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Abstract

Attempts to predict prognosis in cancer patients using high dimensional genomic data such as 

gene expression in tumor tissue can be made difficult by the large number of features and the 

potential complexity of the relationship between features and the outcome. Integrating prior 

biological knowledge into risk prediction with such data by grouping genomic features into 

pathways and networks reduces the dimensionality of the problem and could improve prediction 

accuracy. Additionally, such knowledge-based models may be more biologically grounded and 

interpretable. Prediction could potentially be further improved by allowing for complex nonlinear 

pathway effects. The kernel machine framework has been proposed as an effective approach for 

modeling the nonlinear and interactive effects of genes in pathways for both censored and non-

censored outcomes. When multiple pathways are under consideration, one may efficiently select 

informative pathways and aggregate their signals via multiple kernel learning (MKL), which has 

been proposed for prediction of non-censored outcomes. In this paper, we propose MKL methods 

for censored survival outcomes. We derive our approach for a general survival modeling 

framework with a convex objective function, and illustrate its application under the Cox 

proportional hazards and semiparametric accelerated failure time models. Numerical studies 

demonstrate that the proposed MKL-based prediction methods work well in finite sample and can 

potentially outperform models constructed assuming linear effects or ignoring the group 

knowledge. The methods are illustrated with an application to two cancer data sets.
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1. Introduction

Studies linking disease outcomes, such as cancer recurrence and death, to large-scale 

genomic data, such as tumor gene expression, are rich resources for improving both our 

understanding of the progression of disease and our ability to predict patient prognosis. 

However, the number of genomic markers in such studies is often large relative to the 

sample size, which can make it hard to differentiate true biological relationships from noise 

and false positive associations. One appealing idea is to employ models that can partition the 

total effect into a sum of pathway-level effects. Such an approach would take advantage of 

the extensive biological knowledge available grouping genes into pathways and networks 

thought to work together — knowledge that informs collections such as the Molecular 

Signatures Database (mSigDB) [1]. A pathway-based approach can help with dimension 

reduction in two ways: first, the number of pathways tends to be smaller than the total 

number of genes, and second, within a pathway, genes may be correlated with each other 

and it may be possible to capture a pathway’s effect with a smaller number of summary 

variables. In the presence of nonlinear effects, models that incorporate pathway information 

could reduce model complexity by allowing complex within-pathway effects while assuming 

that the signals are additive across pathways, which in turn could improve prediction. 

Pathway-based methods can also improve interpretability because the pathways are defined 

by known or hypothesized functions, which can facilitate generation of mechanistic 

hypotheses. Thus, interrogating pathways could be a more effective approach for 

understanding the biological process of the disease. Moreover, as our knowledge of 

biological systems continues to improve, models that integrate such information could be 

better for effective, reproducible risk prediction. For example, there has been evidence in 

certain cancers that while many individuals will have key pathways dysregulated, the actual 

component of the pathway that is altered may differ across individuals [2, 3].

Recently, many approaches for testing the association between a given gene set and various 

types of outcomes and for estimating the effects of the gene set have been proposed. In 

linear and logistic regression, some examples include Goeman’s global test [4] which 

assumes linear gene effects, as well as kernel machine (KM) methods [5, 6, 7] which allow 

potentially nonlinear effects. KM modeling is an attractive tool for quantifying complex 

pathway effects because it allows for nonlinear effects without explicitly specifying the 

forms of those effects. To further leverage the correlation structure of the pathway, one may 

employ kernel principal components analysis (PCA) to reduce the dimensionality of the 

feature space to improve prediction [8, 9]. When the outcome of interest is subject to 

censoring, KM tests have been developed for the Cox proportional hazards [10, 11, 12, 13] 

and the semiparametric accelerated failure time (AFT) [14, 15, 16, 17, 18] models.

When multiple pathways have been identified as potentially associated with patient 

prognosis and interest lies in combining information across these pathways into a single 

prediction model, one could treat the entire collection of genes as a single pathway and 

employ the aforementioned procedures. However, if biological pathways are meaningful 

entities, this approach may not be effective since it does not incorporate the pathway 

structure, and it does not eliminate pathways which provide redundant information. An 

appealing strategy to leverage the pathway information is to allow simultaneous selection of 
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informative pathways and estimation of their effects. When the effects are assumed linear, 

the group lasso (GLASSO), proposed in [19], can achieve these goals by penalizing the sum 

of the ℓ2-norms of the genes in each pathway. GLASSO estimators and their variations have 

been further developed for various settings including censored outcomes [20, 21, 22, 23, 24, 

25, 26, 27]. In the presence of nonlinear effects, multiple kernel learning (MKL) has been 

proposed as an effective approach to aggregate complex signals from multiple pathways [28, 

29]. MKL models can incorporate the pathway information by allowing nonlinear effects 

within each pathway, but assume that signals are additive across pathways. Proper choices of 

penalization procedures under the MKL model can lead to efficient and sparse estimators for 

the pathway effects. Theory of MKL and the application of MKL methods to genomic data 

have been considered for non-censored outcomes [30, 31, 32, 33, 34]. In this paper, we 

propose MKL procedures to efficiently estimate the effects of multiple pathways on 

censored survival outcomes.

The main contribution of this paper is the extension of the MKL framework to survival 

models, which has not to our knowledge been previously done, with the goal of pathway 

selection, estimation, and aggregation to build a single pathway-based risk score that is 

predictive of prognosis. We describe the approach for a general objective function, and then 

provide specific implementation methods and software for the Cox and AFT models. The 

other contributions of this paper are in the solutions and strategies we propose here, in order 

to deal with issues that arise in implementation of MKL in survival models; we briefly note 

these here. First, rather than develop specific minimization algorithms for each model-

specific objective function, we fit the MKL model using a quadratic approximation [35, 36]. 

Second, pathways are likely to have both within- and between-pathway correlation, and the 

pathways may overlap; we choose penalizations that behave reasonably in the face of 

correlation, and formulate the problem to allow for pathway overlap. Third, including many 

pathways and many variables within each pathway can yield models that are difficult or 

time-consuming to fit, and we propose several strategies for balancing the allowable model 

complexity and computation time. We select kernel tuning parameters marginally based on 

pre-existing KM pathway score tests. We use kernel PCA to reduced the number of terms in 

the model associated with each pathway. For the semiparametric AFT model, we replace the 

non-smooth rank-based objective function with a smoothed version. Implementation of the 

entire procedure is provided in the R package survivalMKL, available from the authors on 

request.

