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 30 

Abstract 31 

Alzheimer´s Disease (AD) is a highly prevalent neurodegenerative disorder. Despite 32 

increasing evidence of important metabolic dysregulation in AD, the underlying metabolic 33 

changes that may impact amyloid plaque formation are not understood, particularly for late 34 

onset AD. This study analyzed genome-wide association studies (GWAS), transcriptomics 35 

and proteomics data obtained from several data repositories to obtain differentially expressed 36 

(DE) multi-omics elements in mouse models of AD. We characterized the metabolic 37 

modulation in these datasets using gene ontology, and transcription factor, pathway and cell-38 

type enrichment analysis. A predicted lipid signature was extracted from genome-scale 39 

metabolic networks (GSMN) and subsequently validated in a lipidomic dataset derived from 40 

cortical tissue of ABCA7-null mice, a mouse model of one of the genes associated with late 41 

onset AD. Moreover, a metabolome-wide association study (MWAS) was performed to 42 

further characterize the association between dysregulated lipid metabolism in human blood 43 

serum and AD.  44 

We found 203 DE transcripts, 164 DE proteins and 58 DE GWAS-derived mouse orthologs 45 

associated with significantly enriched metabolic biological processes. Lipid and bioenergetics 46 

metabolic pathways were significantly over-represented across the AD multi-omics datasets. 47 

Microglia and astrocytes were significantly enriched in the lipid-predominant AD-metabolic 48 

transcriptome. We also extracted a predicted lipid signature that was validated and robustly 49 
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modelled class separation in the ABCA7 mice cortical lipidome, with 11 of these lipid 50 

species exhibiting statistically significant modulations. MWAS revealed 298 AD single 51 

nucleotide polymorphisms (SNP)-metabolite associations, of which 70% corresponded to 52 

lipid classes. 53 

These results support the importance of lipid metabolism dysregulation in AD and highlight 54 

the suitability of mapping AD multi-omics data into GSMNs to identify metabolic alterations. 55 

 56 

 57 

 58 
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 100 

1 Introduction  101 

 102 

Alzheimer´s Disease (AD) is a neurodegenerative disorder prevalent in later life 103 

characterized by amyloid deposition, hyperphosphorylated tau aggregation into 104 

neurofibrillary tangles and a sustained neuroinflammatory response (DeTure & Dickson 105 

2019). With the proportion of the population over 65 years of age increasing annually, a 106 

mechanistic understanding of the disease is urgently needed (Xie et al. 2020). There are 107 

several emerging lines of evidence highlighting the importance of metabolic dysfunctions in 108 

AD. Impaired glycolysis and bioenergetics shifts towards fatty-acid and amino-acid 109 

metabolism seem to indicate that mitochondrial dysfunction or substrate switch play a role in 110 

AD pathogenesis (Perez Ortiz & Swerdlow 2019). Cholesterol metabolism can also exert 111 

lipotoxic effects in the AD brain via ceramide production modulation (Cutler et al. 2004). 112 

Furthermore, there are several genes linked to AD onset and progression that are also related 113 

to brain lipid metabolism. The apolipoprotein epsilon4 (APOE4) allele, the strongest risk 114 

factor for AD development, is known to cause significant disruptions in brain lipid 115 

homeostasis in both human carriers and transgenic animals (Fernandez et al. 2019). 116 

Similarly, triggering receptor expressed on myeloid cells-2 (TREM2), another gene strongly 117 

associated with AD, actively undergoes lipid-sensing and consequently induces changes in 118 

the microglia lipidome (Nugent et al. 2020). Finally, loss-of-function variant of the ATP-119 

binding-casette, subfamily-A, member-7 gene (ABCA7) has been strongly associated with 120 

late-onset AD (De Roeck et al. 2019). ABCA7 has been implicated in AD pathology through 121 

amyloid-precursor protein (APP) endocytosis, impaired amyloid-beta (Aβ) clearance and, 122 

although not fully elucidated, lipid metabolism dysregulation via sterol regulatory element 123 

binding protein 2 (SREBP2) (Aikawa et al. 2018).  124 

 125 

Despite all the accumulating evidence, mechanistic explanations of AD have mostly been 126 

centered around amyloid or tau-centric hypotheses, and therefore much remains to be 127 

understood regarding the underlying metabolic processes (Johnson et al. 2020).  128 

Multi-omics approaches have the potential to overcome the limitations of the current 129 

knowledge in this field. These approaches can provide a comprehensive view of a particular 130 

pathophysiological state by interrogating molecular changes across several levels of 131 

biological functions (Canzler et al. 2020). A promising methodological approach relevant to 132 

the study of metabolites is genome scale metabolic networks (GSMN), which uses genomics 133 

and transcriptomics data to predict metabolic pathway modulations (Pinu et al. 2019). GSMN 134 

also allow for the interpretation of multi-omics data via metabolic subnetwork curation, thus 135 

providing an attractive metabolic framework which can be effectively validated using 136 

metabolomics and lipidomics data (Frainay & Jourdan 2017).  137 

 138 

The aim of this study was to validate the presence of metabolic perturbations in AD using 139 

multi-omics pathway-based integration and extraction of metabolic subnetworks from open 140 

source data (Figure 1). We found consistent perturbations of lipid and energy metabolism 141 

across three AD multi-omics datasets compiled from previous studies, from which we 142 

extracted 133 lipid species predicted to be dysregulated in AD which we then validated in an 143 

ABCA7 knock-out (KO) mouse dataset acquired with ultraperformance liquid 144 

chromatography-mass spectrometry (UPLC-MS). The importance of this association was 145 

explored further by performing a metabolome-wide association study (MWAS) of the blood 146 

plasma metabolome for AD risk loci carriers in two human cohorts using 1H NMR 147 

spectroscopy. 148 

 149 
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This study also highlights the suitability of interpreting multi-omics data in the context of 150 

GSMNs, as the predicted lipid terms and species were not only found in the cortical ABCA7 151 

lipidome, but its associated multivariate model robustly separated ABCA7 mice from their 152 

wild-type (WT) litter-mates. 153 

 154 

 155 

 156 

 157 
 158 

Figure 1. Schematic representation of the experimental design implemented in this 159 

study. Abbreviations: GEO = gene expression omnibus database, PRIDE = protein 160 

identification database, AD = Alzheimer´s Disease, ABCA7 KO = ATP-binding-cassette, 161 

subfamily A, member 7 gene knock-out. 162 

 163 

 164 

 165 

 166 

 167 

2 Materials and Methods 168 

 169 

2.1 Data collection of AD mouse brain transcriptomics and proteomics data  170 
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The gene expression omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/geo/) 171 

(Clough & Barrett 2016) was queried on 15/06/20 for gene expression studies using 172 

“Alzheimer’s Disease” as our search term. The following criteria were employed for dataset 173 

selection: Mus musculus organism, expression profiling by array as study-type, tissue as 174 

attribute, brain tissue expression compared to WTs and a minimum of 3 animals per 175 

condition. This search yielded 11 datasets (GSE25926, GSE53480, GSE60460, GSE77574, 176 

GSE77373, GSE109055, GSE111737, GSE113141, GSE141509 and GSE74441) from 9 177 

studies (Aydin et al. 2011; Polito et al. 2014; Hamilton et al. 2015; Marsh et al. 2016; Wang 178 

et al. 2017; Faivre et al. 2018; Hou et al. 2018; Fang et al. 2019; Preuss et al. 2020). 179 

The proteomics identifications (PRIDE) repository (Jones et al. 2006) was queried on 180 

01/07/20 for proteomics studies applying the following filters: Alzheimer’s Disease as 181 

disease, brain as organism-part and Mus musculus as organism. Datasets comparing the AD 182 

proteome against WTs, with minimum 3 animals per condition and with deposited 183 

proteinGroups.txt files were included. This search yielded 4 datasets (PXD007795, 184 

PXD011068, PXD012238, and PXD007813) from 4 publications (Palomino-Alonso et al. 185 

2017; Hamezah et al. 2019; Kim et al. 2019; Lachen-Montes et al. 2019). However, 186 

differences in protein expression failed to reach statistical significance after controlling for 187 

the false discovery rate (FDR) in two studies (Palomino-Alonso et al. 2017; Hamezah et al. 188 

2019), and thus their corresponding datasets were excluded. A description of all included 189 

datasets can be found in Table 1. 190 

 191 

Table 1. Characteristics of the transcriptomics and proteomics datasets included in this study 192 

Brain region GEO/PRIDE 

accession number 

AD 

animal model 

Age Sample size Platform 

Transcriptomics      

Frontal cortex GSE113141 APP/PS1 9-10 months AD (n=6) 

WT (n=6) 

Agilent-074809 SurePrint 

G3 Mouse GE v2 8x60K 

Microarray 

 GSE109055 3xTgAD 22-24 

months 

AD (n=4) 

WT(n=4) 

Agilent-028005 SurePrint 

G3 Mouse GE 8x60K 

Microarray 

 GSE77373 5xFAD 5 months AD (n=3) 

WT(n=3) 

Affymetrix Mouse Gene 

1.0 ST Array 

 GSE74441 APP/PS1 Not 

disclosed 

AD (n=6) 

WT (n=6) 

Illumina MouseRef-8 v2.0 

expression beadchip 

 GSE25926 APP-KI 24-28 

months 

AD (n=3) 

WT(n=3) 

Affymetrix Mouse 

Genome 430 2.0 Array 

Hippocampus GSE111737 APP/PS1 8 months AD (n=6) 

WT (n=6) 

Agilent-074809 SurePrint 

G3 Mouse GE v2 8x60K 

Microarray 

 GSE109055 3xTgAD 22-24 

months 

AD (n=4) 

WT(n=4) 

Agilent-028005 SurePrint 

G3 Mouse GE 8x60K 

Microarray 

 GSE53480 Tg4510 4 months AD (n=4) 

WT(n=4) 

