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ABSTRACT

Motivation: Gene expression profiling by microarrays or transcript
sequencing enables observing the pathogenic function of tumors on
a mesoscopic level.
Results: We investigated neuroblastoma tumors that clinically
exhibit a very heterogeneous course ranging from rapid growth with
fatal outcome to spontaneous regression and detected regulatory
oncogenetic shifts in their metabolic networks. In contrast to
common enrichment tests, we took network topology into account
by applying adjusted wavelet transforms on an elaborated and
new 2D grid representation of curated pathway maps from the
Kyoto Enzyclopedia of Genes and Genomes. The aggressive form
of the tumors showed regulatory shifts for purine and pyrimidine
biosynthesis as well as folate-mediated metabolism of the one-
carbon pool in respect to increased nucleotide production. We
spotted an oncogentic regulatory switch in glutamate metabolism
for which we provided experimental validation, being the first steps
towards new possible drug therapy. The pattern recognition method
we used complements normal enrichment tests to detect such
functionally related regulation patterns.
Availability and Implementation: PathWave is implemented in a
package for R (www.r-project.org) version 2.6.0 or higher. It is freely
available from http://www.ichip.de/software/pathwave.html
Contact: r.koenig@dkfz.de; r.eils@dkfz.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Cancer cells exhibit a dramatically disturbed metabolism to satisfy
their high bioenergetic demands for cell proliferation (Jones and
Thompson, 2009). Accordingly, a long-standing strategy for cancer
treatment is to attack basic tumor metabolism. Mainly, these
treatments are rather unspecific and hinder nucleotide biosynthesis

∗To whom correspondence should be addressed.

(Chen and Pankiewicz, 2007). Besides this, the introduction of
experimental high-throughput methods in functional genomics
such as gene expression profiling using microarrays and genome-
wide sequencing has evoked the challenging task to observe and
understand the pathogenic function of tumors on a mesoscopic
level. However, the large volume of information generated in these
experiments must be funneled into manageable and functionally
sensible partitions to select components that well describe the tumor
pathologies. Intelligent embedding of the expression data into the
underlying topology of the metabolic network may enable the
detection of tumor-specific metabolism for directed and specific
targeting of tumor cells.

Neuroblastoma is the most common solid, extracranial tumor
of early childhood, mainly affecting children at the age of about
1 year. It is derived from primitive cells of the sympathetic nervous
system. In many patients, neuroblastoma is metastatic at the time
of diagnosis and undergoes rapid progression with fatal outcome.
Alternatively, neuroblastomas, especially in infants younger than
1 year at diagnosis can regress spontaneously, and the tumor can
differentiate into benign ganglioneuroma in older infants (Schwab
et al., 2003). Detailed diagnosis and appropriate adjustment of
therapy requires the support of investigations at the molecular level.
DNA microarray technology improved the prediction of patient
outcome in comparison to established risk markers (Oberthuer et al.,
2006).

We wanted to track how aggressive neuroblastomas have
specifically regulated their metabolism to optimize oncogenetic
fitness, and to elucidate ways to severely perturb this process.
An analysis method was required that discovers pathways in the
metabolic network, especially showing significant shifts (similar
and contrasting) in regulation. When analyzing data on a metabolic
network, enzymes can be represented by their corresponding
genes. Transcriptional data, and the topological information derived
from the metabolic network, was connected by calculating Z-
scores of highly correlated sub-networks (Patil and Nielsen, 2005).
Chuang et al. (2007) improved classification of breast cancers
with expression patterns of small subnets of a signal transduction
network. Common gene expression levels of neighboring nodes in a
metabolic network were calculated by averaging over all neighbors
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of a gene and revealed several interesting regulated pathways
for the human immune system (Nacu et al., 2007). However,
these approaches were not developed to detect highly contrasting
expression of neighboring genes that undergo a switch-like shift of
regulation in a tumor cell. Especially, these switches can be highly
relevant to identify potential drug targets that specifically attack the
tumor at sites of flux-redirections with which the tumor established
parasitic advantages.

