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Abstract

We give improved approximation algorithms for a va-
riety of latency minimization problems. In particular,
we give a 3.591-approximation to the minimum latency
problem, improving on previous algorithms by a multi-
plicative factor of 2. Our techniques also give similar
improvements for related problems like k-traveling re-
pairmen and its multiple depot variant. We also observe
that standard techniques can be used to speed up the
previous and this algorithm by a factor of Õ(n).

1 Introduction

We study the minimum latency problem (MLP),
which is the problem of finding a tour of a set of points
in a metric space which minimizes the sum of the la-
tencies to the points, where the latency of a point is its
distance along the tour. This problem is NP-complete
even when the metric space is induced by a tree [30],
and is MaxSNP-hard in general graphs. It has also been
referred to in literature as the traveling repairman prob-
lem [1], the school-bus driver problem [34], and the de-
livery man problem [17, 26].

For general metrics, with which we are concerned,
Blum et.al. [9] gave the first constant factor approxima-
tion. This was improved by Goemans and Kleinberg
[21]. Both algorithms proceed by finding tours of ge-
ometrically increasing costs and stitching them together.
Moreover, these algorithms both use certain approx-
imable lower bounds that were subsequently replaced

∗Computer Science Division, University of California, Berkeley.
Email: kamalika@cs.berkeley.edu.

†Computer Science Division, University of California, Berkeley.
Email: pbg@cs.berkeley.edu.

‡Computer Science Division, University of California, Berke-
ley. Email:satishr@cs.berkeley.edu. Research partially sup-
ported by the NSF via grant CCR-0105533.

§Computer Science Division, University of California, Berkeley.
Email: kunal@cs.berkeley.edu. Research partially supported
by the NSF via grants CCR-0121555 and CCR-0105533.

1More precisely, this factor is γ given by the root of the equation
γ+1

lnγ
= γ. In the rest of the paper, we shall use 3.59 instead of γ.

with the k-MST problem: the problem of finding a mini-
mum cost tree containing k nodes. The cost of a k-MST
is a lower bound on the cost of any tour that covers k
nodes, and thus on the latency of the kth node in the
minimum latency tour.

Approximations for the k-MST problem also evolved
with polylogarithmic approximations and include the
constant factor approximation given by Blum, Ravi and
Vempala [11] and the 3-approximation of Garg [20].
Currently, one can find essentially 2-approximate solu-
tions [5, 3] for the k-MST. The combination of these
ideas gives a 7.18-approximation algorithm for the mini-
mum latency problem, which arises from a factor of 3.59
from techniques in [21] and the factor of two from the
k-MST algorithms.

Again, the MLP approximation algorithms lower
bound the latency of the kth vertex in the tour by the
cost of the minimum tree spanning k vertices, that is,
the k-MST. We note that the cost of the minimum path
visiting k vertices is a better lower bound on the latency
of the kth vertex in the tour. However, since the prob-
lem of finding the cheapest such path (we call it the k-
stroll problem) is not known to be better approximable
than the k-MST, we cannot hope to improve the approx-
imation guarantee by finding an approximate k-stroll.
The basic idea then is to find a good tree spanning k
vertices, and bound its cost in comparison to the opti-
mum k-stroll. We give a primal-dual algorithm based
on [20, 5] that guarantees we find a k-tree whose cost
is no more than the optimal k-stroll. In particular, our
primal-dual algorithm outputs a primal integral solution
to the k-MST problem, and a feasible dual solution (of
no smaller cost) to the k-stroll problem.

Thus, we do not pay the factor of two for the k-MST
algorithms, since our tree has no more cost than the k-
stroll. We are left with an approximation factor of 3.59
that arises from the techniques of Goemans and Klein-
berg [21]. Since algorithms for various related problems
such as k-traveling repairman [14, 12] and Orienteer-
ing and discounted reward TSP [10] use similar lower
bounds, we get improved approximation algorithms for
these problems as well.

We note that, in addition to producing larger lower
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bounds on the optimal tour, our algorithm may pro-
duce better k-trees. In particular, our method for find-
ing a k-tree guesses the endpoints of a path and forces
them to be in the k-tree. That is, we produce k-trees
that are better than those produced by the currently
known approximate k-MST algorithm used by Archer,
Levin, and Williamson [3]. The algorithm of Arora and
Karakostas [5], however, also guesses points to include
for a different reason: in order to efficiently interpolate
to a tree containing exactly k nodes (which, in fact, is
not necessary for MLP). Our guessing is required for
finding trees that consist of a far away dense cluster of
nodes, which traditional primal-dual k-MST approxima-
tion algorithms completely miss.

Finally, we note that good lower bounds significantly
affect running times for branch and bound techniques.
While a factor of two may be a significant improve-
ment as a lower bound, we suspect that our reliance on
the piecing together of tours remains a serious obstacle
to having a truly useful lower bounding technique for
branch and bound.