Affymetrix Mouse 

Genome 430 2.0 Array 

Subventricular zone GSE60460 3xTgAD 7 months AD (n=4) 

WT(n=4) 

Agilent-028005 SurePrint 

G3 Mouse GE 8x60K 

Microarray 

Half-brain GSE141509 5xFAD 6 months AD (n=6) 

WT (n=6) 

NanoString nCounter® 

Mouse AD panel 
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Whole brain GSE77574 5xFAD 6-7 months AD (n=4) 

WT(n=4) 

Affymetrix Mouse 

Transcriptome Array 1.0 

Proteomics      

Hippocampus PXD012238 5xFAD 10 months AD (n=6) 

WT (n=6) 

Orbitrap MS/MS- Q-

Exactive 

Olfactory bulb PXD007813 Tg2576 6 months AD (n=3) 

WT(n=3) 

iTRAQ-LC MS/MS 

with Triple TOF MS 5600 

 193 

2.2 Differential expression (DE) analysis of AD mouse transcriptomics and proteomics data 194 

Processed transcriptomics datasets were retrieved from GEO using the GEOquery 195 

Bioconductor-based package (version 2.54.1) (Davis & Meltzer 2007) in the R environment, 196 

version 3.6.2 (https://www.R-project.org). Datasets were log-2 transformed and graphically 197 

inspected to verify appropriate data normalization; probes that were not mapped to any genes, 198 

mapped to more than one gene and probes with missing values (N/As) were filtered out. 199 

Differential expression analysis was performed using significance analysis of microarray 200 

(SAM) with samr package (version 3.0) (Tusher et al. 2001) within the R environment. SAM 201 

can control for the total number of false positives through both gene specific t-tests and a 202 

maximum local tolerable FDR (Tusher et al. 2001). Upon 200 permutation-based SAM 203 

analysis, multiple testing correction was applied by adjusting the total false positives to 3% 204 

and the local FDR for 90th percentile of DE genes to 5% in every dataset. 205 

 206 

Proteomics datasets were analyzed using Perseus (version 1.6.5) (Tyanova et al. 2016). 207 

Initially, proteins only identified by reverse-decoy, site or known contaminants were 208 

excluded, as well as proteins with 2/3 of replicates per group reporting N/As. Protein 209 

intensities were then log-2 transformed and remaining N/As were replaced using normal 210 

distribution values, as most proteomics studies assume N/As are indicative of low-expression 211 

proteins (Tyanova et al. 2016). DE proteins were determined using a two-tailed Student´s t-212 

test with a 200 FDR permutation-based method and a 0.050 p-value cut-off (Tusher et al. 213 

2001). In isobaric tag for relative and absolute quantification (iTRAQ) experiments, an 214 

additional fold change (FC) 1.17-0.83 cut-off was introduced to determine DE proteins. 215 

iTRAQ experiments are prone to interference/ratio distortion (Pappireddi et al. 2019), and 216 

thus a combination of p-value, FDR and FC cut-off is the most suitable approach to detect 217 

biological variability (Oberg & Mahoney 2012).  218 

 219 

2.3 AD genome-wide association studies (GWAS) gene-based analysis and mouse ortholog 220 

determination 221 

AD GWAS summary statistics were obtained from a meta-analysis of the UK-Biobank and 222 

International Genomics of Alzheimer’s Project (IGAP) cohorts, which evaluated GWAS with 223 

AD by-proxy in 388364 individuals across both cohorts (Marioni et al. 2018). Summary 224 

statistics (ID: GCST005922) were retrieved from the NHGRI-EBI GWAS-Catalog 225 

(https://www.ebi.ac.uk/gwas/) (Buniello et al. 2019) on 07/07/2020.  226 

 227 

Gene-based analysis was performed with multi-marker analysis of genomic annotation 228 

(MAGMA, version 1.07bb) (de Leeuw et al. 2015), using gene locations from the genome 229 

reference consortium-human build-37 (GRCh37, NCBI) and a reference panel of European 230 

ancestry from the 1000 genomes project phase-3 (Auton et al. 2015). MAGMA provides a 231 

combined p-statistic of genes significantly associated with single nucleotide polymorphisms 232 

(SNPs) (de Leeuw et al. 2015); we used a combined 0.050 p-value as a significance cut-off. 233 

Significant genes were imported into Ensembl–Biomart on 20/07/2020 (version GrCh37.13; 234 

https://grch37.ensembl.org/biomart/martview) to determine high confidence mouse orthologs 235 
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(Zerbino et al. 2018). Upon excluding genes associated with either several or no mouse 236 

orthologs, only those exhibiting one-to-one bidirectional orthology with 60% protein 237 

sequence similarity across both species were considered high-quality mouse orthologs 238 

(Mancuso et al. 2019).  239 

 240 

2.4 Gene ontology (GO) analysis and AD-metabolic multi-omics extraction 241 

DE transcripts, proteins and GWAS-orthologs were initially mapped onto the BioCyc Mus 242 

musculus GSMN (Caspi et al. 2016) using MetExplore, which provides a framework for 243 

metabolic subnetwork extraction(Cottret et al. 2018). DE transcripts, protein-coding and 244 

GWAS-orthologs genes that were not mapped onto the GSMN were removed; the resulting 245 

omics lists are referred to as “all-mapped” data throughout this study. Significantly enriched 246 

functional terms were identified in all-mapped AD omics datasets using the database for 247 

annotation, visualization and integrated discovery (DAVID, version 6.8) 248 

(https://david,neifcrf.gov/) (Dennis et al. 2003). and the Mus musculus genome as 249 

background. GO analysis was performed using a hypergeometric test with an EASE score of 250 

0.1 and a count threshold of 2. Terms with both raw p-value and Benjamini-Hochberg (B-H) 251 

FDR-adjusted p-value (α) below 0.050 were considered statistically significant. Metabolism-252 

related transcripts, proteins and GWAS-orthologs were manually extracted from significantly 253 

enriched biological processes (BP). 254 

 255 

2.5 Transcription Factor (TF) enrichment analysis 256 

TF enrichment analysis was performed on all-mapped AD genes and proteins, as well as their 257 

metabolic counterparts, using ChIP-X enrichment analysis 3 (ChEA3) 258 

(https://maayanlab.cloud/chea3/). ChEA3 performs enrichment analysis based on TF´s target 259 

genes coverage using the Fishers exact test and B-H adjusted p-value at 0.050 threshold 260 

(Keenan et al. 2019). The ENCODE library was chosen as our reference set, as it 261 

incorporates TF-target associations from human and mouse data (Davis et al. 2018). 262 

Significantly enriched TF were manually cross-referenced with the mouse transcription factor 263 

atlas to verify its mouse tissue expression (Zhou et al. 2017).  264 

 265 

2.6 Pathway enrichment analysis of AD-metabolic multi-omics data 266 

AD metabolic transcripts, proteins and GWAS-orthologs lists were mapped onto the BioCyc 267 

Mus musculus GSMN (Caspi et al. 2016) in MetExplore (Cottret et al. 2018). Metabolic 268 

pathway enrichment analysis was performed using hyper-geometric tests with right-tailed 269 

Fishers exact tests with B-H correction for multiple testing (α=0.050). 270 

 271 

2.7 Expression-weighted cell-type enrichment (EWCE) of AD-metabolic multi-omics data 272 

EWCE was conducted on AD-metabolic transcriptomics, proteomics and GWAS-orthologs 273 

datasets using the EWCE package in R (version 0.99.2)(Skene & Grant 2016). EWCE 274 

computes an enrichment p-value that describes the probability of an input gene list having a 275 

meaningful expression within a specific cell-type upon 10000 random permutations (Skene & 276 

Grant 2016). A cortical and hippocampal single-cell RNA-sequencing dataset with large 277 

coverage was used as background (Zeisel et al. 2015); B-H adjusted p-values were calculated 278 

using the R base package. A conditional EWCE analysis was also performed on the 279 

combined AD-metabolic multi-omics dataset to probe the relationships between enriched 280 

cell-types, using an approach originally developed for GWAS data analysis (Skene et al. 281 

2018).  282 

 283 

2.8 Metabolic subnetwork extraction 284 
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To ultimately validate lipid alterations highlighted during pathway enrichment analysis, a 285 

metabolic subnetwork containing all lipid terms or species in significantly enriched lipid 286 

pathways was mined across the AD-metabolic transcriptome and proteome using MetExplore 287 

(Cottret et al. 2018). After excluding non-lipid metabolites, a combined predicted lipid 288 

signature across the AD multi-omics datasets was created, which was visualized using 289 

MetExploreViz (Chazalviel et al. 2018). Lipid identifiers were then retrieved from 290 

LIPIDMAPS (Fahy et al. 2009).  291 

 292 

2.9 Cortical ABCA7-KO lipidomics dataset 293 

We also employed a lipidomics dataset of cortical extracts of 7 WT and 7 ABCA7-KO 11-294 

months old mice, with 3 females and 4 males per group, as described previously (Aikawa et 295 

al. 2018). Lipidomic extraction was performed on ~50mg cortex tissue using a modified 296 

Folch extraction (Su et al. 2019). Global lipidomic profiling of the cortical extracts and 3 297 

pooled samples was acquired using a reverse-phase ultraperformance liquid chromatography-298 

mass spectrometry (RP-UPLC-MS) on a Synapt Quadruple-Time of Flight mass spectrometer 299 

(Waters Corp., Manchester, UK) in positive and negative mode. Details of systems 300 

configuration and analytical conditions have been previously reported (Andreas et al. 2020). 301 

Data processing was performed with KniMet (Liggi et al. 2018). Briefly, signals extracted 302 

using the R library XCMS (Tautenhahn et al. 2012) were retained if present in at least 50% 303 

of the pooled samples with a Coefficient of Variation <= 20. Remaining signals were 304 

subjected to imputation of N/As using K-Nearest Neighbour (KNN), probabilistic quotient 305 

normalization (PQN) based on pooled samples, and annotation using LIPID MAPS 306 

(https://lipidmaps.org/; (Fahy et al. 2009)), retention time matching to standards and 307 

fragmentation data. 308 

 309 

2.10 Multivariate statistical analysis  310 

Multivariate statistical analysis was performed on both positive and negative mode for the 311 

original ABCA7-KO and validated lipid signature subsets using P-SIMCA (Umetrics, 312 