Wavelet transforms have been commonly applied in information
technology and image processing to track congeneric and contrasting
signatures (Chang and Kuo, 1993; Mallat, 1998). However, applying
this powerful technology to analyze cellular networks is challenging.
While the underlying topology of an ordinary image is a simple
lattice grid, cellular networks exhibit a rather complex scale-free
architecture (Jeong et al., 2000). In our initial approach, we mapped
the gene expression data onto (lattice grid-like) adjacency matrices
of networks and applied Haar wavelet transforms onto dense subsets
of the metabolic network. Features of the wavelet transforms that
could significantly separate samples from different treatments were
used to extract metabolic pathways showing the most significant
gene expression patterns (König et al., 2006).

In the present study, we substantially improved this technology
by (i) using cell-physiologically well-defined and curated pathways
from the Kyoto Enzyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2008) which extensively simplified interpretation
of the results, (ii) developing a new and elaborated metric to arrange
the order of enzyme representations as a lattice grid-like architecture
of single pathways taking network priorities from curators of KEGG
into account, (iii) implementing a one-step frameshift concept for
wavelet transforms to overcome their rigidity, and (iv) we made
the software freely available and easy applicable by a package
for R (www.r-project.org). When applying this method to the
neuroblastoma tumors, the most significant expression patterns were
detected in purine and pyrimidine biosynthesis and folate-mediated
one-carbon metabolism. These pathways can account for increased
nucleotide production for proliferation. We spotted a significant
switch-like regulation pattern in glutamate metabolism that hints
towards de-regulated neurotransmitter production and glutamine
uptake from the bloodstream. A potential drug target was proposed
for this pathway and experimentally validated by drug-treatment of
several neuroblastoma cell lines.

2 METHODS
For simplification, we explained the method with a toy example of a
small synthetic pathway and simulated expression patterns (Supplementary
Material). For all multiple testing corrections in this study, we used the
method of Bonferroni, 1935 (Gordi and Khamis, 2004). P-values for the
pathways of all gene set enrichment tests and our method were corrected for
multiple testing by this method.

2.1 Assembling the metabolic pathways
Pathways were defined according to curated pathway maps of the KEGG
database (version from February 4, 2009) (Kanehisa et al., 2008). Each
metabolic pathway was established by defining neighbors of reactions
using the information from KEGG (ftp://ftp.genome.jp/pub/kegg/xml/kgml/
metabolic/organisms/hsa/). Two reactions were neighbors if a metabolite
existed that was the product of one and the substrate of the other. We
defined reactions as the nodes and metabolites as the edges between them.
Pathways without any connected reaction were discarded. This resulted in

99 pathways with 1826 different reactions. Each pathway was represented
by its adjacency-matrix. An entry at row a and column b was set to one if
there existed a metabolite that was produced by reaction a and consumed
by reaction b or vice versa. The sizes of the symmetric adjacency-matrices
were between 2×2 and 92×92 reactions.

2.2 Ordering the 2D pathway representation with the
grid arrangement method

To apply our feature extraction method we required a 2D arrangement
of the metabolic network. We calculated an embedding of the metabolic
networks for every KEGG pathway into a 2D, regular square lattice grid. To
preserve neighborhood characteristics of the reactions, we were looking for
embeddings in which adjacent nodes of the network were placed onto the
grid as close to each other as possible. As a measure of distance in the lattice,
we used the Manhattan distance, i.e. for any two grid points u = (i1, j1) and
v = (i2,j2) the distance was given by d = |i1 −i2|+| j1 − j2|. We wanted to
determine an optimal neighborhood in which the total edge length of the
graph on the lattice was minimized while conserving the network topology.
This resulted in an NP-hard combinatorial optimization problem. We stated
this problem as an integral linear program (IP; see Nemhauser and Wolsey,
1999 for an introduction to integer programming). We formulated the IP by
introducing 3D binary variables xvij for every node v and every grid point
(i, j) stating whether or not node v has to be placed on grid point (i, j).
For each pair of nodes (u, v), we calculated their distance duv. For a given
lattice grid g, the undirected network graph G = (V , E) with node set V , edge
set E and adjacency matrix M, the most basic IP was given by finding an
optimum for

min
x,d

∑
a,b∈V ,a<b

M(a,b)·dab (1)

with the constraints ∑
(i,j)∈g

xvij =1, ∀v ∈ V (2)

