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The genomic sequencing of hundreds of organisms including homo sapiens, and the 
exponential growth in gene expression and proteomic data for many species has 
revolutionized research in biology.  However, the computational analysis of these burgeoning 
datasets has been hampered by the sparse successes in combinations of data sources, 
representations, and algorithms.  Here we propose the application of symbolic toolsets from 
the formal methods community to problems of biological interest, particularly signaling 
pathways, and more specifically mammalian mitogenic and stress responsive pathways.  The 
results of formal symbolic analysis with extremely efficient representations of biological 
networks provide insights with potential biological impact.  In particular, novel hypotheses 
may be generated which could lead to wet lab validation of new signaling possibilities.  We 
demonstrate the graphic representation of the results of formal analysis of pathways, including 
navigational abilities, and describe the logical underpinnings of the approach.  In summary, 
we propose and provide an initial description of an algebra and logic of signaling pathways 
and biologically plausible abstractions that provide the foundation for the application of high-
powered tools such as model checkers to problems of biological interest. 

1 Introduction 

Biological Signaling Pathways.  The tremendous growth of genomic sequence 
information combined with technological advances in the analysis of global gene 
expression has revolutionized research in biology and biomedicine1.  However, the 
vast amounts of experimental data and associated analyses now being produced 
have created an urgent need for new ways of integrating this information into 
theoretical models of cellular processes for guiding hypothesis creation and testing.  
Investigation of mammalian signaling processes, the molecular pathways by which 
cells detect, convert, and internally transmit information from their environment to 
intracellular targets such as the genome, would greatly benefit from the availability 
of such predictive models.  Although signaling pathways are complex, fundamental 
concepts have emerged from contemporary research indicating that they are 
amenable to analysis by computational methods.  For example, most signaling 
pathways involve the hierarchical assembly in space and time of multi-protein 
complexes or modules that regulate the flow of information according to logical 
rules2,3.  Moreover, these pathways are embedded in networks having stimulatory, 
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inhibitory, cooperative, and other connections to ensure that a signal will be 
interpreted appropriately in a particular cell or tissue4,5. 
 
Modeling Cellular Signaling Networks.  Various models for the computational 
analysis of cellular signaling networks have been proposed involving approaches 
that incorporate rate and/or concentration information6,7.  However, these critical 
approaches are currently limited by the great difficulty of obtaining true 
intracellular rate or concentration information.  Moreover, they could be limited by 
the potentially stochastic features of cellular scale populations of signaling 
molecules8.  Because of these problems, we have chosen to focus exclusively on an 
abstract level involving the logic of signal.  Previous work at a similar level of 
abstraction includes EcoCyc, the pathway/genome and metabolic reaction database 
for E. coli9,10.  Initial steps allowing simulation (Section 2.1) of biological pathways 
include work animating the EcoCyc database11, and the use of π-calculus to 
represent and forward-simulate a small signaling pathway12.  Here we describe an 
approach to the development of logical models based on the application of formal 
methods tools to mammalian signaling pathways13,14.  Specifically, we describe the 
application of rewriting logic to the symbolic representation of a major receptor-
mediated pathway in mammalian cells:  receptor tyrosine kinase (RTK) signaling 
through the epidermal growth factor receptor (EGFR) leading ultimately to 
activation of an autocrine loop15 (Figure 1). 
 
1.1 Mathematical Models of the Cell and Levels of Abstraction 
 
At the continuous level of abstraction, natural processes are described by detailed 
approaches drawn from the physical sciences involving continuous mathematics 
and analyzed using sophisticated numerical computation packages.  However, while 
chemical or molecular events ultimately constitute biological processes, the 
complexity of these processes severely limits their accurate and effective 
description in terms of purely physical/chemical phenomena.  This problem can be 
resolved at the discrete level of abstraction, where natural processes are described 
by purely symbolic expressions.  Although this highly abstracted approach is an 
established means to analyze physical systems such as computer designs16,17, it is 
also applicable to less predictable phenomena such as biological signaling 
processes.  Indeed, biologists routinely reason about these processes at the discrete 
level, although this reasoning consists of informal notations and potentially 
ambiguous representations of important concepts like pathways, cycles, and 
feedback loops, with poor tool support.  New rigorous but abstract models are 
needed for biology that:  (i) accommodate conventional types of discrete reasoning 
based on experimentation, (ii) formally define a model and allowable reasoning 
steps, and (iii) provide predictive power for generating testable hypotheses. 