Sweden) following log-transformation of intensities and Pareto-scaling. Orthogonal 313 

projections to latent structures-discriminant analysis (OPLS-DA) models, which allow to 314 

evaluate the impact of group membership by separating the variance attributed or orthogonal 315 

to class membership into components, were created for both original datasets and validated 316 

subset in positive and negative ion mode (Griffin et al. 2020). Lipids in the validated subset 317 

in positive and negative mode with variable influence of projection (VIP) > 1 were retained 318 

for univariate analysis, as OPLS-DA generated VIP > 1 indicate specific variables with 319 

important contributions to the model (Liu et al. 2020). The suitability of the models were 320 

assessed through inspection of their R2(cum)X and Q2 values, which respectively represent 321 

the percentage of model-captured variation and predictive capability (Liu et al. 2020). 322 

Models were further validated with a 100 permutation-based test, in which the correlation 323 

coefficient for the permuted class-membership variable is plotted against the R2(cum)X and 324 

Q2(cum) (Murgia et al. 2017). 325 

 326 

2.11 Univariate statistical analysis  327 

AD multi-omics lipid species that had an associated VIP score above 1 in the original 328 

ABCA7 KO lipidomics dataset underwent univariate statistical analysis using GraphPad 329 

Prism (p<0.05). Negative-mode acquired lipids underwent both a Student t-test and Mann-330 

Whitney non-parametric test comparing genotype (p<0.05), whereas positive-mode acquired 331 

lipids were analyzed using One-way ANOVA comparing genotype and sex correcting for 332 

multiple testing using B-H method (α<0.05).  333 

 334 
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2.12 Metabolome-wide association study (MWAS) of the blood plasma metabolome for AD 335 

risk loci carriers 336 

We performed an MWAS using nuclear magnetic resonance (NMR) spectra of blood from 337 

3258 individuals from the Airwave Health Monitoring Study (Airwave) and the Rotterdam 338 

Study (RS) prospective cohorts (Elliott et al. 2014; Ikram et al. 2020). Ethical approval for 339 

access to the Airwave cohort was granted following application to the access committee via 340 

the Dementia Platform UK (https://portal.dementiasplatform.uk/). Access to the RS cohort 341 

was granted following access to the Management Committee and conducted under approval 342 

from the Ministry of Health, Welfare and Sport of the Netherlands. Blood samples were 343 

heparin plasma for Airwave and serum for RS. Average age at enrolment in 2004 was 40.9 344 

years for men and 38.5 years for women in the Airwave cohort; the RS cohort mean age of 345 

recruitment was 55 for both genders in 1990 (Elliott et al. 2014; Ikram et al. 2020) 346 

Sample preparation and metabolic profiling in these cohorts have been extensively described 347 

(Tzoulaki et al. 2019; Robinson et al. 2020). Briefly, 1H NMR solvent suppression pulse and 348 

T2-Carr-Purcell-Meiboom-Gill (CPMG) spectra were acquired per sample (Dona A.C. et al. 349 

2014) and additionally lipid quantification was applied on the 1H NMR solvent suppression 350 

pulse spectra using a commercial package (Jiménez et al. 2018). Resonances associated with 351 

both protons attached to the fatty acid and the head group (largely choline and glycerol) along 352 

with protons from cholesterol and cholesterol esters were classified as belonging to the lipid 353 

class. 354 

 355 

MWAS was performed using 47 unique genetic loci based on three recent GWAS meta-356 

analysis on AD to identify AD risk loci carriers (Lambert et al. 2013; Jansen et al. 2019; 357 

Kunkle et al. 2019). These studies evaluated genome-wide associations with late-onset AD 358 

(LOAD) in individuals across the IGAP and UK-Biobank cohorts.  359 

 360 

2.13 MWAS association statistics 361 

We carried out a linear regression to calculate the effect estimates of each SNP with all 362 

metabolomic features (23,571 data points for original NMR spectra and 105 features for the 363 

fitted lipid data) with adjustment for age, sex, and cohort. Prior to the analysis, each cohort 364 

data was residualised using 10 principal components from genome-wide scans to adjust for 365 

population stratification. To account for multiple testing, we used a permutation-based 366 

method to estimate the Metabolome Wide Significance Level (MWSL) to consider the high 367 

degree of correlation in metabolomics datasets (Chadeau-Hyam M et al. 2010; Castagné R et 368 

al. 2017). A P-value threshold giving a 5% Family-Wise Error Rate was computed for each 369 

SNP in each data platform. 370 

  371 
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3 Results  372 

 373 

3.1 DE analysis of mapped AD mouse transcriptomics and proteomics data   374 

DE transcripts and proteins in the AD mouse brain with potential metabolic functions were 375 

extracted from the GEO and PRIDE repositories, respectively. Microarray expression profiles 376 

from 11 datasets were obtained from 5 distinct brain regions (frontal cortex, hippocampus, 377 

sub-ventricular zone, brain hemisphere and whole-brain) and 5 AD mouse models (APP/PS1, 378 

5xFAD, 3xTgAD, APP-KI and Tg4510; Table 1). SAM revealed 2884 DE genes with a 90th 379 

percentile FDR below 5%. Of these, 594 were accurately mapped onto the GSMN, which 380 

were used to generate the all-mapped AD transcriptomics dataset. Furthermore, proteomics 381 

datasets from the hippocampus and olfactory bulb of 5xFAD and Tg2576 mice, respectively, 382 

were also obtained (Table 1). Permutation-based analysis revealed 1537 DE proteins (FDR p 383 

< 0.050), of which 392 were mapped onto the GSMN and therefore constituted the all-384 

mapped AD proteomics dataset. DE proteins from two additional studies (Palomino-Alonso 385 

et al. 2017; Hamezah et al. 2019) failed to reach statistical significance upon FDR correction 386 

and thus these datasets were removed from further analysis.  387 

 388 

3.2 Mapped high-quality mouse orthologs identification from gene-based AD GWAS analysis  389 

High-confidence mouse orthologs of significantly associated genes in human AD GWAS 390 

studies were also identified to gain a more comprehensive view of metabolic perturbations in 391 

AD. Gene-based analysis with MAGMA (de Leeuw et al. 2015) using summary statistics 392 

from 388364 individuals in the UK-Biobank and IGAP cohorts (Marioni et al. 2018) revealed 393 

18178 gene-level associations with human AD SNPs, of which 1664 were considered 394 

significant (combined p-value < 0.05). After applying high-quality mouse orthology criteria 395 

(Mancuso et al. 2019), 1356 high-quality orthologs of AD SNPs-associated human genes 396 

were identified. The all-mapped AD GWAS-orthologs dataset was generated by accurately 397 

mapping 258 GWAS-orthologs onto the GSMN. 398 

 399 

3.3 Differential GO and TF enrichment analysis across AD multi-omics datasets 400 

Potential TF and GO enrichment were investigated across the AD multi-omics datasets. More 401 

than 25% of mapped AD protein-coding genes were also found in the AD transcriptomics 402 

dataset (Figure 2A). In terms of up-stream regulation, 67 TF were significantly enriched in 403 

the all-mapped AD proteome, whereas only 17 TF were enriched in the all-mapped AD 404 

transcriptome (Table S1). Despite these differences, CCCTC-binding factor (CTCF), TAL 405 

BHLH transcription factor 1 (TAL1), MYC associated factor X (MAX) and basic helix-loop-406 

helix family member E40 (BHLHE40) were among the top10 potential enriched TFs across 407 

both datasets (FDR p<0.050, Figure 2B, Table S1). 408 

 409 

GO analysis revealed shared functional terms across the three datasets (Figure 2C-D). 410 

Oxidation-reduction, lipid and fatty-acid metabolic processes were enriched in all-mapped 411 

AD transcriptomics and proteomics (FDR p<0.050, Figure 2C). Six additional lipid-related 412 

BP terms were over-represented in all-mapped AD transcriptomics data, whereas the TCA 413 

cycle was only enriched in the AD proteome (FDR p<0.050, Figure 2C). Transferase, 414 

catalytic, ATP binding, kinase activity, nucleotide binding and serine/threonine-kinase 415 

activity were among the top10 over-represented terms across all-mapped AD multi-omics 416 

datasets (FDR p<0.050, Figure 2D). Cytosol and mitochondria were the cellular 417 

compartment (CC) terms most over-represented in the all-mapped AD transcriptome and 418 

proteome respectively; membrane was the only significant CC term in the AD GWAS-419 

orthologs dataset (Table S2). 420 

 421 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.10.21255052doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.10.21255052


 422 

 423 

 424 

Figure 2. Transcription factor and functional enrichment analysis reveal shared 425 

functional processes between all-mapped AD multi-omics datasets (A) Venn Diagram 426 

showing the amount of overlap between AD mapped transcripts, proteomics and GWAS-427 

orthologs genes. (B) Top 10 TF enrichment analysis results of AD transcriptomics and 428 

proteomics datasets. (C) Selected Biological Process (BP) functional enrichment analysis of 429 

three AD multi-omics datasets. “M.p”, “b.p.” and “c.p.” refer to metabolic, biosynthetic and 430 

catabolic processes, respectively.  (D) Top 10 Molecular (MF) functional enrichment analysis 431 

of three AD multi-omics datasets. “Ac” refers to molecular function activity. TF ratio refers 432 

to the number of mapped input genes in relation to the total TF´s target genes. –log10(FDR) 433 

refers to the inverse, log-transformed FDR-adjusted enrichment p-value. Gene ratio refers to 434 

the number of mapped input genes in relation to all Gene Ontology (GO) term-associated 435 

genes. The entire list of over-represented TF and GO terms can be found in Table S1 and S2, 436 

respectively. 437 

 438 

A) B)