∑
v∈V

xvij ≤1, ∀ (i,j) ∈ g (3)

dab ≥

⎧⎪⎪⎨
⎪⎪⎩

A+B
A−B
−A+B
−A−B

, ∀ (a,b) ∈ V ×V ,a<b (4)

where
A :=

∑
(i, j)∈g

i ·xaij −
∑

(i, j)∈g
i ·xbij, (5)

B :=
∑

(i, j)∈g
j ·xaij −

∑
(i, j)∈g

j ·xbij

and
xvij ≥0, xvij ∈Z, ∀v ∈ V , (i,j) ∈ g. (6)

Constraints (2) and (3) guaranteed that all nodes were placed exactly once
and that each grid point could be used at most once. Constraints (4) ensured
that the distance of node a and b is given by |A|+|B|, where A and B are
computed by Equation (5) as A = ia −ib and B = ja − jb. All variables were
enforced to values 0 or 1 by constraint (6). The problem was solved by
CPLEX 8.1 (ILOG, Gentilly, France) for 99 lattice grids (representing 99
KEGG-maps) with an average optimality of 96% for embeddings on square
grids of side length

√|V |+1, rounded up to the next integer.

2.3 Network motifs constrain the optimization problem
This basic model was enhanced by a number of graph dependent, additional
constraints on the distance variables. They provided lower bounds for the
distance sums of well-known sub-graph motifs. That is, for an edge induced
sub-graph G′ ⊂G with a least objective function contribution of lb(G′), the
following inequality can be added or dynamically separated:

∑
(u,v)∈E

(
G′)duv ≥ lb

(
G′) (7)
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Fig. 1. Workflow of data integration, analysis and experimental validation.
(A) Workflow of the method: each pathway of the metabolic network
was represented on optimally arranged 2D grids, gene expression data
were mapped onto these grids for every patient, features were generated
of combined expression values of neighboring reactions in the grid, the
discriminative power for each feature was statistically estimated, pathways
and patterns of significance were given out for functional interpretation and
experimental validation. (B) Specific network motifs constrained the optimal
arrangement of the metabolic network leading to (C) an optimal arrangement
of the network on a lattice-grid. (D) Gene expression data were mapped
onto the optimally arranged grids and features were generated allowing the
identification of discriminative patterns.

We considered the sub-graph motifs of star graphs, cliques consisting of up to
10 vertices and odd cycles (2k+1-cycles). Moreover, a certain class of trees
with maximum vertex degree �(T ) ≤ 4 (Fig. 1B) decreased computation
time and enhanced separation ability.

These motifs included six representatives of typical sub-graph constraint
classes: the 2k+1-cycles for k = 1 (Fig. 1B.1) and k = 2 (Fig. 1B.2), a star
graph with eight vertices (Fig. 1B.3), a 5-clique (Fig. 1B.4) and neighborhood
star graphs with 12 (Fig. 1B.5) and 15 (Fig. 1B.6) vertices. As the graphs
were embedded optimally, the numbers gave the total edge lengths of the
embeddings as well as the right-hand sides lb(G′). Furthermore, calculation
time was reduced by symmetry-breaking constraints eliminating all but a
few representative embeddings from each equivalence class of symmetrical
embeddings. For this, grid symmetries due to translation, rotation and
reflection of the embeddings were considered as well as vertex subsets whose
inner permutations did not change the value of the objective function.

2.4 Assembling the gene expression data and mapping
onto the network

Our metabolic analysis was performed with gene expression data from an
earlier study in which we supported clinical diagnoses of neuroblastoma
tumors (Oberthuer et al., 2006). The gene expression profiling was performed
for 251 patients diagnosed between 1989 and 2004, in duplicate as dye-swap
experiments on Agilent oligonucleotide microarrays (www.agilent.com)
with 10 163 neuroblastoma-specific probes. The age of the patients was
between 0 and 296 months (median age: 15 months). For our study, we
compared stage 1 patients without MYCN amplification, 65 in total, to
19 stage 4 patients with MYCN amplification. According to the International
Neuroblastoma Staging System (INSS), stage 1 tumors are localized and
confined to the area of origin. Stage 4 tumors disseminate to distant
lymph nodes, bone marrow, bone, liver or other organs and have a

