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Abstract

In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a
pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of
directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the
logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to
a reaction (DrG9). Accordingly, if an enzyme catalyzes a reaction with a DrG9 of -5.7 kJ/mol then the forward flux will be
roughly ten times the reverse flux. As DrG9 approaches equilibrium (DrG9 = 0 kJ/mol), exponentially more enzyme
counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme
level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying
the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single
thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the
degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH,
ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure
affect the pathway’s thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some
of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation),
substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors
(e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic
engineers’ quiver, providing a simple means of evaluating the thermodynamic and kinetic quality of different pathway
chemistries that produce the same molecules.
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Introduction

A primary scientific goal of metabolic research is to develop an

understanding of the evolutionary, chemical and physical forces

that shape the structure of cellular metabolism. Specifically, to

what extent are present-day metabolic pathways the result of

evolutionary optimization rather than fossilized accidents? In

recent years various aspects of central metabolism have been

explained on the basis of specific selection pressures and

constraints imposed during evolution [1,2,3,4,5,6,7,8,9,10,11,

12,13]. Among the various constraints that shape the structure

of metabolic pathways, thermodynamics features prominently,

linking fundamental physical properties to pathway architecture

[1,9,10,11,14,15,16]. Thermodynamic profiling also plays a

central role in synthetic pathway design by identifying the most

promising candidate pathways and discarding infeasible ones

[14,17,18,19,20,21].

Thermodynamic analysis is typically applied to determine

whether a reaction direction or pathway is feasible in physiological

conditions [9,22]. Although not widely appreciated, thermody-

namic potentials also constrain the kinetics of biochemical

reactions and pathways [13,23,24,25]. Specifically, the Gibbs

energy dissipated by a reaction, DrG9, affects the net reaction rate

through the flux-force relationship [23]: DrG9 = 2RTln(J+/J2), R

being the gas constant, T the temperature, J+ the forward flux and

J2 the backward flux. Consequently, an enzyme catalyzing a

reaction that is far from equilibrium (DrG9,,0) carries almost no

backwards flux (Figure 1a) while an enzyme catalyzing a near-

equilibrium reaction (DrG9,0) ‘‘wastes’’ many enzyme units

catalyzing substantial flux through the reverse reaction. According

to the flux-force relationship, as a reaction shifts towards

equilibrium we would see an exponential increase in the number

of enzyme units required to catalyze a single unit of flux. For

example, a DrG9 of 27.3 kJ/mol implies that about 5% of the

enzymatic flux is in the reverse direction. Alternatively, a rather

close-to-equilibrium DrG9 of 21 kJ/mol implies that about 40% of

the enzymatic flux is in the reverse direction and the reaction rate
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is only ,20% of the rate that would be achieved if all enzyme units

catalyzed the forward reaction.

Metabolic Control Analysis (MCA) is commonly used to

describe the control that enzymes exert on metabolic fluxes

[26,27,28,29,30]. This methodology starts with a given steady-

state and mathematically describes how changes in enzyme

abundance affect the pathway flux. Application of MCA requires

enzyme kinetic properties which are laborious to measure and

differ between organisms and isozymes. Here, we describe a

complementary approach that requires no kinetic data and is not

dependent on a particular initial steady state. We aim to identify

pathways that, due to their thermodynamics, likely require

higher enzyme levels to catalyze a unit of flux. Further, we

pinpoint the particular pathway reactions responsible for these

thermodynamic limitations. The flux-force relationship is instru-

mental in these analyses as it expresses a relationship between

the Gibbs energy dissipated during a reaction (DrG9) and the

amount of enzyme required to sustain a particular flux through

that reaction. Therefore, the protein burden imposed by a

pathway is directly related to the thermodynamic landscape of

that pathway.

We develop a quantitative framework to analyze the thermo-

dynamic landscape of metabolic pathways. Our framework

identifies those reactions within a pathway whose rates are

constrained by low thermodynamic driving force. These enzymes

will constrain the activity of the pathway unless they are present at

high concentrations or are much faster-than-average catalysts

[31]. Using this methodology it is straightforward to compare

different pathways that achieve similar metabolic goals (unlike

MCA, which assumes a particular steady-state for each pathway,

making comparison difficult). To demonstrate our method, we

apply it to pathways of central metabolism, including fermentation

pathways (e.g., Embden-Meyerhof-Parnas (EMP) glycolysis) and

oxidative pathways (e.g., TCA cycle). We compare various

alternative pathways by their thermodynamic landscapes and

identify the reactions supported by a low thermodynamic driving

force and, hence, requiring a high enzyme expression level.

