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Abstract. Statistical factor analysis methods have previously been used to

remove noise components from high dimensional data prior to genetic asso-

ciation mapping, and in a guided fashion to summarise biologically relevant

sources of variation. Here we show how the derived factors summarising path-

way expression can be used to analyse the relationships between expression,

heritability and ageing. We used skin gene expression data from 647 twins from

the MuTHER Consortium and applied factor analysis to concisely summarise

patterns of gene expression, both to remove broad confounding influences and

to produce concise pathway-level phenotypes. We derived 930 “pathway phe-

notypes” which summarised patterns of variation across 186 KEGG pathways

(five phenotypes per pathway). We identified 69 significant associations of

age with phenotype from 57 distinct KEGG pathways at a stringent Bon-

ferroni threshold (P < 5.38 × 10−5). These phenotypes are more heritable

(h2 = 0.32) than gene expression levels. On average, expression levels of 16%

of genes within these pathways are associated with age. Several significant

pathways relate to metabolising sugars and fatty acids, others with insulin

signalling. We have demonstrated that factor analysis methods combined with

biological knowledge can produce more reliable phenotypes with less stochas-

tic noise than the individual gene expression levels, which increases our power

to discover biologically relevant associations. These phenotypes could also be

applied to discover associations with other environmental factors.

Keywords: Ageing; Factor analysis; Gene expression; Heritability; Linear Mixed Mod-

els

1. Introduction

Ageing is a multifactorial process, reflecting how the physical state of an organism

accumulates changes. Amongst these, we observe changes in gene expression. Microar-

rays and more recent RNA-seq technologies allow the simultaneous quantification of cell

population average mRNA abundance for thousands of genes. In the case of ageing,

consistent patterns of age-related changes in gene expression have been observed across

several tissues and species [Lu et al., 2004], such as over-expression of inflammation and

immune-response genes and under-expression of genes involved in energy metabolism in

older samples [de Magalhaes et al., 2009]. Given this commonality of function amongst
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genes which show age related changes in expression, we decided to investigate ageing de-

pendent gene expression in the context of biological knowledge on the function of genes,

as provided by pathway annotations.

Array expression experiments generate high dimensional structured data sets, in which

there are correlated patterns across large numbers of genes. Some of these are due to

known technical or biological effects such as batch effects and cell growth stage, which

when not the focus of the analysis can be removed by fitting them as covariates. However,

even after this, there is typically substantial structural correlation. In previous studies,

these can be represented by linear components of expression measurements, or factors,

that can be inferred using methods such as principal components analysis (PCA) or factor

analysis [Leek and Storey, 2007, Parts et al., 2011]. When the aim is to discover local

effects, such as cis genetic regulation, the resulting factors can be treated as nuisance

variables and removed from further analysis. This has been seen to increase power in

analysis [Pickrell et al., 2010]. Conversely, if the aim is to differentiate between a case

and control condition using expression, then factors viewed as global phenotypes could be

more effective classifiers than local phenotypes [Hastie et al., 2000].

Recently we applied factor analysis methods in a two stage procedure to generate phe-

notypes representing expressions of groups of genes [Stegle et al., 2012]. After regressing

out global factors, as in Parts et al. [2011], expression levels for groups of functionally

related genes, as defined by annotations from pathway databases, were treated as new

expression datasets and the same factor analysis methods were used to construct pathway

factors. The factors constructed on pathway sets of genes were taken as concise summaries

of common expression variation across each pathway. We test these factor values below as

phenotypes, and so refer to them as phenotype factors or, in some cases, just phenotypes.

Here, we apply this method to gene expression data from abdominal skin tissues from

647 samples. Unlike previous studies which have concentrated on genetic variants which

regulate multiple genes within a pathway [Stegle et al., 2012], we focus here on discovering

associations between gene expression and age. We obtain our pathway gene sets from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [Kanehisa et al., 2004].

Subsequently, by looking for associations between these new pathway phenotypes and

age, we discover groups of functionally related genes with a common response to ageing

which can be used as biomarkers describing molecular changes with age.
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With data from a twin cohort containing both monozygotic and dizygotic twins, we

can estimate proportions of variance explained by age, genetic variation, common envi-

ronmental variation, and unique environmental variation (noise). Stochasticity in gene

expression, which will form part of the unique environment component, is believed to play

a role in the ageing process [Bahar et al., 2006]. By investigating sources of variation

within the pathway phenotypes, we find that they are more robust than the expression

of individual genes, with less unique environment variation. This explains some of our

success at discovering associations with age.

2. Methods

2.1. Expression profiling. The data analysed here are part of the MuTHER project

(Multiple Tissue Human Expression Resource - http://www.muther.ac.uk/, [Nica et al.,

2011]) and were downloaded from the ArrayExpress archive, accession no. E-TABM-1140.

In summary, the study included 856 Caucasian female individuals (336 monozygotic (MZ)

and 520 dizygotic (DZ) twins) recruited from the TwinsUK Adult twin registry [Moayyeri

et al., 2012]. The age at sampling ranged from 39 to 85 years with a mean age of 59 years.

Punch biopsies (8mm) were taken from relatively photo-protected infra-umbilical skin.

Subcutaneous adipose tissue was dissected from each biopsy and the remaining skin tissue

was weighed and stored in liquid nitrogen. Expression profiling of this skin tissue was

performed using Illumina Human HT-12 V3 BeadChips where 200ng of total RNA was

processed according to the protocol supplied by Illumina. All samples were randomised

prior to array hybridisation and the technical replicates were always hybridised on different

beadchips. Raw data were imported to the Illumina Beadstudio software and probes with

fewer than three beads present were excluded. Log2-transformed expression signals were

then normalised separately per tissue with quantile normalisation of the replicates of each

individual followed by quantile normalisation across all individuals as previously described

[Grundberg et al., 2012]. Post-QC expression profiles were subsequently obtained for 647

individuals. The Illumina probe annotations were cross-checked by mapping the probe

sequence to the NCBI Build 36 genome with MAQ [Li et al., 2008]. Only uniquely mapping

probes with no mismatches and either an Ensembl or RefSeq ID were kept for analysis.