very poor prognosis if the oncogene MYCN is genetically amplified, i.e.
abundant in high copy number (Schwab et al., 2003). We normalized
the data with the variance normalization method (Huber et al., 2002).
The raw and normalized data are deposited at ArrayExpress (http://
www.ebi.ac.uk/arrayexpress; experiment accession number E-TABM-38).
The expression data of each dataset was mapped onto the corresponding
reactions of the transcribed enzymes using the gene–protein information from
KEGG (ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/organisms/hsa).
Mean values were taken if a reaction was catalyzed by a complex of proteins.
The expression values of each reaction were z-transformed to facilitate
combinations of the values that were needed for the wavelet transforms.
Expression data were available for 1103 enzymatic reactions extracted
from KEGG. The expression data of all samples were mapped onto the
optimally ordered grid representations of all KEGG pathways, respectively.
This resulted in 84 different patterns (of stage 1 and stage 4 patients) for
each KEGG pathway.

2.5 Pattern recognition on lattice grids with Haar
wavelet transforms

We wanted to explore every possible expression pattern of neighboring
genes and groups of genes within a KEGG pathway that showed significant
differences between samples of different conditions. For this, we performed
a Haar wavelet transform for each optimized grid representation of the
pathways. The wavelet transformed expression values were statistically
tested to identify pathways with a discriminative pattern between tumors
of favorable and unfavorable outcome. Such a Haar wavelet transform can
be regarded as systematically applying low pass and high pass filters from
fine grain to coarse grain resolutions. It is therefore well suited to not only
detect commonly regulated pathways (low-pass filter), but also to elucidate
switch-like behaviors within the pathways (high-pass filter), for more details
see Mallat (1998). To overcome rigidity of wavelet transforms, we covered
any possible combination of neighboring reactions by shifting the frame for
applying the transforms: we conducted the Haar wavelet transform on the
original grid, on the grid without the first row and column, respectively, and
finally without the two, first row and column. If the number of rows (columns)
became odd after deletion of the first row (column) then the last row (column)
was also removed. By this, we avoided an unnecessary weighting of the last
and isolated rows (columns). This procedure was carried out for all KEGG
pathways of every sample. The results of the transforms were stored as the
corresponding features for every sample.

2.6 Significance tests for the pathways
Pathways were ranked according to the statistical significance of an assigned
score. T -tests were applied on all features Fπ

i of pathway π returning
P-values Pπ

i . The pathway-score Sπ was derived by

Sπ =max
∣∣log10 Pπ

i

∣∣ (8)

To estimate the statistical significance of pathway-score Sπ , we randomly
sampled the samples (patients, drawing without replacement) n times
(n = 10 000 for the neuroblastoma study). Assuming an extreme value
distribution (Gumbel distribution), for each pathway a curve was fitted to the
distribution of the pathway-scores of the permutated samples. The P-value
for each pathway resulted from this fitting-curve and was corrected for
multiple testing (Bonferroni, 1935; Gordi and Khamis, 2004). To focus on
the most relevant features, only pathways with more than five significantly,
differentially regulated reactions and genes were further investigated
(P ≤ 0.01, not corrected for multiple testing). For this, two reactions that
consisted of exactly the same genes were counted as one reaction. Pathways
with significant features were further functionally characterized by analyzing
the literature (Section 3 and Supplementary Material).
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2.7 Discovering local patterns
All features were statistically tested with t-tests to separate between favorable
and unfavorable tumors and corrected for multiple testing. Statistically
significant features contained those sub-graphs of the metabolic network
that showed differentially regulated patterns. Such regions of interest could
directly be accessed by reconstructing the regions that were represented by
the significant features and were given out by PathWave (expression patterns
in Supplementary Figs S4–S13 and Table S2).