1.1 Related work

Sahni and Gonzales [28] showed that the minimum
latency problem is NP-hard. It was shown to be
MaxSNP-hard by a reduction from the Traveling Sales-
man Problem with distances 1 and 2 [27, 9]. Indeed,
the problem remains NP-hard even on weighted trees as
shown by Sitters [30].

For the unweighted case (i.e. for a shortest path met-
ric on an unweighted graph), Koutsoupias, Papadim-
itriou and Yannakakis [23] give a 1.662-approximation.

As mentioned above, for general metrics, the al-
gorithm of Goemans and Kleinberg could use the k-
MST algorithm of Arora and Karakostas [5], a (2 + ε)-
approximation in time O(n1/ε). The algorithm of [5]
builds on the algorithm of Garg [20], which shows how
to interpolate solutions to the prize collecting Steiner
tree (PCST) problem (which is the Lagrangian relax-
ation of the k-MST problem). Archer, Levin and
Williamson [3] improve the bound a bit and the run-
ning time substantially to2 Õ(n3) by showing that the
2-approximate solutions returned by the PCST sub-
routine actually suffice for the minimum latency algo-
rithm. They use n log n instances of the PCST problem
(see [22]). The PCST has a 2-approximation algorithm
and its running time was recently improved to O(n2) in
[19].

For weighted trees and points in R
d, Arora and

Karakostas [4] gave a quasipolynomial time approxima-
tion scheme. We note that this result actually avoids the

2We shall suppress polylogarithmic factors in the Õ notation.

limitation of stitching together tours.
A generalization of the minimum latency problem

where k tours cover (or k repairmen visit) the points was
studied by Fakcharoenphol, Harrelson and Rao [14].
They call it the k-traveling repairman problem. The la-
tency of a point is the distance from the starting point
along the tour that covers it. They give a 16.994-
approximation to this problem. Chekuri and Kumar [12]
give a 24-approximation for a “multiple depot” version
of this problem where the repairman can start at differ-
ing locations.

In the operations research community, there are sev-
eral exact exponential time algorithms for the minimum
latency problem, e.g. [36, 17, 29, 8, 25]. Researchers
have also evaluated various heuristic approaches [33, 32]
and studied stochastic [2] and online versions [16, 24].
Finally, there has been work on various special cases [1,
26, 7, 31, 35].

In addition to the self-evident applications, re-
searchers have applied the minimum latency problem to
minimizing the time to search for a treasure on a fixed
graph (such as the searching the web graph); see e.g.
Koutsoupias et.al. [23] and Ausiello et.al. [6].

Finally, we note that the minimum latency problem
is related to the minimum sum set cover problem where
one wishes to find the set cover which minimizes the
total latency of covering the underlying elements. Feige,
Lovász, and Tetali [15] gave a 4-approximation for this
problem and showed that one cannot do better unless NP
is contained in quasipolynomial time. Thus, our result
shows that the minimum latency problem is easier than
the minimum sum set cover problem.

1.2 Our results

As described above, we produce a 3.59-
approximation algorithm for the minimum latency
problem.

Our algorithm proceeds by repeatedly using a primal-
dual algorithm that finds a k-tree containing two speci-
fied points. As in previous algorithms, our primal-dual
algorithm actually solves a Lagrangian relaxation of the
original problem. Using the techniques of Garg [20],
Arora and Karakostas [5], we can solve the origi-
nal problem with approximation guarantee (1 + ε).
Better still, we can argue, as in Archer, Levin and
Williamson [3] that just using the solutions to the La-
grangian relaxation(s) actually suffices.

We also observe that the running time of the Archer,
Levin and Williamson [3] algorithm can be improved
to Õ(n2) due to the fact that the Goemans-Kleinberg
analysis only uses O(log n) trees. Our running times
are slightly worse: for the minimum latency problem,
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we obtain in Õ(n3) time (3.59+ε)-approximation algo-
rithm and an Õ(n4) time 3.59-approximation algorithm.

The (2 + ε)-approximation algorithm for the k-stroll
problem that we describe in Section 4 is a useful sub-
routine for some other applications as well. For the k-
traveling repairman problem, the approximation factor
given by Fakcharoenphol, Harrelson and Rao [14] im-
proves by a factor of two to 8.49. For the multiple depot
version of k-traveling repairman, the approximation fac-
tor of 24 given by Chekuri and Kumar [12] improves to
12. Moreover, our algorithm can give stronger guaran-
tees on the path length, in terms of “excess” (defined as
length of the path minus distance from source to desti-
nation). This improves the results of Blum et.al. [10] on
orienteering and discounted reward TSP.

The rest of the paper is organized as follows. In
Section 2, we give definitions and a short overview of
our algorithm. In Section 3, we show that if, for ev-
ery k, we could find a k-tree of cost no more than the
best k-stroll, we would get a 3.59-approximation for the
minimum latency problem. This argument closely fol-
lows that used by Goemans and Kleinberg [21] for their
3.59-approximation for minimum latency on trees (and
7.18+ε on arbitrary metrics). In Section 4, we show how
to obtain such k-trees for some values of k. This is the
main technical section, and uses a subtle variation of the
classical primal-dual argument. In Section 5, we show,
along the lines of Archer, Levin and Williamson [3], that
it actually suffices to use the few k-trees that we found
using the primal-dual algorithm.