Probes mapping to genes of uncertain function (LOC symbols) and those encompassing

a common SNP (1000G release June 2010) were further excluded, leaving 23,555 probes

used in the analysis.
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Box 1: Modelling

We model phenotype yi of individual i (age Ai) as follows:

yi = µ+ αAi + βi + γi + εi, βi ∼ N(0, σ2
FAM )(FULL)

γi ∼ N(0, σ2
MZ)

εi ∼ N(0, σ2)

yi = µ+ βi + γi + εi, βi ∼ N(0, σ2
FAM )(NULL)

γi ∼ N(0, σ2
MZ)

εi ∼ N(0, σ2)

To correctly model the twin structure we enforce that βi = βj when i and j are

twins, and γi = γj when i and j are monozygotic twins (capturing the increased

genetic correlation of monozygotic twins).

From the full model we can define heritability (h2), proportion of environmental

variance explained by age (ρa) and the proportion of variance explained by the unique

environment (ρe) as:

h2 =
2σ2

MZ

σ2
FAM + σ2

MZ + σ2 + α2
i var(Ai)

pa =
α2
i var(Ai)

σ2
FAM − σ2

MZ + σ2 + α2
i var(Ai)

pe =
σ2

σ2
FAM + σ2

MZ + σ2 + α2
i var(Ai)

2.2. Gene expression pathway factors. In a two step approach, factor analysis meth-

ods were first used to discover patterns of common variation across the entire dataset.

The software package PEER [Parts et al., 2011] was applied using the default settings

and using technical measurements (experimental batch, RNA quality and concentration)

as covariates to create 5 global factors, which in total explained 35.7% of the variation

in the dataset. For each individual, a factor is a weighted sum of all the gene expression

measurements of that individual. The weights are chosen so that the factors iteratively
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explain the maximum amount of variation in the dataset subject to certain prior assump-

tions; these factors produce concise summaries of consistent patterns of expression for

large numbers of genes.

We then used KEGG pathway annotation (186 pathways) as prior information to group

genes into pathways. This allows inference of PEER factors for each pathway that we refer

to as phenotype factors, in contrast to the global factors previously described. As before,

these factors are weighted sums of gene expression measurements, but in this case only of

genes within the pathway. Since global factors have been removed from the dataset prior to

calculation of phenotype factors, these factors are unlikely to capture global effects on gene

expression, but instead pathway specific patterns of expression. If a large enough module

of genes within the pathway is co-expressed then one factor will capture the same pattern

of co-expression across individuals. Equally, groups of genes could show opposite patterns

of expression; this antagonistic gene expression can also be reflected as a factor value which

correlates across individuals with one set of genes and is anti-correlated with the other

set of genes. Individual genes can contribute positively or negatively to the weighted sum

(indicated by the sign of the corresponding weight), meaning that a positive correlation

between age and phenotype factor can be induced by negative correlations with individual

genes.

We grouped the expression data set into 186 pathway subsets. For each pathway we

created five pathway phenotypes using PEER with the default settings. We consider

the learnt pathway factor values across individuals as five new phenotypes which can be

investigated for associations with age. An alternative strategy would be to choose different

numbers of factors based on the cumulative amount of variance explained. For the sake of

simplicity and as a proof of principle, in this analysis we chose to use five factors as they

explained a substantial amount of the variance in expression (17.5%) without too large a

multiple testing burden. The sixth factor on average would have explained 2.2% more of

the variance.

2.3. Pathway factor and phenotype association. Association tests were performed

using the linear mixed models defined in Box 1: i) between each pathway factor and

chronological age, and ii) between single genes and chronological age . These models have

been implemented by the lme4 package [Bates et al., 2014] in R [R Core Team, 2013]. For

each phenotype a likelihood ratio test of the full model, which includes the age term, and

the null model (without modelling age) was used to assess evidence for an age effect. P
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values produced by this analysis were assessed for significance allowing for multiple testing

using a Bonferroni adjusted threshold. Permuted datasets were created which maintained

the twin structure by permuting singletons, dizygotic and monozygotic twins separately

and ensuring that twin pairs were kept together.

Significant associations between phenotype factors and age were further investigated to

trace the particular genes within the pathway driving the signal. We report genes with a

Bonferroni significant P value which accounts for the number of genes within the pathway

that was tested.

2.4. Heritability analysis. To compute heritability, the proportion of environmental

variance explained by age, and the proportion of variance explained by unique environ-

ment, we fitted the full model from Box 1. Then the genetic component to variation was

estimated as twice the additional correlation of MZ twins relative to DZ twins. The envi-

ronmental component to the phenotype was the sum of the contribution from the fixed age

effect, the random noise term, and the shared environmental component, again estimated

from the difference between MZ and DZ. Estimates of these proportions are constrained

to lie between 0 and 1 inclusive.

