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ABSTRACT

Motivation: The expansion of cancer genome sequencing continues
to stimulate development of analytical tools for inferring relationships
between somatic changes and tumor development. Pathway
associations are especially consequential, but existing algorithms are
demonstrably inadequate.
Methods: Here, we propose the PathScan significance test for the
scenario where pathway mutations collectively contribute to tumor
development. Its design addresses two aspects that established
methods neglect. First, we account for variations in gene length
and the consequent differences in their mutation probabilities under
the standard null hypothesis of random mutation. The associated
spike in computational effort is mitigated by accurate convolution-
based approximation. Second, we combine individual probabilities
into a multiple-sample value using Fisher–Lancaster theory, thereby
improving differentiation between a few highly mutated genes and
many genes having only a few mutations apiece. We investigate
accuracy, computational effort and power, reporting acceptable
performance for each.
Results: As an example calculation, we re-analyze KEGG-
based lung adenocarcinoma pathway mutations from the Tumor
Sequencing Project. Our test recapitulates the most significant
pathways and finds that others for which the original test battery
was inconclusive are not actually significant. It also identifies the
focal adhesion pathway as being significantly mutated, a finding
consistent with earlier studies. We also expand this analysis to other
databases: Reactome, BioCarta, Pfam, PID and SMART, finding
additional hits in ErbB and EPHA signaling pathways and regulation
of telomerase. All have implications and plausible mechanistic roles
in cancer. Finally, we discuss aspects of extending the method to
integrate gene-specific background rates and other types of genetic
anomalies.
Availability: PathScan is implemented in Perl and is available
from the Genome Institute at: http://genome.wustl.edu/software/
pathscan.
Contact: mwendl@wustl.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The Human Genome Project (HGP) recently culminated in the first
composite human reference sequence (International Human Genome
Sequencing Consortium, 2004) and researchers have since been
vigorously building upon this result. Much of the work targets
medical applications, such as in cancer genomics, and a significant
fraction of the sequencing enterprise is now shifting in that direction
(Berger et al., 2011; Ding et al., 2010; Ley et al., 2008; Mardis et al.,
2009; Shah et al., 2009; Sjöblom et al., 2006). Indeed, instruments
and automation have advanced to the point where the ability to
sequence both the tumor and normal genomes from large numbers
of patients is now emerging.

Such whole genome data should allow somatic mutations to
be reliably separated from germline variations for further study.
The subsequent, more difficult challenge then becomes one of
differentiating functionally related somatic ‘driver’ mutations from
incidental ‘passenger’ variants (Greenman et al., 2007; Wood et al.,
2007). In the early stages of a project, this task usually manifests
itself as a hypothesis testing problem on the mutational significance
of genes or pathways. The intent is to filter an initially large
collection of candidates down to a better targeted set that will be
examined more comprehensively (Sjöblom et al., 2006; Wood et al.,
2007). Concerns at this stage revolve mainly around false-positive
and false-negative errors, i.e. instances where an irrelevant feature
is accepted and where a true feature is overlooked, respectively.

Methods for statistical testing of cancer DNA sequence data are
now actively being developed (Beroukhim et al., 2007), several of
which are listed in Table 1. While there are certain subject-specific
nuances in applying the statistical method to cancer sequence data,
these examples all share the commonality of being founded upon
well-established concepts from mathematical statistics. If history
is any guide, we anticipate the development of additional types of
tests and a subsequent ‘toolbox’ approach for statistical inference in
cancer genomics studies (Ding et al., 2008).

While these remarks paint a pleasant picture of orderly
development and application, the design of new statistical tools for
cancer sequence has not been without its difficulties. Aside from the
requirement that a test be constructed on a sound basis, i.e. the
underlying hypothesis is scientifically relevant and the resultant
P-value is a reliable indicator on this hypothesis, it must also
satisfy a more utilitarian ‘computability’ condition. That is, a test
is unlikely to find broad application if it is inordinately difficult
to evaluate (Brown et al., 2001). This aspect is sometimes not
sufficiently appreciated, as the odyssey of the Cancer Mutation
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Table 1. Representative hypothesis tests in cancer sequencing

Test Mathematical basis Reference

CaMPa Binomial Sjöblom et al. (2006)
Log-likelihood Binomial Getz et al. (2007)
Group–CaMP Binomial Lin et al. (2007)
Greenman’s test Poisson Greenman et al. (2006)
Ratio test Monte-Carlo Stephens et al. (2005)
TRAB Poisson/Gamma Parmigiani et al. (2008)

aCancer Mutation Prevalence Score.