Figure 1. The Flux-Force Efficacy and Minimum Optimized
Driving-Force (MDF). (A) A functional relationship between the
reaction driving force (2DrG9) and its Flux-Force Efficacy, as described
in detail in the Methods section. (B) Schematic comparison between
two pathways. Each pathway starts and ends with the same
compounds, employs five enzymes and carries the same net flux. The
kinetic parameters of all enzymes in both pathways, as well as enzyme
and metabolite concentrations, are assumed to be identical. (C)
Energetic profile of Embden-Meyerhof-Parnas glycolysis. Dashed black
line corresponds to DrG9o values (metabolite concentrations of 1 M) of
pathway reactions at pH 7.5. Red line corresponds to DrG9 values of
pathway reactions after an optimization procedure that maximizes the
driving force of the reactions having the lowest driving forces, as
described in the Methods section.
doi:10.1371/journal.pcbi.1003483.g001

Author Summary

Given data about enzyme kinetics and reaction thermo-
dynamics, traditional metabolic control analysis (MCA) can
pinpoint the enzymes whose expression will have the
largest effect on steady-state flux through the pathway.
These analyses can aid experimentalists in tuning enzyme
expression levels along a metabolic pathway. In this work,
we offer a framework that is complementary to MCA.
Rather than focusing on the relationship between enzyme
levels and pathway flux, we examine a pathway’s
stoichiometry and thermodynamics and ask whether it is
likely to support high flux in cellular conditions. Our
framework calculates a single thermodynamically-derived
metric (the MDF) for each pathway, which is convenient for
selecting the promising pathways from a large collection.
This approach has several advantages. First, enzyme
kinetic properties are laborious to measure and differ
between organisms and isozymes, but no kinetic data is
required to calculate the MDF. Second, as our framework
accounts for pH, ionic strength and allowed concentration
ranges, it is simple to model the effect of these parameters
on the MDF. Finally, as it can be difficult to control the
exact expression level of enzymes within cells, the MDF
helps identify alternative pathways that are less sensitive
to the levels of their constituent enzymes.

Thermodynamics Constraints Shape Pathway Kinetics
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Methods

Thermodynamic parameters
We used the Component Contribution method [32] for

estimating the standard Gibbs energies of reactions, DrG9o

(reactant concentrations of 1 M). This method produces a

consistent set of DrG9o values by integrating three sources of

information in decreasing priority: (1) ,200 Gibbs energies of

formation (DfG
o) collected and published by Alberty [33,34]; (2)

apparent equilibrium constants (K9) available in the NIST

database of enzyme-catalyzed reactions [35,36]; and (3) the

pseudoisomeric group contribution method as described in detail

in ref. [22]. All DrG9o values were transformed to a pH of 7.5 and

an ionic strength of 0.2 M [22], representing typical cellular

conditions [37]. We use these conditions in all analyses presented

in this paper, unless stated otherwise.

Driving force and pathway feasibility
The Gibbs energy dissipated by a reaction can be calculated

from the standard Gibbs energy of the reaction (DrG9o) and the

reactant concentrations. It is given by DrG9 = DrG9o+RT?ln(Q),

where Q is the reaction quotient (also known as the mass action

ratio). Because of its more intuitive sign we will often refer to a

reaction’s Driving Force, defined as 2DrG9 [38].

When analyzing pathways containing multiple reactions, it is

convenient to use matrix notation [39]. We define S as the

stoichiometric matrix, with rows corresponding to compounds and

columns to reactions; i.e., Sij is the stoichiometric coefficient of

compound i in reaction j (positive for products and negative for

substrates). Go denotes a column vector of reaction energies, i.e.,

Go
j is the standard change in Gibbs energy (DrG9o) of reaction j.

Finally, let x be the column vector of the log-concentrations, so

that xi is the natural logarithm of the concentration of compound i
in molar units. Then the vector of reaction driving forces (2DrG9)

is given by 2(Go+RT?ST?x).

We use a convention where all reactions in S are written such

that the forward direction is the direction of the net flux in the

pathway, and the stoichiometric coefficients represent the actual

molecularities in the enzyme’s reaction center [38] (i.e., the

number of reactant molecular entities that are involved in the

‘microscopic chemical event’ constituting an elementary reaction).

This convention obviates the situation existing in more general

stoichiometric models [40], where scaling the flux of a reaction by

a scalar and dividing the stoichiometric coefficients of that reaction

by the same factor results in an equivalent system. Using the actual

molecularities is vital for our analysis, as the flux-force relationship

cannot accept an arbitrary definition of stoichiometry.