2 Preliminaries

2.1 Definitions

Let G = (V, E, c) be a weighted undirected graph,
and let P = (v1, . . . , vn) be a path (or tour) in that
graph. We use c(P ) to mean the total weight of all edges
in P . The latency lvi,P of a vertex vi ∈ P along path
P is the cost of the prefix of P ending at vi; that is,
lvi,P = c((v1, . . . , vi)). Usually the path in question
will be implicit, so we simply write lvi

.
We define the following in terms of G and a source

node s ∈ V which will often be implicit. Our main
problem is the minimum latency problem (MLP): Find a
tour of G beginning at s which minimizes the sum of the
latencies of the nodes. A k-tree (usually denoted Tk),
k-tour, or k-stroll is a tree, tour, or path, respectively,
containing at least k vertices and beginning at s. A k-
path from s to t is a path from s to t containing at least k
vertices. Note that the optimum (minimum cost) k-stroll
in any graph is the minimum over all t of the optimum
k-path from s to t.

k-MST is the problem of finding a minimim cost k-
tree. Unless otherwise stated, we deal with the rooted
version of the problem which must include s.

2.2 Algorithm outline

Our algorithm for the minimum latency problem pro-
ceeeds as follows. For every t and for a suitable set of
values of k, we run the algorithm of Section 4 to get “low
cost” trees containing s and t and spanning at least k ver-
tices. We then convert these trees to tours by traversing
them in some order, to form our pool of tours. We then
construct an auxiliary graph with these tours as vertices
and find the shortest path between two fixed nodes (Sec-
tion 3). Finally, we traverse the tours corresponding to
vertices on the shortest path to get our final tour.

3 From good k-trees to a low latency tour

Call a k-tree good if it costs no more than the optimal
k-stroll. In this section, we show that if we could find
a good k-tree for every k, then we could find a 3.59-
approximate solution to the minimum latency problem.
Note that a k-tree can be traversed to get a k-tour of cost
no more than twice that of the tree.

Call a k-tour good if it costs no more than twice as
much as the optimal k-stroll. We assume that we are
given good k-tours for every k. Our approximate mini-
mum latency tour is built up by stitching together a suit-
able combination of good tours.

We present an algorithm SP 3 which finds such a suit-
able combination. The input to the algorithm is a set of
tours Tj for j = 1, 2, . . . , n, where Tj is a good j-tour.
We build a weighted graph H whose vertices are the in-
tegers 1, . . . , n, where vertex i corresponds to tour Ti.
The edges of H are i → j for j > i. The cost of edge
i → j reflects how much it would cost to follow tour Tj

after tour Ti. With some foresight, we set this cost to
be (n − i+j

2 )c(Tj). The approximate minimum latency
tour returned by SP is comprised of the tours along the
shortest path from 1 to n in H . We choose a random
traversal direction for each tour along the shortest path,
and concatenate these tours to get our final tour T . The
following claim is due to Goemans and Kleinberg [21].

Claim 1 Suppose T is composed of the subtours
Tn1

, . . . , Tnt
. Then the expected sum of the latencies

of the vertices along T is at most the length of the path
n1 → n2 → . . . → nt in H .

Proof: Consider the kth vertex in the concatenated
tour, where ni−1 < k ≤ ni. This vertex will occur in or

3SP here stands for Shortest Path.
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before tour Tni
. Its expected latency in the tour can be

therefore upper bounded by

E[lvk
] ≤

1

2
c(Tni

) +

i−1
∑

l=1

c(Tnl
).

Let us call this upper bound uk. The expected sum of
the latencies of all the vertices in the tour is at most

n
∑

k=1

E[lvk
]

≤

n
∑

k=1

uk

=

t
∑

i=1

∑

ni−1<k≤ni

uk

=
t
∑

i=1

(ni − ni−1)

(

1

2
c(Tni

) +
i−1
∑

l=1

c(Tnl
)

)

=
t
∑

i=1

1

2
(ni − ni−1)c(Tni

) + (n − ni)c(Tni
)

=

t
∑

i=1

(

n −
ni + ni−1

2

)

c(Tni
)

which is the cost of the path n1 → n2 → . . . → nt

in H . In the worst case, the tours are nested, and for
ni−1 < k ≤ ni, the kth vertex appears in the ith tour.
The equalities in the fourth and fifth lines follow from a
little reorganisation of the terms.

We now claim that the length of the shortest path in
H is at most 3.59 times the sum of the latencies along
the optimal tour. We will justify our claim by showing a
path in H that costs as much.