C)

D)
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 439 

3.4 Lipid-related metabolic pathways and regulators are enriched across AD-metabolic 440 

multi-omics datasets 441 

Given the elevated number of metabolic BP significantly enriched across the three multi-442 

omics datasets, the DE 203 transcripts, 164 proteins and 58 GWAS-orthologs genes mapped 443 

to these BP were subjected to further characterization. The largest degree of overlap was 444 

again found between AD-metabolic transcripts and proteins (Figure 3A). Although there 445 

were substantially more enriched TFs in the AD-metabolic proteome (Table S3), lipid-446 

associated TFs such as estrogen-related receptor alpha (ESRRα) and sterol regulatory 447 

element binding transcription factor 1 (SREBF1) were overrepresented in the AD-metabolic 448 

transcriptome and proteome (FDR p<0.050, Figure 3B). Pathway enrichment analysis 449 

reflected differential metabolic processes across the multi-omics datasets (Figure 3C). 450 

Pathways related to cholesterol, phospholipases and fatty-acid metabolism were significantly 451 

over-represented in the AD-metabolic transcriptomics dataset, whereas the AD-metabolic 452 

proteome was associated with mitochondrial processes such as TCA cycle, glycolysis and 453 

NADH electron transfer (FDR p<0.050, Figure 3C). Lipid processes such as CPD-454 

diacylglycerol and phosphatidylglycerol synthesis were also enriched in AD-metabolic 455 

proteome (Figure 3C). Thyroid hormone metabolism was significantly enriched in the 456 

GWAS-orthologs dataset with 66% pathway coverage (Table S4). 457 

 458 

 459 
 460 

Figure 3. TF and pathway enrichment analysis highlights enrichment of lipid-related 461 

metabolic processes in metabolic transcriptomic and proteomic datasets from mouse 462 

models of AD. (A) Venn Diagram showing the amount of overlap between AD metabolic 463 

multi-omics datasets. (B) Top 10 TFs significantly overrepresented in AD metabolic 464 

A) B)

C)
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transcripts and proteins. (C) Pathway enrichment analysis of the three AD multi-omics 465 

datasets. “bs.”, “e.d.” and “e.t.”  refer to biosynthesis, electron donors and electron transfer 466 

processes, respectively.  –log10(FDR) refers to the inverse, log-transformed FDR-adjusted 467 

enrichment p-value. TF ratio refers to the number of mapped input genes in relation to the 468 

total TF´s target genes. Gene and protein coverage refer to the number of mapped input 469 

elements in relation to all pathway-mapped elements. The entire list of significantly enriched 470 

metabolic TF and pathways can be found in Table S3 and S4. 471 

 472 

3.5 Astrocytes and microglia are independently enriched in the AD-metabolic transcriptome 473 

To determine whether cell-type enrichment differences across the AD-metabolic multi-omics 474 

datasets could account for the differential pathway over-representation described previously, 475 

unconditional EWCE was performed. Significant astrocyte (FDR p-value=0.0000001, 476 

standard deviation from the bootstrapped mean or S.D.f.M=7.266) and microglia enrichment 477 

(FDR p-value=0.0000001, S.D.f.M=5.770) was found in the AD-metabolic transcriptomics 478 

dataset (Figure 4A). Oligodendrocyte and astrocyte enrichment in the AD-metabolic 479 

proteome lost significance upon multiple-testing correction (FDR p-value=0.07 & 480 

S.D.f.M=2.474 and FDR p-value=0.095 & S.D.f.M=2.049 respectively, Figure 4B). 481 

Astrocyte enrichment was also similarly lost in the GWAS-orthologs dataset (FDR p-482 

value=0.336, S.D.f.M=1.75, Figure 4C). 483 

 484 

Conditional cell-type enrichment was performed on a combined AD-metabolic multi-omics 485 

dataset to investigate enrichment relationships. Controlling for microglia did not ablate 486 

astrocytic enrichment (FDR p-value=0.0000001, S.D.f.M=7.540) and vice-versa (FDR p-487 

value=0.0000001, S.D.f.M=4.476), suggesting astrocyte and microglia enrichments were 488 

independent of each other (Figure 4D). Oligodendrocyte enrichment was however dependent 489 

on microglia and astrocytes, as significance was lost upon controlling for either of them 490 

(FDR p-value=0.0389 & S.D.f.M=2.531 and FDR p-value=0.0389 & S.D.f.M= 2.387 491 

respectively, Figure 4D). Cell-type enrichment statistics can be found in Table S5. 492 

 493 
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 494 

 495 

Figure 4. Cell-type enrichment analysis of individual and combined AD-metabolic 496 

multi-omics datasets highlight independent astrocyte and microglia enrichment. 497 

Unconditional cell type enrichment analysis of AD metabolic (A) transcriptomics (B) 498 

proteomics and (C) GWAS-orthologs datasets. (D) Conditional cell-type enrichment analysis 499 

of combined AD multi-omics dataset. “S.S.f.M” indicates standard deviation from the 500 

bootstrapped mean. Asterisk indicates statistical significance upon adjusting for FDR with 501 

the Benjamini-Hochberg (B-H) method (p<0.050).  502 

 503 

3.6 Validation of AD multi-omics lipid signatures in ABCA7 KO mice cortex 504 

Given the number of significantly enriched lipid pathways, the results obtained from the 505 

multi-omics datasets were validated by comparing them to an internally acquired lipidomics 506 

UPLC-MS dataset from cortical extracts of ABCA7-KO and WT mice. To do so, a metabolic 507 

subnetwork containing all the significantly enriched lipid pathways was extracted from the 508 

generic mouse GSMN (Figure 3C, Table S4). This subnetwork involved 119 genes, 81 509 

reactions and 107 metabolites. Of these, 73 were lipid species or terms, as some of them 510 

referred to a lipid sub-class, for example a CDP-diacylglycerol, rather than unique species. 511 

Upon lipid identifier retrieval, those 73 terms were associated with 133 lipid species, which 512 

generated the AD multi-omics predicted lipid signature.  513 

 514 

Twenty-eight terms and 60 lipid species from the predicted AD multi-omics lipid signature 515 

were found and therefore validated in the ABCA7-KO and WT lipidomes. In particular, 40 516 

lipid species were validated in the negative-mode dataset and 20 species in the positive-mode 517 

A)

B)

C)

D)
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dataset. The original MS data, containing 5025 and 5811 features in positive and negative 518 

ionization mode, respectively, was hence filtered based on these two subsets of lipid species.  519 

OPLS-DA was then performed on both original and filtered datasets to assess the presence of 520 

any possible separation based on gender and/or genotype, and the potential impact of this 521 

feature reduction procedure on the model robustness.  522 

 523 

The OPLS-DA model for the negative-mode validated lipid signature was able to separate 524 

ABCA7 and WT samples with an even higher degree of robustness than the original dataset 525 

(Q2cum=0.74 and Q2cum=0.56, respectively), which was validated via permutation testing 526 

(Table 2, Figure 5A-B). As illustrated by the model´s score plot, sample separation was 527 

substantially influenced by genotype rather that by variation orthogonal to class membership 528 

(Figure 5B).  529 

 530 

Table 2. OPLS-DA model parameters for each original ABCA7 dataset and the validated 531 

multi-omics lipid signatures subsets. 532 

 533 

 534 

Model Class 

number 

R2x 

(cum) 

R2y 

(cum) 

Q2 

(cum) 

100 permutations 

R2y(cum) intercept 

100 permutations 

Q2(cum)intercept 

Original ABCA7-KO negative-

mode 

2 0.65 0.90 0.56 (0.0, 0.90) (0.0, -0.35) 

Validated lipid signature, 

negative-mode subset 

2 0.91 1.00 0.74 (0.0, 1.00) (0.0, -0.37) 

Original ABCA7-KO negative-

mode 

4 0.80 0.88 0.36 (0.0, 0.83) (0.0, -0.27) 

Validated lipid signature, 

negative-mode subset 

4 0.81 0.77 0.25 (0.0, 0.56) (0.0, -0.64) 

Original ABCA7 KO positive-

mode 

2 0.92 0.80 0.56 (0.0, 0.82) (0.0, -0.44) 

Validated lipid signature, 

positive-mode subset 

2 0.94 0.77 0.43 (0.0, 0.57) (0.0, -0.71) 

Original ABCA7 KO positive-

mode 

4 0.93 0.85 0.41 (0.0, 0.61) (0.0, -0.44) 

Validated lipid signature, 

positive-mode subset 

4 0.89 0.47 0.20 (0.0, 0.16) (0.0, -0.31) 

 535 

Genotype separation was also captured in the OPLS-DA models for the positive-mode 536 

original dataset, although less readily differentiated than its negative-mode counterpart 537 

(Table 2). The robustness of the OPLS-DA model assessing genotype separation for the 538 

positive-mode validated lipid signature was impacted by the presence of an outlier (Table 2). 539 

A strong genotype-sex interaction influenced sample separation in the original positive-mode 540 

cortical dataset (Q2cum=0.406, Figure 5C), but not in the negative mode cortical dataset 541 

(Q2cum=0.36, Table 2). Since the AD multi-omics datasets did not consider sex composition, 542 

the positive-mode validated lipid signature should not account for genotype-sex interactions 543 

either. Indeed, the genotype-sex interaction was not recapitulated in the positive-mode 544 
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validated signature subset (Q2cum=0.20, Table 2, Figure 5D), while the same model for the 545 

negative subset was not calculated due to the lack of statistical power on the correspondent 546 

analysis of the original dataset. Therefore, the validated lipid signature in the negative mode 547 

seemed robustly influenced by ABCA7 genotype.  548 

 549 

 550 
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 551 

Figure 5. OPLS-DA analysis and permutation test of lipidomics analysis of ABCA7-KO 552 

cortical samples and validated lipid signature subsets. OPLS-DA score plot and 553 

subsequent 100 permutation test of A) Original ABCA7-KO lipidomics dataset in negative 554 

mode (R2x cum = 0.65, Q2 cum = 0.56, R2x cum intercept at 0.0, 0.90 and Q2 cum intercept at 555 