The rest of this paper proceeds as follows. In Section 2, we derive our methods for a general 

survival modeling framework with a convex objective function L0 and propose the use of 

quadratic approximation for easy computation; a step-by-step outline of the method, 

including details of tuning, is provided in subsection 2.4. In Section 3, we illustrate these 

methods for (i) the Cox model, with L0 being the log partial likelihood; and (ii) the AFT 

model, with L0 being the smoothed Gehan objective function. We demonstrate the procedure 

under these two models in simulation (Section 4), and provide a data analysis application to 

two cancer gene expression data sets (Section 5). Concluding remarks are in Section 6.
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2. Approach with a General Objective Function

Let T denote the survival time, d the pd × 1 vector of clinical covariates, and z the pz × 1 

vector of genomic measurements. Due to censoring, for T, we observe X = min{T, C} and Δ 

= I(T ≤ C), where the censoring time C is assumed to be independent of T given w = (d⊤, 
z⊤)⊤. The observed data consist of n independent and identically distributed (iid) random 

vectors, 𝒪 = {(Xi, Δi, wi
⊤): i = 1, …, n}. We assume that the genomic covariates z are grouped 

into M pathways, where for m = 1, ..., M; gm ⊂ {1, ...., pz} denotes the indices 

corresponding to the mth pathway; and zgm denotes the vector of genes belonging to the mth 

pathway. These sets of indices overlap when pathways overlap.

2.1. Kernel Machine Modeling

Suppose the overall effect of w on survival can be summarized through

μ(θ0, h) = θ0
⊤d + h1(zg1

) + ⋯ + hM(zgM
) = θ0

⊤d + h•(z) (1)

where θ0 ∈ ℝpd, h = (h1, . . . , hM), and the hm(·) are centered, smooth functions quantifying 

the pathway effect for the mth pathway for m = 1, . . . , M. We write h•(z) as shorthand for 

the sum of the hm(zgm). Here, for simplicity, we assume the clinical covariate effects are 

linear, assuming that proper transformations have been applied to make this assumption 

reasonable; however, the method can easily accommodate nonlinear covariate effects similar 

to those for zgm. We assume that each hm ∈ ℋKm, the Hilbert space generated by some 

positive definite kernel Km(·, ·; ρm). A kernel Km is a measure of similarity between two 

vectors of genomic measurements from two people — e.g., zgm,i and zgm,j — and may 

depend on a possibly unknown scaling parameter ρm. Different choices of kernel K yield 

different collections of possible functions h(·) ∈ ℋK. For example, the linear kernel 

K(z1, z2) = z1
⊤z2 allows linear functions h(z) = β⊤z. To allow for complex nonlinear effects, 

one may consider the Gaussian kernel, defined by K(z1, z2; ρ) = exp(−||z1 − z2||2/ρ); the 

resulting function space ℋK is generated by the radial basis functions. For notational 

simplicity, we will suppress ρ from K, but will discuss selection of ρ when needed.

Suppose a proper convex objective function denoted by L0(θ0, h), such as a partial 

likelihood function, exists for estimating the unknown parameters. When the pathways are 

disjoint, it is reasonable to assume the spaces {ℋK1, ..., ℋKM} are linearly independent, in 

which case the overall effect of all the pathways h• has a unique decomposition h• = h1 + · · · 

+ hM for hm ∈ ℋKm, and we may obtain estimators for (θ0, h) by minimizing a penalized 

objective function

L(θ0, h) = L0(θ0, h) + τ2 ∑
m = 1

M
‖hm‖ℋKm

2
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where ||h||ℋK is the norm of h in ℋK and τ is a tuning parameter. The ℋK-norm of h 
quantifies the smoothness of h, with smaller values reflecting a smoother function. To 

leverage pathway structure and enable pathway selection, we take a MKL approach and 

further penalize L0(θ0, h) by the sum of the norms of the hm:

L0(θ0, h) + τ2 ∑
m = 1

M
‖hm‖ℋKm

2 + ∑
m = 1

M
λm‖hm‖ℋKm

. (2)

Each λm is a tuning parameter associated with the mth pathway. Depending on the tuning 

parameters λm, this penalty can have the effect of setting some pathway effects to 0. This 

double penalty on the norms of the functions hm produces a group adaptive elastic net type 

of penalty, and thus we expect it to provide good estimation and feature selection 

performance when those features are not independent, which is typically true of pathways 

[37].

When the pathways overlap, we may not be able to assume that h• can be uniquely 

decomposed into a sum of hm ∈ ℋKm, particularly when using kernels with finite 

dimensional bases, such as the linear kernel. In this setting we may proceed as Jacob et al. 

[23] do when implementing GLASSO with overlapping groups. They note that when 

standard linear effects GLASSO is applied when the groups overlap, if one group has 

coefficients set to 0, all variables in that group have coefficients set to 0 even if they also 

belong to another group. In the context of biological pathways, this is undesirable: for 

example, an important gene may belong to many pathways, but if one pathway is eliminated, 

the effect of that gene is set to 0 in all pathways. To resolve this issue, Jacob et al. [23] 

introduce an extension of the GLASSO penalty that allows the total effect of a gene to be 

allocated across the pathways the gene belongs to, introducing into the penalty an infimum 

across all possible allocations to make the representation well-defined. Implementation is 

achieved by duplicating columns in the design matrix when genes occur in multiple 

pathways and applying the classical GLASSO for non-overlapping groups to this augmented 

design matrix. We propose to use an analogous penalty in the MKL setting, minimizing:

LMKL(θ0, h) = L0(θ0, h) + inf
h∼ ∈ 𝒞h•

τ2 ∑
m = 1

M
‖h

∼
m‖ℋKm

2 + ∑
m = 1

M
λm‖h

∼
m‖ℋKm

where Ch• = {h̃ = (h̃1, . . . , h̃m) : h̃m ∈ ℋKm, 

𝒞h•
= {h∼ = (h∼1, …, h

∼
m):h

∼
m ∈ ℋKm

, ∑m = 1
M h

∼
m(zgm

) ≡ h•(z)}.