Consider an analogy with algebraic analysis, such as the task of accurately 
and efficiently computing the polynomial x2-y2, given values for x and y.  One 
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implementation of this task is based on the expression (x+y)×(x-y).  Because this 
latter expression consists of two additions and only one multiplication it is 
inherently faster on many hardware platforms than the original expression, which 
requires one addition and two multiplications.  To proceed with the implementation 
of this example, it would be necessary to decide whether the two expressions are 
equivalent.  However, it is not apparent how many tests of equivalence would be 
sufficient to make this determination.  A symbolic or formal methods approach to 
this task would be to assume a set of symbolic rewrite or inference rules and to 
reason algebraically.  For example, starting from (x+y)×(x-y), it could be reasoned 
by the distributivity law that this expression is equal to (x+y)×x - (x+y)×y.  Again by 
distributivity it could be reasoned that the expression is equal to x×x + y×x -x×y-
y×y.  Using associativity, commutativity, and laws of subtraction, the x×y terms 
cancel, and it could be shown that the expression is equal to x×x - y×y, and by the 
definition of exponentiation it could be shown that this is equal to x2-y2.  Thus, 
subject to the validity of the axioms, it could be demonstrated that these polynomial 
expressions are symbolically equivalent for all x and for all y.  This type of 
reasoning is categorically different from numeric testing, but can be 
computationally challenging.   

Major breakthroughs in efficient symbolic reasoning have occurred in the 
last decade of research in computer science.  The framework of model checking18,19, 
exponentially more efficient representations of Boolean and other functions20, 
decision procedures, and efficient implementation of rewriting21 represent quantum 
jumps in the ability to reason about symbolic systems, even when those systems 
may potentially have more states than there are atoms in the universe. 
 
1.2 Pathway Logic 
 
Here we propose and describe Pathway Logic, an algebraic structure enabling the 
symbolic analysis of biological signaling pathways analogous to the standard 
definitions and laws for polynomials referred to above.  We use the EGFR pathway 
as an example15 in this discussion, but Pathway Logic could be applied to pathways 
regulating very diverse biological processes. 

We use the Maude system to express the algebraic structure of Pathway 
Logic13.  Maude is a high-performance reflective multiparadigm language and 
system which supports a wide range of applications.   Maude implements rewriting 
logic, a logic of state and concurrent computation, and supports efficient logical 
reflection. This makes Maude remarkably extensible and powerful, and enables the 
creation of executable environments for different logics, languages, and models of 
computation, including abstract models of discrete biological computation. 
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Figure 1.  Fragment of the mammalian EGFR system illustrating activation of a 
downstream mitogenic signaling pathway involving the gene for the autocrine EGFR ligand 
TGFα.  Also shown is a potential mechanism for cross-communication between the EGFR 
and a G protein-coupled receptor (AT1).  Adapted from Gschwind et al.15. 
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Rule [410]: {CM | cm {cyto [Erk1 - act] {NM | nm { nuc }}}} => {CM | cm {cyto [Erk1 - act] {NM | nm { nuc }}}} .

Figure 2.  Screenshot of the current Pathway Logic viewer. 
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In what follows, numbered lines and bold font is used to highlight text 
written in the Maude executable specification language13,14 to define the Pathway 
Logic algebra.  The most basic sorts within the model presented here are termed 
AminoAcid and Protein.  These sorts together with examples of their specific 
members, S, T, Y and EGFR, are declared by the following: 

 
1  sorts AminoAcid Protein . 
2  ops S T Y : -> AminoAcid . 
3  op EGFR : -> Protein . 
 