Let T be a tour formed by concatenating the sequence
of subtours Tn1

, Tn2
, . . . in which the ith subtour Tni

is
a good tour of length at most 2bci containing the maxi-
mum number of vertices. Here c is a parameter greater
than 1, the exact value of which is to be chosen later. We
set b = cU , where U is a random variable distributed
uniformly between 0 and 1. From the proof of Claim 1,
it follows that the cost of the corresponding path in H is
the sum of the upper bounds ui on the latencies of the
vertices.

We will bound this upper bound ui on the latency of
the ith vertex vi in T in terms of the latency of the ith

vertex vopt
i in the optimal tour. Suppose lvopt

i
= dcj ,

where d < c. There can be two cases: d < b and d ≥ b.
In the first case, since there exists a path from the source
which has length at most bcj and which visits at least
i vertices, our jth subtour must visit at least i vertices.

This allows us to upper-bound ui by

ui ≤ bcj + 2
∑j−1

l=1 bcl ≤ bcj

(

c + 1

c − 1

)

.

In the second case, we are similarly guaranteed that our
(j + 1)st subtour includes at least i vertices, so that

ui ≤ bcj+1 + 2
∑j

l=1 bcl ≤ bcj+1

(

c + 1

c − 1

)

.

In the first case, U ∈ [logc d, 1] and in the second case,
U ∈ [0, logc d) . Taking the expectation over U ,

ui ≤

∫ 1

logc d

bcj

(

c + 1

c − 1

)

dU +

∫ logc d

0

bcj+1

(

c + 1

c − 1

)

dU

= cj

(

c + 1

c − 1

)

(

∫ 1

logc d

cUdU + c

∫ logc d

0

cUdU

)

= dcj

(

c + 1

ln c

)

.

Therefore the ratio between the worst case latency of
the ith vertex in our tour and the ith vertex in the optimal
tour is bounded by c+1

ln c . This quantity is minimized for
c = 3.59 for which the approximation ratio turns out to
be c+1

ln c = c = 3.59.

4 Finding good k-trees

In this section we present an algorithm, which we will
call the constrained k-MST algorithm, which outputs a
k-tree including s and t of cost no more than the opti-
mum k-path from s to t, for certain values of k. Thus
we are computing a solution to what is essentially the
k-MST problem (with the added required vertex t), and
comparing its cost to the optimum of a closely related
but different problem: the minimum k-path problem.

As one might expect, the algorithm and its analysis
take inspiration from algorithms for the k-MST prob-
lem used by Blum, Ravi, and Vempala [11] and by Garg
[20], based on the algorithm for prize collecting Steiner
tree (PCST) problem by Goemans and Williamson [22].
We use the primal-dual schema to solve a Lagrangian re-
laxation of the problem. Varying the parameter λ in the
relaxation gives us a set of trees, with tree Tkλ

contain-
ing kλ vertices. The cost of Tkλ

will be no more than
the cost of the optimal kλ-path.

In Subsection 4.1, we give an LP relaxation for the k-
path problem, its dual, and notation used subsequently.
In Subsection 4.2 we describe the algorithm; in 4.3 we
bound the cost of the tree it returns in terms of the opti-
mum k-path, and discuss how to interpolate to get such
trees for every k, or to obviate the need to do so.
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4.1 The k-path problem

Our primal-dual algorithm makes use of the follow-
ing linear programming relaxation for the problem of
finding the minimum k-path from s to t. We associate
indicator variables xe with edges, xe being 1 if e is on
the path and 0 otherwise. Similarly, variables xv select
the (k−2) vertices (other than s and t) on the path. δ(S)
denotes the set of edges with exactly one endpoint in set
S.

minimize
∑

e∈E cexe

subject to

∑

e∈δ(S) xe ≥ 2xv ∀S ⊆ V \ {s, t}, ∀v ∈ S
∑

e∈δ(U) xe ≥ 1 ∀U ⊆ V : t ∈ U, s 6∈ U
∑

v∈V \{s,t} xv ≥ k − 2

xv ≤ 1 ∀v ∈ V \ {s, t}
xv ≥ 0 ∀v ∈ V \ {s, t}
xe ≥ 0 ∀e ∈ E

It is easy to see that any valid k-path from s to t de-
fines an assignment to the variables satisfying all con-
straints. Hence the optimum of this linear program is a
lower bound on the optimum k-path.

The dual of the above linear program has a variable
p, variables pv for each vertex v, variables yv,S for each
S ⊆ V \ {s, t} and each v ∈ S, and variables yt,U for
each U ⊆ V \ {s} such that t ∈ U . Note that the sub-
script t in yt,U is redundant, and used only for notational
consistency. The dual is as follows.

maximize (k − 2)p −
∑

v∈V \{s,t} pv

+
∑

U :t∈U,s6∈U yt,U

subject to

2
∑

S3v yv,S + pv ≥ p ∀v 6= t
∑

S:e∈δ(S)

∑

v∈S yv,S

+
∑

U :t∈U,e∈δ(U) yt,U ≤ ce ∀e ∈ E

pv ≥ 0 ∀v ∈ V
yv,S ≥ 0 ∀S ⊆ V \ {s, t},

∀v ∈ S
yt,U ≥ 0 ∀U ⊆ V \ {s} :

t ∈ U

The rather unwieldy edge constraints can by simpli-
fied by introducing the “missing variables” yv,S for all
S ⊆ V and v ∈ S which were not defined above, and
setting them constantly to zero. For convenience, we
also define

zS =
∑

v∈S

yv,S .