Prevalence (CaMP) score (Sjöblom et al., 2006) so dramatically
illustrates. CaMP was roundly criticized as ipso facto incorrect
because of its use of probability mass values rather than tailed
P-values (Forrest and Cavet, 2007; Getz et al., 2007; Rubin and
Green, 2007). Its designers countered that the CaMP concept is
sound, but conceded that its form makes it very difficult in practice to
compute (Parmigiani et al., 2007). Their claim, that mass values are
a legitimate substitute, clearly contravenes standard theory (Sokal
and Rohlf, 1981).

Advances in cancer genomics will depend, among other things,
on statistical tests that are sufficient in both rigor and economy.
Given that a combinatorially large number and diversity of somatic
events at the gene level tend to collapse at the pathway level, there
is growing consensus that the search for drivers is best focused
on the latter (Beroukhim et al., 2007; Cerami et al., 2010; Efroni
et al., 2011; Glaab et al., 2010; Lin et al., 2007; Vandin et al.,
2010; Vogelstein and Kinzler, 2004; Wood et al., 2007). It is for
this scenario that we wish to propose a significance test that we call
PathScan. Methodologically, it considers certain information that
other tests neglect, specifically the distributions of both gene lengths
within a pathway and of mutations among samples. We demonstrate
that ignoring these factors greatly compromises resulting P-values.
The test is similar to those in Table 1 in the sense that it relies
on certain, well-established probability concepts. Consequently, we
do not claim any particular mathematical significance, but feel
rather that our contribution lies in a well-balanced combination of
biological relevance, conceptual probity and efficient algorithmic
implementation. These characteristics should render it useful for
actual application.

2 METHODS
Let a ‘test set’ be any biologically relevant collection of m genes, γ =
{g1,g2,...,gm}, e.g. the members of a pathway, and assume genomic samples
have been sequenced such that somatic mutations can be distinguished from
germline variation in these genes. We take the null hypothesis, H0, as the
scenario in which there is no association between the disease phenotype
and γ in a particular sample by virtue of the latter’s somatic mutations
having occurred according to some random process, itself characterized by
an underlying background mutation rate, ρ. The test we propose is based on
the observed number of genes k that are mutated in γ .

PathScan resolves two fundamental issues not generally recognized by
other methods. First, it accounts for variations in gene length and the
consequent differences in their mutation probabilities under H0. Second,
it properly frames the multisample ‘overall P-value’ for γ in terms of its
individual tests of H0 for each sample. The details and implications of these
two aspects are described below.

2.1 Probability masses
Background rates in cancer genomes are typically estimated to be on the order
of 10−6/nt (Ding et al., 2008; Greenman et al., 2007; Sjöblom et al., 2006;
Stephens et al., 2005; Wang et al., 2002), meaning that somatic mutations
will remain relatively rare under H0. Most individual genes will have either 1
or 0 mutations with a probability approaching unity (see proof of Theorem 1
below). Consequently, we can reasonably dispense with the distribution of
mutations within an instance of a gene, simply treating it as either mutated
(one or more mutations) or not mutated (zero mutations). Under H0, longer
genes are more likely to be mutated than shorter ones (Getz et al., 2007),
which leads to gene-specific, non-identical mutation probabilities.

Theorem 1 (Bernoulli Mutation Probability for a Gene). If the length
of gene i is Li, the Bernoulli probability that it is not mutated in a given
sample is bi =exp(−ρLi), where exp is the exponential function. Its mutation
probability, 1−bi, follows as an immediate corollary. �

Proof. The probability that any particular independent position is not
mutated is 1−ρ, so the probability of no mutations over all Li bases of
the gene is

(
1−ρ

)Li . Given necessarily small and large values relative to
unity of ρ and Li, respectively, the theorem follows directly from asymptotic
approximation (Wendl and Barbazuk, 2005). The process is Poissonian for
the number of mutations (Feller, 1968). For example, zero and one mutations
have probabilities of exp(−ρLi) and ρLi exp(−ρLi), respectively, while the
probability of two or more mutations is 1−(1+ρLi)exp(−ρLi), a very small
number for relevant values of ρ and Li. �

2.2 Single-sample test
The fact that the individual gene probabilities, b1,b2,...,bm, are not generally
equivalent points to a significant computational issue: we cannot extract
probability masses from a straightforward and very economical application
of the Binomial Theorem. In the simplest, yet most naïve approach, we could
instead consider all combinations explicitly via expansion. For example,
if the random variable K represents the event where exactly k genes are
mutated, then for k =0 we have PK=0 =b1b2b3 ...bm, for k =1

