when 
every member of Sa is less than or equal to some member of S$. Evidently 
there is a unique family of graphs, Ga, Gp, . . . , which include the G/s and G. 
They correspond 1-1 to the sets, Sa, Spy . . . , so that the pseudovertices of Ga 

are Sa, etc. We have Sa < Sp if and only if Gp can be obtained from G« by 
shrinking certain Bu those for which bt is less than or equal to some member 
of Sp and not less than or equal to any member of Sa. Graph G corresponds 
to the empty set and Gn corresponds to the set of b/s which are maximal with 
respect to their partial order. 
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The complete expansion of a pseudovertex bt is the subgraph 

U+ = G-(G-U)CG 

where U consists of all vertices of G absorbed into bt by shrinking. 

4.12. Where B is the blossom of a flower F for (G, M), M is a maximum 
matching of G if and only if M/B is a maximum matching of G/B. 

4.13. Where blossom B is in JF, a planted flowered tree for (G, M), JF/B is a 
planted tree for (G/B, M/B). It contains B/B as an outer vertex. Its other outer 
and inner vertices are respectively those of JF which are not in B. 

Theorem (4.13) follows easily from (4.5). We separate the two converse 
statements of Theorem (4.12) into slightly stronger statements, (4.14) and 
(4.15). 

4.14. Where B is any odd circuit in G, for every matching Mi of G/B there 
exists a maximum matching MB of B such that M — Mi \J MB is a matching 
for G. 

Since any matching Mi of G/B contains at most one edge meeting B/B. the 
edges Mi in G meet at most one vertex, say bi, of B. Therefore the desired MB 

is the maximum matching of B which leaves bi exposed. Since the cardinality 
\MB\ of MB is constant, any augmentation of M\ yields a corresponding 
augmentation of M. Therefore, the "only if" part of (4.12) is proved. 

Applying the above matching operation to successive expansions of pseudo-
vertices into odd circuits we have: 

Where P is the complete expansion of a pseudovertex p in G2, where GL is the 
graph obtained from G2 by completely expanding p, and where M2 is any matching 
of G:

2, there exists a matching MP of P leaving exactly one exposed vertex m P 
such that MP \J M2 is a matching of G\. Thus since \MP\ is constant, any 
augmentation in G2 yields a corresponding augmentation in Gi. 

4.15. For (G, M), let P be a subgraph such that (1) M Pi P leaves exactly one 
exposed vertex in P , (2) M/P is a maximum matching of G/P, and (3) p = P/P 
is the tip of a stem Svfor (G/P, M/P). Then M is a maximum matching of G. 

The edges of SP form in G a stem, S, for (G, M). (In case Sp has no edges, 
take 5 to be the vertex in P exposed for M.) Compare M' = AI -\- S and 
M'/P with M and M/P. The definition of stem implies that M' is a matching 
of G with \M'\ = \M\ and that the exposure of the root of S is changed to the 
exposure of the tip of S. Similarly M'/P = M/P + Sp is a matching of G/P 
with \M'/P\ = | M / P | and with vertex p exposed. Because the cardinalities 
do not change, it is sufficient to show that M' is maximum in G if Mf/P is 
maximum in G/P. 

Using (3.7), if M' is not maximum, G contains an augmenting path 
A = A(M'). If A contains no vertices of P , then it is also an augmenting 
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path for M1 IP in G/P. Otherwise, because P contains only one exposed vertex 
for M', at least one of the ends of A is at an exposed vertex U\ not in P . There 
is a unique subpath A\ of A with one end-point at U\ and containing only one 
vertex pi of P , at its other end. The only difference between A\ and A\/P = 
(A i \J P)/P is that pi is replaced by p, which is exposed for Mf/P. Thus 
A\/P is an augmenting path for Mf'/P and so M'/P is not maximum. The 
theorem is proved. 

The theorem extends as follows: 

For (G, M), let Pi , . . . , Pn be a family of disjoint subgraphs in G such that 
(1) M r\ Pi leaves exactly one exposed vertex in Pu (2) Mn = M Pi Gn is a 
maximum matching of Gn = G / P i / . . . /Pn, and (3) vertices Pi/Pt of Gn are 
outer vertices in a planted tree Jnfor (Gn, Mn). Then M is a maximum matching 
ofG. 