2.8 Cell culture, reagents, treatments and data analysis
for the experimental D-cycloserine study

We used four human neuroblastoma cell lines (SK-N-SH, SH-EP, IMR32 and
Kelly) for our analyses. They were maintained in DMEM medium (Lonza,
Verviers, Belgium) supplemented with l-glutamine and 10% fetal calf serum
(FCS) at 37◦C in 5% CO2 atmosphere. d-cycloserine was purchased from
Sigma (Munich, Germany). For cytotoxicity assays approximately 1E+5
cells were seeded onto 24-well plates in DMEM without l-glutamine and
supplemented with 5% FCS. d-cycloserine was added to the cells 18 h after
seeding at a final concentration of 5 mM. The concentration of d-cycloserine
was one order of magnitude below the reported toxic concentration in rats
[see DrugBank (Wishart et al., 2006, 2008)]. Total amount of cells in culture
was determined with crystal violet (Serva) after 20 min (0 h), 24 h, 48 h
and 72 h. The cells were fixed with 3.7% formaldehyde and stained with
0.5% crystal violet. After several washings with DPBS (Lonza), crystal
violet was re-solubilized in a buffer containing 0.1 M sodium citrate, pH 4.2
and 50% ethanol. The absorbance of crystal violet was measured at 580 nm
and taken as a measure for cell proliferation. Measurements were done in a
FLUOstar OPTIMA plate reader (BMG Labtech, Offenburg, Germany). All
experiments were done in quadruplicates.

For each time point, raw values were subtracted by the mean background
intensity coming from four blank wells treated similar to the test wells.
To obtain replication levels, for each cell line and replicate, the intensities
were divided by their intensities at time point 0 h, respectively. Mean values
and standard deviations were calculated for each time point (after 0 h) using
the data from each cell line and replicate. The difference of the distributions
was tested with a Student’s t-test.

3 RESULTS

3.1 Combining regulation patterns of enzymes
We compared gene expression profiles of 19 aggressive
neuroblastomas having unfavorable prognosis (stage 4 according
to the international neuroblastoma staging system and amplification
of the MYCN oncogene) with 65 tumors having favorable prognosis
(stage 1, no MYCN amplification). Our aim was to compare the
regulation of metabolism of these two tumor entities. The workflow
was as follows (Fig. 1): metabolic pathways were extracted from
the KEGG database and a lattice grid-like representation was
constructed for each pathway. Enzymes were optimally arranged
on the grid to preserve the relevant pathway topology. Gene
expression data were mapped onto the corresponding enzymes in the
optimally arranged grid. Neighboring enzymes were grouped and
their gene expression values combined using wavelet transforms.
These transforms yielded combined expression values (‘features’)
by applying low-pass filters to detect similar expression changes and
high-pass filters to detect contrasting regulation patterns. We tested
the performance of all non-trivial features (10 377) to separate the
two tumor entities by a t-test. Pathways were ranked according to
their significance. Only pathways with more than five significantly,
differentially regulated reactions and genes were further investigated

Table 1. Identified significant differentially regulated pathways with more
than five differentially regulated KEGG reactions

Rank Pathway P-value Score sizea

1 Purine metabolism <1E-16 1
2 Glutamate metabolism <1E-16 1
3 Glycolysis/Gluconeogenesis 1.1E-14 1
4 Pyrimidine metabolism 5.5E-14 2
5 One carbon pool by folate 3.2E-13 1
6 Phosphatidylinositol signaling

system
9.1E-12 2

7 Pyruvate metabolism 1.3E-11 3
8 Valine, leucine and isoleucine

degradation
6.9E-11 1

9 Lysine degradation 1.5E-10 3
10 Glycine, serine and threonine

metabolism
2.1E-10 1

11 Urea cycle and metabolism of amino
groups

2.5E-10 1

12 Inositol phosphate metabolism 1.3E-9 1
13 Fatty acid metabolism 1.7E-9 3
14 Folate biosynthesis 1.8E-9 2
15 Glutathione metabolism 2.3E-9 1
16 N-Glycan biosynthesis 6.2E-8 2
17 Starch and sucrose metabolism 1.7E-7 1
18 Glycerophospholipid metabolism 3.9E-7 1
19 Glycosphingolipid

biosynthesis—neo-lactoseries
5.3E-7 1

20 Sphingolipid metabolism 1.4E-6 2
21 Tyrosine metabolism 6.6E-6 2
22 Aminoacyl-tRNA biosynthesis 1.3E-5 2
23 Fatty acid biosynthesis 4.1E-5 1

aSize of the most significant pattern with which the score was calculated, 1 = 1st wavelet
with 2×2 pixel on the grid; 2 = 2nd wavelet with 4×4 pixel, 3 = 3rd wavelet with
8×8 pixel.

to focus on the most relevant features. This procedure yielded
significant features from 23 different pathways (Table 1). All
reactions of these features are shown in the Supplementary Material
(Supplementary Table S2) together with the regulation patterns in
the pathways from KEGG for the first 10 pathways (Supplementary
Figs S4–S13). The Supplementary Material also includes a summary
of information from the literature regarding the oncogenic relevance
of pathways not discussed in the main text. We denoted an enzyme
as being up- or down-regulated in the aggressive tumors only if its
differential regulation was significant (P ≤ 0.01, not multiple testing
corrected).