PK=1 =
[(

1−b1
)
b2b3 ...bm

]
+
[
b1
(
1−b2

)
b3 ···bm

]
+ ...

and so forth. To evaluate the k-th probability mass in this fashion requires
summing

(m
k

)
products, each having m terms, where

(m
k

)
is the number of

different combinations of m different objects selected k at a time (Feller,
1968). The number of multiplications and additions here will often be
infeasible, for example 60 ·(60

10

)
>1012. A more efficient procedure is given

by the following expression.

Theorem 2 (Exact Probability Mass for Single Sample). The probability
mass characterizing the number of mutated genes mutated in a sample, K ,
can be expressed in factored form as

PK=k =exp(−ρG)
m−k+1∑

i1=1

m−k+2∑
i2=i1+1

...

m∑
ik=ik−1+1

k∏
n=1

Rin ,

where G=L1 +L2 +···+Lm is the effective overall length of the genes in the
test set and Ri is the ratio (1−bi)/bi. A special case is PK=0 =exp(−ρG).

�

Proof. A straightforward combinatorial argument shows that the k-th
mass expands as

PK=k =
[(

1−b1
)(

1−b2
)
...
(
1−bk

)
bk+1 bk+2 ...bm

]
+··· +[

b1 b2 ...bm−k
(
1−bm−k+1

)
...
(
1−bm

)]
,

where there are
(m

k

)
such product terms. The theorem follows directly by

factoring b1b2 ...bm and rearranging the result. �
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Although the factored form is cheaper to evaluate than simple expansion
(see below), it still has limited ability to scale as m and k become large. One
remedy to this problem is an approximation that exploits the mathematical
concept of convolution (Feller, 1968). Assume the m Bernoulli probabilities
can be arranged into subsets, where all the values within each subset are
similar (quantified below) to one another. If there are j such subsets, or
‘bins’, we can write the average bin Bernoulli probabilities for no mutations
as {b̂1,b̂2,...,b̂j}, where the ‘hat’ symbol denotes an average. Given our
assumption, each of these values should be a reasonable characterization of
each gene in its associated bin.

Theorem 3 (Approximate Probability Mass for Single Sample). In a j-bin
model, K is the sum of the individual random variables associated with
each bin: K =K1 +K2 +···+Kj . A computationally efficient form of the
probability mass is obtained by convolution for j≥2 as

PK=k = exp(−ρG) ·R̂k
j

k∑
ij−1=0

(
µj

k−ij−1

)(
R̂j−1

R̂j

)ij−1

×

ij−1∑
ij−2=0

(
µj−1

ij−1 −ij−2

)(
R̂j−2

R̂j−1

)ij−2

×···×

i2∑
i1=0

(
µ1

i1

)(
µ2

i2 −i1

)(
R̂1

R̂2

)i1

,

where the numbers of genes in each bin are µ1,µ2,...,µj , respectively,
and satisfy the compatibility condition µ1 +µ2 + ...+µj =m. It reduces
to a simple binomial form (Feller, 1968) for the special case of j=1, i.e.
PK=k =exp(−ρG) ·R̂k

1

(m
k

)
, where m=µ1. �

Proof. Divide the test set into j bins having {µ1,µ2,...,µj} genes,
respectively, where m=µ1 +µ2 +···+µj . Assuming the variabilities of
the gene sizes in each bin are not too large, the respective average gene
lengths, {L̂1,L̂2,...,L̂j}, and their corresponding average bin probabilities

for mutation {1− b̂1,1− b̂2,...,1− b̂j} characterize the bins reasonably well.
Under these circumstances, the numbers of mutations in each bin, represented
by the random variables {K1,K2,...,Kj}, follow a set of j corresponding
binomial distributions.

The random mutation variable for the overall test set is K =K1 +K2 +···+
Kj and this is characterized by the convolution of the individual distributions
(Feller, 1968). For κ1 +κ2 + ...+κj =k observations, the convolution can be
written

PK=k =
k∑

ij−1=0

ij−1∑
ij−2=0

...

i2∑
i1=0

(
µ1

i1

)(
µ2

i2 −i1

)
...

(
µj

k−ij−1

)
×

(
1− b̂1

)i1(
1− b̂2

)i2−i1
...
(

1− b̂j

)k−ij−1 ×

b̂µ1−i1
1 b̂µ2−(i2−i1)

2 ...b̂
µj−(k−ij−1)
j .