We may assume that the indices order the P * / P / s so that (for 
k = 1, . . . , n — 1) those from 1 through k are contained in a planted subtree 
JJC of Jn not containing those from k + 1 through n. Hence the theorem follows 
by induction after proving that Mn-\ = M C\ Gn-\ is a maximum matching of 
Gn-\ = G / P i / . . . /Pn-i- Since every outer vertex of Jn is the tip of a stem 
in Gn, this follows from the last theorem. 

4.16. Theorems (4.7) and (4.13) show how by branching a planted tree out 
from an exposed vertex of (C7, M) and shrinking blossoms Bt when they are 
encountered, we eventually obtain in a graph Gk = G/B\/ . . . /Bk either a 
tree with an augmenting path or a Hungarian tree. An augmenting path 
admits an augmentation of matching Mk = M f~\Gk according to (3.7), and 
(4.14) shows how this induces an augmentation of matching ikf^-i = M f~\ Gk-i 
and so on back through M. On the other hand, when a Hungarian tree J is 
obtained, submatching ( / U BkVJ . . . \J Bi) C\ M of (G, M) cannot be im
proved and so this part of G is freed from further consideration. This follows 
immediately from (4.15) and the next theorem, (4.17), where Gk is denoted 
simply as G. 

4.17. Let J be a Hungarian tree in a graph G. A matching Mi of G — J is 
maximum in G — J if and only if Mi together with any maximum matching 
Mj of J is a maximum matching of G. 

Since J and G — J are disjoint, if there exists a matching M / ol G — J 
which is larger than Mu then Mi \J Mj is a larger matching of G than 
Mi U M j . Conversely, suppose Mi is maximum for G — J. Let 

M' = Mi' U MjKJ M/ 

be an arbitrary matching of G where Mi d G — J, where M/ C / , and 
where MT Pi ((<? - J) U J) is empty. Then | M / | < |Afi|. Every edge in M7 

meets at least one inner vertex of / ; that is, where V C I {J) is the set of the 
inner vertices met by MT, \MT\ < \I'\. The graph J — V consists of \V\ + 1 
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disjoint alternating trees whose inner vertices together are I (J) — / ' . There
fore, since the maximum matching cardinality of an alternating tree equals 
the number of its inner vertices, \M/\ < \I(J) — If\. Adding the three in
equalities gives \M'\ < \Mi\ + \I(J)\ = |Mi U Mj\. So the theorem is proved. 

4.18. The matching M of G = G°, to begin with, may be empty. If it leaves 
any exposed vertices, then the process (4.16) operates with respect to one of 
them. Either it produces an augmentation of M by one edge, thus disposing of 
two exposed vertices, or it reduces the possible domain for augmenting M to 
a subgraph G1 = Gk — J of G, containing one less exposed vertex and con
taining only edges and vertices not previously considered. Successive applica
tion of (4.16) may reduce the consideration of M to a subgraph Gl of G and 
reveal there an augmentation of M. After augmenting in G\ obtaining a 
larger M for G with two less exposed vertices in G\ (4.16) operates again in 
G\ never returning to the matching in the rest of G. 

4.19. Repeated application of (4.18) reduces the domain in question to a 
Gn containing no exposed vertices. Then we know that we have a maximum 
matching; let us still call it M, with n exposed vertices in G. Thus the construc
tion of an algorithm for finding a maximum cardinality matching in a graph 
is complete. Often the last application of (4.18) is unnecessary. For verifying 
maximality, the algorithm may as well stop when it reduces the domain to a 
Gn~~l containing one exposed vertex, since two exposed vertices are necessary 
in order to augment. However, for theoretical purposes it is convenient to have 
the algorithm grow a tree from each exposed vertex of the final, maximum 
matching. 