Statement 1simply declares the existence of the two sorts, AminoAcid and 
Protein.  Statement 2 declares the amino acids serine S, threonine T, and tyrosine Y 
as constants of the sort AminoAcid, and statement 3 declares the EGFR as a 
constant of the sort Protein.  The keywords op and ops are used to declare 
operators from a list of domain sorts into a range sort.  In both of the examples 
above, the list of domain sorts is empty, indicating that the declared operators are 
constants. 

Important ideas for the approach described here are explained using the 
EGFR pathway (Figure 1).  These ideas are posttranslational protein modification, 
protein association, and cellular compartmentalization. 
 
Protein Modification.  We specify an algebra of protein modifications as follows: 
 
4  sort Site Modification ModSet . 
5  subsort Modification < ModSet . 
6  op _ _ : AminoAcid MachineInt -> Site . 
7  ops phos acetyl ubiq hydrox : Site -> Modification . 
8  op none : -> ModSet . 
9  op _ _ : ModSet ModSet -> ModSet [assoc comm id: none] . 
10 op [_-_] : Protein ModSet -> Protein [right id: none] . 
 

A site for modification on a protein is specified by a pair consisting of an 
amino acid and a machine integer joined by a binary juxtaposition operator (_ _) 
declared on line 6.  On line 7 four operators are declared that represent the common 
protein modifications phosphorylation, acetylation, ubiquitinylation, and 
hydroxylation.  Sets of modifications are formed by the subsort declaration (line 5) 
and an associative-commutative juxtaposition operator (line 9).  Finally, sets of 
modifications are applied to proteins using the operator declared on line 10.  Note 
that this operator has the empty set of modifications as its right identity.  Thus, for 
any protein P, we have [P - none] = P, which means that the expression [P - none] 
is algebraically equivalent to P. 
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Like many signaling proteins, the EGFR is posttranslationally modified by 

phosphorylation5.  Using this algebra, a common phosphorylation state of the 
EGFR can be modeled as follows: 
 
11  [EGFR - phos(Y 1092) phos(Y 1110) phos(Y 1172) phos(Y 1197)] 

 
This expression indicates that the modified EGFR is phosphorylated at 

tyrosines 1092, 1110, 1172, and 1197 (Y1092, Y1110, Y1172, and Y1197, 
respectively) after activation by EGF22.  However, because there is only one known 
activation state of the EGFR, this expression can be simplified to: 

12  [FR – act] 

Protein Association.  Signaling proteins commonly associate to form functional 
complexes22.  This important phenomenon is algebraically represented by the 
following declarations: 
 
13 sort Complex . 
14 subsort Protein < Complex . 
15 op _:_ : Complex Complex -> Complex [comm] . 
 

That is, each protein is a singleton complex and two such complexes could 
be associated by the “:” operator on line 16 to obtain a multiprotein complex or 
module.  Notice that this “:” operator has been declared commutative, but it is not 
assumed associative.  Therefore, parentheses must be used to describe complexes 
formed from other complexes, such as the association shown on line 16 below 
between EGF and the EGFR. 

 
16  (EGF:([EGFR - act] : [EGFR - act])) 
 
Protein Compartmentalization.  In the eukaryotic cell, proteins and other molecules 
exist in complex mixtures that are compartmentalized2.  These compartmentalized 
mixtures (here termed “Soup” for convenience) are algebraically represented by the 
following declarations: 
 
17 sorts Soup Enclosure MemType. 
18 subsort Complex < Soup . 
19 op empty : Soup . 
20 op _ _ : Soup Soup -> Soup [assoc comm id: empty] . 
21 ops CM NM MM : -> MemType . 

 6 



Pacific Symposium on Biocomputing, January 3-7, 2002, p400-412 

22 op {_|_{_}} : MemType Soup Soup -> Enclosure . 
 