0.0, -0.35). B) ABCA7 KO lipidomics subset corresponding to the validated lipid signature in 556 

negative mode (R2x cum = 0.91, Q2 cum = 0.74, R2x cum intercept at 0.0, 1.00 and Q2 cum 557 

intercept at 0.0, -0.37). C) Original ABCA7-KO lipidomics dataset in positive mode (R2x 558 

cum = 0.93, Q2 cum = 0.41, R2x cum intercept at 0.0, 0.61 and Q2 cum intercept at 0.0, -0.44). 559 

D) ABCA7-KO lipidomics subset corresponding to the validated lipid signature in positive 560 

mode (R2x cum = 0.89, Q2 cum = 0.20, R2x cum intercept at 0.0, 0.16 and Q2 cum intercept at 561 

0.0, -0.31). 562 

 563 

We then inspected the VIP scores of the original ABCA7 datasets to investigate whether the 564 

predicted lipid signature could play a role in driving class separation in relation to the entire 565 

ABCA7 lipidome. Out of the 17 predicted lipid species with a VIP score above 1 in the 566 

original ABCA7 lipidome (Table 3), 11 were significantly modulated, suggesting the AD 567 

multi-omics lipid signature was able to successfully predict significant changes in the 568 

ABCA7 cortical lipidome.  569 

 570 

Table 3. 17 predicted lipid species in the AD multi-omics datasets with a VIP score > 1 in 571 

the ABCA7 cortical lipidome. 572 

 573 

Predicted 

lipid species 

GSMN´s ID Detected 

lipids 

LIPIDMAPS 

ID 

Ionization 

mode 

VIP  

score 

Statistical 

test 

A fatty aldehyde Fatty-Aldehydes C26H52O LMFA06000107 Negative  1.45 0.455 

A saturated-Fatty-

AcylCoA 

Saturated Fatty-acyl 

CoA 

C40H72N7O18P3S LMFA07050225 Negative 1.32 0.0530 

Lathosterol CPD-4186 C27H46O LMST01010089 Negative 1.19 0.0070* 

A L-1-

phosphatidyl-

glycerol 

L-1-PHOSPHA 

TIDYL-

GLYCEROL 

C49H85O10P LMGP04010004 Negative 1.14 0.1282 

A Phosphatidyl-

choline 

PHOSPHATIDYL

CHOLINE 

C44H88NO8P LMGP01010006 Negative 1.13 0.6200 

Cholesterol CHOLESTEROL C27H46O  LMST01010001 Negative 1.11 0.0262* 

A fatty acid Fatty-Acids C22H37NO2 LMFA08040001 Negative 1.04 0.5350 

  C18H30O2  LMFA01030152 Positive 1.09 0.0268$ 

A 1-acyl glycero- 

phosphocholines 

1-Acylglycero-

Phosphocholines 

C28H50NO7P LMGP01050140 Negative & 

Positive 

1.03 0.5530 

  C26H52NO7P LMGP01050138 Positive 1.17 0.0342$ 

A CDP- 

diacyl-glycerol 

CDPDIACYL- 

GLYCEROL 

C48H85N3O15P2 LMGP13010004 Negative 1.09 0.0273* 

A diacylglycerol DIACYL 

GLYCEROL 

C35H68O5  LMGL02010001 Positive 1.50 0.0291$ 

  C39H76O5 LMGL02010002 Positive 1.18 0.0227$ 
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4α-hydroxymethyl-

4β-methyl-5α-

cholesta-8,24-dien-

3β-ol 

CPD-4575 C29H48O2  LMST01010232 Positive 1.44 0.0291$ 

Ubiquinol-8 CPD-9956 C49H74O4  LMPR02010005 Positive 1.07 0.0247$ 

An acyl-sn- 

Glycerol-

3phosphate 

ACYL-SN-

GLYCEROL-3P 

 C21H43O7P LMGP10050005 Positive 1.07 0.0295$ 

7-dehydro-

cholesterol 

CPD-4187 C27H44O  LMST01010069 Positive 1.04 0.0427$ 

 574 

Predicted lipid signature was derived from an extracted metabolic subnetwork containing all 575 

significantly enriched lipid metabolic pathways in the AD transcriptomics and proteomics datasets, 576 

which contained 73 lipid terms. If species in the predicted lipid signature referred to a lipid class, all of 577 

the detected compounds belonging to that lipid class were considered for the analysis. This approach 578 

yielded 133 unique lipid species, which were mapped to 60 and 20 lipids detected in negative and 579 

positive ion mode, respectively. Of these predicted lipid species, 17 had a VIP score > 1 in the OPLS-580 

DA models for the original ABCA7 datasets. *References to p <0.050 significance upon unpaired t-test 581 

and Mann Whitney non-parametric testing on intensity differences between ABCA7 and WT mice in 582 

the original negative mode ABCA7 dataset. $ refers to significance upon One-way ANOVA using B-H 583 

correction for multiple testing on differences between ABCA7-males and ABCA7-females, WT-584 

females or WT-males in the original positive mode ABCA7 dataset.  585 

 586 

3.7 Validation of lipid-AD risk loci associations in the Airwave and RS cohorts.  587 

Lastly, we performed a MWAS using 1H NMR spectra of human blood serum from 3258 588 

individuals from the Airwave and RS cohorts (Elliott et al. 2014; Ikram et al. 2020). As these 589 

cohorts consist of predominantly healthy individuals, we used 47 known AD risk loci to 590 

identify AD risk carriers (Lambert et al. 2013; Jansen et al. 2019; Kunkle et al. 2019). 591 

 592 

After performing MWAS, we detected 298 SNP-metabolite associations from the three NMR 593 

pulse sequences, out of which 107 in the lipoprotein, 13 in the CPMG, and 178 in the solvent 594 

suppression pulse sequence spectra datasets. Association with APOE was found for 83% of 595 

these, reflecting the importance of this gene in regulating components of the blood 596 

metabolome (Figure 6a). 597 

 598 

To examine the associations further we classified the detected metabolites according to their 599 

chemical characteristics and biological role into lipids, amino acids, carbohydrates, glycolysis 600 

intermediates, TCA cycle intermediates, ketone bodies and other metabolites. Lipids included 601 

resonances that were associated with both protons attached to the fatty acid and the head 602 

group (largely choline and glycerol) along with protons from cholesterol and cholesterol 603 

esters. The dominant class was represented by lipids, comprising over 70% of the 604 

associations (Figure 6b). 605 

 606 

 607 

 608 
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 609 
 610 

Figure 6: Metabolome-wide association study of the blood metabolome for AD risk 611 

genes in the Airwave and RS cohorts. A) Proportion of AD risk genes significantly 612 

associated with fluctuating metabolite levels detected in the blood samples of individuals in 613 

the Airwave and RS cohorts. MWSL was set to 0.05 upon 10,000 permutations to control for 614 

FWER. B) Proportion of metabolite classes associated with AD risk loci in the Airwave and 615 

RS cohorts. MWSL was set to 0.05 upon 10,000 permutations to control for FWER. 616 
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 642 

4 Discussion  643 

 644 

The main aim of this study was to validate the presence of metabolic perturbations in AD 645 

using multi-omics pathway-based integration and metabolic-subnetwork extraction. We 646 

hypothesized that metabolic alterations detected at multiple omics levels could predict a 647 

robust metabolic signature in the AD metabolome. If validated, these results would provide a 648 

comprehensive perspective on AD metabolism while supporting the use of GSMNs to 649 

identify consistent metabolic alterations in AD. 650 

 651 

GO analysis of AD transcriptomics, proteomics and GWAS-orthologs data revealed 652 

numerous enriched metabolic BP. Although the initial mapping of DE transcripts, proteins 653 

and GWAS-orthologs certainly removed elements with no metabolic roles, this step did not 654 

disproportionately influence metabolic BP term over-representation per se, as only 3 out of 655 

11 BP in mapped GWAS-orthologs were metabolic. Lipid and fatty-acid BP enrichment was 656 

found across the AD all-mapped transcriptome and proteome. This observation was further 657 

supported by TAL1, MAX and BHLHE40 over-representation in both datasets. TAL1 658 

modulates lipid metabolism in the context of cell membrane integrity (Kassouf et al. 2010), 659 

MAX-MYC interaction strongly dysregulates fatty-acid metabolism in neurodegeneration 660 

(Carroll et al. 2018) and BHLHE40 is necessary for insulin-mediated SREBP1 induction, a 661 

lipid homeostasis regulator (Tian et al. 2018).  662 

 663 

Pathway and TF enrichment analysis implicated differential metabolic processes across the 664 

AD multi-omics datasets, which also exhibited different cell-type enrichments. Cholesterol 665 

biosynthesis, phospholipases, fatty-acid metabolism and SREBF1 were strongly enriched in 666 

the AD-metabolic transcriptome, which also exhibited astrocyte and microglia cell-type 667 

enrichment. These multi-level results provide further evidence supporting the existence of 668 

wide-spread lipidomic alterations in AD microglia (Wang et al. 2015). Previously, an allele 669 

variant in the SREPF1 gene was found to be neuroprotective in APOE4 carriers in terms of 670 

dementia incidence (Spell et al. 2004). Extensive lipidome changes are present in TREM2-671 

defficent microglia, another gene variant heavily implicated in AD pathogenesis (Nugent et 672 

al. 2020). Phospholipase-amyloid interactions seem to facilitate microglia Aβ endocytosis, 673 

therefore contributing to neuroinflammation (Teng et al. 2019). Aerobic respiration, TCA 674 

cycle and glycolysis were enriched in the AD-metabolic proteome; these pathways are 675 

consistent with signs of mitochondrial dysfunction that are commonly found in 676 

neurodegeneration (Wang et al. 2020). Indeed, significant energy metabolism deficits have 677 

been detected in human(Johnson et al. 2020) and AD mice brain proteomes (Yu et al. 2018).  678 