2.5. Single-gene based pathway enrichment analysis. We compared the significant

pathways found by our factor analysis methods to those found by looking for enrichment

of single gene associations with age. Firstly we tested each gene for association with age

using the methods described in Box 1 and produced a list of Bonferroni significant genes

P< 0.05 (this list contained 682 differentially expressed genes). For each pathway, we ap-

plied a Fisher’s exact test to infer whether the proportion of significantly associated genes

within the pathway was greater than would be expected by chance. We also investigated

whether using an FDR cut-off for significant age associations would produce more signif-

icant pathways or power would be diluted by including too many false positives. When

re-running the analysis using a less stringent threshold (3,487 genes were associated with

age with FDR< 0.05) we found fewer significant pathways, and results correlated less well

with the results of the factor based analysis (Spearman correlation of 0.36 (P=5.1×10−7)

compared to 0.49 for Bonferroni, P=2.1 × 10−12). A complete list of all significant single

gene age associations (FDR< 0.05, 3,487 genes), with estimate of effect size and direction,

can be found in Supplementary File 1.
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3. Results

The first stage of the analysis was to remove the effect of both known and unknown

nuisance variables from the gene expression data. Using PEER software, we estimated

five global factors which explained 35.7 % of the variation in the complete gene expression

data. As the aim of this analysis was to find pathway specific responses to ageing, we

treated these global factors as nuisance covariates and regressed these out of the data,

together with batch and RNA quality which are known experimental confounders. Data

were then divided into subsets of genes within 186 KEGG pathways that contained more

than 10 genes with probes in our dataset. For each pathway, five factors were estimated

using PEER as described above, which explained on average 17.5% of the residual variation

of all genes within this pathway after removing the global factors. For the 186 KEGG

pathways, this produced 930 phenotypes which were tested for association with age (see

Methods for details). In total, 69 significant associations (P < 5.38×10−5, the Bonferroni

adjusted threshold) from 57 distinct pathways were identified. The most significant 20

pathways are listed in Table 1, and a list of all 57 significant pathways can be found in

the Supplementary materials (Supplementary Table S1).

We also explored an alternative method for finding pathway related to ageing, looking

for enrichment in the number of significantly associated genes falling into a particular

pathway, analogous to the method used in the DAVID methodology [Huang et al., 2009].

This discovered a total of 7 significant pathways (Supplementary Table S2). Thus, apply-

ing factor analysis methods to discover significantly associated pathways uncovered eight

times as many hits. All pathways discovered by single gene enrichment methods were also

discovered using factor analysis. There is strong concordance between P values discovered

by the two methods (Spearman correlation = 0.49, P= 2.1 × 10−12). Figure 1 shows a

Q-Q plot of p values for both methods against the theoretical p values under the complete

null hypothesis. We see enrichment of significant P values for both methods, but this is

not present when analysing the permuted data with factor analysis methods (green dots).

This suggests that age plays a widespread role in the expression of these pathways.

To investigate which genes drove the significant pathway associations, we examined how

many genes within a significant pathway showed significant age associations (Table 1 and

Supplementary Table S1). On average 16% of genes within the pathways have P < 0.05

after adjusting for the number of genes in the pathway, with a minimum of 1 gene and
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maximum of 24. The proportion is similar between pathways of different sizes, in contrary

to the traditional pathway enrichment analysis, where there is bias towards large pathways.

Different KEGG pathways can contain overlapping sets of genes, as they can describe

related biological function. Because of this, our significant associations with age for differ-

ent pathways could be related due to a common underlying effect on a given set of genes.

To explore whether the observed age-associations are unique to their pathway, or common

to multiple pathways, we calculated the Spearman correlation between those phenotypes.

There are 24 pathway phenotypes with a correlation greater than 0.8 with at least one

other phenotype (Supplementary Table S3). These phenotypes frequently relate to me-

tabolism, and form a highly connected set (Supplementary Figure S1). We infer from this

that there could be a common effect of age acting on these phenotype factors. However,

these form only a minority of the phenotype factors with significant signal.

We next explored how different sources of variation in the different phenotypes anal-

ysed here affect our ability to discover age associations. We calculated the heritabilities,

the proportion of environmental variance explained by age, and the proportion of variance

explained by the unique environment (Box 1) for i) KEGG pathways, ii) global factors

(which we have treated as nuisance covariates) and iii) for individual genes (Figure 2,

global factor histograms are not shown as there are too few phenotypes). The relative

differences in sources of variation between global and pathway factors, and individual

genes are shown in Figure 3. We see that as we move away from local phenotypes (in-

dividual genes) to pathway phenotypes and then to global phenotypes, the proportion

of variation explained by unique environment decreases. This is because that there is a

stochastic component to each single gene’s expression: by taking a weighted average of a

number of genes, we average away this component. If all else were to remain constant,

this reduction in stochastic noise would simultaneously increase heritability (as the total

variance decreases), and boost the ability to discover associations with biological meaning,

such as age. We see in the first panel of Figure 3 that the relative contribution of unique

environment to pathway phenotypes is smaller than the contribution to genes. This also

partly explains the results shown in the second and third panels: a greater proportion of

variance is explained by age and genetic factors (heritability) for pathway factors than

individual gene measurements.

When considering global factors, as expected the unique environment is greatly reduced.

However, there is not a strong influence of ageing and heritability in this case is still
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moderate. This is likely because age and genetics do not act in a consistent way across large

sets of genes. Leek and Storey [2007] argued that global factors can capture experimental

noise and batch effects. This is consistent with our findings. Heritabilities and proportion

of variance explained by age for each pathway are reported in Supplementary Table S4.

We further looked for novel genetic associations with these pathway phenotypes, not

seen as single gene expression associations. However, this was unsuccessful despite the

increased heritability in pathway factors. This is likely due to the genetic architecture

of gene regulation. Genes are regulated both in cis, where a nearby variant effects the

expression of a single gene, and in trans, where a long range regulatory effect can hit mul-

tiple genes [Grundberg et al., 2012]. The genetics of pathway phenotypes is a combination

of cis effects on individual genes and trans effects, potentially affecting multiple genes in

the pathway. However, trans variants typically have much smaller effect size: the increase

in the reliability of pathway phenotypes is insufficient to compensate for the lower power

to discover trans effects. Thus, the only associations discovered were when single genes

loaded heavily enough on a pathway to indirectly reflect a cis association that could be

detected in a single gene test.