In Lemma 1 in the Web Appendix in the Supplementary Material, we mimic the proof of the 

representer theorem [38] as given in Scholkopf and Smola [5] to argue that for any θ0, the 

minimizers (ĥ1, . . . , ĥM) of LMKL(θ0, h) take a dual form hm(z) = ∑i = 1
n αmiKm(z, zi). Using 

the dual representation, the vector ĥm = (ĥm(z1), . . . , ĥm(zn))⊤ = mαm, where m is the 
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matrix with (i, j)th entry Km(zi, zj), and ‖hm‖ℋKm

2 = αm
⊤𝕂mαm. Thus, we may rewrite LMKL 

with some abuse of notation as a function of α = (α1
⊤, …, αM

⊤ )⊤ and θ0 :

LMKL(θ0, α) = L0(θ0, α) + inf
α∼ ∈ 𝒞α

τ2 ∑
m = 1

M
α∼m

⊤𝕂mα∼m + ∑
m = 1

M
λm α∼m

⊤𝕂mα∼m (3)

where 𝒞α = {α∼: ∑m = 1
M ∑i = 1

n α∼miKm(z, zi) ≡ ∑m = 1
M ∑i = 1

n αmiKm(z, zi)}. We may further 

rewrite this by employing a spectral decomposition for m. If we let the eigenvalues and 

associated eigenvectors of m be η̂
ml and ζ̂ml respectively, for l = 1, . . . , n, where we 

assume that η̂m1 ≥ · · · ≥ η̂
mn and that the ζ̂ml are orthogonal with norm 1, then we may write 

𝕂m = 𝔹∼m𝔹∼m
⊤, where 𝔹∼m = ηm1ζ m1⋯ ηmnζ mn . Then ĥm = 𝔹̃

mθm, where θm = 𝔹∼m
⊤αm, and 

letting θ = (θ0
⊤, θ1

⊤, …, θM
⊤ )⊤, LMKL(θ0, α) may be rewritten, again with some abuse of 

notation, as:

LMKL(θ) = L0(θ) + inf
θ
∼ ∈ 𝒞θ

τ2 ∑
m = 1

M
θ
∼

m
⊤θ

∼
m + ∑

m = 1

M
λm θ

∼
m
⊤θ

∼
m . (4)

where the infimum is once again taken over the set of θ̃ that keep the resulting sum of 

functions h• fixed and L0(θ) is the objective function derived under the model with design 

matrix (  𝔹̃
1 ...𝔹̃

M), where  denotes the n × pd matrix whose rows are the di.

For computation, because the internal infimum in (3) is taken over θ̃ which keep L0(θ) fixed, 

we may proceed as Jacob et al. [23] and directly minimize:

LMKL(θ) = Lτ(θ) + ∑
m = 1

M
λm θm

⊤θm, Lτ(θ) = L0(θ) + τ2 ∑
m = 1

M
θm

⊤θm . (5)

2.2. Kernel PCA

One motivation for using a KM approach is to gain power to detect signal in the data by 

leveraging the correlation structure; however, each αm in (3) has n components, so by using 

KMs, we have introduced a large number of parameters, which may cause a loss in power. 

Reparametrizing in terms of the θm does not fix this problem because each θm also has n 
components, but this parametrization leads to a natural strategy for dimension reduction, 

known as kernel PCA [39, 40]. Specifically, each space ℋKm is spanned by a set of 

orthonormal eigenfunctions ζml(·) and any function hm ∈ ℋKm may be written in its primal 

representation, hm(z) = ∑l = 1
𝒥m θml ηmlζml(z), where ηm1 ≥ ηm2 ≥ · · · are the eigenvalues 

corresponding to ζm1, ζm2, . . ., and m may be infinity. If the eigenvalues decay quickly, 
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hm(z) can be well-approximated by a truncated sum hrm
(z) = ∑l = 1

rm θml ηmlζml(z) for some 

reasonably small rm. Moreover, it has been shown that the eigenvalues and eigenvectors of 

the kernel matrix m calculated on the observed data can be used to consistently estimate 

the underlying true eigenvalues and eigenfunctions of ℋKm (evaluated at the data points) 

[39, 40]. Thus, by estimating the coefficients θm, we are estimating hm in its approximate 

primal form, and when the eigenvalues decay quickly, we may not lose much information by 

estimating hm using only the first rm eigenvectors of the kernel matrix m, where rm is the 

smallest number for which ∑i = 1
rm ηmi/∑i = 1

n ηmi ≥ 𝔭 for a prespecified fraction . Ideally, the 

included eigenvectors encode aspects of maximal variability in the data, while the excluded 

eigenvectors capture noise.

We propose to use this kernel PCA approximation in our method in order to greatly reduce 

the number of unknown parameters being estimated, and hence improve both the estimation 

and computational efficiency. Writing the truncated matrices 

𝔹∼mrm
= ηm1ζ m1⋯ ηmrm

ζ mrm
, we replace m by 𝕂mrm

= 𝔹∼mrm
𝔹∼mrm

⊤  in (3). For notational 

simplicity, we will proceed, with our final abuse of notation, writing the objective function 

as LMKL(θ) and the parameter as θ, but we keep in mind that each 𝔹̃
m may be replaced by 

its approximation 𝔹 ̃
mrm, and that the associated θm may be length rm; note that we recover 

𝔹 ̃
m and m by taking  = 1, so that the kernel PCA formulation is in fact simply more 

general.

Once the model is fit, we may calculate a risk score for a new patient with covariates 

w0 = (d0
⊤, z0

⊤)⊤ using the Nyström approximation method [41] which essentially uses the 

kernel to “project” these new covariate values onto the basis functions estimated in kernel 

PCA. Specifically, the risk score for the future subject is

μi(θ) = θ0
⊤d0 + ∑

m = 1

M
∑

ℓ = 1

rm
θmℓ𝕂mz0

⊤ ζ mlηmℓ
− 1

2 (6)

where Kmz0= (Km(z0, z1), . . . , Km(z0, zn))⊤ and θ̂mℓ is the ℓth entry of the vector θ̂m.