 679 

The main finding in this study is the validation of a predicted lipid signature derived from an 680 

extracted metabolic subnetwork with all significantly enriched lipid pathways in AD multi-681 

omics datasets. The OPLS-DA model for the validated lipid signature in negative ion mode 682 

LC-MS dataset was capable of driving class separation based on ABCA7 genotype with a 683 

higher degree of robustness than in the original dataset; the reduced number of features was 684 

not a confounding factor for the model, but instead allowed for the removal of features 685 

originally decreasing the model robustness. Multi-omics integration is being increasingly 686 

used to draw biologically meaningful conclusions over large datasets (Pinu et al. 2019), and 687 

has been  previously applied to AD data to infer metabolic perturbations using protein 688 

ranking and gene-set enrichment (Bundy et al. 2019; Bai et al. 2020), gene-protein 689 

interaction networks (Canchi et al. 2019) and protein-protein interaction networks (Zhang et 690 

al. 2020). To our knowledge, this is the first study using multi-omics pathway-based 691 
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integration and metabolic subnetwork extraction to identify and subsequently validate a lipid 692 

metabolic signature in the AD lipidome. 693 

 694 

Eleven lipid species from the validated lipid signature were significantly modulated in the 695 

cortical ABCA7 lipidome, of which four belonged to the cholesterol biosynthesis pathway. 696 

Lathosterol and cholesterol were significantly decreased in the ABCA7-KO lipidome 697 

compared to WT, whereas 7-dehydro-cholesterol and 4α-hydroxymethyl-4β-methyl-5α-698 

cholesta-8,24-dien-3β-ol were significantly decreased in ABCA7-females compared to 699 

ABCA7-males. The evidence is mixed regarding cholesterol and intermediate sterols changes 700 

in ABCA7 mice. One study showed no cholesterol changes in ABCA7-KO mice brains 701 

(Satoh et al. 2015); serum cholesterol levels were however decreased in female ABCA7-KO 702 

mice (Kim et al. 2005). This study appears more aligned with the latter, as decreased free-703 

cholesterol levels and sex-specific sterol intermediates differences were detected. This 704 

discrepancy is extended to other AD mouse models. Free-cholesterol and lathosterol levels 705 

exhibited non-significant changes in TgCRND8 (Yang et al. 2014) and APP/PS1 mice (Bogie 706 

et al. 2019), whereas lanosterol and cholesteryl acetate were up-regulated in APOE4 mice 707 

(Nuriel et al. 2017). Despite these disagreements, the importance of sterol intermediates in 708 

AD is reflected therapeutically, as a recent drug-repurposing screen identified several tau-709 

reducing compounds which targeted cholesterol-esters (van der Kant et al. 2019).  710 

 711 

We also performed an MWAS analysis using SNPs previously associated with LOAD and 712 

metabolites detected in blood plasma from the Airwave and Rotterdam cohorts using 1H 713 

NMR spectroscopy. Mean ages of recruitment in these cohorts are relatively young, and thus 714 

our reported 298 SNP-metabolite associations may represent early stages of the disease, as 715 

the brain begins to accumulate neurodegenerative features that ultimately results in Mild 716 

Cognitive Impairment (MCI) and AD. Using three distinct NMR pulse sequences, we were 717 

able to detect a range of metabolites including lipids, amino acids, glycolysis, TCA cycle 718 

intermediates and ketone bodies. Lipids were the commonest metabolite class represented in 719 

metabolite-SNP associations, suggesting that dysregulation of lipid metabolism may be some 720 

of the earliest events in AD.  721 

 722 

There are important limitations associated with this study. Firstly, this study included multi-723 

omics data from several brain regions, ages and AD mouse models. Therefore, region and 724 

age-specific TF upstream-regulation and metabolic alterations that are frequent in AD 725 

(González-Domínguez et al. 2014) were not assessed. It is also notoriously difficult to 726 

annotate lipid species into GSMNs due to the complexities associated with lipid 727 

nomenclature and identification (Poupin et al. 2020). This study successfully overcame this 728 

limitation by allowing second-order lipid species matching to their associated broader lipid 729 

term whenever unique lipid species matching was not possible (Poupin et al. 2020). This 730 

study was also limited in that cell type enrichment analysis could not distinguish whether 731 

astrocytic and microglia enrichment was associated with gliosis in disease rather than AD 732 

pathology per se, as cell type proportions could not be adequately controlled in silico.  733 

Additionally, APOE-associated SNPs dominated our MWAS analysis, which could be 734 

attributed to the known association of ApoE with dyslipidemia and atherosclerosis 735 

(Bouchareychas & Raffai 2018). Furthermore, 1H NMR spectra of blood plasma detect a high 736 

proportion of lipids compared with other classes of metabolites and is relatively insensitive as 737 

a technique. We are currently performing mass spectrometry to expand the coverage of the 738 

metabolome to further investigate the earliest molecular events in AD. 739 

 740 

5 Conclusions 741 
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In summary, this study highlights the suitability of integrating multi-omics data into GSMNs 742 

to identify metabolic alterations in AD. Pathway-based integration of multi-omics data 743 

revealed distinct perturbations in lipid metabolism in the AD mouse brain. Predicted lipids 744 

extracted from the over-represented lipid pathway´s metabolic subnetwork was validated in 745 

the ABCA7 lipidome, with its associated multi-variate model robustly modelling class 746 

separation. Furthermore, more than 70% of 298 SNP-metabolite associations in a MWAS 747 

corresponded to lipid species, thus validating the presence of lipidomic dysregulation in AD.  748 

 749 

Author Contributions: M.E.G.S. and J.L.G. conceived and designed the study. M.E.G.S. 750 

retrieved and analyzed the transcriptomics, proteomics, GWAS and lipidomics data. B.R.D. 751 

acquired the lipidomic data. S.L. and B.R.D. processed the lipidomic data. I.K. performed the 752 

MWAS study, which used data from two on-going cohorts oversaw by P.E. M.E.G.S. and 753 

J.L.G. interpreted the data. M.E.G.S. drafted the manuscript, which received critical input 754 

from J.L.G. All authors have read and approved the published version of the manuscript. 755 

 756 

Funding: This work was supported by the Medical Research Council UK, the UK Dementia 757 

Research Institute, National Institute for Health Research (NIHR) and Imperial Biomedical 758 

Research Centre. 759 

  760 

Acknowledgments: The authors would like to acknowledge Dr. Tomonori Aikawa and 761 

Professor Takahisa Kanekiyo from the Mayo Clinic, Jacksonville, Florida for providing the 762 

ABCA7 cortical mouse tissue. 763 

 764 

Conflicts of Interest: The authors declare no conflict of interest. 765 

 766 

Supplementary Materials: The following are available: Table S1: Transcription Factor 767 

enrichment analysis of all-mapped AD transcriptomics and proteomics datasets; Table S2: 768 

Biological Process (BP), Molecular Function (MF) and Cellular Compartment (CC) 769 

enrichment analysis of all-mapped AD transcriptomics, proteomics and GWAS-orthologs 770 

datasets; Table S3: Transcription Factor enrichment analysis of AD-metabolic 771 

transcriptomics and proteomics datasets; Table S4: Metabolic pathway enrichment analysis 772 

of AD-metabolic transcriptomics, proteomics and GWAS-orthologs datasets; Table S5: 773 

Unconditional and conditional EWCE analysis of AD-metabolic multi-omics datasets. 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.10.21255052doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.10.21255052


 792 

References 793 

 794 

Aikawa, T., Holm, M. L. and Kanekiyo, T. (2018) ABCA7 and Pathogenic Pathways of 795 

Alzheimer's Disease. Brain Sci 8. 796 

Andreas, N. J., Basu Roy, R., Gomez-Romero, M. et al. (2020) Performance of metabonomic 797 

serum analysis for diagnostics in paediatric tuberculosis. Sci Rep 10, 7302. 798 

Auton, A., Brooks, L. D., Durbin, R. M. et al. (2015) A global reference for human genetic 799 

variation. Nature 526, 68-74. 800 

Aydin, D., Filippov, M. A., Tschäpe, J. A., Gretz, N., Prinz, M., Eils, R., Brors, B. and 801 

Müller, U. C. (2011) Comparative transcriptome profiling of amyloid precursor 802 

protein family members in the adult cortex. BMC Genomics 12, 160. 803 

Bai, B., Wang, X., Li, Y. et al. (2020) Deep Multilayer Brain Proteomics Identifies Molecular 804 

Networks in Alzheimer's Disease Progression. Neuron 105, 975-991.e977. 805 

Bogie, J., Hoeks, C., Schepers, M. et al. (2019) Dietary Sargassum fusiforme improves 806 

memory and reduces amyloid plaque load in an Alzheimer's disease mouse model. Sci 807 

Rep 9, 4908. 808 

Bouchareychas, L. and Raffai, R. L. (2018) Apolipoprotein E and Atherosclerosis: From 809 

Lipoprotein Metabolism to MicroRNA Control of Inflammation. J Cardiovasc Dev 810 

Dis 5. 811 

Bundy, J. L., Vied, C., Badger, C. and Nowakowski, R. S. (2019) Sex-biased hippocampal 812 

pathology in the 5XFAD mouse model of Alzheimer's disease: A multi-omic analysis. 813 

J Comp Neurol 527, 462-475. 814 

Buniello, A., MacArthur, J. A. L., Cerezo, M. et al. (2019) The NHGRI-EBI GWAS Catalog 815 

of published genome-wide association studies, targeted arrays and summary statistics 816 