An Enclosure is defined as a cellular membrane plus its Soup.  A 
MemType denotes a specific membrane such as the cell membrane (CM) or the 
nuclear membrane (NM) (Figure 1).  As with individual protein complexes (line 
15), soups can also be combined as shown on line 20 by means of the binary soup 
union operator (with juxtaposition syntax).  This union operator models the 
presumed fluid or dynamic nature of some subcellular compartments by specifying 
associative and commutative laws, so that no parentheses are needed and the order 
in which molecules exist in the soups does not matter. 
 
1.3 Rewriting Logic: Symbolic Modeling of Biochemical Reactions 
 
The algebraic structures or models described in Section 1.2 provide symbolic 
representations of protein modifications and eukaryotic cellular organization by 
means of an algebraic specification S involving sorts, subsorts, operators, and 
equational laws.  To symbolize biochemical events such as signaling processes, we 
use theories in rewriting logic23.  A rewrite theory is a pair (S, R) with S being an 
algebraic specification and R being a collection of rewrite rules.  Each rewrite rule 
is of the form l : t ⇒ t', with l being a label, and t and t' being algebraic 
expressions in the algebra specified by S.  Each rewrite rule specifies a local change 
or reaction that can occur in the system modeled by the theory (S, R).  These 
rewrite rules can precisely express biochemical processes or reactions involving 
single or multiple subcellular compartments.  For example, the following text 
describes the first step in the activation of the EGFR signaling pathway, the binding 
of EGF to the EGFR24 (Figure 1):  “Activated MAPKerk1/2 is rapidly translocated 
to the nucleus where it is functionally sequestered and can regulate the activity 
of nuclear proteins including transcription factors.”  In Maude syntax, this 
signaling process is described by the following rewrite rules: 
 
23 rl [410]: {CM | cm {cyto [Erk1 – act] {NM | nm {nuc}}}} =>  
                       {CM | cm {cyto {NM | nm {nuc [Erk1 – act]}}}} . 
24 rl [436B]: [Erk1 – act] ETre => [Erk1 – act] [ETre – act] . 
 
In Figure 1, MAPK represents ERK1 and ETre is a consensus DNA binding site for 
transcription factors that activate expression of the TGFα gene.  Notice that in the 
new state of the system represented by the right hand side of rule 410, activated 
ERK1 is present in the nucleus following translocation.  The right hand side of rule 
436B indicates that activated ERK1 has induced transcription of the TGFα gene 
through the ETre element in its 5′-regulatory region.  These rewrite rules describe a 
local change that could occur when an instance of the left-hand side of each rule 
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exists in a cell.  Mathematically, the rules in R are applied modulo the equivalence 
between expressions defined by algebraic laws in S. 

In a system specified by a rewrite theory (S, R), rewriting logic allows 
reasoning about possible complex changes given the basic changes specified in R, 
such that any such change is possible if and only if it can be proved to be derived 
using the rules in R14.  These complex changes can be concurrent; that is, different 
parts of a compartment can change simultaneously and independently.  
Furthermore, the changes can be multi-step, allowing reasoning about possible 
future states of the system.  Thus, under very reasonable assumptions rewrite 
theories can be executed in Maude to describe a biological signaling process over 
time according to a symbolic model, and can be formally analyzed to reason about 
properties of the states reachable from an initial state. 

2 Analysis Techniques 

Given a formal symbolic model of some part of the signaling pathways in a cell as a 
rewrite theory, several kinds of automatic analysis can be performed.  We note that 
each biochemical reaction that is represented as a rewrite rule conserves proteins.  
This conclusion has two important consequences for the term rewriting system that 
simplify its analysis.  First, from a given initial state the set of reachable states is 
finite.  Second, each Soup variable occurring in the left-hand side must also occur 
in the right-hand side, as otherwise there would be destruction of arbitrary numbers 
of molecules bound to the variable.   
 
 
 
 
2.1 Static Analysis 
 
As a prelude to analyzing the dynamic behavior of a model, we can first perform 
static analysis.  As one example, just considering the simplest algebraic part S of 
the model (without the rewrite rules R), we can identify sorts that are inhabited only 
by declared constants.  Typically, these sorts will capture the notion of a family of 
related proteins (the constants).  A rule containing variables ranging over such sorts 
is (for the purposes of ground rewriting) equivalent to a set of rules obtained by 
instantiating such variables with the constants inhabiting their sorts in all possible 
ways. 
 