Considering Go to be constant and allowing x to vary, a

pathway is feasible if and only if there is at least one solution to the

linear system defined by the constraints ln(Cmin)#x#ln(Cmax) and

2DrG9.0; i.e., there must exist a set of metabolite concentrations

within the predefined range (Cmin to Cmax) such that all reactions

have a positive driving force. The concentration bounds (Cmin and

Cmax) may be the same for all compounds or can be defined

individually.

Even if a pathway is composed of thermodynamically-feasible

reactions, the pathway may be thermodynamically infeasible as a

whole. That is, no solution for x exists within the chosen

concentration range such that 2DrG9.0 and so the pathway

reactions cannot all be made feasible simultaneously [41].

Flux-Force Efficacy and Max-min Driving Force (MDF)
As described in the Introduction, the driving force of a reaction

constrains its rate, with near-equilibrium reactions requiring

exponentially more enzyme to sustain the same rate as reactions

far from equilibrium. We define the Flux-Force Efficacy – a

unitless measure between 0 and 1 – as the ratio between the net

flux (Jz{J{) and the total flux (JzzJ{), which – according to

the flux-force relationship – is related to the change in Gibbs free

energy by
Jz{J{

JzzJ{
~

e{DrG
0

RT {1

e{DrG
0

RT z1
. Hence, the higher the driving

force of a reaction, the higher its Flux-Force Efficacy.

Because of this interdependence between thermodynamic

potentials and flux, pathways operating near equilibrium will

incur a kinetic penalty due to backwards flux. We therefore

attempt to quantify a pathway’s tendency to operate near-

equilibrium. We seek a set of reactant concentrations that will

maximize the driving forces of all reactions in the pathway. To

achieve this, we use the minimum over all reaction driving forces

(2DrG9 values of pathway reactions) as an optimization goal and

maximize it – within metabolite concentration bounds – using

linear programming. This can be formalized as a linear problem:

Given S,G0,RT ,Cmin,Cmax

Maximize
x,B

B

Subject to {(G0zRT :ST :x)§B

ln (Cmin)ƒxƒ ln (Cmax)

where B represents a tight lower bound (i.e., the minimum) on the

driving force of all reactions. Maximizing B yields a solution where

all reactions are as far from equilibrium as possible given the

defined concentration ranges. The maximal value of B is denoted

as the Max-min Driving-Force (MDF) of the pathway and is

measured in units of kJ/mol [42].

If a pathway has an MDF of 7.3 kJ/mol then a set of metabolite

concentrations exists, within the pre-defined concentration range,

such that all pathway reactions dissipate at least 7.3 kJ/mol. A

DrG9 = 27.3 kJ/mol corresponds to a J+/J2 ratio of exp(7.3/

RT) = 19, which in turn suggest that 95% of the overall flux is in

the forward direction and 95/19 = 5% is in the backward

direction. Therefore, the Flux-Force Efficacy is 9525 = 90%

(
e{{7:3

RT {1

e{{7:3
0

RT z1
= 0.9). Since the MDF is a tight bound, it is impossible

to find a set of concentrations within the specified range for which

all reaction driving forces are larger than, say, 7.4 kJ/mol.

Notably, the MDF solution is also equivalent to minimizing the

total enzyme mass in a linear pathway, assuming that all enzymes

have the same specific activities (see Text S1 for a mathematical

proof).

Reaction and Metabolite Shadow Prices
In order to quantify the extent to which a reaction or a

metabolite affects the value of the MDF, we use the concept of

shadow prices [42,43]. Every primal linear optimization problem

has a complementary dual problem. The variables of the dual

problem – called shadow prices – quantify how much the value of

the primal objective – i.e., the MDF – will increase when a single

constraint is relaxed by a unit amount. There are three types of

constraints in the MDF linear problem: the lower bound (B) of the

reaction driving forces (2Go2RT? ST ? x$B), the upper bound of

metabolite concentrations (x#ln(Cmax)), and the lower bound of

metabolite concentrations (ln(Cmin)#x). We therefore define the

Reaction Shadow Price as the shadow price associated with the

constraint on the driving force of that reaction, representing how

much a change in Go will affect the MDF. The Metabolite

Thermodynamics Constraints Shape Pathway Kinetics
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Shadow Price is the maximum of the absolute values of the two

shadow prices associated with the constraints (lower and upper

bound) on that metabolite’s concentration.

The shadow prices are the solution for the variables of the dual

problem w, umax, umin:

Given S,G0,RT ,Cmin,Cmax

Minimize
w,umax,umin§0

{G0wzCmaxumax{Cminumin

Subjectto S:wzumax{umin~0P
j

wj~1

According to the definitions above, w are the reaction shadow

prices and max(|umax|, |umin|) are the metabolite shadow prices.