Factor the product
∏j

n=1 b̂µn
n and recognize that this expression is simply

exp(−ρG). The theorem then follows directly by gathering terms of like
powers and performing a final factoring. �

Theorems 2 and 3 should suffice for most cases of practical interest and
their forms readily lend themselves to efficient recursive implementation
(Cormen et al., 1990). However, if m is especially large, then Poisson
approximation (Feller, 1968) might also be applied.

Corollary 4 (Idealized Poisson Probability Mass). In the limiting case of a
very large test set, where max(1−b1,1−b2,...,1−bm) is very small, PK=k

is Poisson distributed with a mean (1−b1)+(1−b2)+···+(1−bm). This
simply restates the limiting case of so-called Poisson trials (Feller, 1968).

�

The above results are readily cast as tests of significance on a single
sample. Specifically, the tailed P-value furnishes the probability of obtaining
at least k mutations in a given sample genome under the null hypothesis as

PK≥k =
m∑

i=k

PK=i = 1−
k−1∑
i=0

PK=i , (5)

where H0 is rejected if PK≥k is less than a user-chosen significance threshold,
α. The first expression is obviously more efficient if k >m/2, otherwise the
second is cheaper.

2.3 Integration of multiple samples: the ‘overall
P-value’

A single genomic sample actually represents just one test of H0 for γ . Yet,
the ability to sequence many genomes in the course of a project is now
emerging, effectively enabling multiple tests on H0. These multiple bits of
information must be reduced in a rigorous way to an ‘overall P-value’ for the
pathway. The problem of integrating n≥2 such P-values is not new (Fisher,
1938; Lancaster, 1949; Pearson, 1933; Wallis, 1942). However, it is also
not one for which mathematics yet furnishes a solution that is both exact
and numerically efficient when the underlying distributions are discrete, as
they are here. We will, therefore, resort to layering two classical results upon
one another: Lancaster’s continuity correction (Lancaster, 1949) applied to
Fisher’s transform (Fisher, 1938). This combination furnishes reasonable
approximations over a broad range.

2.4 Algorithm description
The execution procedure is straightforward. A gene list representing γ is
constructed directly from any suitable database, e.g. KEGG (Kanehisa et al.,
2010). In conjunction with an estimated background mutation rate, this list
begets corresponding gene-specific Bernoulli values according to Theorem 1,
which are then used to compute probability masses using Theorems 2 and/or
3, which in turn are collected as a significance test via Equation (5). Each
sample represents a single test of H0 for that gene list through its count of
observed mutations. P-values for several samples are subsequently combined
into a single project-wide probability for that list using Fisher–Lancaster
theory (Fisher, 1938; Lancaster, 1949). Multiple testing correction for many
gene lists is subsequently applied via standard methods, such as the false
discovery rate (FDR) calculation (Benjamini and Hochberg, 1995).

3 DISCUSSION
The basic idea of examining somatic events in the context of sets
of genes using annotated databases is now a cornerstone of cancer
genomics (Berger et al., 2011; Efroni et al., 2011). Mutational
significance testing will play increasingly important roles as growing
sequencing capacities allow for broader and deeper studies. Here, we
formally characterize computational cost, approximation accuracy
and power; these are aspects that have all generally been left
unexplored for new tests. We also compare our method to some of the
other available tests and illustrate its application via two calculations
for lung adenocarcinoma.

3.1 Computational effort
Computational requirements for the various PK=k implementations
can be systematically assessed to find how each scales with
problem size (Supplementary Material). This analysis indicates that,
regardless of the size of the test set and choice of implementation,
computational cost will be minimal when the number of observed
mutations is small. Incidentally, these cases are not typically of much
biological interest because they will tend to fall outside standard
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Fig. 1. Floating-point operations as a function of the number of observed
mutations for a test set of m=60 genes for exact (dashed curves) and
approximate (solid curves) solutions. Given Equation (5), all curves are
symmetric about m/2, so the plot only shows data up to k =30.

ranges of statistical significance. However, costs grow at various
rates with k (Fig. 1). Although the factored result (Theorem 2) is
more economical than brute-force expansion, the CPU requirements
of both appear to rise too fast to be practical in many cases.
Conversely, effort for the approximate j-bin solution (Theorem 3)
grows much more slowly, as illustrated for j=1,2,3. Note that this
method does not depend upon m, since each bin behaves binomially,
so it will tend to be tractable even for larger test sets.