2.2 Forward and Backward Search 
 
The simplest form of analysis of the dynamic behavior of a model is to run the 
model from a given initial state by applying the rules in an arbitrary order for some 

 8 



Pacific Symposium on Biocomputing, January 3-7, 2002, p400-412 

fixed number n of rewrites or until no more rules are applicable.  In Maude, this 
process is done with the rewrite command.  Since most models will be 
nondeterministic and the future states reachable from a given initial state form a 
graph where paths diverge, converge, or cycle back on themselves, the search 
command in Maude supports a breadth-first search through this transition graph 
looking for states that match some pattern, possibly with a side condition.  Using 
search, all possible outcomes can be identified from a given initial state.  When the 
rules are unconditional and each variable that occurs in the left-hand side occurs in 
the right-hand side it is possible to flip the rules over and run the model backwards 
− either as a simulation or as a search.  Using such reversed rules, we can ask 
questions of the form “from what initial state(s) can we get to some desired (or 
known) final state?” 
 
2.3 Explicit state Model Checking 
 
The search command allows us to examine the transition graph produced from a 
given initial state for states satisfying some static property, such as the existence of 
a protein in some particular phosphorylation state.  We may want to ask more 
complex queries about the paths in the transition graph, such as “if we reach a state 
that satisfies property P, is it true that we must eventually reach a state that satisfies 
property Q?''  We may also want to restrict our attention to the subset of paths in the 
transition graph that satisfy some fairness criterion such as “if reaction R is always 
possible, then eventually reaction R happens''. 
       A language suitable for framing such queries is propositional linear temporal 
logic (LTL).  Here the propositions correspond to properties that can be statically 
checked for each state.  The familiar propositional calculus with its operators such 
as ∧ (“and''), → (“implies”), and ¬ (“not'”) is extended with temporal operators 
such as  (“always”) and ◊ (“eventually”).  Standard techniques based on Büchi 
automata can be used to check if the transition graph produced from a given initial 
state satisfies an LTL formula17. 
 
2.4 Meta-analysis 
 
In practice there may be uncertainty regarding the experimental evidence for certain 
reactions.  Thus, we consider a parameterized specification that describes a finite 
family of models.  Rather than a fixed set R of reactions, we have some base set 
Rbase of reactions about which we are confident, together with a set P = {P1,…, Pn} 
of parameters (often n will be 1) and for each parameter Pi, a set {Ai,1,…, Ai,mi

} of 
alternative instantiations.  Here each Ai,j is a set of reactions.  Such a specification 

describes a family of ∏ distinct models, which are obtained by choosing 

different combinations of instantiations for P
=

n

i
im

1

1,…, Pn and adjoining them to Rbase.  
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Given a LTL formula and an initial state we can now search this family of models 
to find those models for which an LTL formula is true in the initial state. 
 
2.5 Key Benefit: Expressive Questions 
 
The application of model checking and other analysis techniques is important for 
the expressiveness of the questions for which answers can be effectively computed.  
In particular, providing a complete search of the space of all possible executions of 
an abstraction of system has been found in other domains to be more useful than the 
forward simulation (testing) of just some possibilities for that system.  The 
complete symbolic exploration of all reaction interactions can provide useful 
insights, and can directly enable a biologist to ask questions such as “If EGF is not 
present to stimulate it's pathway, but angiotensin II is, is the ERK signal silent?” 
(Figure 1).  This kind of expressive question can be directly encoded in temporal 
logic as follows: ( (AngII ∧ ¬EGF) → ¬◊ERK1).  The answer to such queries 
(including traces demonstrating counterexamples) can be effectively computed 
using the techniques described above.  Thus far, we have encoded hundreds of 
reactions relating to signaling pathways in mammalian cell cycle control, and we 
have computed all possible outcomes from certain interesting states using the 
Maude search command. 
 