(Note that for any set U such that t ∈ U and s 6∈ U , zU

is just yt,U .) The edge constraints can now be rewritten
as follows.

∑

S⊆V :e∈δ(S) zS ≤ ce ∀e ∈ E

yv,S = 0 ∀S 3 s, ∀v ∈ S
yv,U = 0 ∀U : t ∈ U, s 6∈ U,

∀v ∈ U \ {t}

(1)

Definition 1 A potential assignment is a function π from
vertices to non-negative reals such that π(s) = 0. We
say that π is feasible if we can define non-negative vari-
ables yv,S for each v ∈ V and S ⊆ V such that (1)
for all vertices v, π(v) ≤

∑

S3v yv,S , (2) the edge con-
straints (Equation 1) are satisfied.

Our algorithm constructs variables yv,S which yield
a feasible potential assignment π. We then use π to ana-
lyze the cost of the tree returned by the algorithm.

4.2 The algorithm

We are given as input a graph G = (V, E), a source
s ∈ V , a sink t ∈ V , and a parameter λ. The algorithm
consists of two phases. In the growth phase, we itera-
tively add edges, paying for them with increases to vari-
ables in the dual of the k-path LP. In the delete phase,
we do some pruning to obtain the final tree.

Growth phase. The state at each iteration is as fol-
lows. The algorithm maintains a partitioning of the
graph into components which are either active or inac-
tive. Each vertex v has an associated non-negative bud-
get bv, which will help pay for further growth of com-
ponents containing v. Components containing a vertex
with positive budget and which do not contain s are ac-
tive; those whose vertices all have zero budget, and the
component containing s, are inactive. To keep track of
how much budget has been spent, we employ variables
yv,S for each v ∈ V and S ⊆ V .4

Initially, each vertex forms its own component and
has budget λ, except t, which has infinite budget, and s,
which has zero budget. The variables yv,S are all initial-
ized to 0.

At each step, the algorithm picks a small value ε and
a vertex vS ∈ S for each active component S. For the
component containing t (if active), the vertex t is always
picked; for other components, any vertex v ∈ S with
bv > 0 is picked. The algorithm then simultaneously
decreases by ε the budget of each picked vertex, and in-
creases by ε the variables yvS ,S for each active set S

4Although there are exponentially many variables yv,S , we need
only keep track of those that our algorithm makes non-zero, of which
there are only polynomially many.

5



and its picked vertex vS . Note that this effectively raises
each zS by ε.

The value of ε is chosen so that it is the smallest for
which one of the following occurs:

1. The budget of some picked vS falls to zero. In this
case another vertex v ∈ S with bv > 0 is picked; if
there is no such vertex, S becomes inactive.

2. The variables yv,S increase enough to pay for some
edge e ∈ E joining two components C1 and C2;
that is,

∑

S:e∈δ(S) zS = ce. In this case we replace
C1 and C2 with a new component C = C1 ∪ C2 ∪
{e}. C becomes inactive if s ∈ C.

The growth phase of the algorithm terminates when
all components become inactive.

Delete phase. Let T be the component containing s
at the end of the growth phase. Note that T , like all other
components, is a tree. We delete all subtrees S ⊆ T \
{s} such that S formed an inactive component sometime
during the growth phase. (Note that sets S 3 t will never
qualify.) We repeat this operation until no such subtrees
remain, so that every leaf of the pruned tree Tkλ

⊆ T
was always in an active component until it joined the
component containing s.

The algorithm returns the pruned tree Tkλ
and the

dual variable assignments yv,S .

4.3 Analysis

We first define a potential assignment in terms of the
dual variables returned by the algorithm:

π(v) =
∑

S3v

yv,S .

Lemma 1 π is feasible.

Proof: The variables yv,S returned by the algorithm
witness the feasibility of π, as follows. The first fea-
sibility requirement of Definition 1 is satisfied trivially
by our definition of π. To see that the edge constraints
are fulfilled, note that when an edge’s constraint reaches
equality, the algorithm merges the components which it
joined. After that point, the edge is “buried” in its com-
ponent, and will never be on the boundary δ(S) of an
active set S, so the variables zS with e ∈ δ(S) will
never be raised further. Finally, the variables which are
required to be zero are zero throughout the run of the
algorithm since the component containing s is always
inactive, and t is always picked in the growth phase.

Lemma 2 The nodes outside Tkλ
have potential λ,

which is the highest among all nodes except t.