4. Discussion

We have seen that both the heritability and the proportion of environmental variance

explained by age is greater for pathway phenotypes than for individual genes. Consistent

with this, we found a greater proportion of associations for the pathway phenotypes than

using single gene tests using this same dataset [Glass et al., 2013] (23% compared to 7% of

phenotypes are significantly associated with age when using the same 0.05 FDR threshold

adopted in that paper). This can be explained by our findings on the influence of unique

environment on pathway phenotypes relative to single genes.

Stochasticity in gene expression, which contributes to the unique environment compo-

nent that we measure, has been seen to increase with age. For example, animal model

studies [Bahar et al., 2006, Herndon et al., 2002] have reported increased cell-to-cell vari-

ation in gene expression with age and tissue specific decline of functions associated to

stochastic events. Others have found genes associated with longevity to be strongly reg-

ulated in older animals with low levels of stochasticity and higher levels of heritability

[McCarroll et al., 2004, Viñuela et al., 2012]. The aim of our analysis was to find mean

effects, rather than variance effects (though both effects are often seen together). By
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(186 tests for single gene measures in blue, 930 for factor analysis

in red, and 9300 for the combined 10 permutation analyses in

green).

reducing the unique environment variable component using pathway factor analysis meth-

ods, we arguably focus much more on systematic longevity changes with age rather than

the environmental stochasticity. However, it is difficult to make inference about causality
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with gene expression: we cannot know whether we are observing changes in expression

which are driving the ageing process, or markers for it. Previous studies have suggested

that the latter may be the case, as often changes in gene expression occur in response to

ageing [de Magalhaes et al., 2009].

Of the 57 significant pathways, we frequently see four types of pathway, all of which

have been previously linked with ageing: i) insulin signalling ; ii) sugar and fatty acid

metabolism; iii) xenobiotic metabolism; and iv) cancer related pathways.

We find the insulin signalling pathway (hsa04910) to be highly associated with age in

our data (P = 3.7×10−10). Much evidence has accumulated for the influence of the insulin

signalling pathway on longevity, originating in C. elegans, where lowered insulin/IGF-1

signalling (IIS) can lead to a significant increase in life span [Friedman and Johnson, 1988].

This effect has also been seen in the fruit fly D. melanogaster [Clancy et al., 2001] and

in mice [Holzenberger et al., 2003]. Outside of model organisms, it has been observed

that variants in FOXO transcription factors related to this pathway can affect longevity

in humans [Willcox et al., 2008].

In addition to those related to insulin, our list of age-associated pathways includes many

that are involved in metabolism or glycolosis. Examples of these include biosynthesis of

unsaturated fatty acids (hsa00980), butanoate metabolism (hsa00650), glycolysis gluco-

neogenesis (hsa00010), fructose and mannose metabolism (hsa00051) and valine leucine

and isoleucine biosynthesis (hsa00290). It has previously been suggested that metabolism

related pathways play roles in ageing and ageing related diseases [Barzilai et al., 2012]. In

particular, Houtkooper et al. [2011] showed that glucose and compounds involved in the

metabolism of glucose were biomarkers of ageing in liver and muscle tissue in mice.

Other ageing related pathways include those involved in the metabolism of xenobiotics

that allow cells to deactivate and excrete unexpected compounds. One example is glu-

tathione metabolism (hsa00480, P = 1.45×10−7); glutathione is a well known anti-oxidant

which protects against cell damage by reactive oxygen species [Pompella et al., 2003].

Finally, previous studies have shown that cancer risk is positively associated with age

after childhood [Finkel et al., 2007, de Magalhães, 2013]. For example, cellular senescence,

when a cell loses the ability to divide, can form a break on cancer development, and clearing

such senescent cells can delay the development of age-associated disorders [Baker et al.,

2011]. There are a number of pathways in our list that have been linked to cancer, in

particular skin cancer. These include melanogenesis (hsa04916, P = 3.34 × 10−10), the
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PPAR signalling pathway (hsa03320, P = 1.83 × 10−9), the hedgehog signalling pathway

(hsa04340, P = 1.12 × 10−7) and glioma (hsa05214, P = 4.26 × 10−7)

In addition to age, other phenotypes have been linked to expression patterns of multiple

genes. For example, BMI has been linked to expression patterns in adipose tissue of

multiple genes within a group which share a common trans master regulator, and such

phenotypes could mediate between expression and diseases such as type 2 diabetes [Small

et al., 2011]. Principal components and factor analysis have also been suggested as a way

to build classifiers for binary traits [Hastie et al., 2000], perhaps to predict prognosis of

disease from gene expression data. The ability of pathway phenotypes to provide reliable

measures of expression with direct biological interpretation means they could also be

applied in these situations, to understand the relationship between expression and such

phenotypes.

Our analysis shows that factor analysis applied to gene expression data effectively

reduces stochastic noise in summaries of gene expression patterns, giving more power to

discover associations. These phenotypes are substantially more heritable than individual

genes. Using them we can improve our ability to identify biological processes underpinning

ageing. This is consistent with the idea that removing latent factors that exert broad

effects on gene expressions increases power in associations. We show that the same idea

can be used to create pathway factors that are robust and interpretable. Finally, our

analysis reveals pathways that have been seen to be important in longevity from a number

of previous studies, as well as novel pathways that can be further investigated.
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KEGG ID Pathway