3.2 Approximation accuracy
The approximation method in Theorem 3 gathers genes into bins and
uses the average bin length as a proxy for the individual lengths. The
degree of error in this process depends upon the loss of resolution
of the individual gene Bernoulli probabilities. For instance, the
hypothetical multiset of gene lengths {3000,8500,8500,3000} can
be partitioned into {3000,3000} and {8500,8500} without loss of
resolution, i.e. it is exact. However, test sets will generally not
contain such a fortuitous list of gene lengths, prompting the question
of how to best partition a list of lengths. Optimal clustering in any
given instance will produce j subsets, not necessarily with equivalent
numbers of elements, but with each subset having minimal size
variation among its elements. The general problem for m elements
is not trivial (Xu and Wunsch, 2005).

Let us first sort the original lengths L1,L2,...,Lm into an ordered
list L(1) ≤L(2) ≤ ...≤L(m). Optimization then requires determining
how many bins should be created and where the boundaries between
bins should be placed. While coding lengths of human genes vary
from hundreds of nucleotides up to order 104nt, the background
mutation rate is generally not larger than order 10−6/nt. These
observations suggest that the accuracy of using approximation
(Theorem 3) would not be a strong function of partitioning because
variations in the Bernoulli probabilities would not vary wildly. In
other words, suboptimal partitions should not cause unacceptably
large errors in calculated P-values.

We tested this hypothesis in a ‘naïve partitioning’ experiment,
where the number of bins is picked a priori and then the ordered

Fig. 2. Percent overprediction of P-values from representative small (m=
18, solid curves) and large (m=60, dashed curves) gene sets. Four scenarios
are considered: j=1 bin with background mutation rate of ρ=1/Mb
(circles), j=1 and ρ=3 (diamonds), j=3 and ρ=1 (triangles), and j=3
and ρ=3 (squares). Test sets were generated with randomly selected lengths
between 200 and 15 000 nt.

lengths are divided as equally as possible among these bins. For
example, for j=2 one bin would contain all lengths up to L(m/2),
with the remaining lengths going to the other bin. Figure 2 shows
results for representative small and large gene sets using 1 bin and
3 bin approximations. Plots are made for plausible background rate
bounds of 1 and 3 mutations per Mb. P-values are overpredicted,
with errors being sensitive to both the number of bins and the
mutation rate. From a hypothesis testing perspective, error is most
critical in the neighborhood of α. Yet, we generally will not have
the luxury of knowing its magnitude here a priori, or by extension,
whether a gene set has been misclassified according to our choice
of α. Evidently, error is readily controlled by small increases in j
without incurring significantly increased computational cost. This
behavior will be especially important in two regards: for controlling
the error contribution of any ‘outlier’ genes having unusually long
or short lengths, and for the ‘matrix problem’ of testing many
hypotheses using many genomes, where substantially lower adjusted
values of α will be required (Benjamini and Hochberg, 1995). Note
that Figure 2 results are simulated in the sense that the gene lengths
were chosen randomly. Errors realized in practice could be less if
size variance is correspondingly lower. A good general strategy may
be to always use at least 3-bin approximation in conjunction with
naïve partitioning.

There is necessarily a second level of approximation in combining
the sample-specific P-values from many genome samples into a
single, project-wide value. These errors are not readily controlled
at present because the fundamental mathematical theory underlying
combined discrete probabilities remains incomplete. Moreover,
obtaining any reliable assessment against true population-based
probability values, i.e. via exact P-values and their subsequent exact
‘brute-force’ combination, is computationally infeasible for realistic
scenarios. It is important to observe that all tests leveraging data from
multiple genomes will be faced with some form of this problem,
though none evidently resolve, acknowledge or perhaps even
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Fig. 3. Estimated statistical power as a function of test set size for α=1%.
Solid and dashed curves represent assumed cancer mutation rates of 2-fold
and 5-fold higher than the background rate (ρ=3/Mb), respectively. Dotted
curves denote extrapolation beyond computational limits of the 2-fold results
based on least–squares fitting (Supplemental Information). All calculations
were made using the 3-bin approximate solution on randomly generated test
sets having gene lengths between 200 bp and 15 kb. Each datum indicates
the average of 100 such trials.

recognize it. The implications are substantial, as we demonstrate
below when comparing to the so-called pooled statistical methods.