Proof: Note that the potential π(v) is exactly the amount
of budget that was transferred out of v, so the maximum
potential of any node other than t is the initial budget λ,
which is never overspent. Consider any node v 6∈ Tkλ

.
It follows that v was part of an inactive component at the
end of the algorithm, and hence spent its full budget and
has potential λ.

Lemma 3 Tkλ
has cost at most 2

∑

v∈Tkλ

π(v) − π(t).

Proof: We must show that
∑

e∈Tkλ

ce ≤

2
∑

v∈Tkλ

π(v) − π(t). The left side of that inequality
is equal to

∑

e∈Tkλ

ce =
∑

e∈Tkλ

∑

S:e∈δ(S)

zS =
∑

S⊆Tkλ

zS |Tkλ
∩ δ(S)|,

where the first step follows from the fact that when edges
are added in the growth phase of the algorithm, the edge
constraints are satisfied with equality for edges in Tkλ

.
The right side of the inequality is equal to

2
∑

v∈Tkλ

π(v) − π(t) = 2
∑

S⊆Tkλ

∑

v∈S

yv,S −
∑

S3t

yt,S

= 2
∑

S⊆Tkλ

zS −
∑

S3t

zS ,

due to our definition of π. So it suffices show that
∑

S⊆Tkλ

zS |Tkλ
∩ δ(S)| ≤ 2

∑

S⊆Tkλ

zS −
∑

S3t

zS . (2)

We accomplish this by induction on the steps of the
growth phase of the algorithm. The base case holds triv-
ially, as all yv,S variables are initialized to 0.

At any step, let Na and Ni denote current sets of
active and inactive components, respectively, that will
eventually be part of Tkλ

. Let H be a tree whose vertices
are Na ∪ Ni and whose edges are the edges of Tkλ

that
will be added in subsequent stages. For each S ∈ Na

the algorithm raises zS by ε, causing the left hand side
of Equation 2 to increase by ε

∑

S∈Na
deg(S). Since

there can be only one active set containing t, it causes
the right hand side to increase by 2ε|Na| − ε. Thus, di-
viding by ε, it remains only to show that

∑

S∈Na

deg(S) ≤ 2|Na| − 1.

Due to the delete phase of the algorithm, inactive
components other than the one containing s must be
non-leaves of H and so have degree at least 2; s’s com-
ponent has degree at least 1. Thus the sum of the degrees
of the components in Ni is at least 2|Ni| − 1. The sum
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of the degrees of all of H’s vertices is 2|H | − 2, so we
have
∑

S∈Na

deg(S) ≤ (2|H | − 2)− (2|Ni| − 1) = 2|Na| − 1.

Theorem 1 There is a feasible5 solution to the dual of
the k-path LP with k = kλ = |Tkλ

|, p = 2λ, and ob-
jective function value at least the cost of Tkλ

. Moreover,
c(Tkλ

) is at most the cost of the cheapest kλ-path.

Proof: We will set the variables yv,S as returned by the
algorithm. By the feasibility of π (Lemma 1), the edge
constraints hold. We now show how to pick the remain-
ing variables pv so that the first constraint in the dual of
the LP holds. For v 6∈ Tkλ

, we have 2
∑

S3v yv,S =
2λ = p (by Lemma 2), so we can choose pv = 0. For
v ∈ Tkλ

, it suffices to set pv = p − 2
∑

S3v yv,S . This
produces an objective function value of

(kλ − 2)p −
∑

v∈V \{s,t} pv +
∑

U :t∈U,s6∈U yt,U

= (kλ − 2)p −
∑

v∈Tkλ
\{s,t}

(

p − 2
∑

S3v

yv,S

)

+ π(t)

= (kλ − 2)p − (kλ − 2)p +
∑

v∈Tkλ
\{s,t}

2π(v) + π(t)

=
∑

v∈Tkλ

2π(v) − π(t),

which, by Lemma 3, is an upper bound on the cost of
Tkλ

. Finally, it follows from weak duality that any kλ-
path from s to t has at least this cost.

Thus we have shown how to construct, for some val-
ues of k, a k-tree of cost no more than the best k-path.
There are two ways we can resolve the issue of not hav-
ing a tree for every k.

First, we can interpolate between solutions to con-
struct a tree of size exactly k. Using a procedure of Garg
[20], this produces a k-tree of cost no more than 2 times
the cost of the optimal k-path. Using ideas from Arora
and Karakostas [5], we can bring the ratio down to 1+ε.
The improvement to 1+ε comes from the idea of “guess-
ing” O(1/ε) points from the optimum path. We omit the
details of these methods from this extended abstract.

Second, as we shall show in the next section, for the
purposes of approximating the minimum latency tour, it
suffices to use only the trees returned by the Lagrangian
relaxation, skipping the interpolation.

5Here “feasible” refers to satisfying the constraints of the linear
program, not our definition of a feasible potential assignment.