P value of

pathway

factor

Number of

genes in

pathway

Number of

age

associated

genes

Heritability

00900
Terpenoid Backbone

Biosynthesis
6.23×10−13 13 6 0.00

00980
Metabolism of Xenobiotics

by Cytochrome P450
6.47×10−13 54 6 0.09

01040
Biosynthesis of Unsaturated

Fatty Acids
1.11×10−12 17 6 0.25

00100 Steroid Biosynthesis 1.33×10−12 14 12 0.41

00650 Butanoate Metabolism 1.51×10−12 27 8 0.39

04146 Peroxisome 1.56×10−12 64 17 0.45

00830 Retinol Metabolism 1.93×10−12 48 6 0.45

00010 Glycolysis Gluconeogenesis 3.59×10−12 49 12 0.42

00051
Fructose and Mannose

Metabolism
3.99×10−12 32 8 0.32

00290
Valine Leucine and

Isoleucine Biosynthesis
1.15×10−11 11 3 0.00

00561 Glycerolipid Metabolism 2.63×10−11 38 6 0.34

00620 Pyruvate Metabolism 4.20×10−11 35 11 0.37

00770
Pantothenate and COA

Biosynthesis
4.76×10−11 16 4 0.48

00280
Valine Leucine and

Isoleucine Degradation
5.79×10−11 35 10 0.51

00020 Citrate Cycle TCA Cycle 1.12×10−10 23 8 0.43

04916 Melanogenesis 3.34×10−10 93 10 0.00

04910 Insulin Signalling Pathway 3.70×10−10 122 13 0.45

00565 Ether Lipid Metabolism 5.89×10−10 27 3 0.00

00350 Tyrosine Metabolism 9.44×10−10 32 4 0.34

00640 Propanoate Metabolism 1.03×10−9 26 6 0.59

Table 1. List of 20 pathways most significantly associated with

age, together with the total number of genes in the pathway, the

number of genes within pathways significantly associated with age

(P < 0.05, corrected using Bonferroni for the total number of genes

in the pathway), and the heritability of the pathway factor.
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Figure 2. Histograms showing the proportion of environmental

variation explained by age, heritability, and the proportion of vari-

ance explained by the unique environment for pathway factors and

the individual gene measurements.
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Figure 3. The relative importance of sources of variation to

global, pathway and gene phenotypes. Measures of variation shown

are the proportion of variance explained by unique environment,

proportion of variance explained by genetics (heritability) and the

proportion of environmental variation explained by age. To show

more clearly the differences in relative importance of these mea-

sures to different classes of phenotypes, all proportions are scaled

such that contribution to gene phenotypes equals one. Numbers

above the bars give the absolute, unscaled proportions.
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Supplementary materials

Table S1: List of all pathways significantly associated with age, together

with the number of genes significantly associated with age (p < 0.05,

corrected using Bonferroni for the total number of genes in the pathway)

and the total number of genes in the pathway.

KEGG ID Pathway P value
Number of

age

Total number

of genes

associated

genes

00900 Terpenoid Backbone Biosynthesis 6.23×10−13 6 13

00980
Metabolism of Xenobiotics By

Cytochrome P450
6.47×10−13 6 54

01040
Biosynthesis of Unsaturated Fatty

Acids
1.11×10−12 6 17

00100 Steroid Biosynthesis 1.33×10−12 12 14

00650 Butanoate Metabolism 1.51×10−12 8 27

04146 Peroxisome 1.56×10−12 17 64

00830 Retinol Metabolism 1.93×10−12 6 48

00010 Glycolysis Gluconeogenesis 3.59×10−12 12 49

00051 Fructose and Mannose Metabolism 3.99×10−12 8 32

00290
Valine Leucine and Isoleucine

Biosynthesis
1.15×10−11 3 11

00561 Glycerolipid Metabolism 2.63×10−11 6 38

00620 Pyruvate Metabolism 4.2×10−11 11 35

00770
Pantothenate and COA

Biosynthesis
4.76×10−11 4 16

00280
Valine Leucine and Isoleucine

Degradation
5.79×10−11 10 35

00020 Citrate Cycle TCA Cycle 1.12×10−10 8 23

04916 Melanogenesis 3.34×10−10 10 93

Continued on next page
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Table S1 – Continued from previous page

KEGG ID Pathway P value

Age-

associated

genes

Total number

of genes

04910 Insulin Signalling Pathway 3.7×10−10 13 122

00565 Ether Lipid Metabolism 5.89×10−10 3 27

00350 Tyrosine Metabolism 9.44×10−10 4 32

00640 Propanoate Metabolism 1.03×10−9 6 26

04530 Tight Junction 1.12×10−9 11 106

00030 Pentose Phosphate Pathway 1.74×10−9 8 21

03320 PPAR Signalling Pathway 1.83×10−9 10 56

00630
Glyoxylate and Dicarboxylate

Metabolism
2.22×10−9 4 11

00982
Drug Metabolism Cytochrome

P450
2.93×10−9 6 55

00260
Glycine Serine and Threonine

Metabolism
7.02×10−9 4 30

00140 Steroid Hormone Biosynthesis 7.49×10−9 7 44

00380 Tryptophan Metabolism 1.17×10−8 6 32

04930 Type II Diabetes Mellitus 1.98×10−8 5 44

05412
Arrhythmogenic Right Ventricular

Cardiomyopathy Arvc
7.44×10−8 7 70

00052 Galactose Metabolism 9.27×10−8 3 24

04340 Hedgehog Signaling Pathway 1.12×10−7 7 52

00480 Glutathione Metabolism 1.45×10−7 7 39

00532
Glycosaminoglycan Biosynthesis

Chondroitin Sulfate
1.53×10−7 5 16

04920 Adipocytokine Signaling Pathway 2.87×10−7 9 61

05214 Glioma 4.26×10−7 6 59

05322 Systemic Lupus Erythematosus 4.56×10−7 7 87

05414 Dilated Cardiomyopathy 5.64×10−7 6 84

Continued on next page
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Table S1 – Continued from previous page