2.3. Least Squares Approximation

The penalty in (4) is equivalent to the GLASSO penalty — or more precisely, the group 

elastic net penalty. The equivalence between MKL and the GLASSO is described in detail in 

Bach [32], and fitting the MKL model with the linear kernel and no kernel PCA is a 

reparametrization of the GLASSO. Methods for fitting a model with the GLASSO penalty 

have been worked out for linear and logistic regression [19, 21, 23]. Rather than developing 

the machinery to minimize (4) for specific functions L0(θ), we propose to approximate 

Lτ(θ) via a quadratic approximation similar to those proposed in Wang and Leng [35] and 

Zhang and Lu [36]. Specifically, we may show that minimizing LMKL(θ) is equivalent to 
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minimizing Q(θ) = 1
2(θ − θ

∼)⊤L̈τ(θ∼)(θ − θ
∼) + ∑m = 1

M λm θm
⊤θm, where θ̂ = argminθLτ(θ), for Lτ 

(θ) defined in Equation (5), and L̈τ (θ) = ∂2Lτ(θ)/∂θ∂θ⊤. This minimization may be done 

using existing software for the GLASSO for linear regression applied to pseudodata: letting 

L̈τ(θ∼) = X∼pseudo
⊤ X∼pseudo, and Ỹpseudo = X̃

pseudoθ̃, we have 

Q(θ) = 1
2(X∼pseudoθ − Y∼pseudo)⊤(X∼pseudoθ − Y∼pseudo) + ∑m = 1

M λm θm
⊤θm, a standard least 

squares formulation. Minimizing Q(θ) will result in an estimator θ̂ where some pathways 

may have all coefficients set to 0. We could then use θ̂ as our estimate of θ, or we could 

iterate the procedure, restricting the data to the retained pathways to re-estimate θ̃, and then 

repeating the least squares approximation, potentially repeating until the collection of 

pathways has stabilized.

2.4. Step-by-Step Description of the Survival MKL Procedure

In this section, we describe in detail the steps of our proposed procedure, including 

information about how we choose tuning parameters. We assume that we have a data set 

with survival outcomes, genomic measurements, and (perhaps) clinical covariates to be 

included in the model; we call this the training data. We may also have a validation data set 

with the same structure, to be used to evaluate our survival model. We select a model of 

interest – methods for the Cox model and the AFT model are described in Section 3 and 

supported in the R package survivalMKL. We identify a collection of pathways of interest: 

these would preferably be candidate pathways thought to be relevant for a particular disease 

based on prior disease studies or basic science research. In the absence of such prior 

information, a pathway database such as the Biocarta database, available on mSigDB, could 

be used [1]. We also select a kernel of interest to model each pathway. Researchers may use 

subject matter knowledge to decide on which kernel best captures similarity in their data, or 

be guided by the scope of signals they wish to consider (e.g., linear or nonlinear). Here, 

since we focus on gene expression data, we recommend using the Gaussian kernel, which 

through its tuning parameter can be used to flexibly capture different sorts of linear and 

nonlinear effects. Other types of genomic data have other natural kernel choices – for 

example, the identity-by-state kernel has been used frequently for genotype data.

We next provide a step-by-step description of our proposed survival MKL prediction 

procedure.

1. Optional marginal pathway screening. If a small number of candidate 

pathways (e.g., 5–20) have been identified in previous studies, no preliminary 

pathway screening needs to be done. However, if the number of candidate 

pathways is moderate or large (e.g., over 30) or a pathway database is used, and 

if it is reasonable to hypothesize that the number of pathways related to survival 

is much smaller than the total number of pathways under consideration, 

pathways should be screened for their potential to improve risk prediction. This 

screening step can both improve computation time of the method and risk 

prediction accuracy of the final model. The screening can be performed based on 

KM tests that provide a p-value for the association between a given pathway and 

the outcome. The p-value threshold for significance should not be overly 
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stringent and could be based on the nominal p-value, or based on maintaining a 

desired false discovery rate [42]. In our numerical studies when 30 pathways are 

under consideration, and in our data examples where 32 and 217 pathways are 

under consideration, we perform this step and we retain any pathway with 

nominal p-value < 0.05.

2. Building the design matrix. For each pathway, we construct the kernel matrix 

m = m(ρm) (where selection of ρm is described below) and perform kernel PCA: 

we find 𝔹̃
m such that 𝕂m = 𝔹∼m𝔹∼m

⊤, and then truncate 𝔹̃
m to 𝔹̃

mrm, where rm is the 

smallest number of eigenvectors whose eigenvalues account for  of the total 

eigenvalue sum; we find  = 0.90 provides a nice balance of dimension reduction 

and relevant feature retention. Then, we construct the design matrix by column 

concatenation: 𝕎̃ = (  𝔹̃
1r1 𝔹̃

2r2 · · · 𝔹̃
MrM) = (  𝔹̃)

3. Finding a preliminary ℓ2-penalized coefficient estimate. We next find a 

preliminary estimate θ̃ that relates the design matrix 𝕎̃ to survival by minimizing 

ℒτ(θ). The least squares approximation method relies on a preliminary 

consistent estimate of the coefficient vector, so in practice, rather than tune τ, we 

have found it sufficient to choose a value of τ that is large enough that the model 

fits without overshrinking the coefficients too much towards the null. We 

accomplish this by requiring the effective degrees of freedom to be a particular 

value – we find that df(τ) = 0.9 min {∑i = 1
n Δi, pz} works well in practice, where 

df(τ) = pD + tr 𝔹∼⊤𝔹∼ 𝔹∼⊤𝔹∼ + nτ2I
−1

.

4. One-Step MKL fit. We use the preliminary estimator θ̃ to construct Q(θ) 

defined in Section 2.3, and minimize it with respect to θ.We set the pathway-

specific tuning parameters λm in Q(θ) to be λm = λ
rm

‖θ
∼

m‖2
, where ‖θ‖2 = θ⊤θ. 

This choice of λm mimics the choice typically used in adaptive procedures, such 

as the AENet, wherein feature-specific tuning parameters proportional to the 

inverse of a consistent estimator have been shown to give variable selection and 

estimation procedures desirable properties such as the oracle property [37, 43]. 

We find that λ is best chosen by (bootstrap) cross-validation (CV), using the 

unpenalized objective function ℒ0 as a model fit criterion. After λ is selected, 

we can find θ̂MKL = argminθQ(θ), which will have zero entries for the 

coefficients associated with any pathways that were eliminated by the choice of 

λ. At this point, we can stop: we have estimated the model coefficients, and can 

use them to estimate a risk score for a new patients through (6).

5. Optional Iteration of Steps 3 and 4. We also considered an iterative strategy, in 

which we exclude the pathways that were eliminated by the MKL step, and 

perform Steps 3 and 4 again, until the number of pathways retained is the same 

across two iterations.

Step 1 above employs a marginal KM score test for screening. KM score tests under the Cox 

and AFT models are available [12, 18]. Each test relates survival to a single pathway – 
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specifically, to a signal of the form θ0
⊤d + hm(zgm

)– and tests H0 : hm = 0, where hm ∈ ℋKm. 