4.20. We may define an alternating forest to be a family of disjoint alternating 
trees and a planted forest in (G, M) to be a family of disjoint planted trees in 
(G, M). A dense planted forest is one which contains all the exposed vertices 
of (G, M). The family of exposed vertices, itself, is a dense planted forest. The 
algorithm works as well by growing a dense planted forest all at once, rather 
than one tree at a time. 

It is appropriate then to define augmenting forest (flowered forest) to be a 
planted forest plus an edge e of G whose end-points are outer vertices of 
different trees (of the same tree) of the planted forest. 

A Hungarian forest in G is defined similarly to Hungarian tree, replacing 
the word "tree" by ''forest." Notice that the trees of a Hungarian forest are 
not necessarily Hungarian trees—an outer vertex of one tree may be joined 
by an edge of G to an inner vertex of another tree in the forest. 

The theorems on trees presented in this section are essentially the same for 
forests. 

5. The dual to matching. 

5.0. A bipartite graph K is one in which every circuit contains an even 
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number of edges. This condition, that K contains no odd circuits, is equivalent 
to being able to partition the vertices of K into two parts so that each edge of 
K meets exactly one vertex in each part. The well-known Kônig theorem 
states: 

For a bipartite graph K, the maximum cardinality of a matching in K equals 
the minimum number of vertices which together meet all the edges of K. 

5.1. The linear programming duality theorem states: If 
(1) x > 0, Ax < c and 
(2) y ^0,ATy> b, 

for given real vectors b and c and real matrix A, then for real vectors x and y, 

maxx(b,x) = mmy(c, y) 

when such extrema exist. 

The problems of finding a maximizing vector x and a minimizing vector y 
are called linear programmes, dual to each other. 

5.2. The Kônig theorem is now widely recognized as the instance of (5.1) 
where b and c consist of all ones and A = AK is the zero-one incidence matrix 
of edges (columns) versus vertices (rows) in a bipartite graph K. In view of 
Theorem (5.1) the Kônig theorem is equivalent to the remarkable fact that, 
with b, c, and A as just described, the two linear programmes of (5.1) have 
solutions x and y whose components are zeros and ones whether or not this 
condition is imposed. An elegant theory centres on this phenomenon. 

Graph-theoretic algorithms are well known for so-called assignment, trans
portation, and network flow problems (5). These are linear programmes 
which have constraint matrices A that are essentially AK. 

5.3. For a linear programme with an arbitrary matrix A of integers, or even 
of zeros and ones, we cannot say that the extreme values will be assumed, as 
when A = AK, by vectors with integer components. Therefore, in general 
when we impose the condition of integrality on x, the equality of the two 
extrema no longer holds. 

In particular, when the maximum matching problem is extended from bipar
tite to general graphs G, a genuine integrality difficulty is introduced. Our 
matching algorithm met it by the device of shrinking blossoms. 

5.4. The matching algorithm yields a generalization of the Konig theorem 
to maximum matchings in G. The new matching duality theorem, in the form 
"maximum cardinality of a matching in G equals minimum of something 
else," is also an instance of linear programming duality. 

It is reasonable to hope for a theorem of this kind because any problem which 
involves maximizing a linear form by one of a discrete set of non-negative 
vectors has associated with it a dual problem in the following sense. The discrete 
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set of vectors has a convex hull which is the intersection of a discrete set of 
half-spaces. The value of the linear form is as large for some vector of the 
discrete set as it is for any other vector in the convex hull. Therefore, the 
discrete problem is equivalent to an ordinary linear programme whose con
straints, together with non-negativity, are given by the half-spaces. The dual 
(more precisely, a dual) of the discrete problem is the dual of this ordinary 
linear programme. 

For a class of discrete problems, formulated in a natural way, one may hope 
then that equivalent linear constraints are pleasant even though they are not 
explicit in the discrete formulation. 

5.5. Arising from the definition of a matching—no more than one matching 
edge to each vertex—are the obvious linear constraints that for each vertex 
v 6 G the sum of the x's corresponding to edges which meet v is less than one. 
To obtain a maximum cardinality matching, we want to maximize the sum of 
all the x's, corresponding to edges of G, subject to the additional condition 
that each x is zero or one. 