3.3 Statistical power analysis
Power analysis is useful for characterizing the minimum conditions
for which an effect would be reasonably detectable (Sokal and
Rohlf, 1981). Recall, H0 is based on the premise of a random
underlying mutation rate ρ. Mutations should be more frequent in
true cancer-related sets, implying we could estimate power based on
the simple alternative hypothesis, H1, of a process characterized by
some elevated, cancer-specific mutation rate, ρ (Parmigiani et al.,
2008). There is a necessary degree of speculation here, as we have
no reliable information regarding such a rate. It would presumably
vary by tumor stage and grade, by cancer type, by individual, etc.,
so a given value would not be representative of cancer in any
general sense. This echoes earlier points regarding the difficulties
of accurately assessing power (Tarca et al., 2009). Let us simply
examine this issue on the basis of a plausible lower bound, ρ/ρ=2,
and a perhaps conservative upper bound, ρ/ρ=5, respectively.
Calculation methodology is detailed in Supplementary Material.

Figure 3 shows power curves at α=1% for several sample sizes,
where ρ is taken as three mutations per megabase. If differences
in cancer and background rates are on the order of only 2-fold,
small pathways will remain undetectable unless sample size is
extremely large. For example, a 10 gene pathway nets only about
30% power for 25 sequenced genomes. Conversely, the value
jumps to almost 100% for a 5-fold difference in mutation rates.
Discovery of small pathways is clearly very sensitive to the true
cancer mutation rate, which requires better characterization to make
suitably accurate predictions. For larger gene sets, e.g. m≥100,
extrapolation (Supplementary Material) suggests that power will
be acceptable regardless of the cancer mutation rate. For example,

Fig. 4. Two mutation scenarios for (n,m,b,k)= (2,4,0.5,6). The top panel
represents a 4+2 configuration, i.e. all 4 genes mutated in one sample
(circles) and only two genes mutated in the other sample (triangles), while
the bottom panel is a 3+3 configuration. Pooled statistics are unable to
distinguish between these two scenarios, even though their significance
values are appreciably different, i.e. ≈0.047 for the top panel and ≈0.063
for the bottom (Wallis, 1942).

sequencing 25 genomes is now basically feasible using next-
generation instrumentation and this sample size puts power near
100%, even for fairly small differences between the cancer and
background mutation rates.

3.4 Comparison to other tests
PathScan is admittedly not the first pathway test to be developed
or applied for cancer analysis. So-called ‘pooled techniques’ have
already been used for quite some time. These procedures simply
combine total mutations and total mutable positions in a gene set
into single respective tallies, calculating significance directly from,
for example, Fisher’s test (mutation rate within pathway versus rate
outside of pathway) or binomial or Poisson distributions (observed
mutation count in the light of an estimated background rate). The
Group-CaMP test (Table 1) is perhaps the most well-known of these
tally methods (Lin et al., 2007). This elementary class of tests
harbors a critical liability in the form of significant information loss
that necessarily follows from discarding both the distribution of gene
lengths in γ and the distribution of mutations among samples. While
the implications of the former are readily understood in terms of
differing gene mutation probabilities (Theorem 1), the latter aspect
is less apparent. Consider the following.

The essential problem is that simple tallies cannot distinguish
between a few genes having multiple mutations versus many genes
having only a few mutations apiece in a group of samples (Fig. 4).
Let us borrow a common, but elementary example from the statistics
literature (Lancaster, 1949; Wallis, 1942) to illustrate this point,
i.e. (n,m,b)= (2,4,0.5). Here, each gene has an equal mutation
probability. Binomial pooling reduces this problem to a simple
tallying scenario having a maximum n ·m=8 potential mutations,
where probability masses are PK=k =(8k)/256. For example, for
k =6, calculations return PK≥6 ≈0.145. However, pooling is not
actually able to distinguish differences in how mutations could be
distributed among the samples. There are two possibilities here for
k =6: four mutations in one sample and two in the other or three
in each sample (Fig. 4), with the latter being about a third more
probable.

This example has been solved exactly via enumeration (Wallis,
1942), from which we find the true P-value PK≥6 ≈0.184. The
explanation for the perhaps surprising difference is that there are
actually several configurations having fewer than six mutations,
which are nevertheless more significant than the 3+3 configuration.
These cases, 0+4 and 1+4, are necessarily omitted from the
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pooling calculation because of its loss of resolution. Combinatorial
considerations indicate that such ‘out-of-rank’mutation probabilities
multiply enormously as the numbers of genes and samples increase,
implying increasingly large errors in the resulting P-values. Our
opinion in the light of this observation is that simple statistical
pooling methods are no longer tenable.