KEGG ID Pathway P value

Age-

associated

genes

Total number

of genes

00410 Beta Alanine Metabolism 1.11×10−6 4 19

00330 Arginine and Proline Metabolism 1.39×10−6 11 47

04510 Focal Adhesion 1.47×10−6 18 173

00340 Histidine Metabolism 1.53×10−6 3 25

04360 Axon Guidance 1.66×10−6 15 119

04060 ECM Receptor Interaction 1.77×10−6 13 71

04150 MTOR Signaling Pathway 2.02×10−6 3 43

04270
Vascular Smooth Muscle

Contraction
3.31×10−6 14 103

00071 Fatty Acid Metabolism 3.84×10−6 8 30

04142 Lysosome 4.43×10−6 14 106

00983 Drug Metabolism Other Enzymes 5.71×10−6 4 43

00040
Pentose and Glucuronate

Interconversions
6.49×10−6 1 21

05416 Viral Myocarditis 1.16×10−5 5 51

00520
Amino Sugar and Nucleotide

Sugar Metabolism
1.7×10−5 7 39

05217 Basal Cell Carcinoma 1.8×10−5 10 52

00510 N-Glycan Biosynthesis 1.82×10−5 7 40

04260 Cardiac Muscle Contraction 1.83×10−5 5 59

05216 Thyroid Cancer 1.99×10−5 8 60

05120
Epithelial Cell Signaling in

Helicobacter Pylori Infection
4.85×10−5 11 59
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KEGG ID Pathway P value

00650 Butanoate Metabolism 8.86×10−6

04060 ECM Receptor Interaction 3.64×10−5

04146 Peroxisome 2.61×10−7

00620 Pyruvate Metabolism 5.49×10−5

00100 Steroid Biosynthesis 2.39×10−11

00900 Terpenoid Backbone Biosynthesis 2.13×10−5

00290
Valine Leucine and Isoleucine

Degradation
5.58×10−6

Table S2. List of the seven pathways which were significantly

associated with age, discovered by looking for enrichment of single

gene age associations.
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Figure S1. Network of connected factor phenotypes. Twenty four

of the 69 age-associated factor phenotypes have a Spearman corre-

lation of at least 0.8 with at least one other phenotype. These phe-

notypes show a highly connected structure, likely meaning there

are common age effects driving these associations. A key for iden-

tifying which pathways correspond to the nodes can be found in

Supplementary Table S3.
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Node Pathway Maximum ρ with other phenotype

1 Butanoate Metabolism 0.94

2 Valine Leucine and Isoleucine Degradation 0.94

3 Biosynthesis of Unsaturated Fatty Acids 0.92

4 Peroxisome 0.92

5 Propanoate Metabolism 0.92

6 Pyruvate Metabolism 0.91

7 Glycolysis Gluconeogenesis 0.91

8 Terpenoid Backbone Biosynthesis 0.90

9 Steroid Biosynthesis 0.90

10 Citrate Cycle TCA Cycle 0.90

11 Glycerolipid Metabolism 0.90

12 Retinol Metabolism 0.90

13 Fatty Acid Metabolism 0.87

14 Beta Alanine Metabolism 0.85

15 Glutathione Metabolism 0.85

16 Pantothenate and COA Biosynthesis 0.85

17 Drug Metabolism Cytochrome P450 0.84

18 Insulin Signaling Pathway 0.84

19 Steroid Hormone Biosynthesis 0.84

20 Valine Leucine and Isoleucine Biosynthesis 0.84

21 Pentose Phosphate Pathway 0.84

22 Fructose and Mannose Metabolism 0.84

23 Tryptophan Metabolism 0.82

24 Glyoxylate and Dicarboxylate Metabolism 0.80

Table S3. Key showing which pathways correspond to which

nodes in Supplementary Figure S1, and the maximum Spearman

correlation of that phenotype with any of the others representing

pathways.
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Table S4: Heritability and proportion of environmental variation ex-

plained by age for all pathways. Value reported is for the pathway

phenotype most significantly associated with ageing.

KEGG ID Pathway Heritability
Proportion

(age)

00900 Terpenoid Backbone Biosynthesis 1.53×10−11 0.0898

00980
Metabolism of Xenobiotics By

Cytochrome P450
0.0904 0.0986

01040
Biosynthesis of Unsaturated Fatty

Acids
0.253 0.11

00100 Steroid Biosynthesis 0.406 0.143

00650 Butanoate Metabolism 0.39 0.137

04146 Peroxisome 0.453 0.152

00830 Retinol Metabolism 0.449 0.149

00010 Glycolysis Gluconeogenesis 0.417 0.14

00051 Fructose and Mannose Metabolism 0.316 0.109

00290
Valine Leucine and Isoleucine

Biosynthesis
2.61×10−12 0.0771

00561 Glycerolipid Metabolism 0.337 0.113

00620 Pyruvate Metabolism 0.368 0.117

00770
Pantothenate and COA

Biosynthesis
0.477 0.136

00280
Valine Leucine and Isoleucine

Degradation
0.51 0.147

00020 Citrate Cycle TCA Cycle 0.436 0.126

04916 Melanogenesis 2.23×10−16 0.0708

04910 Insulin Signaling Pathway 0.453 0.121

00565 Ether Lipid Metabolism 1.13×10−15 0.064

00350 Tyrosine Metabolism 0.342 0.0975

00640 Propanoate Metabolism 0.591 0.157

Continued on next page
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Table S4 – Continued from previous page