It turns out that maximum matching can be turned into linear programming 
by substituting for the zero-one condition the additional constraints that the 
x's are non-negative and that for any set R of 2k + 1 vertices in G(k = 1,2,. . .) 
the sum of the x's which correspond to edges with both end-points in R is no 
greater than k. The former condition on the x's obviously implies the latter 
since for no matching in G do more than k matching edges have both ends in R. 

The converse—that subject only to the linear constraints, ^ x{ can be 
maximized by zeros and ones—is not so obvious, but in view of (5.1) it follows 
from (5.6), the generalized Kônig theorem. 

Actually the stronger converse holds—that subject only to these same 
linear constraints, YLcixu for any real numbers cu can be maximized by 
zeros and ones. In other words, the polyhedron described by the constraints 
is, indeed, the convex hull of the zero-one vectors which correspond to match-
ings in G. We shall not prove this until we take up maximum weight-sum 
matching in paper (4). Although the convex-hull notion suggested trying to 
generalize the Kônig theorem, and although the generalization found does 
suggest the true convex hull, the success of the first suggestion does not neces
sarily validate the second. 

5.6. A set consisting of one vertex in G is said to cover an edge e in G if e meets 
the vertex. The capacity of this set is one. A set consisting of 2k + 1 vertices 
in G(k = 1, 2, . . .) is said to cover an edge e in G if both end-points of e are 
in the set. The capacity of this set is k. An odd-set cover of a graph G is a family 
of odd sets of vertices such that each edge in G is covered by a member of the 
family. 

MATCHING-DUALITY THEOREM. The maximum cardinality of a matching in G 
equals the minimum capacity-sum of an odd-set cover in G. 
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It is obvious that the capacity-sum of any odd-set cover in G is at least as 
large as the cardinality of any matching in G, so we have only to prove the 
existence in G of an odd-set cover and a matching for which the numbers are 
equal. 

5.7. The theorem holds for a graph which has a perfect matching M—that 
is, with no exposed vertices—since the odd-set cover consisting of two sets, 
one set containing one of the vertices and the other set containing all the other 
vertices, has capacity-sum equal to \M\. It also holds for a graph which has a 
matching with one exposed vertex. Here the odd-set cover may be taken as 
consisting of one member, the set containing all vertices of the graph. For the 
case of one exposed vertex, an odd-set cover may also be constructed as in 
(5.8) by applying the algorithm to construct a Hungarian tree even though 
it obviously will not result in augmentation. 

5.8. Applying the algorithm to (G, M), where \M\ is maximum, using some 
exposed vertex as root, we obtain a graph Gr containing a maximally matched 
Hungarian tree / , a number of whose outer vertices are pseudo. Let Sj consist 
of all odd sets of the following two types: sets each consisting of one inner 
vertex in / , and sets each consisting of the vertices in the complete expansion 
of one pseudovertex of J. 

The number of edges of M which a member of Sj covers is equal to the 
capacity of the member. Every edge of M not m Gf — J is covered by exactly 
one member of Sj. An edge of G is covered by a member of Sj if and only if 
it is not in G' — J. 

Matching M C\ (Gf — J) is a maximum matching oi G' — J with one less 
exposed vertex than (G, M). Assuming that | M C\ (Gf — J) | equals the 
capacity of an odd-set cover, say S'j, of G' — / , we have that \M\ equals the 
capacity of Sj \J S'j, an odd set cover of G. Theorem (5.6) follows by induction 
on the number of exposed vertices. 

5.9. It is evident from the proof that we may require the minimum odd-set 
cover to have certain other structure—in particular, that each member with 
more than one vertex contain the vertices of at least one odd circuit in G. 
With the latter restriction the theorem becomes a strict generalization of the 
Konig theorem. 

6. Invariance of the dual. 

6.0. For any particular application of the algorithm (4) to G, yielding, say, 
the maximum matching M, we may skip the augmentation steps in (4.16) 
by regarding the augmented matching as being the one already at hand. This 
gives a particular application of (4) to G starting with maximum matching M. 
In the application of the algorithm to (G, M), we can regard all the branchings 
and blossom shrinkings as taking place without subtracting the trees Jt as 
they arise. Thus we obtain from (G, M) a graph G* with a number of pseudo-
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vertices which are outer vertices in a sequence {Ji}(i = 1, . . . , n) of disjoint 

planted trees in G*, one corresponding to each exposed vertex of (G, M). By 

expanding all the pseudovertices of G* completely, we recover the graph G. 