See Text S1 for a full derivation of the dual problem.

The shadow prices represent a scaling between a change in the

constraint and the resulting change in the MDF. For example, a

reaction shadow price of 0.25 indicates that a 4 kJ/mol decrease in

DrG9o would increase the pathway MDF by 1 kJ/mol (assuming

that this reaction still limits the pathway MDF). Similarly, a

metabolite shadow price of 0.5, associated with the upper bound

constraint, implies that raising the upper bound concentration of

this metabolite by 10 fold will result in the MDF increasing by

0.5*RTln(10)<3 kJ/mol. Shadow prices are 0 for reactions whose

DrG9o does not constrain the MDF, and likewise for metabolites

whose concentrations do not constrain the MDF.

Metabolite concentration range
Throughout our analyses we used metabolite concentration

bounds characteristic of cellular physiology, a lower bound

Cmin = 1 mM and an upper bound Cmax = 10 mM [9,44,45]. An

exception was made for cofactors, whose concentrations were fixed

to those characteristic of E. coli’s cytoplasm. Cofactors participate

in tens or even hundreds of reactions and so their concentrations

are considerably more constrained by the endogenous metabolic

network than common reaction intermediates [46]. Fixing the

concentrations of cofactors allows us to encode these constraints

imposed by the wider metabolic network on individual pathways.

Wherever possible, we constrained the cofactor ratios rather than

their absolute concentrations, since the ratios are more conserved

in many cases. The co-factor constraints we use are as follows:

[ATP]/[ADP] = 10 [45,47,48,49], [ADP]/[AMP] = 1 [45,49],

[NADH]/[NAD+] = 0.1 [45,50], [NADPH]/[NADP+] = 10 [45,

51], [Ferredoxinreduced]/[Ferredoxinoxidized] = 1 (corresponds to a

reduction potential of 2400 mV [52]), [orthophosphate]

= 10 mM [53,54,55], [pyrophosphate] = 1 mM [56,57],

[CoA] = 1 mM [45], [CO2(aq)] = 10 mM (ambient conditions).

Connection between thermodynamic driving forces and
Metabolic Control Analysis

Enzyme abundances control the steady-state fluxes within a

pathway [26,27,28,29,30]. When an enzyme is upregulated, the

rate of the reaction it catalyzes increases instantaneously, but the

rates of other reactions in the pathway do not change at first. This

state, however, cannot be maintained for long as the concentration

of the enzyme’s substrates decrease, while its products accumulate.

Therefore, other reactions in the pathway are affected, and

eventually, after the system settles in a new steady state, all fluxes

might be altered. The term ‘‘control’’ describes such indirect,

global effects.

Potentially, all enzymes exert control on all fluxes within the

pathway, but to different extents. Metabolic Control Analysis

describes this control mathematically: if we consider small changes

to a given steady-state, the effect of an enzyme’s abundance on the

pathway flux, can be quantified by the scaled flux control

coefficient [26,58]:

CJ
vi
~

Ei

J

LJ

LEi

where J is the steady-state flux, vi is the rate of reaction i and Ei is

the abundance of the enzyme catalyzing reaction i. In the general

case, control coefficients depend on the pathway structure,

enzymatic parameters, and allosteric regulation. Since all control

coefficients for a flux J always sum to 1 [58,59], control can only

be redistributed among the different pathway enzymes.

The flux control coefficients are related to the thermodynamic

driving forces, as derived in Text S1 and was shown in ref. [26].

This relationship is easily derived for linear pathways whose

enzymes follow the reversible Michaelis-Menten rate laws

[26,60,61]. In Text S1, we derive the relationship for two specific

cases: (1) all enzymes are completely substrate (but not product)

saturated. Importantly, because all enzymes are essentially

reversible, the rates of all reactions are sensitive to the

concentrations of the substrates and products, even if all enzymes

are substrate saturated. A full analysis of this case is given ref. [61];

(2) the substrates and products of all enzymes are well below their

KM (enzymes operate in the linear regime). We show that in both

cases the control coefficients are completely determined by

reaction driving forces, such that the two are always correlated:

the higher the driving force of a reaction, the higher the control it

exerts on the pathway flux. Specifically, reactions with low driving

forces have very low control coefficients.

For the first case – all enzymes are substrate-saturated – we find

that CJ
vi
~a e

{DrG
0
i

RT {1

� �
.

For the second case – when all enzymes are substrate and

product sub-saturated – we find that:

CJ
vi
~a e

{DrG
0
i

RT {1

� �
Pi

m~1e
{DrG

0
m

RT

� �{1

, in agreement with the

derivation of [26].