KEGG ID Pathway Heritability Proportion

04530 Tight Junction 0.103 0.0751

00030 Pentose Phosphate Pathway 0.291 0.0831

03320 PPAR Signaling Pathway 0.235 0.0777

00630
Glyoxylate and Dicarboxylate

Metabolism
0.275 0.0836

00982
Drug Metabolism Cytochrome

P450
0.248 0.0811

00260
Glycine Serine and Threonine

Metabolism
0.599 0.141

00140 Steroid Hormone Biosynthesis 0.655 0.167

00380 Tryptophan Metabolism 0 0.0491

04930 Type II Diabetes Mellitus 0.594 0.13

05412
Arrhythmogenic Right Ventricular

Cardiomyopathy Arvc
0.241 0.0674

00052 Galactose Metabolism 3.4×10−11 0.0504

04340 Hedgehog Signaling Pathway 0.375 0.08

00480 Glutathione Metabolism 0.415 0.0804

00532
Glycosaminoglycan Biosynthesis

Chondroitin Sulfate
0.273 0.0682

04920 Adipocytokine Signaling Pathway 1.3×10−20 0.0475

05214 Glioma 0.102 0.0466

05322 Systemic Lupus Erythematosus 8.17×10−17 0.045

05414 Dilated Cardiomyopathy 0.532 0.0867

00410 Beta Alanine Metabolism 0.709 0.14

00330 Arginine and Proline Metabolism 1.7×10−16 0.0402

04510 Focal Adhesion 0.397 0.0669

00340 Histidine Metabolism 0.519 0.0874

04360 Axon Guidance 0.606 0.0995

04060 ECM Receptor Interaction 0.792 0.196

Continued on next page
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Table S4 – Continued from previous page

KEGG ID Pathway Heritability Proportion

04150 MTOR Signaling Pathway 0.219 0.0511

04270
Vascular Smooth Muscle

Contraction
0.27 0.0542

00071 Fatty Acid Metabolism 0.823 0.204

04142 Lysosome 0.566 0.0804

00983 Drug Metabolism Other Enzymes 0 0.0322

00040
Pentose and Glucuronate

Interconversions
0.562 0.0792

05416 Viral Myocarditis 0.569 0.0815

00520
Amino Sugar and Nucleotide

Sugar Metabolism
0.453 0.0577

05217 Basal Cell Carcinoma 0.593 0.0799

00510 N Glycan Biosynthesis 5.87×10−16 0.0313

04260 Cardiac Muscle Contraction 8.3×10−13 0.0312

05216 Thyroid Cancer 2.56×10−9 0.0332

05120
Epithelial Cell Signaling in

Helicobacter Pylori Infection
0.652 0.0859

04060
Cytokine Cytokine Receptor

Interaction
3.51×10−17 0.0276

00120 Primary Bile Acid Biosynthesis 1.69×10−16 0.0265

00190 Oxidative Phosphorylation 1.41×10−11 0.0268

00760
Nicotinate and Nicotinamide

Metabolism
0.401 0.0433

00360 Phenylalanine Metabolism 0.711 0.088

00512 O Glycan Biosynthesis 1.78×10−18 0.0253

05213 Endometrial Cancer 0.428 0.0408

00250
Alanine Aspartate and Glutamate

Metabolism
0.526 0.0507

00564 Glycerophospholipid Metabolism 0 0.0231

Continued on next page
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Table S4 – Continued from previous page

KEGG ID Pathway Heritability Proportion

04012 ERBB Signaling Pathway 0.121 0.0253

05211 Renal Cell Carcinoma 3.64×10−11 0.0237

02010 ABC Transporters 0.506 0.0454

04710 Circadian Rhythm Mammal 0.0407 0.0292

05222 Small Cell Lung Cancer 1.03×10−17 0.024

04062 Chemokine Signaling Pathway 0.124 0.0277

00590 Arachidonic Acid Metabolism 0.141 0.027

04610
Complement and Coagulation

Cascades
0.504 0.0453

03022 Basal Transcription Factors 0.537 0.0424

00600 Sphingolipid Metabolism 8.68×10−19 0.0219

05410
Hypertrophic Cardiomyopathy

Hcm
3.3×10−13 0.0147

04912 GNRH Signaling Pathway 3.11×10−16 0.0187

04720 Long Term Potentiation 0 0.0183

03050 Proteasome 0.425 0.0314

04620 JAK Stat Signaling Pathway 0.503 0.0382

05330 Allograft Rejection 0 0.016

03450 Non Homologous End Joining 0.132 0.0199

05320 Autoimmune Thyroid Disease 0 0.0156

03060 Protein Export 0.235 0.0197

03420 Nucleotide Excision Repair 3.19×10−14 0.0178

00660 Alpha Linolenic Acid Metabolism 0.458 0.0311

04144 Endocytosis 0.0714 0.0181

05010 Alzheimers Disease 0.0757 0.0172

00591 Linoleic Acid Metabolism 3×10−11 0.0159

00240 Pyrimidine Metabolism 6.42×10−13 0.0152

Continued on next page
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Table S4 – Continued from previous page

KEGG ID Pathway Heritability Proportion

00270
Cysteine and Methionine

Metabolism
0.00281 0.0162

03410 Base Excision Repair 0.377 0.0219

04722 Neurotrophin Signaling Pathway 4.88×10−18 0.0152

04070
Phosphatidylinositol Signaling

System
0.312 0.0207

04960
Aldosterone Regulated Sodium

Reabsorption
3.36×10−15 0.0142

05130
Pathogenic Escherichia Coli

Infection
0.158 0.0158

04310 WNT Signaling Pathway 0.176 0.0174

00562 Inositol Phosphate Metabolism 3.24×10−16 0.0138

05221 Acute Myeloid Leukemia 0.472 0.0268

00071 Selenoamino Acid Metabolism 3.71×10−10 0.0137

04742 Taste Transduction 0.149 0.0174

00531 Glycosaminoglycan Degradation 2.23×10−19 0.0135

05340 Primary Immunodeficiency 0 0.0133

04640 Hematopoietic Cell Lineage 2.35×10−16 0.0132

05310 Asthma 0.331 0.0183

04620 TGF Beta Signaling Pathway 1.72×10−18 0.0131

00860
Porphyrin and Chlorophyll

Metabolism
9.84×10−16 0.0124

04612
Antigen Processing and

Presentation
2.03×10−11 0.0129

05010 Parkinsons Disease 4.25×10−9 0.012

00790 Folate Biosynthesis 1.07×10−11 0.0119

00500 Starch and Sucrose Metabolism 0.429 0.0111

05223 Non Small Cell Lung Cancer 0 0.0115

03030 DNA Replication 0 0.0116

Continued on next page
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Table S4 – Continued from previous page