6.1. The tree Jt is Hungarian in G* — J\ . . . — Jt-i, but usually not 
Hungarian in G* because an outer vertex of J{ might be joined to an inner 
vertex of any other tree with a lower index. Hence the partition of the outer 
and inner vertices into trees Jt depends on the order of their construction. 
Also non-matching edges which can occur in each tree are not unique. In 
general, joining outer to inner vertices of a Jt are many other M edges which 
would do as well. The particular blossoms which led to the pseudovertices are 
also fairly arbitrary. And, finally, the maximum matching is far from unique. 
However, (6.2) will show that the graph G* is uniquely determined by G alone. 

6.2. For a (G, M) where M is any maximum matching, let G* and \Jt] be 
obtained from (G, M) by (6.0). 

(a) The non-pseudo outer vertices of the J / s and the vertices of the pseudovertex 
complete expansions, all called the outer vertices 0(G) of G, are precisely the vertices 
of G which are left exposed by some maximum matching of G. 

(b) The inner vertices of the JYs, called the inner vertices 1(G) of G, are precisely 
those vertices of G not in O (G) but joined to vertices in O (G). 

(c) G* is obtained from G by shrinking the connected components of 0(G)+, 
the subgraph of G consisting of vertices 0(G) and all edges of G joining them. 

6.3. We have defined vertex families 0(G) and 1(G) in terms of particular Jt. 
The theorem yields definitions dependent only on G itself. 

Clearly 0(G*) and I(G*), defined in terms of the Jt in G*, are respectively 
the outer and the inner vertices of the J\. Notice that the early definitions of 
inner and outer, for vertices in an alternating tree, are consistent with the 
definitions for a general graph. 

6.4. Proof of (6.2), (b) and (c). Let the vertex v* of G* be joined in G* to 
some outer vertex w* of J\. Then v* is a vertex in some Jh(h < i)y since Jt is 
Hungarian in G* — J\ — . . . — Ji-\. But y* cannot be an outer vertex of 
Jh since u* is not inner and since Jn is Hungarian in G* — Ji — . . . — Jh-\-
Therefore v* is inner. It follows that each outer vertex u of G is joined only to 
inner vertices and to other vertices in the complete expansion of its image u*. 
By construction, each inner vertex is joined to an outer vertex of G. Hence, 
(b) is true. 

Since by construction the complete expansion of each outer vertex of G* is 
connected, it also follows that the connected components of 0(G)+ correspond 
precisely to outer vertices of G*. Hence, (c) is true. 

6.5. An outer vertex u of G, by definition, either is identical with or is 
contained in the complete expansion of some outer vertex u* of, say, J\. For 
any maximum matching Mt of alternating tree Ju Mt ^J [M C\ (G* — Jt)] is 
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a maximum matching of G*, which by (4.14) induces a maximum matching 
M' of G. Let Mt be the one which leaves u* exposed. If u* is pseudo, then by 
(4.14) M' can be chosen so that u is exposed in the expansion. This proves 
half of (6.2), (a). 

6.6. C. Witzgall suggested the following simplified proof of the converse, 
viz. that only the outer vertices are ever exposed for a maximum matching. 
A non-outer vertex v meets an edge e of M. Deleting v and its adjoining edges, 
\J Ji — v is a Hungarian forest in G* — v. 

If v is inner, then the forest is dense in G* — v. Otherwise it is dense in 
G* — v except for one exposed vertex, the other end of e. In either case it 
follows that M — e is a maximum matching of G — v. 

Assume that M' is a maximum matching of G which leaves v exposed. Then 
M' is also a matching of G — v. Since M' is larger than M — e, we have a 
contradiction. This completes the proof of (6.2). 