For a particular kernel tuning parameter ρm, each test is based on a score statistic – say, 

𝒬̂
m(ρm). The distribution of 𝒬̂

m(ρm) under the null is approximated by perturbation 

resampling; thus, we could calculate, say, 𝒬m
∗ (1)(ρm), …, 𝒬m

∗ (B)(ρm) for some large number B 

to approximate the null distribution of 𝒬̂
m(ρm). The p-value for the test is ultimately 

estimated by pm(ρm) = # 𝒬m
∗ (b)(ρm) ≥ 𝒬m

obs(ρm) /B. To test across a range of kernel tuning 

parameters ρm, we can rely on a supremum statistic — for instance, Ŝm = supρmQ̂
m(ρm). To 

find its null distribution, we use the same perturbation resamples across the range of ρm, and 

calculate Sm
∗ (b) = supρm

𝒬m
∗ (b)(ρm), to get an approximate null distribution Sm

∗ (1), …, Sm
∗ (B)

to use to calculate p-values p̂m. Thus, for kernels that require tuning, these tests produce both 

a p-value for each tuning parameter ρ under consideration, which can be used to determine 

the values of ρ for which the data evinces the most evidence against the null, as well as a 

single summary p-value for the pathway that adjusts for the step of searching across the 

range of ρ. To determine the range of ρm, we choose the lower and upper bound such that 

the associated number of eigenvectors included to capture  = 0.90 of the eigenvalues, rm, is 

between 2 and max ∑i = 1
n Δi, pm , where pm is the number of genes in pathway m, which 

we find to be sufficiently flexible.

3. MKL under the Cox and AFT Models

3.1. Cox PH Model

The Cox PH KM model with M pathways assumes:

λi(t) = λ0(t) exp {θ0
⊤di + h1(zg1, i) + ⋯ + hM(zgM, i)}, i = 1, …, n

where λi(t) is the hazard that person i has an event at time t given their covariates wi and 

λ0(t) is a common baseline hazard function. Defining the usual counting and at risk 

processes Ni(t) = ΔiI(Xi ≤ t) and Yi(t) = I(Xi ≥ t), we can let Lτ(θ) be the penalized log 

partial likelihood function:

Lτ(θ) = ∑
i = 1

n ∫ θ⊤w∼i − log S(0)(θ, s) dNi(s) + τ2 ∑
m = 1

M
θm

⊤θm .

where the w̃i are the rows of the (transformed) design matrix 𝕎̃, 
S(k)(θ, s) = ∑l = 1

n Y l(s) exp (θ⊤w∼l)w
∼

l
⊗ k, and for any vector a, a⊗0 = 1, a⊗1 = a and a⊗2 = aa⊤. 

Then

L
.
τ(θ) = ∑

i = 1

n ∫ w∼i − S(1)(θ, s)
S(0)(θ, s)

dNi(s) + 2τ2𝔾θ
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and

L̈τ(θ) = ∑
i = 1

n ∫ S(2)(θ, s)
S(0)(θ, s)

− S(1)(θ, s) ⊗ 2

S(0)(θ, s)2
dNi(s) + 2τ2𝔾

where  is the diagonal matrix whose first pd diagonal entries are 0 and whose remaining 

diagonal entries are 1. KM testing for individual pathways can be done using the method 

developed in [12].

3.2. AFT model

The AFT-KM model with M pathways assumes:

log T i = θ0
⊤di + h1(zg1, i) + ⋯ + hM(zgM, i) + Ei, i = 1, …, n (7)

where Ei is an iid error term independent of wi = (di,
⊤ zi

⊤)⊤ with completely unspecified 

distribution. For this model, we can let Lτ(θ) be the penalized Gehan objective function:

Lτ(θ) = n−2 ∑
i = 1

n
∑
j = 1

n
Δi ∣ e∼ j(θ) − e∼i(θ) ∣+ + τ2 ∑

m = 1

M
θm

⊤θm (8)

where ẽi(θ) = log Xi − θ⊤w̃i. Unfortunately, this objective function is not twice 

differentiable, so our procedure does not directly apply. To remedy this, we perform a 

smoothing step, following reasoning similar to that in Brown and Wang [44]. Specifically, 

the gradient of Lτ (θ) is:

L
.
τ(θ) = n−2 ∑

i = 1

n
∑
j = 1

n
Δi(w

∼
i − w∼ j)I{e∼ j(θ) − e∼i(θ) > 0} + 2τ2𝔾θ (9)

where  is as defined above. The function L̇ has jumps because of the indicator function I(·), 

so to smooth L̇τ we could replace I{ẽj(θ) − ẽi(θ) > 0} by Φ
e j(θ) − ei(θ)

σn
 where Φ is some 

continuous cdf and σn is a bandwidth parameter. Here, we will take Φ to be the standard 

normal cdf, and use as a bandwidth σn = s.d.{e j(θ
∼)} × n

− 1
3 . We choose this bandwidth with 

under-smoothing to eliminate the potential bias induced by smoothing [45]. Our smoothed 

version of L̇τ is L
.
τ
sm:
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L
.
τ
sm(θ) = n−2 ∑

i = 1

n
∑
j = 1

n
Δi(w

∼
i − w∼ j)Φ

e j(θ) − ei(θ)
σn

+ 2τ2𝔾θ (10)

We can now take a further derivative:

L̈τ
sm(θ) = n−2 ∑

i = 1

n
∑
j = 1

n Δi
σn

ϕ
e∼ j(θ) − e∼i(θ)

σn
(w∼i − w∼ j)(w

∼
i − w∼ j)

⊤ + 2τ2𝔾 . (11)

Finally, we can check that L
.
τ
sm(θ) is the gradient of the smoothed Gehan objective function 

defined by:

Lτ
sm(θ) = n−2 ∑

i = 1

n
∑

j = 1

n
Δi {e j(θ) − ei(θ)}Φ

e j(θ) − ei(θ)
σn

+ σnϕ
e j(θ) − ei(θ)

σn
+ τ2 ∑

m = 1

M
θm

⊤θm .

KM testing for individual pathways can be done using methods in [18].

4. Simulation Studies

To assess the performance of the proposed procedure, we conducted simulation studies. All 

simulations are based on the tumor gene expression available from 522 ovarian cancer 

patients from TCGA, as accessible through the curatedOvarianData R package [46, 47]. 

In each simulation, patients were randomly partitioned into a training set of 372 and a 

validation set of 150. Gene expression values were used directly, so all between- and within- 

pathway correlation structures reflect those patterns in actual data. Survival outcomes were 

generated by simulation, according to models detailed below.