2019. Nucleic Acids Res 47, D1005-d1012. 817 

Canchi, S., Raao, B., Masliah, D., Rosenthal, S. B., Sasik, R., Fisch, K. M., De Jager, P. L., 818 

Bennett, D. A. and Rissman, R. A. (2019) Integrating Gene and Protein Expression 819 

Reveals Perturbed Functional Networks in Alzheimer's Disease. Cell Rep 28, 1103-820 

1116.e1104. 821 

Canzler, S., Schor, J., Busch, W. et al. (2020) Prospects and challenges of multi-omics data 822 

integration in toxicology. Arch Toxicol 94, 371-388. 823 

Carroll, P. A., Freie, B. W., Mathsyaraja, H. and Eisenman, R. N. (2018) The MYC 824 

transcription factor network: balancing metabolism, proliferation and oncogenesis. 825 

Front Med 12, 412-425. 826 

Caspi, R., Billington, R., Ferrer, L. et al. (2016) The MetaCyc database of metabolic 827 

pathways and enzymes and the BioCyc collection of pathway/genome databases. 828 

Nucleic Acids Res 44, D471-480. 829 

Castagné R, Boulangé CL, Karaman I et al. (2017) Improving Visualization and 830 

Interpretation of Metabolome-Wide Association Studies: An Application in a 831 

Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling. J 832 

Proteome Res 16, 3623-3633. 833 

Chadeau-Hyam M, Ebbels TM, Brown IJ et al. (2010) Metabolic profiling and the 834 

metabolome-wide association study: significance level for biomarker identification. J 835 

Proteome Res. 9, :4620-4627. 836 

Chazalviel, M., Frainay, C., Poupin, N., Vinson, F., Merlet, B., Gloaguen, Y., Cottret, L. and 837 

Jourdan, F. (2018) MetExploreViz: web component for interactive metabolic network 838 

visualization. Bioinformatics 34, 312-313. 839 

Clough, E. and Barrett, T. (2016) The Gene Expression Omnibus Database. Methods Mol 840 

Biol 1418, 93-110. 841 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.10.21255052doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.10.21255052


Cottret, L., Frainay, C., Chazalviel, M. et al. (2018) MetExplore: collaborative edition and 842 

exploration of metabolic networks. Nucleic Acids Res 46, W495-w502. 843 

Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., Troncoso, J. 844 

C. and Mattson, M. P. (2004) Involvement of oxidative stress-induced abnormalities 845 

in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc 846 

Natl Acad Sci U S A 101, 2070-2075. 847 

Davis, C. A., Hitz, B. C., Sloan, C. A. et al. (2018) The Encyclopedia of DNA elements 848 

(ENCODE): data portal update. Nucleic Acids Res 46, D794-d801. 849 

Davis, S. and Meltzer, P. S. (2007) GEOquery: a bridge between the Gene Expression 850 

Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846-1847. 851 

de Leeuw, C. A., Mooij, J. M., Heskes, T. and Posthuma, D. (2015) MAGMA: generalized 852 

gene-set analysis of GWAS data. PLoS Comput Biol 11, e1004219. 853 

De Roeck, A., Van Broeckhoven, C. and Sleegers, K. (2019) The role of ABCA7 in 854 

Alzheimer's disease: evidence from genomics, transcriptomics and methylomics. Acta 855 

Neuropathol 138, 201-220. 856 

Dennis, G., Jr., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C. and Lempicki, 857 

R. A. (2003) DAVID: Database for Annotation, Visualization, and Integrated 858 

Discovery. Genome Biol 4, P3. 859 

DeTure, M. A. and Dickson, D. W. (2019) The neuropathological diagnosis of Alzheimer's 860 

disease. Mol Neurodegener 14, 32. 861 

Dona A.C., Jiménez B., Schäfer H. et al. (2014) Precision high-throughput proton NMR 862 

spectroscopy of human urine, serum, and plasma for large-scale metabolic 863 

phenotyping. Analytical Chemistry 86, 9887-9894. 864 

Elliott, P., Vergnaud, A. C., Singh, D., Neasham, D., Spear, J. and Heard, A. (2014) The 865 

Airwave Health Monitoring Study of police officers and staff in Great Britain: 866 

rationale, design and methods. Environ Res 134, 280-285. 867 

Fahy, E., Subramaniam, S., Murphy, R. C. et al. (2009) Update of the LIPID MAPS 868 

comprehensive classification system for lipids. J Lipid Res 50 Suppl, S9-14. 869 

Faivre, E., Coelho, J. E., Zornbach, K. et al. (2018) Beneficial Effect of a Selective 870 

Adenosine A(2A) Receptor Antagonist in the APPswe/PS1dE9 Mouse Model of 871 

Alzheimer's Disease. Front Mol Neurosci 11, 235. 872 

Fang, E. F., Hou, Y., Palikaras, K. et al. (2019) Mitophagy inhibits amyloid-β and tau 873 

pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat 874 

Neurosci 22, 401-412. 875 

Fernandez, C. G., Hamby, M. E., McReynolds, M. L. and Ray, W. J. (2019) The Role of 876 

APOE4 in Disrupting the Homeostatic Functions of Astrocytes and Microglia in 877 

Aging and Alzheimer's Disease. Front Aging Neurosci 11, 14. 878 

Frainay, C. and Jourdan, F. (2017) Computational methods to identify metabolic sub-879 

networks based on metabolomic profiles. Brief Bioinform 18, 43-56. 880 

González-Domínguez, R., García-Barrera, T., Vitorica, J. and Gómez-Ariza, J. L. (2014) 881 

Region-specific metabolic alterations in the brain of the APP/PS1 transgenic mice of 882 

Alzheimer's disease. Biochim Biophys Acta 1842, 2395-2402. 883 

Griffin, J. L., Liggi, S. and Hall, Z. (2020) CHAPTER 2 Multivariate Statistics in 884 

Lipidomics. In: Lipidomics: Current and Emerging Techniques, pp. 25-48. The Royal 885 

Society of Chemistry. 886 

Hamezah, H. S., Durani, L. W., Yanagisawa, D., Ibrahim, N. F., Aizat, W. M., Makpol, S., 887 

Wan Ngah, W. Z., Damanhuri, H. A. and Tooyama, I. (2019) Modulation of 888 

Proteome Profile in AβPP/PS1 Mice Hippocampus, Medial Prefrontal Cortex, and 889 

Striatum by Palm Oil Derived Tocotrienol-Rich Fraction. J Alzheimers Dis 72, 229-890 

246. 891 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.10.21255052doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.10.21255052


Hamilton, L. K., Dufresne, M., Joppé, S. E. et al. (2015) Aberrant Lipid Metabolism in the 892 

Forebrain Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model 893 

of Alzheimer's Disease. Cell Stem Cell 17, 397-411. 894 

Hou, Y., Lautrup, S., Cordonnier, S. et al. (2018) NAD(+) supplementation normalizes key 895 

Alzheimer's features and DNA damage responses in a new AD mouse model with 896 

introduced DNA repair deficiency. Proc Natl Acad Sci U S A 115, E1876-e1885. 897 

Ikram, M. A., Brusselle, G., Ghanbari, M. et al. (2020) Objectives, design and main findings 898 

until 2020 from the Rotterdam Study. Eur J Epidemiol 35, 483-517. 899 

Jansen, I. E., Savage, J. E., Watanabe, K. et al. (2019) Genome-wide meta-analysis identifies 900 

new loci and functional pathways influencing Alzheimer's disease risk. Nat Genet 51, 901 

404-413. 902 

Jiménez, B., Holmes, E., Heude, C. et al. (2018) Quantitative Lipoprotein Subclass and Low 903 

Molecular Weight Metabolite Analysis in Human Serum and Plasma by (1)H NMR 904 

Spectroscopy in a Multilaboratory Trial. Anal Chem 90, 11962-11971. 905 

Johnson, E. C. B., Dammer, E. B., Duong, D. M. et al. (2020) Large-scale proteomic analysis 906 

of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy 907 

metabolism associated with microglia and astrocyte activation. Nat Med 26, 769-780. 908 

Jones, P., Côté, R. G., Martens, L., Quinn, A. F., Taylor, C. F., Derache, W., Hermjakob, H. 909 

and Apweiler, R. (2006) PRIDE: a public repository of protein and peptide 910 

identifications for the proteomics community. Nucleic Acids Res 34, D659-663. 911 

Kassouf, M. T., Hughes, J. R., Taylor, S., McGowan, S. J., Soneji, S., Green, A. L., Vyas, P. 912 

and Porcher, C. (2010) Genome-wide identification of TAL1's functional targets: 913 

insights into its mechanisms of action in primary erythroid cells. Genome Res 20, 914 

1064-1083. 915 

Keenan, A. B., Torre, D., Lachmann, A. et al. (2019) ChEA3: transcription factor enrichment 916 

analysis by orthogonal omics integration. Nucleic Acids Res 47, W212-w224. 917 

Kim, D. K., Han, D., Park, J. et al. (2019) Deep proteome profiling of the hippocampus in the 918 

5XFAD mouse model reveals biological process alterations and a novel biomarker of 919 

Alzheimer's disease. Exp Mol Med 51, 1-17. 920 

Kim, W. S., Fitzgerald, M. L., Kang, K. et al. (2005) Abca7 null mice retain normal 921 

macrophage phosphatidylcholine and cholesterol efflux activity despite alterations in 922 

adipose mass and serum cholesterol levels. J Biol Chem 280, 3989-3995. 923 

Kunkle, B. W., Grenier-Boley, B., Sims, R. et al. (2019) Genetic meta-analysis of diagnosed 924 

Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and 925 

lipid processing. Nat Genet 51, 414-430. 926 

Lachen-Montes, M., González-Morales, A., Palomino, M. et al. (2019) Early-Onset 927 

Molecular Derangements in the Olfactory Bulb of Tg2576 Mice: Novel Insights Into 928 

the Stress-Responsive Olfactory Kinase Dynamics in Alzheimer's Disease. Front 929 