6.7. The definition of odd-set cover may be expanded (more than necessary 
for Theorem (5.6)) to include the possibility of members which are even sets 
of vertices in G. A set of 2&-vertices has capacity k and covers the edges which 
have both end-points in the set. Then, clearly, Theorem (5.6) still holds for 
this kind of cover. 

With this definition of cover, it follows from the uniqueness of G* that there 
is a unique preferred minimum cover, S*, for any graph G. The one-vertex 
members of 5* are the inner vertices of G*, the other odd members of S* 
correspond to the pseudovertices of G*, and the one even member of S* consists 
of the non-inner, non-outer vertices of G*. 

7. Refinement of the algorithm. 

7.0. Several possibilities for refining the algorithm suggest themselves. 
We could remember an old tree, uprooted by an augmentation, so that when 

a new rooted tree takes on a vertex in it, we can immediately adjoin a piece 
of it to the new tree. This appears not worth doing. A tree is easy to grow, 
easier than selecting from an old tree the piece which may be grafted. 

7.1. A quite useful refinement is to leave the pseudovertices of the old tree 
shrunk until their expansion is necessary. We see from (4.14) that any further 
augmentation of a matching M' in a graph G with pseudovertices yields a 
further augmentation in G just as easily as the first. On the other hand, a 
maximum matching in G', reached after one or more augmentations, does not 
necessarily yield a maximum matching of G. The sufficiency part of (4.12) 
depends on the blossom being part of a flower, whereas the first augmentation 
in G! uproots the stem. 

7.2. However, we may easily observe the circumstance arising in the 
application of the algorithm to (G', Mr) where the shrinkage might hide a 
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possible augmentation in G. I t is where a pseudovertex, say b'> becomes an 

inner vertex of the planted tree, say Jf = J'(M'). 

In this case, we obtain a graph G" from Gr by expanding b' to an odd circuit 
B. The edges of J' form in G" a subgraph which we still call J'. The set Mr is 
also a matching in G". One edge of J' C\ M' has an end-point, say bu in B. 
One edge of / ' f\ M' has an end-point, say b2, in B. The maximum matching 
MB of B which is compatible with Mr in G" leaves b\ exposed. The vertices 
b\ and bi partition B into two paths, P2 even and P\ odd, which join b\ and bo. 
The graph J" = P2 U J ' is a planted tree in G" for the matching MB W M'. 

Unless 61 and J2 coincide, P 2 will contain outer vertices of J". These may be 
joined to vertices not in J" which admit an extension of J", not possible for 
J" jB = J' C G', to a planted tree with an augmenting path. 

7.3. If J' C Gr can be extended in G! to a tree with an augmenting path, it 
does not matter that some of the inner vertices are pseudo because a further 
augmentation for G is thus determined. If J' with pseudo inner vertex b' can 
be extended in (G', M') to a flowered tree whose blossom B' contains b\ then 
bf loses its distinction as an inner vertex. It might as well stay shrunk and be 
absorbed into the new pseudovertex B'/B' of G'/Bf. In fact, Theorems (4.15) 
and (4.17), together, tell us that any pseudo outer vertex might as well be left 
pseudo during the algorithm. 

Therefore a pseudo inner vertex should be retained until a planted Hungarian 
tree JH is obtained. If no inner vertices of JH are pseudo, then (4.17) is applic
able. Otherwise, at this point, a pseudo inner vertex should be expanded 
according to (7.2). 

7.4. One of the main operations of the algorithm is described in (4.3). That 
is back-tracing along paths in a tree already constructed, either to obtain an 
augmentation as in (4.4) or to delineate a new blossom as in (4.5). The back-
tracing takes place in an alternating tree only because blossoms have been 
shrunk to pseudovertices. A pseudovertex may be compounded from many 
earlier blossom shrinkings and may thus encompass a complicated subgraph 
of G. After shrinking, back-tracing entirely bypasses the internal structure of 
a pseudovertex. 

A possible alternative to actually shrinking is some method for tracing 
through the internal structure of a pseudovertex. Witzgall and Zahn (9) have 
designed a variation of the algorithm which does that. Their result is attractive 
and deceptively non-trivial. 
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