5 A few good trees

In this section, we show that the algorithm SP de-
scribed in Section 3 can do without any interpolated tree.
In particular, we show that if we replace each interpo-
lated tree by a phantom tree, with cost equal to the cor-
responding (upper bound on the) cost of the interpolated
tree, then the algorithm never uses a phantom tree.

For a given s, t and a parameter λ, the constrained k-
MST algorithm of the previous section returns tree Tkλ

containing kλ vertices including s and t and a dual so-
lution (pλ, πλ, yλ) to the kλ-path problem of no smaller
cost. Moreover, pλ = 2λ.

Recall the dual of the k-path linear program in Sec-
tion 4.1. Note that the constraints in this dual lin-
ear program depend on s and t but not on k. k ap-
pears only in the objective function. For a dual solu-
tion (p, π, y), let costk(p, π, y) denote the value of the
dual objective function. Theorem 1 says that c(Tkλ

) ≤
costkλ

(2λ, πλ, yλ). Now suppose that for arbitrarily
close values λ and λ′, the trees returned have kλ and
kλ′ vertices, where kλ < k < kλ′ . Our phantom tree T k

will contain k vertices, and its cost will be set to a linear
interpolation of the costs of trees Tkλ

and Tk′

λ
. More

precisely, define

µ =
(k − kλ)

(kλ′ − kλ)
.

Thus k = (1 − µ)kλ + µkλ′ . Then, we will set

c(T k) = (1 − µ)c(Tkλ
) + µc(Tk′

λ
).

We shall show that the cost of this phantom tree is no
more than the cost of the optimal k-path. Since by The-
orem 1, the costs of Tλ and Tλ′ are upper bounded by
the corresponding dual solutions, it suffices to show that
for any k-path P from s to t,

c(P ) ≥ (1−µ)costkλ
(2λ, πλ, yλ)+µcostkλ′

(2λ′, πλ′

, yλ′

).

Now consider the dual solution (p̂, π̂, ŷ) = (1 −
µ)(2λ, πλ, yλ) + µ(2λ′, πλ′

, yλ′

). Since it is a convex
combination of dual feasible solutions, it is a feasible
solution to the dual linear program. Moreover, note that

costk(p̂, π̂, ŷ)

= (k − 2)p̂ −
∑

v∈V \{s,t}

π̂v +
∑

T :t∈T,s6∈T

ŷt,T

= ((1 − µ)kλ + µkλ′ − 2)p̂ −
∑

v∈V \{s,t}

(1 − µ)πλ(v)

+µπλ′

(v) +
∑

T :t∈T,s6∈T

(1 − µ)yλ
t,T + µyλ′

t,T
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= (1 − µ)costkλ
(p̂, πλ, yλ) + µcostkλ′

(p̂, πλ′

, yλ′

)

≥ (1 − µ)costkλ
(2λ, πλ, y, yλ)

+µcostkλ′
(2λ′, πλ′

, yλ′

) − 2µkλ′(λ′ − λ).

Since λ and λ′ are arbitrarily close together, this dual
solution (p̂, π̂, ŷ) has cost at least the linear interpola-
tion of the two duals. Finally, the cost of any primal
solution is more than any dual feasible solution and so
the required inequality follows. Thus we have shown
that the cost of a phantom tree is no more than the op-
timal path from s to t containing an equal number of
vertices. Hence, for every k ∈ [2, . . . , n], and for every
t ∈ V \ {s}, we have generated a real or phantom tree
T t

k such that c(T t
k) is no more than the cheapest k-path

from s to t.
Recall however that in the analysis of the SP algo-

rithm (Section 3), we assumed that the cost of a k-tree
was bounded by the optimal k-stroll starting at s. Thus
for every k, we need a tree Tk whose cost is no more
than the cost of optimum k-stroll starting from s. This
is easily achieved by setting Tk to be the minimum cost
tree in the set of trees {T t

k : t ∈ V \{s}}. Since the opti-
mum k-stroll Pk starting at s ends at some t∗ ∈ V \{s},
c(T t∗

k ) ≤ c(Pk) and since we choose Tk to be the cheap-
est amongst all T t

k, c(Tk) ≤ c(Pk).
Let T be the set of real trees in {Tk : 2 ≤ k ≤ n}

(that is, those returned by the algorithm of Section 4).
For any k such that Tk 6∈ T , we redefine the cost of the
phantom tree Tk to be a linear interpolation of the closest
trees in T on either side. It is easy to see that this redef-
inition only reduces the cost of each phantom tree, and
thus we still have c(Tk) ≤ c(Pk) (see Figure 1(b)).Also
note that there is no loss of generality in assuming that
c(Tk+1) ≥ c(Tk) for every k.