We included the enzyme commission (EC) numbers for all
enzymes to a convenient tracking in the pathway maps. We used
the same abbreviations for metabolites as in KEGG.

3.2 A cellular switch in the glutamate metabolism
A significant pattern was identified in glutamate metabolism.
It consisted of six reactions (P < 1E-16, Fig. 2 and Supplementary
Fig. S5). Glutamine is produced by the host, and is highly
abundant in the blood. It is consumed by the parasitic tumor
cells to provide an ammonium supply (Medina, 2001). It has
previously been shown that tumors depress systemic glutamine
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Fig. 2. Regulation pattern in glutamate metabolism. In the aggressive
tumors, the ASCT2 glutamine transporter, amido phosphoribosyltransferase
(PPAT) and one amino transferase (GOT) were significantly up-regulated
to take up glutamine from the bloodstream and metabolize it for purine
biosynthesis, amino acids biosynthesis and anapleurosis of the TCA cycle.
Ammonium detoxification by glutaminase (GLS) was significantly down-
regulated. Probes for the amino transferase GPT were not included in the
microarrays.

levels in cancer patients (Klimberg and McClellan, 1996).
Glutamine is catabolized into ribosylamine-5-phosphate by
amidophosphoribosyl transferase to synthesize purines. Amido-
phosphoribosyl transferase has been proposed as a drug target
to treat cancer (Christopherson et al., 1995). It may be combined
with glutamate antagonists. Glutamate has previously been
shown to be important for tumor growth, since inhibition
using glutamate antagonists led to reduced proliferation (Rzeski
et al., 2002). We observed a significant regulation pattern
for glutamine metabolism in the investigated neuroblastomas,
which is in line with these observations from the literature
(Fig. 2). More specifically, ATP-dependent glutaminase (GLS,
EC 3.5.1.2) was down-regulated, reducing glutamine catabolism
to ammonium and glutamate. Glutamine flux was redirected
into purine biosynthesis via down-regulation of ATP-dependent
GLS and up-regulation of amidophosphoribosyl transferase (PPAT,
EC 2.4.2.14). Amidophosphoribosyl transferase also produces
glutamate that is used as a building block for synthesizing further
non-essential amino acids. Glutamate was shown to be used for
TCA cycle anapleurosis in glioblastomas (DeBerardinis et al.,
2007). To identify an anapleurotic tendency in neuroblastoma, we
experimentally investigated the proliferation of neuroblastoma cell
lines after treatment with d-cycloserine. d-cycloserine compromises
the action of two aminotransferases in the glutamate metabolism
(GOT, EC 2.6.1.1 and GPT, EC 2.6.1.1) (Fischer et al., 1997) that
are necessary for this TCA anapleurosis. Growth was significantly
reduced after 72 h in neuroblastoma cells treated with 5 mM
d-cycloserine (P = 1.3E-5, Fig. 3). Interestingly, Wise and co-
workers (Wise et al., 2008) have recently shown that c-MYC
regulated the stimulation of just such a glutaminolysis program,
in which glutamine is used for TCA anapleurosis, in glioma
cells. It is likely that this oncogenetic regulation scheme is
transferable to neuroblastoma, for which we have shown that

Fig. 3. Proliferation of neuroblastoma cells treated with d-cycloserine.
Proliferation is shown for cells treated with 5 mM d-cycloserine (red) and
untreated control cultures (blue). Error bars are the standard deviations (1σ)
for the corresponding time point and treatment. The y-axis denotes replication
levels in accordance to absorbance of a dye that stained fixed cells (crystal
violet), normalized to 0 h (1× proliferation). In comparison to non-treated
cells, the proliferation of the treated cells decreased significantly at 72 h
(P = 1.3E-5). There was no significant difference in proliferation at 24 h
and 48 h.