3. Graphical Representation for Pathway Logic 
 
To make Maude-generated models easily accessible to a user we have developed a 
graphical viewer tool.  The representation is a directed transition graph, with nodes 
representing the states of proteins within a model and transitions representing 
rewriting with respect to applicable rules.  The state of the system is specified by 
the contents of each of its compartments.   One possible realization of the viewer is 
shown in Figure 2.  In the top part of the graphical user interface is a canvas 
displaying the directed transition graph constructed from Maude generated paths or 
traces.  Circles depict the states, and arrows indicate the state transitions.  Every 
transition is associated with the rewriting operation with respect to a certain rule, 
and the rules are shown below the arrows.  Below the canvas is a set of boxes that 
specify the Soups before and after a rewriting transition.  In this example the Maude 
output from a simple search operation shows potential crosstalk between known 
pathways.  The user has selected a step in the pathway to examine in detail, with the 
green before state and red after state displayed in detail, and highlighted in the 
pathway overview.   
 
 
 
 
4. Summary 
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Our major hypothesis is that useful computational analysis can be performed on 
biological signaling networks at a very high level of abstraction.   
 
We have presented an approach of applying formal methods to the analysis of 
biological pathways.  Most previous related work has focused on continuous 
models of such systems, an approach restricted by lack of detailed in vivo rate and 
concentration data and the computational complexity of simulations at that level of 
abstraction.  Some previous work such as that on EcoCyc and PiFPC has begun to 
show the benefits of higher level abstractions26,12.  The PiFPC work is progressing 
toward stochastic and rate-based models within a formal framework.  Here we 
propose a formal framework and the application of modern model checking and 
other symbolic techniques to signaling networks at the higher level of abstraction, 
but enabling the answers to queries of a different nature than simple forward 
simulation. 
 
Future Work.  In the near future, we will explore the automated connection between 
different levels of abstraction of biological modeling.  Using automated symbolic 
abstraction methods we will be able to simultaneously represent low-level 
molecular details, and higher-level protein module-at-a-time or compartment-at-a-
time structure, thus enabling scalable computational analysis of extremely large 
systems.  We will also begin to symbolically represent delays, which will begin to 
allow reasoning about circadian and other cellular rhythms, without reliance on 
detailed in vivo rate data.  We will also experiment with perturbations of the 
pathways, computing possible outcomes of induced signal or network changes.  
Finally, we will use temporal logic specifications to study the property-sensitive 
differences between related pathways. 

Acknowledgements 

We thank Tom Garvey, Peter Karp, Pedro Romero, Raymonde Guindon, Andrea 
Lincoln, Marianna Yanovsky, Natarajan Shankar for helpful discussions, and the 
anonymous reviewers for their comments. 

References 

1.   O.G. Vukmirovic and S.M. Tilghman. Exploring genome space. Nature, 
405:820-822, 2000. 

2.   J.D. Jordan, E.Landau, and R. Iyengar. Signaling networks: The origins of 
cellular multitasking.  Cell, 103:193-200, 2000. 

 11 



Pacific Symposium on Biocomputing, January 3-7, 2002, p400-412 

3.   K.W. Kohn.  Molecular interaction map of the mammalian cell cycle control 
and DNA repair systems.  Mol Biol Cell, 10:2703-2734, 1999. 

4.   D. Fambrough, K. McClure, A. Kazlauskas, and E.S. Lander Diverse signaling 
pathways activated by growth factor receptors induce broadly overlapping, 
rather than independent, sets of genes. Cell, 97:727-741, 1999. 

5.   T. Pawson and T.M. Saxton.  Signaling networks--do all roads lead to the same 
genes?  Cell, 97:675-678, 1999. 

6.   K.W. Kohn. Functional capabilities of molecular network components 
controlling  the mammalian G1/S cell cycle phase transition. Oncogene.  
16:1065-75, 1998. 