3.5 Example calculation
We applied PathScan to the Tumor Sequencing Project (TSP) lung
adenocarcinoma gene set data in order to extend the calculations
originally performed by (Ding et al., 2008) to find significantly
mutated KEGG pathways (Kanehisa et al., 2010). The TSP study
used two tally-based tests: a binomial model based on a background
rate of three mutations per megabase and a Fisher exact test of
gene mutations within the subject pathway versus those outside
the pathway. Our results are compared to these computations in
Supplementary Table S1. The following cases have been redacted
from this table: (i) known cancer pathways whose mutation lists
are invariably dominated by a few known cancer genes, especially
TP53, KRAS and EGFR, (ii) other pathways whose mutations
likewise reside in just a single gene, (iii) pathways having only
a single mutation, and (iv) pathways not appearing in the original
TSP study. In all, 129 pathways were examined and we based our
multiple-testing correction (Benjamini and Hochberg, 1995) on this
figure.

Not surprisingly, our calculations recapitulate the same pathways
found to be highly significant by the two TSP tests. Their P-values
differ from one another by orders of magnitude and both differ
similarly from our own results, which are generally much less
extreme. Yet, all these differences are vastly outweighed by the
extent to which each P-value surpasses a standard 1% threshold.
Significant members include the signaling pathways MAPK and
mTOR.

The more relevant cases for our assessment purposes are ones
for which the original TSP tests were prima facie inconclusive, i.e.
where the two calculations disagreed. Importantly, the extent of these
disagreements is always several orders of magnitude in the P-value.
In other words, the ambiguity in such cases is not simply a result
of how FDR is chosen, but instead reflects the inherent problems of
tally-based tests we described above. For example, the binomial
TSP test counted taste transduction (hsa04742) and Alzheimers
disease (hsa05010) as significant, while the Fisher TSP test did not.
The converse list includes Toll-like receptor signaling (hsa04620),
Jak-STAT signaling (hsa04630), and leukocyte transendothelial
migration (hsa04670). PathScan concludes that none of these
pathways is significant.

On the other hand, PathScan finds several of the previously
inconclusive pathways to actually be significant, the biologically
most interesting example being focal adhesion (hsa04510). Focal
adhesions are large protein complexes linking the cell cytoskeleton
with the extracellular matrix. They transmit regulatory signals
affecting many cellular processes including motility, proliferation,
differentiation, regulation of gene expression and cell survival.
These functions immediately imply various possible physical
relevancies to cancer. Moreover, this pathway has been found to be
significantly affected in gene expression studies on prostate cancer
(Huang and Chow, 2007), ovarian cancer (Crijns et al., 2009) and
proliferative breast lesions (Emery et al., 2009).

Table 2. Significant lung adenocarcinoma groupings from six databases

# Database Pathway description FDR

1 KEGG hsa04010: MAPK signaling 3.0e-42
2 Pfam PF07714: Pkinase Tyr 5.9e-26
3 SMART SM00219: TyrKc 2.0e-25
4 Reactome REACT 18266: axon guidance 1.8e-18
5 KEGG hsa04012: ErbB signaling 6.5e-18
6 KEGG hsa04020: calcium signaling 1.0e-12
7 Pfam PF07679: I-set 3.8e-12
8 Reactome REACT 11061: signalling by NGF 1.1e-11
9 KEGG hsa04144: endocytosis 3.2e-10
10 SMART SM00408: IGc2 3.0e-09
11 PID regulation of telomerase 3.5e-09
12 KEGG hsa04060: cytokine interaction 5.4e-09
13 KEGG hsa04510: focal adhesion 1.8e-08
14 SMART SM00060: FN3 7.8e-07
15 Pfam PF00041: fn3 7.8e-07
16 BioCarta h_her2Pathway 8.7e-07
17 PID signaling events mediated by PTP1B 1.7e-06
18 PID Thromboxane A2 receptor signaling 3.3e-06
19 KEGG hsa04520: adherens junction 2.0e-05
20 PID endothelins 2.9e-05
21 SMART SM00409: IG 1.9e-04
22 KEGG hsa04150: mTOR signaling 3.6e-04
23 SMART SM00220: S_TKc 2.8e-03
24 PID EPHA forward signaling 0.008
25 BioCarta h_no1Pathway 0.0094

We went a step further, expanding calculations for the mutated
TSP gene list to six databases: BioCarta (Nishimura, 2001), KEGG
(Kanehisa et al., 2010), PID (Schaefer et al., 2009), Pfam (Bateman
et al., 2000), Reactome (Joshi-Tope et al., 2005) and SMART
(Letunic et al., 2009). These resources collectively furnish 988
tests of individual gene groupings and we use this figure for our
FDR correction. Table 2 shows 25 candidates that remain after a
redaction process similar to that described above. In other words,
these groupings all have both a significant FDR and a mutation list
containing a good variety of gene hits. In addition to the KEGG
focal adhesion pathway, there are several other notable hits that we
highlight here.