MYCN can compensate for c-MYC activity and that MYCN/c-MYC
signaling is more active in more aggressive neuroblastoma subtypes
(Westermann et al., 2008).

3.3 The aggressive tumors employ increased nucleotide
biosynthesis

Highly significant regulation patterns were detected for the pathways
of purine and pyrimidine biosynthesis as well as folate-mediated
one-carbon metabolism. The pathways ranked at positions 1, 4 and
5 (P ≤ 1E-16, 5.5E-14 and 3.2E-13, respectively). These pathways
were mainly up-regulated to enable enforced nucleotide biosynthesis
for increased cell cycle activity of aggressive tumors. All enzymes
involved in the biosynthetic pathway for the purines ATP and
GTP were up-regulated (Supplementary Fig. S4). We defined the
pathway for ATP and GTP biosynthesis as starting with ribose-
5-phosphate originating from the pentose phosphate pathway and
glutamate metabolism using, among others, AICAR, IMP, XMP,
GMP, GDP, ADP. Phosphatases (EC 3.1.3.5, EC 3.6.1.5, EC
3.6.1.6) that degrade compounds for purine production were down-
regulated. We also detected a significant regulation pattern for TTP
and CTP biosynthesis in pyrimidine metabolism (Supplementary
Fig. S7). Enzymes were up-regulated for RNA synthesis (RNA
polymerase, EC 2.7.7.6), the final biosynthetic step of UTP and
CTP (nucleotide phosphate kinase, EC 2.7.4.6), dUPD production
from dUMP (thymidylate kinase, EC 2.7.4.9) and the conversions
of CDP to dCDP and dUMP to dTMP (ribonucleotide reductase,
EC 1.17.4.1 and thymidylate synthetase, EC 2.1.1.45). Enzymes
reversing pyrimidine anabolism were also down-regulated (EC
3.1.3.5, EC 3.6.1.5, EC 3.6.1.6 and EC 3.5.4.5), similar to the
regulatory patterns for purine metabolism.

A significant regulation pattern was found in folate-mediated
metabolism of the one-carbon pool. Ten reactions were up-regulated,
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specifically, EC 1.5.1.3 (2), EC 2.1.2.1, EC 2.1.2.2 (2), EC
2.1.2.3, EC 2.1.1.45, EC 3.5.4.9, EC 6.3.4.3, and EC 1.5.1.15
(Supplementary Fig. S8 and Table S2). This pathway serves to carry
and activate single carbons for purine and pyrimidine biosynthesis,
utilizing pyrimidine thymidylate synthase (EC 2.1.1.45), purine
GAR formyltransferase (EC 2.1.2.2) and AICAR formyltransferase
(EC 2.1.2.3). Folate derivatives are also needed for methionine
synthesis, which is essential for cancer cell survival (Stankova et al.,
2005). To synthesize methionine, 5,10-methylene tetrahydrofolate
is processed by methylene tetrahydrofolate reductase (EC
1.5.1.20) into 5-methyl tetrahydrofolate from which methionine
synthase synthesizes methionine. In fact, inhibition of methylene
tetrahydrofolate reductase has been shown to reduce tumor growth
by depleting the cellular methionine pool (Stankova et al.,
2005). Interestingly, methylene tetrahydrofolate reductase itself was
not significantly regulated in the pattern we identified. Instead,
thymidylate synthase (EC 2.1.1.45), was up-regulated, and may
have taken over producing 5,10-methylene tetrahydrofolate in these
tumor cells. Based on the regulatory patterns identified by PathWave,
we propose that inhibiting thymidylate synthetase in combination
with methylene tetrahydrofolate reductase will reduce tumor growth
more effectively.

3.4 Comparison to established methods
Although PathWave was not designed as an enrichment test but
rather to point to regulatory patterns in pathways and regions
therein, we were interested in the results from an established
gene set enrichment method. Therefore, we applied the Gene
Set Enrichment Analysis (GSEA; Mootha et al., 2003) on the
expression data of all pathways that we also had analyzed with
PathWave. GSEA revealed three significantly enriched pathways,
i.e. pyrimidine metabolism, purine metabolism and polyunsaturated
fatty acid biosynthesis (P ≤1E-16, ≤1E-16, 9.9E-4, respectively,
corrected for multi-testing, results for all pathways are in the
Supplementary Table S4). Furthermore, we used DAVID which is
another commonly used gene set enrichment test (Dennis et al.,
2003; Huang da et al., 2009). Although DAVID revealed various
enriched KEGG Pathways (see Supplementary Table S5a and S5b)
only three metabolic pathways were identified (pyrimidine and
purine metabolism, and glycolysis/gluconeogenesis). Hence, GSEA
and DAVID were capable to identify enriched pathways, but showed
less sensitivity in comparison to PathWave