We considered settings with either 10 or 30 initial pathways; these pathways were selected 

from the Biocarta pathway database to represent features of that data set (with respect to 

pathway sizes and overlap). Three pathways were selected to be causal. For the set of 10 

pathways, pathway size ranged from 7 to 39 (median 17.5); the causal pathways were of size 

7, 16, and 23, and among the 168 genes involved in these pathways, 143 belonged to only 

one pathway, 20 belonged to two pathways, and 5 belonged to three. For the set of 30 

pathways, pathway size ranged from 9 to 36 (median 16); the causal pathways were of size 

12, 18, and 28; and among the 320 genes involved in these pathways, 222 were in one 

pathway, 58 were in two, and the remaining 40 genes were in three or more pathways (up to 

nine pathways).

We generated data according to the model

log T = h(zg1
, c1) + h(zg2

, c2) + h(zg3
, c3) + E,
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where E was generated from the extreme value distribution; for this choice of error, both the 

Cox and AFT models hold. The signal function h was selected as either the linear function 

h(z, c) = c1⊤z or the nonlinear function h(z,c) = c||z||. The constant c was selected to achieve 

a certain signal strength and to allocate that signal evenly across the genes in the pathway: 

that is, for a pathway with pm genes in it, we set cm = c0
2/ pm. For weak linear signal, we set 

c0 = 0.5; for strong linear signal, c0 = 1; for weak nonlinear signal, c0 = 3; and for strong 

nonlinear signal, c0 = 4. We generated censoring variables from a uniform distribution on [0, 

τ], where τ was selected in each simulation setting to produce approximately 50% 

censoring.

The methods we compare are:

• The MKL method, as outlined in Section 2.4, under each of the Cox and AFT 

models, using each of the Gaussian and linear kernels.

• The Cox AENet, with preliminary coefficients estimated using an ℓ2 penalization 

analogous to that done in Step 4 of the MKL procedure. The ℓ1 tuning parameter 

is estimated using cross-validation. The AENet assumes (sparse) linear effects 

and does not account for group structure; It is known to perform effective 

variable selection and estimation even in the presence of correlation among 

predictors.

• The Cox 1 KM method, which groups all the genes in the pathways together into 

a single pathway, and summarizes their signal using a single kernel. For this 

method we considered both the linear and Gaussian kernels; all tuning 

parameters ( , ρ, and τ) are selected analogously to Steps 2 and 4 of the MKL 

procedure.

Finally, we note that in the 10 pathway/168 gene setting, we apply the method without any 

pathway screening (i.e., we skip Step 1 in Section 2.4. In the 30 pathway/320 gene setting, 

we screen the pathways as described there, retaining those with nominal p < 0.05 for the 

MKL methods. We do the same screening for individual genes for the AENet method, 

retaining genes with individual marginal p < 0.05.

For each method, we built the model in the training data, and evaluated its prediction 

accuracy in the validation data by a C-statistic

Ct0
= P θ0

⊤di + h(zi) > θ0
⊤d j + h(z j) Ti > T j, T j < t0 ,

which captures how well the order of the associated risk predictions corresponds to the order 

of the true survival times during a pre-specified follow-up period (0, t0). The time t0 was pre-

selected as the 70th percentile of X. We estimate Ct0 using the nonparametric estimator 

proposed in Uno et al. [48]. Under each simulation configuration and each method, we 

present the average C-statistic across simulations; the variability in that C-statistic is 

quantified by the standard deviation across simulations. For the MKL methods, we also 

present the average number of pathways selected and the variability in that metric across 
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simulations. Results are based on 100 simulations run in each setting. Results for the linear 

settings are presented in Figure 1; results for the nonlinear settings are presented in Figure 2.

We will begin by commenting on performance aspects of the MKL methods; we will 

subsequently compare their performance to other existing methods. First, in all settings, the 

MKL step outperforms the initial ℓ2-penalized fit (labeled as “Preliminary”). This suggests 

that the MKL step of eliminating some unnecessary or redundant pathways improves the 

model, even when pathways are first screening marginally. Second, the model fit with one 

MKL step and the model fit by iterating the MKL fit until the number of pathways 

converges produce models with similar performance. In fact, iterating can sometimes reduce 

prediction performance in the validation data. We suspect that this is because iteratively re-

estimating coefficients based on previous coefficient estimates could potentially proliferate 

errors in estimation or be more plagued by over-fitting than a single MKL fit. For example, 

this problem occurs most consistently with the AFT model fit using the Gaussian kernel – 

we suspect this is because estimation under the AFT is more variable (compared with the 

Cox model) at a given sample size, and because, particularly with a kernel with a tuning 

parameter and with iteration, the model is tuned and re-tuned using the training data and 

may be slightly over-fit. Thus, we recommend using the one-step fit – although iterating can 

reduce the number of pathways, it never improves prediction accuracy dramatically, and in 

some circumstances can make it worse.

The Cox model generally slightly out-performs the AFT model with slightly higher 

prediction accuracy based on fewer included pathways. The Gaussian kernel performs 

similarly to the linear kernel when the signal is linear and outperforms the linear kernel 

when the signal is nonlinear. For instance, under the Cox MKL method, when the signal is 

weak and linear, the linear and Gaussian kernels produce nearly identical C-statistics; when 

the signal is strong and linear, the linear kernel produces C-statistics of 80 and 86 when the 

number of pathways is 10 and 30, while the Gaussian kernel produces C-statistics of 79 and 

85, only a slight deflation. This is due to the fact that the Gaussian kernel approximates the 

linear kernel when ρ is large. When the signal is nonlinear, the Gaussian kernel’s C-statistics 

beat the linear kernel’s C-statistics by between 9 and 16 points. Thus, unless prior 

knowledge points to a preference for the AFT model or the linear kernel, we recommend for 

the MKL method using the Cox model with a Gaussian kernel summarizing each pathway 

effect.