7.   G. Weng, U.S. Bhalla, and R. Iyengar. Complexity in biological signaling 
systems.  Science, 284:92-96, 1999. 

8.   H.H. McAdams and A. Arkin.  It's a noisy business! Genetic regulation at the 
nanomolar scale.  Trends Genet, 15:65-69, 1999. 

9.   P.D. Karp, M. Riley, S.M. Paley, A. Pellegrii-Toole, and M. Krummenacker. 
Ecocyc: Encyclopedia of  Escherichia coli genes and metabolism. Nucleic 
Acids Res, 26(1):50-53, 1998. 

10.   C.A. Ouzounis and P.D. Karp. Global properties of the metabolic map of 
Escherichia coli. Genome Res, 10(4):568-576, 2000. 

11.   P.R. Romero and P. Karp. Nutrient-related analysis of pathway/genome 
databases.  In R.B. Altman et al., editor, Pacific Symposium on Biocomputing 
2001, pages 471-482. World Scientific, 2001. 

12.   Aviv Regev, William Silverman, and Ehud Shapiro.  Representation and 
simulation of biochemical processes using the π-calculus process algebra.  In 
R.B. Altman et al., editor, Pacific Symposium on Biocomputing 2001, pages 
459-470. World Scientific, 2001. 

13.   Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-
Oliet, Jose Meseguer, and Jose Quesada. A tutorial on Maude.  SRI 
International, March 2000,  http://maude.csl.sri.com. 

14.   Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-
Oliet, Jose Meseguer, and Jose Quesada.  Towards Maude 2.0. In K.Futatsugi, 
editor, Proc. 3rd. Intl. Workshop on Rewriting Logic and its Applications, 
volume 36 of  ENTCS Elsevier, 2000. 

15.   A. Gschwind, E. Zwick, N. Prenzel, M. Leserer, and A. Ullrich. Cell 
communication networks: epidermal growth factor receptor transactivation as 
the paradigm for interreceptor signal transmission. Oncogene, 20:1594-1600, 
2001. 

16.   Steven P. Miller and Mandayam Srivas. Formal verification of the AAMP5 
microprocessor: A case study in the industrial use of formal methods.  In WIFT 
'95: Workshop on Industrial-Strength Formal Specification Techniques, pages 
2-16, Boca Raton, FL, 1995. IEEE Computer Society. 

17.   Ed Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 
1999. 

 12 



Pacific Symposium on Biocomputing, January 3-7, 2002, p400-412 

18.   J.P. Queille and J. Sifakis. Specification and verification of concurrent systems 
in Cesar.  In Proceedings of the 5th International Symposium on Programming, 
volume 137 of Lecture Notes in Computer Science, pages 337-351, Turin, 
Italy, April 1982. Springer-Verlag. 

19.   E.M. Clarke, E.A. Emerson, and A.P. Sistla.Automatic verification of finite-
state concurrent systems using  temporal logic specifications. ACM 
Transactions on Programming Languages and Systems, 8(2):244-263, April 
1986. 

20.   R.E. Bryant.  Graph-based algorithms for Boolean function manipulation. IEEE 
Transactions on Computers, C-35(8):677-691, August 1986. 

21.   Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-
Oliet, Jose Meseguer, and Jose Quesada.  The Maude System.  In P. Narendran 
and M.Rusinowitch, editors, Procs. 10th Intl.  Conference on Rewriting 
Techniques and Applications (RTA-99), volume 1632 of Lecture Notes in 
Computer Science, pages 240-243. Springer-Verlag,1999. 

22.   W. Kolch. Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK 
pathway by protein interactions. Biochem J., 351:289-305, 2000. 

23.   Jose Meseguer. Conditional rewriting logic as a unified model of concurrency. 
Theoretical Computer Science, 96(1):73-155, 1992. 

24.   J. Schlessinger. Cell signaling by receptor tyrosine kinases. Cell, 103:211-225, 
2000. 

25.   Peter D. Karp. Pathway Databases: A Case Study in Computational Symbolic 
Theories. Science 293(5537): 2040-2044, Sept 2001. 

 13 


	Introduction
	12  [FR – act]
	Analysis Techniques
	Acknowledgements