3.5 Applying PathWave to another neuroblastoma
dataset

To verify our findings, we analyzed a further independent expression
dataset of neuroblastomas (Wang et al., 2006) consisting of primary
tumors from 27 stage 1 patients without MYCN amplification and
20 stage 4 patients with MYCN amplification. Raw expression
data were downloaded from NCBI, normalized and analyzed
with PathWave. The significance threshold was again set to
P = 0.01. As the fraction of significantly regulated reactions (P ≤
0.01) was lower in this dataset (29%) compared to our first
study (43%), we focused on pathways containing four or more
differentially regulated reactions. PathWave revealed 20 pathways
(Supplementary Table S3) with significant regulation patterns, 15 out
of which were also found in the first dataset we studied. Specifically,

all high ranking pathways (ranks 1–6) of the first analysis showed
up again in this dataset confirming our initial results.

4 DISCUSSION AND CONCLUSION
We mapped gene expression data from neuroblastomas having
two very distinct clinical courses onto the human metabolic
network. We revealed interesting insights into tumor cell regulation
when applying our novel method PathWave. The aggressive
tumors showed significantly up-regulated pathways for purine
and pyrimidine synthesis. This was expected, as tumors need
these building blocks to maintain quick mitotic cycles. We
observed an interesting regulatory switch in glutamate metabolism:
the energy consuming ammonium elimination from glutamine
was down-regulated, while amidophosphorybosyl transferase was
up-regulated. This may have redirected toxic ammonium from
degradation into nucleotide anabolism in the aggressive tumors.
Additionally, neuroblastoma tumor cells may utilize systemic
glutamine for anapleurosis of the TCA cycle, similar to what
has been recently reported for glioblastoma cells (DeBerardinis
et al., 2007). We provided experimental evidence for this regulatory
switch in tumor cell glutamate metabolism by targeting the
amino transferases at the necessary metabolic junction, which
resulted in reduced proliferation of neuroblastoma cell lines. Folate-
mediated one-carbon metabolism was also differentially regulated
in the aggressive neuroblastomas. We suggest targeting thymidylate
synthetase in combination with methylene tetrahydrofolate
reductase in neuroblastoma cell lines to assess the relevance
of these results for therapeutic intervention. These interesting
regulation switches could be found by our pattern recognition
method as our implementation of wavelet transforms systematically
tracked co-regulated and anti-co-regulated neighboring nodes in
the network. Our network representation by lattice grids simplified
their topology as it avoided hub-like structures by including only
compounds that were selected to be relevant for the corresponding
pathway by KEGG curators. The grid arrangement method placed
players in pathways on a 2D map while conserving the direct
neighborhoods of the players. This method is new and has potential
for other applications. It is a generalization of the one-dimensional
linear arrangement optimization problem (Bar-Yehuda et al., 2001)
to two dimensions. The model can be extended to higher dimensions,
but becomes more difficult to solve with each additional dimension.
The newest version of our branch-and-cut algorithm tests whether a
given set of values duv, (u,v) ∈ E exhibits a feasible embedding.

PathWave enabled to focus on pathways with distinct regulated
patterns in the network and pointed to sections in these pathways
at which a switch-like regulation may have occurred. However,
manual inspection and interpretation of the regulation of these
sub-graphs is still necessary to derive their relevance within the
functional context. When using such a global scanning device, lack
of specificity and sensitivity must still be tackled. For about one-
third of the enzymes in KEGG, we could not assign any probe from
our microarray chips. Especially, for small networks this may have
led to inappropriate overestimation of single nodes. For this reason,
we discarded pathways with to few reactions from our analyses.

In general, we detected cellular switches in the metabolism of the
tumor under study. The presented analysis technique is capable of
reducing the relevant pathways to those having significant patterns
of functionally connected proteins.
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