Next, we compare the MKL method (focusing on the Cox One Step MKL with Gaussian 

kernel) to other competing methods (the AENet and the 1 KM methods). When the signal is 

linear, the AENet and the overall linear kernel models both perform quite well. The Cox One 

Step MKL beats them slightly when there are 10 pathways; this reflects a key benefit of the 

MKL approach — that it can take advantage of the grouping information to efficiently 

remove entire pathways of non-informative markers. When there are 30 pathways and the 

MKL and AENet methods are used after preliminary marginal screens, the AENet, as well 

as the overall linear KM method, beat the Cox MKL method slightly – though the 

differences noted here are at most 1 point. Interestingly, the overall Gaussian kernel 

underperforms in this setting, coming in at least a few points below the other methods. When 

the signal is nonlinear, the Cox MKL with Gaussian kernel handily beats the AENet and the 
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Overall Linear kernel methods, and continues to outperform the overall Gaussian kernel 

method by a similar margin as in the the linear setting. This demonstrates the potential for 

gain when leveraging pathway structure when the signal does arise from a small subset of 

specific pathways.

5. Data Examples

5.1. Data Example 1: Ovarian Cancer Gene Expression Study

Ovarian cancer is the tenth most common cancer among U.S. women, and the fifth leading 

cause of cancer death [49]. Many studies have sought to identify genes whose tumor 

expression is predictive of prognosis. We focus on the data set assembled for TCGA, as 

accessible through the R package curatedOvarianData, which has served as the basis for 

the simulations presented earlier [46, 47 ]. The outcome was progression-free survival, 

which was available for 522 individuals, with 372 selected at random for inclusion in the 

training data and 150 for inclusion in the validation data. In the validation data, models were 

assessed with the C-statistic for recurrence or death up through t0 = 5 years; this metric 

assesses how well the model can order the patients’ survival time during the first five years 

[48]. In the random partition used, 68% (67%) of women experienced progression or death 

in the training (validation) sets. Based on our findings from the simulation studies, we focus 

the KM-based analyses on the Gaussian kernel.

We approached this analysis agnostically, using the 217 pathways in the Biocarta database 

which were of sizes 6–85 genes (median 17 genes); a total of 1178 genes were involved in 

these pathways. Separately for the Cox and AFT models, we implemented the approach 

outlined in Section 2.4, performing a preliminary marginal test for each pathway based on B 
=10,000 perturbations, retaining those pathways with nominal p-value < 0.05, and then 

performing the MKL procedure. The results are presented in the upper panel of Table 1. 

When applying the MKL method under the Cox model, 44 pathways had marginal p-value < 

0.05, and 16 of these pathways were retained after the MKL step, comprising 211 genes; the 

C-statistic in the validation data was 61% (95% confidence interval [CI]: 54–67 %). The 

MKL method under the AFT model produced a smaller model with discrimination of 57% 

(95% CI: 50–64%) in the validation data. We compared these results with models that do not 

use information about the potential pathway structure of the gene expression values. A Cox 

model fit using a single kernel to summarize all 1178 genes had discrimination of 55% (95% 

CI 48–65%). For the Cox model fit with the AENet penalization, we first screened genes 

individually and found 99 genes with nominal p-value less than 0.05. These were allowed to 

enter the model fit with AENet penalization, which produced a final model with 49 genes 

that had a C-statistic in the validation data of 53% (95% CI 44–63%).

Although all CIs quoted here overlap, these results suggest that the Cox MKL method 

performs quite well relative to other methods. The improvement in C-statistic of KM-based 

methods over the AENet could indicate that the pathways contain many genes with small 

effects rather than a few genes with large effects, which could be more easily picked up by 

the AENet. The MKL methods have the added benefit of being potentially more 

interpretable than a single KM model, if the selected pathways are meaningful to scientists; 

they also include fewer genes, which could be helpful in downstream development of tools 
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with clinical applicability. The pathways selected by the MKL Cox model are provided in 

the Web Appendix.

5.2. Data Example 2: Breast Cancer Gene Expression Study

In breast cancer, gene expression signatures have begun to be used to help doctors better 

predict risk of recurrence among patients, but a majority of early-stage breast cancer patients 

are given adjuvant therapy in addition to local treatment, even though this additional therapy 

has some negative side-effects and is believed to benefit only a small fraction of these 

patients [50]. Identifying more predictive biomarkers of aggressive tumors could help 

doctors better identify patients who could potentially avoid adjuvant therapy. We sought to 

build models predicting recurrence-free survival. We trained each model among 286 lymph 

node negative patients from the study described in Wang et al. [51]. A total of 107 deaths or 

recurrences were observed, so that 63% of observations were censored. We evaluated model 

performance in an independent set of 119 lymph node negative patients with gene 

expression assessed on the same chip [52]. The validation set had 27 deaths or recurrences, 

and thus 77% censoring. We assessed the accuracy of each model in the validation data 

using the C-statistic for recurrence up through t0 = 5 years and calculated 95% CIs [48], and 

all KM-based methods were implemented with the Gaussian kernel.

Here, we consider the 32 candidate pathways considered individually in [18]; these 

pathways ranged in size from 7 to 238 genes, with a median size of 23.5; a total of 788 

genes were involved in these pathways. We performed the approach described in Section 

2.4, performing a preliminary marginal test for each pathway based on B =10,000 

perturbations, retaining those pathways with nominal p-value < 0.05, and then performing 

the MKL procedure separately for the Cox and AFT models. The results are presented in the 

lower panel of Table 1. We compared results with methods using only a single kernel to 

summarize all 788 genes under the Cox model, and the AENet-penalized Cox model, fit 

among genes with marginal p-value less than 0.05.

The top performing methods in this analysis were the MKL methods under either the Cox or 

the AFT model: for the Cox model, 22 pathways had marginal p-value < 0.05, 17 of these 

were retained after the MKL step comprising 517 genes, and the C-statistic in the validation 

data was 72% (95% CI: 60–84 %). For the AFT model, 23 pathways had marginal p-value < 

0.05, but none were removed in the MKL step, resulting in a model based on 616 genes with 

a C-statistic of 72% (95% CI: 61–84%). The Cox model using a single Gaussian kernel, 

ignoring the pathway structure, had a C-statistic of 70% (95% CI: 55–85%), while the 

AENet-penalized model, which included 61 genes selected from the 131 genes with 

marginal p-value less than 0.05, had a C-statistic of 67% (95% CI: 54–80%).