The ErbB signaling pathway (Table 2, hit 5) is activated by
extracellular growth factor binding to one of four structurally related
receptor tyrosine kinases, EGFR, ERBB2, ERBB3 or ERBB4.
Excessive ErbB signaling has been implicated in the development
of a wide variety of solid tumors (Hynes and MacDonald, 2009).
The large number of mutations in ERBB4, EGFR as well as in
downstream genes such as KRAS, PAK3 and PIK3CG contribute
to the highly significant P-value calculated by PathScan for
this pathway. Replicative senescence, growth arrest caused by
progressive shortening of telomeres during cell division, is thought
to be bypassed in most tumors (Shay and Wright, 2002). The
telomerase regulation pathway (hit 11) is significantly affected
in the samples surveyed, showing mutations in pathway genes
such as EGFR, ATM, TERT and others. Notably, TERT has been
found to be significantly amplified in lung adenocarcinoma (Ding
et al., 2008). The EPHA pathway (hit 24) plays various roles in
vertebrate and invertebrate development by regulating cell position
and morphology. Disregulated EPHA signaling has been associated
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with cancers from breast, colon, prostate and esophagus and the Eph
receptors are a promising drug target (Pasquale, 2010). In addition
to mutations in the receptors EPHA1 through EPHA7, mutations
in pathway genes such as FYN and HCK were identified in lung
adenocarcinoma.

4 CONCLUSION
The statistical testing spectrum for cancer DNA sequence is growing
rapidly. We have proposed a new method that considers the variable
Bernoulli probabilities for differing gene sizes under the null
hypothesis and systematically treats the combination of sample-
specific P-values in order to obtain a population-based value for a
large set of samples. In short, this procedure retains several important
pieces of information that existing models discard. Moreover,
the method accounts for these factors in a way that does not
add significant computational liabilities by using the mathematical
concepts of convolution and Fisher–Lancaster theory.

The model is easily extended to more general scenarios. For
example, growing bodies of data will allow increasingly accurate
assignments of gene-specific background mutation rates, ρi. Yet,
because we already assume gene-specific Bernoulli values, it is
trivial to generalize Theorem 1 as bi =exp(−ρiLi) without incurring
any net increase in CPU cost. This property will also permit
integration of other phenomena, including copy number changes,
structural variation and methylation and expression changes, should
it become possible in the future to assign meaningful Bernoulli
values to such events. This last aspect is especially relevant. The
cancers are a complex family of diseases and it will be important to
broaden investigations to integrate all the types of aberrations that
could be linked to a specific phenotype.

The integration problem is actually just one part of a broader
research program of pathway analysis. For example, there remains
no conclusive method to differentiate the action of a gene from that
of a pathway in those cases where the mutation list is dominated
by one gene. Although we have shown that PathScan suffers vastly
less from this phenomenon than other tests, it does not fully solve
this problem. Development of supplemental ‘exclusionary’ tests
that specifically examine distributions of mutations among member
genes may be necessary. Moreover, models do not yet systematically
account for relationships or conditioning that may exist between
specific mutations in a network sense, i.e. considering the position
and role of a mutated gene within its pathway, multiple gene
functions, etc.

PathScan is applicable to any set of genes, γ , no matter how
constructed, meaning it is useful both with pathway databases, as we
have shown here, and in de novo network-building methods that use
interaction databases. The latter must ultimately evaluate network
significance in the context of the associated somatic events and often
still resort to elementary tests (Glaab et al., 2010). Irrespective of
method, any calculation is necessarily limited by whatever databases
it uses (Cerami et al., 2010; Vandin et al., 2010). However, because
the collective wealth of stored information continues to increase
at a remarkable rate (Kanehisa et al., 2010), such concerns should
diminish over time.

These observations all suggest that future methods will
necessarily become more sophisticated and increasingly focused on
the deeper aspects of cancer genomic analysis. We feel that PathScan
represents an initial, though deliberate step in that direction.
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