Finally, from this pool of trees, we shall show that if
the SP algorithm uses a phantom tree, it can be replaced
by a real one. This argument closely follows that used
by Archer, Levin and Williamson [3]. Let Ta, Tb and Tc

be three consecutive trees used by the algorithm where
a < b < c and c(Ta) < c(Tb) < c(Tc). Further let
Tb be a phantom tree formed by a linear interpolation of
Tb0 and Tb1 , where b = (1 − µ)b0 + µb1, and c(Tb) =
(1 − µ)c(Tb0) + µc(Tb1). If a > b0, let µa be such
that a = (1 − µa)b0 + µb1, and let µ0 = max{0, µa}.
Similarly, let µ1 = min{1, µc}, where µc is such that
c = (1−µc)b0+µcb1. Now the cost of the path segment
a → b → c is given by

(n − a+b
2 )c(Tb) + (n − b+c

2 )c(Tc)

= (n −
a + (1 − µ)b0 + µb1

2
)((1 − µ)c(Tb0)

+µc(Tb1) + (n −
(1 − µ)b0 + µb1 + c

2
)c(Tc),

which is a quadratic function of µ where the coefficient
of µ2 is − b1−b0

2 (c(Tb1) − c(Tb0)) ≤ 0. Thus this func-
tion has no local minima and is thus minimized at one
of the endpoints of the interval [µ0, µ1]. Therefore b can
be replaced by one of a, b0, b1, c. Thus we can reduce
the number of phantom points by one without increas-
ing the cost of the tour. Repeating this process, we can
get a tour which contains no phantom points.

5.1 Running time

A naive implementation of the above algorithm
would require O(n2) k-trees, one for each (t, k) pair.
Further, we need λ and λ′ in the analysis above to be
arbitrarily close to each other. However, assuming inte-
ger edge weights, it is easy to show that a separation of
Ω( 1

n! ) suffices, so each of the O(n2) trees can be com-
puted in O(n log n) calls to our constrained k-MST al-
gorithm of Section 4.2.

How quickly can we implement a single constrained
k-MST computation? As in previous k-MST algo-
rithms, our constrained k-MST algorithm is actually a
special case of existing algorithms for the prize collect-
ing Steiner tree (PCST) problem. Since the PCST can
be implemented in time O(n2) [18], we get an overall
running time of O(n5 log n).

A look at the analysis in Section 3 shows that we only
need to construct Tk for O(log n) different values of k.
This immediately improves our running time, and that
of the algorithm of [3], by a factor of n/ logn.

Moreover, if we are willing to settle for a (3.59 + ε)-
approximation, we can stop the binary search for k when
we find λ and λ′ that differ by at most ε/n. This helps us
replace an n log n in the running time by O(log(n/ε)).
This gives a total of Õ(n) calls to the PCST, giving a
total running time of Õ(n3).

5.2 The importance of guesswork

Is it really necessary to try various t? We can show
that if running the PCST subroutine with uniform bud-
get λ gives a tree Tkλ

, then the cost of Tkλ
is no greater

than the optimum kλ-path from s to t, for any t ∈ Tkλ
.

Thus one might surmise that maybe our algorithm would
work just as well if we just ran the same k-MST al-
gorithm used in previous minimum latency approxima-
tions, and our improvement really comes only from the
lower bound.

We now show that this is not the case. Running the
algorithm for all possible t does give us better trees. In
particular, we show an example on which running the
classic k-MST algorithm (i.e. PCST with uniform vertex
penalities) would produce a tree whose cost is almost
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Figure 1. Real and phantom trees. The figure on the left shows phantom trees for a fixed t. The
figure on the right shows the final set of trees given to the algorithm SP.PSfrag replacements
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Figure 2. A graph on which our searching
over all t helps.

twice the best k-stroll in the graph. On the other hand,
our algorithm, for some t, would find a better k-MST.

Consider the graph of Figure 2. There is a unit
weighted (k − 2) star, with s attached to the root at dis-
tance 1

2 . There is also a cluster of (k − 1) points at dis-
tance zero from each other at distance k−1

2 + ε from s,
which we call the good cluster.

When the original PCST algorithm is run with budget
1
2 , it returns the star, which is a k-tree of cost (k − 3

2 ).
On the other hand, our algorithm with a destination t in
the good cluster and for λ = 0 would return the path
with the good cluster, which is a k-tree of cost k−1

2 + ε.
The ratio of these two is 2 − 1

k−1 .

6 Conclusion

We show a simple and efficient 3.59-approximation
algorithm to the minimum latency problem. This
matches the best known algorithm even on tree metrics,
where the k-MST problem is polynomial time solvable.
Thus we bypass the factor 2 integrality gap of the k-
MST linear program.

The factor of 3.59 comes from the fact that we con-
struct our tour by concatenating smaller tours. This fac-
tor is inherent in any such analysis: Goemans and Klein-
berg [21] show an example of tours such that the upper
bound on the latency of any combination of these tours is
τn times the sum of the costs of the tours, where the se-
quence τn → γ ≈ 3.59. However they do show that this
ratio converges rather slowly, e.g. τ300 < 3.156. This
means that for small graphs, our guarantees are better.
We believe that breaking this barrier of γ would involve
an approach different than combining small tours.
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