As in the Ovarian cancer example, the CIs quoted here overlap; however, the results again 

suggest that the MKL method under the Cox model with the Gaussian kernel produces a 

more interpretable model with potentially better prediction performance than other methods, 

based on a smaller number of genes. The pathways selected by this model are provided in 

the Web Appendix.
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6. Discussion

In this paper, we proposed KM-based procedures to build risk prediction models by 

selecting and combining information from multiple pathways. By taking a pathway-based 

approach, we take advantage of pre-existing biological knowledge and privilege groups of 

genes believed to work together. By working with flexible kernels such as the Gaussian 

kernel, we can capture both linear and nonlinear effects well. In settings where disease 

progression operates through dysregulation of key pathways, building a pathway-level risk 

prediction model could be more meaningful and interpretable than gene-level models. Such 

models could also be more predictive of prognosis if the pathways are composed of many 

genes with small effects; if different subsets of genes in a pathway are dysregulated in 

different groups of patients; or if there are indeed substantial complex, nonlinear effects of 

genes on outcome. On the other hand, in settings where the underlying signal is sparse, with 

only a few genes associated with survival, gene-level models assuming linear effects, such as 

the AENet, may perform better. It would be interesting to extend our proposed procedure to 

allow for feature selection under the KM framework, such as that discussed in Allen [53]. 

Such an extension could potentially gain some parsimony benefits enjoyed by methods such 

as the hierarchical lasso [25], while allowing for potentially nonlinear, complex effects.

The model as currently formulated assumes that effects are additive across pathways, but it 

would be interesting to extend the method to incorporate interactions between pathways via 

approaches such as tensor kernel regression [54, 55]. Additionally, the current 

implementation focuses on modeling pathway effects using the Gaussian kernel which we 

find works well in practice for gene expression data, but clever kernel choices for other types 

of biological data and effective approaches for optimal kernel selection are key areas of 

future research.

We should note that the proposed method can be somewhat computationally intensive. To 

construct the design matrix 𝕎̃, KM score tests for each pathway are run to evaluate pathway 

significance and select tuning parameters (as needed); because the score tests rely on 

resampling, this step can take time, though it is highly parallelizable since the computations 

for each pathway can be carried out independently. After the design matrix is constructed, 

the MKL penalized fit is found with tuning parameters selected by cross-validation. This can 

also take time in settings where many pathways are included and many eigenvectors are 

selected to represent each pathway, but the cross-validation steps can also be parallelized to 

reduce runtime. For reference, on a 2017 Macbook Pro laptop, using no parallelization, 

under the simulation setting with nonlinear signal from 3 of 10 pathways, it took 2.4 minutes 

to build the design matrix for the MKL procedure under the Cox model with Gaussian 

kernel. That matrix ultimately included 130 columns, and the final MKL fit took an 

additional 42 seconds to run (including tuning parameter selection by cross-validation). By 

comparison, the AENet penalized Cox model took only 3 seconds to fit. In this setting, the 

MKL method produces a much better model, but it is certainly the case that incorporating 

the pathway structure and allowing for potentially nonlinear pathway effects estimated in a 

data-adaptive way comes at an increased computational cost.
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Our method is built on the premise that integrating prior biological knowledge about 

pathways or other gene groupings is useful. However, it is unclear to what extent pathways 

in existing databases are correctly specified or misspecified, nor is it clear what method of 

defining a gene set is best for an application like predicting risk from pathway gene 

expression in tumors. Pathway collections available in mSigDB include those based on 

position on the chromosome; gene ontology; observed changes when known cancer genes 

are perturbed experimentally; and curation from the literature. We have focused on 

collections of pathways in this last category, but it’s possible a different method of grouping 

genes might be more useful for risk prediction. Depending on which collection of pathways 

are used, certain genes may belong to no pathways. Such genes may either be excluded from 

consideration altogether, or included as pathways of size one. Better understanding of the 

relevant annotations and best practices for pathway building require further research.

When the goal is risk prediction, inclusion of relevant clinical covariates is important. In our 

formulation of the MKL method, clinical covariates may be included as linear effects in the 

risk score, which is likely sufficient for covariates such as age and gender. However, for 

other variables, such as treatment, this formulation may not be sufficient. For example, it 

may be the case that the effect of a biological pathway on survival may differ for patients 

undergoing different treatment regimes. Our model can be extended to allow for this 

possibility by including a treatment effect, a pathway effect, and a treatment-pathway 

interaction effect. How best to fit such a model when many pathways are under 

consideration is a direction of future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Presented are results for the simulation studies described in Section 4, in which the 

relationships between the three causal pathways and survival are linear. The upper panel 

assumes 10 pathways to start, and there is no screening of pathways or genes; the lower 

panel assumes 30 pathways to start, and begins by eliminating pathways with p-value > 0.05 

(MKL methods) or genes with p-value > 0.05 (Cox AENet method). The left and right 

panels differ based on the strength of the pathway signals. Presented are the estimated C-

statistics in a validation set, as well as the number of pathways included in the models for all 

MKL fits. Also compared are the Cox AENet fit, and KM fits that ignore pathway structure 

(labeled Cox 1 KM). Those KM-based models estimate a single h ∈ ℋK based on all the 

genes that make up the pathways. For the MKL methods, “Preliminary” refers to the initial 

ℓ2-penalized fit with all pathways (that survived screening, if there was a screening step); 

“One Step” refers to a single MKL step in which pathway selection and estimation is done; 

and “Converged” refers to the final model selected if the MKL step is repeated until the 

number of pathways retained stabilizes.
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Figure 2. 
Presented are results for the simulation studies described in Section 4, in which the 

relationships between the three causal pathways and survival are nonlinear. All methods and 

metrics are the same as those in Figure 1.
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Table 1

Results in real data examples. Methods compared are the MKL method using the Gaussian kernel under the 

Cox and AFT models; a single KM method ignoring the pathway structure using the Gaussian kernel under the 

Cox model; and a Cox model with AENet penalty. Presented are the number of pathways or genes that screen 

positive with nominal marginal p < 0.05; the number of pathways or genes included in the final model; and the 

estimated C-statistics in the validation set.

Ovarian Cancer Data Set — 217 Initial Pathways from Biocarta

Method Model Screen Positive Final Model C (Validation)

MKL
Cox 44 pathways 16 pathways/211 genes 61 (54, 67)

AFT 31 pathways 7 pathways/111 genes 57 (50, 64)

1 KM Cox 1178 genes 55 (48, 65)

AEnet Cox 99 genes 49 genes 53 (44, 63)

Breast Cancer Data Set — 32 Initial Candidate Pathways

Method Model Screen Positive Final Model C (Validation)

MKL
Cox 22 pathways 17 pathways/517 genes 72 (60, 84)

AFT 23 pathways 23 pathways/616 genes 72 (61, 84)

1 KM Cox 788 genes 70 (55, 85)

AEnet Cox 131 genes 61 genes 67 (54, 80)
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