Aging Neurosci 11, 141. 930 

Lambert, J. C., Ibrahim-Verbaas, C. A., Harold, D. et al. (2013) Meta-analysis of 74,046 931 

individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 932 

45, 1452-1458. 933 

Liggi, S., Hinz, C., Hall, Z., Santoru, M. L., Poddighe, S., Fjeldsted, J., Atzori, L. and Griffin, 934 

J. L. (2018) KniMet: a pipeline for the processing of chromatography-mass 935 

spectrometry metabolomics data. Metabolomics 14, 52. 936 

Liu, K. D., Acharjee, A., Hinz, C. et al. (2020) Consequences of Lipid Remodeling of 937 

Adipocyte Membranes Being Functionally Distinct from Lipid Storage in Obesity. J 938 

Proteome Res 19, 3919-3935. 939 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.10.21255052doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.10.21255052


Mancuso, R., Van Den Daele, J., Fattorelli, N. et al. (2019) Stem-cell-derived human 940 

microglia transplanted in mouse brain to study human disease. Nat Neurosci 22, 941 

2111-2116. 942 

Marioni, R. E., Harris, S. E., Zhang, Q. et al. (2018) GWAS on family history of Alzheimer's 943 

disease. Transl Psychiatry 8, 99. 944 

Marsh, S. E., Abud, E. M., Lakatos, A. et al. (2016) The adaptive immune system restrains 945 

Alzheimer's disease pathogenesis by modulating microglial function. Proc Natl Acad 946 

Sci U S A 113, E1316-1325. 947 

Murgia, F., Muroni, A., Puligheddu, M. et al. (2017) Metabolomics As a Tool for the 948 

Characterization of Drug-Resistant Epilepsy. Front Neurol 8, 459. 949 

Nugent, A. A., Lin, K., van Lengerich, B. et al. (2020) TREM2 Regulates Microglial 950 

Cholesterol Metabolism upon Chronic Phagocytic Challenge. Neuron 105, 837-951 

854.e839. 952 

Nuriel, T., Angulo, S. L., Khan, U. et al. (2017) Neuronal hyperactivity due to loss of 953 

inhibitory tone in APOE4 mice lacking Alzheimer's disease-like pathology. Nat 954 

Commun 8, 1464. 955 

Oberg, A. L. and Mahoney, D. W. (2012) Statistical methods for quantitative mass 956 

spectrometry proteomic experiments with labeling. BMC Bioinformatics 13 Suppl 16, 957 

S7. 958 

Palomino-Alonso, M., Lachén-Montes, M., González-Morales, A., Ausín, K., Pérez-959 

Mediavilla, A., Fernández-Irigoyen, J. and Santamaría, E. (2017) Network-Driven 960 

Proteogenomics Unveils an Aging-Related Imbalance in the Olfactory IκBα-NFκB 961 

p65 Complex Functionality in Tg2576 Alzheimer's Disease Mouse Model. Int J Mol 962 

Sci 18. 963 

Pappireddi, N., Martin, L. and Wühr, M. (2019) A Review on Quantitative Multiplexed 964 

Proteomics. Chembiochem 20, 1210-1224. 965 

Perez Ortiz, J. M. and Swerdlow, R. H. (2019) Mitochondrial dysfunction in Alzheimer's 966 

disease: Role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 967 

176, 3489-3507. 968 

Pinu, F. R., Beale, D. J., Paten, A. M., Kouremenos, K., Swarup, S., Schirra, H. J. and 969 

Wishart, D. (2019) Systems Biology and Multi-Omics Integration: Viewpoints from 970 

the Metabolomics Research Community. Metabolites 9. 971 

Polito, V. A., Li, H., Martini-Stoica, H. et al. (2014) Selective clearance of aberrant tau 972 

proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med 6, 973 

1142-1160. 974 

Poupin, N., Vinson, F., Moreau, A. et al. (2020) Improving lipid mapping in Genome Scale 975 

Metabolic Networks using ontologies. Metabolomics 16, 44. 976 

Preuss, C., Pandey, R., Piazza, E. et al. (2020) A novel systems biology approach to evaluate 977 

mouse models of late-onset Alzheimer's disease. Mol Neurodegener 15, 67. 978 

Robinson, O., Chadeau Hyam, M., Karaman, I. et al. (2020) Determinants of accelerated 979 

metabolomic and epigenetic aging in a UK cohort. Aging Cell 19, e13149. 980 

Satoh, K., Abe-Dohmae, S., Yokoyama, S., St George-Hyslop, P. and Fraser, P. E. (2015) 981 

ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer 982 

amyloid processing. J Biol Chem 290, 24152-24165. 983 

Skene, N. G., Bryois, J., Bakken, T. E. et al. (2018) Genetic identification of brain cell types 984 

underlying schizophrenia. Nat Genet 50, 825-833. 985 

Skene, N. G. and Grant, S. G. (2016) Identification of Vulnerable Cell Types in Major Brain 986 

Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type 987 

Enrichment. Front Neurosci 10, 16. 988 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.10.21255052doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.10.21255052


Spell, C., Kölsch, H., Lütjohann, D. et al. (2004) SREBP-1a polymorphism influences the 989 

risk of Alzheimer's disease in carriers of the ApoE4 allele. Dement Geriatr Cogn 990 

Disord 18, 245-249. 991 

Su, M., Subbaraj, A. K., Fraser, K. et al. (2019) Lipidomics of Brain Tissues in Rats Fed 992 

Human Milk from Chinese Mothers or Commercial Infant Formula. Metabolites 9. 993 

Tautenhahn, R., Patti, G. J., Rinehart, D. and Siuzdak, G. (2012) XCMS Online: a web-based 994 

platform to process untargeted metabolomic data. Anal Chem 84, 5035-5039. 995 

Team, R. C. (2020) R: A language and environment for statistical computing. R Foundation 996 

for Statistical Computing, Vienna, Austria. 997 

Teng, T., Dong, L., Ridgley, D. M., Ghura, S., Tobin, M. K., Sun, G. Y., LaDu, M. J. and 998 

Lee, J. C. (2019) Cytosolic Phospholipase A(2) Facilitates Oligomeric Amyloid-β 999 

Peptide Association with Microglia via Regulation of Membrane-Cytoskeleton 1000 

Connectivity. Mol Neurobiol 56, 3222-3234. 1001 

Tian, J., Wu, J., Chen, X., Guo, T., Chen, Z. J., Goldstein, J. L. and Brown, M. S. (2018) 1002 

BHLHE40, a third transcription factor required for insulin induction of SREBP-1c 1003 

mRNA in rodent liver. Elife 7. 1004 

Tusher, V. G., Tibshirani, R. and Chu, G. (2001) Significance analysis of microarrays applied 1005 

to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116-5121. 1006 

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M. and Cox, 1007 

J. (2016) The Perseus computational platform for comprehensive analysis of 1008 

(prote)omics data. Nat Methods 13, 731-740. 1009 

Tzoulaki, I., Castagné, R., Boulangé, C. L. et al. (2019) Serum metabolic signatures of 1010 

coronary and carotid atherosclerosis and subsequent cardiovascular disease. Eur 1011 

Heart J 40, 2883-2896. 1012 

van der Kant, R., Langness, V. F., Herrera, C. M. et al. (2019) Cholesterol Metabolism Is a 1013 

Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived 1014 

Alzheimer's Disease Neurons. Cell Stem Cell 24, 363-375.e369. 1015 

Wang, E., Zhu, H., Wang, X., Gower, A. C., Wallack, M., Blusztajn, J. K., Kowall, N. and 1016 

Qiu, W. Q. (2017) Amylin Treatment Reduces Neuroinflammation and Ameliorates 1017 

Abnormal Patterns of Gene Expression in the Cerebral Cortex of an Alzheimer's 1018 

Disease Mouse Model. J Alzheimers Dis 56, 47-61. 1019 

Wang, W., Zhao, F., Ma, X., Perry, G. and Zhu, X. (2020) Mitochondria dysfunction in the 1020 

pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener 15, 30. 1021 

Wang, Y., Cella, M., Mallinson, K. et al. (2015) TREM2 lipid sensing sustains the microglial 1022 

response in an Alzheimer's disease model. Cell 160, 1061-1071. 1023 

Xie, L., Varathan, P., Nho, K., Saykin, A. J., Salama, P. and Yan, J. (2020) Identification of 1024 

functionally connected multi-omic biomarkers for Alzheimer's disease using 1025 

modularity-constrained Lasso. PLoS One 15, e0234748. 1026 

Yang, D. S., Stavrides, P., Saito, M. et al. (2014) Defective macroautophagic turnover of 1027 

brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting 1028 

lysosomal proteolytic deficits. Brain 137, 3300-3318. 1029 

Yu, H., Lin, X., Wang, D. et al. (2018) Mitochondrial Molecular Abnormalities Revealed by 1030 

Proteomic Analysis of Hippocampal Organelles of Mice Triple Transgenic for 1031 

Alzheimer Disease. Front Mol Neurosci 11, 74. 1032 

Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S. et al. (2015) Brain structure. Cell types in 1033 

the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1034 

1138-1142. 1035 

Zerbino, D. R., Achuthan, P., Akanni, W. et al. (2018) Ensembl 2018. Nucleic Acids Res 46, 1036 

D754-d761. 1037 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.10.21255052doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.10.21255052


Zhang, X., Liu, W., Cao, Y. and Tan, W. (2020) Hippocampus Proteomics and Brain 1038 

Lipidomics Reveal Network Dysfunction and Lipid Molecular Abnormalities in 1039 

APP/PS1 Mouse Model of Alzheimer's Disease. J Proteome Res 19, 3427-3437. 1040 

Zhou, Q., Liu, M., Xia, X. et al. (2017) A mouse tissue transcription factor atlas. Nat 1041 

Commun 8, 15089. 1042 

 1043 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.10.21255052doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.10.21255052