KEGG ID Pathway Heritability Proportion

04622
RIG I Like Receptor Signaling

Pathway
0 0.0117

04666
FC Gamma R Mediated

Phagocytosis
0.747 0.0415

04514 Cell Adhesion Molecules CAMS 0.278 0.016

03430 Mismatch Repair 7.18×10−17 0.011

03010 Ribosome 8.63×10−19 0.0108

05220 Chronic Myeloid Leukemia 0.333 0.0164

00910 Nitrogen Metabolism 0 0.0106

04330 Notch Signaling Pathway 0.585 0.0251

04520 Adherens Junction 1.15×10−9 0.0107

05210 Colorectal Cancer 0.289 0.0141

03018 RNA Degradation 1.03×10−13 0.00998

03440 Homologous Recombination 0 0.0093

00920 Sulfur Metabolism 0.121 0.011

00310 Lysine Degradation 0.446 0.0166

04662 B Cell Receptor Signaling Pathway 0.494 0.0183

00430
Taurine and Hypotaurine

Metabolism
8.53×10−13 0.00891

04964
Proximal Tubule Bicarbonate

Reclamation
0.456 0.0163

04614 Renin Angiotensin System 0.556 0.0183

00970 Aminoacyl tRNA Biosynthesis 0.107 0.0102

04672
Intestinal Immune Network For

IGA Production
0 0.00883

04810 Regulation of Actin Cytoskeleton 0.215 0.0104

05215 Prostate Cancer 1.55×10−9 0.00719

00563
Glycosylphosphatidylinositol Gpi

Anchor Biosynthesis
0 0.00816

Continued on next page
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Table S4 – Continued from previous page

KEGG ID Pathway Heritability Proportion

04660
NOD Like Receptor Signaling

Pathway
0 0.00828

04540 Gap Junction 0.121 0.0096

00903 Limonene and Pinene Degradation 4.8×10−12 0.00822

05200 Pathways in Cancer 0.275 0.0119

04660
Toll Like Receptor Signaling

Pathway
8.13×10−17 0.00782

04730 Long Term Depression 0.128 0.00885

04020 Calcium Signaling Pathway 0.148 0.00936

04320 Dorso Ventral Axis Formation 0.271 0.00857

05110 Vibrio Cholerae Infection 0.353 0.011

04115 P53 Signaling Pathway 1.07 -0.0975

04962
Vasopressin Regulated Water

Reabsorption
0.331 0.0107

04670
Leukocyte Transendothelial

Migration
0.248 0.00871

03020 RNA Polymerase 2.52×10−16 0.00609

04664 FC Epsilon RI Signaling Pathway 0.35 0.00908

04140 Regulation of Autophagy 0 0.00509

05010 Huntingtons Disease 0.894 0.0529

00670 One Carbon Pool By Folate 9.11×10−13 0.00564

04660 T Cell Receptor Signaling Pathway 0.487 0.0103

00740 Riboflavin Metabolism 0.252 0.00627

00533
Glycosaminoglycan Biosynthesis

Keratan Sulfate
0 0.00452

00230 Purine Metabolism 3.84×10−18 0.00462

04130
Snare Interactions in Vesicular

Transport
1.2×10−17 0.00475

05020 Prion Diseases 0.272 0.0059
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KEGG ID Pathway Heritability Proportion

05219 Bladder Cancer 0.229 0.00531

03040 Spliceosome 0.224 0.00573

04010 Mapk Signaling Pathway 0.221 0.00506

00534
Glycosaminoglycan Biosynthesis

Heparan Sulfate
1.4×10−18 0.00416

00604
Glycosphingolipid Biosynthesis

Ganglio Series
0 0.00372

04940 Type I Diabetes Mellitus 0.446 0.00735

04623 Cytosolic DNA Sensing Pathway 0.431 0.00706

05332 Graft Versus Host Disease 0.432 0.00691

04740 Olfactory Transduction 0 0.0035

04110 Cell Cycle 5.02×10−18 0.00369

00511 Other Glycan Degradation 1.07×10−24 0.00321

05140 Leishmania Infection 0.136 0.00381

04914
Progesterone Mediated Oocyte

Maturation
1.82×10−19 0.00322

04120 Ubiquitin Mediated Proteolysis 2.55×10−15 0.00315

00604
Glycosphingolipid Biosynthesis

Globo Series
0 0.00271

00601
Glycosphingolipid Biosynthesis

Lacto and Neolacto Series
0.213 0.00341

04370 VEGF Signaling Pathway 0.192 0.00362

00053
Ascorbate and Aldarate

Metabolism
0 0.00197

04650
Natural Killer Cell Mediated

Cytotoxicity
4.16×10−19 0.00222

05212 Pancreatic Cancer 5.99×10−48 0.00212

04114 Oocyte Meiosis 1.82×10−11 0.00201

04210 Apoptosis 0.632 0.00523

Continued on next page
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05218 Melanoma 0.349 0.00284

04080
Neuroactive Ligand Receptor

Interaction
1.76×10−17 0.00158

05014 Amyotrophic Lateral Sclerosis ALS 0 0.00102

04950
Maturity Onset Diabetes of The

Young
8.21×10−12 0.000707