In both cases the scaling factor a is identical for all reactions and

is determined bySiC
J
vi
~1.

Software
The software for all the analyses presented in this paper is open

source (MIT license) and stored in an online repository (https://

code.google.com/p/milo-lab/). We use IBM’s ILOG CPLEX

Optimization Studio 12.5 to solve the MDF primal and dual

problems. The code which predicts the standard Gibbs energies

[32] also depends on OpenBabel (http://openbabel.org) [62],

Calculator Plugins from Marvin (version 5.10.1) by ChemAxon,

and the KEGG database (http://www.genome.jp/kegg/) [63].

Results

The Flux-Force Efficacy and the Max-min Driving-Force
(MDF)

The kinetics of a reaction can be linked to three main factors: (1)

maximal velocities and saturation levels, related to the enzyme

kinetic parameters and to the concentrations of substrates and

products; (2) enzyme abundances and (3) reverse flux though

reactions [13]. Thermodynamics determines this last factor

through the flux-force relationship: the reaction driving force

(equivalent to the minus of the reaction change in Gibbs energy,

Thermodynamics Constraints Shape Pathway Kinetics
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i.e., 2DrG9) equals RTln(J+/J2), as presented above. For low

enough driving forces (roughly 3 kJ/mol or less) the effect of DrG9

on the reaction flux is similar to that of kcat (or VMAX) in the sense

that a fold change in either of them will change the reaction rate

by the same fold change. The dependence of the reaction rate on

2DrG9 decreases as 2DrG9 increases above ,3 kJ/mol. When 2

DrG9 exceeds 10 kJ/mol, the reaction rate is effectively insensitive

to thermodynamic effects, reflecting the fact that there is negligible

flux in the reverse direction.

To address the effect of driving force on reaction flux more

systematically, we define the Flux-Force Efficacy as the ratio

between reaction net flux and total flux,
Jz{J{

JzzJ{
(Methods). The

Flux-Force Efficacy can be interpreted as the ratio between the

actual reaction rate and the rate expected if backward flux was

insignificant (assuming maximal velocities, saturation levels and

enzyme concentrations are kept constant). Figure 1A shows how

this ratio scales with the reaction driving force.

We use the term ‘‘efficacy’’, instead of ‘‘efficiency’’, to

distinguish between Flux-Force Efficacy and thermodynamic

efficiency, as the two are antagonistic. For example, a reaction

operating close to equilibrium is often considered to be thermo-

dynamically efficient since it dissipates almost no Gibbs energy.

Yet, such a reaction is characterized by a low Flux-Force Efficacy

as J+<J2. In contrast, a reaction with a high Flux-Force Efficacy,

characterized by J+..J2, is thermodynamically inefficient,

dissipating a considerable amount of Gibbs energy.

For a fixed enzyme level, a high Flux-Force Efficacy implies a

high net reaction rate, as backward flux is negligible. On the other

hand, a low Flux-Force Efficacy indicates considerable backward

flux, leading to a decreased reaction rate. In a complementary

manner, we can use this relationship to estimate the amount of

enzyme required to sustain a particular flux through the reaction

[13]. Figure 1B demonstrates this effect schematically using the

energetic profiles of two putative pathways. Both pathways start

and end with the same compounds, employ five enzymes and

carry the same net flux. The kinetic parameters of all enzymes in

both pathways, as well as enzyme and metabolite concentrations,

are assumed to be identical. All reactions in the green pathway

have the same, moderate driving force, which translates to a small

backward flux. Hence, a small amount of each enzyme suffices. In

the blue pathway, the driving force of the first two reactions is

large while the last three reactions are near equilibrium. These

final three reactions, therefore, require a lot more catalyst in order

to sustain the same flux as the first two reactions in the blue

pathway.

When analyzing an entire pathway, it is essential to consider

the interplay between the driving forces of all participating

reactions: varying the concentration of a given metabolite can

modulate the driving force of multiple reactions. We developed a

method for finding metabolite concentrations – within an allowed

range, see Methods – that maximize the driving force, and hence

the Flux-Force Efficacy, of pathway reactions. Specifically, our

computational tool uses the minimum over all reaction driving

forces as an optimization function and maximizes it (Methods).

This minimum, representing the smallest driving force among all

pathway reactions, is defined as the Max-min Driving-Force

(MDF).

Figure 1C illustrates the application of the optimization

approach to EMP glycolysis. The grey dashed line represents the

DrG9o values of the different pathway reactions, while the magenta

line represents the DrG9 values for each of the reactions after

optimizing reactant concentrations to maximize the MDF. After

this optimization, all reactions in the pathway have a positive

driving force (i.e., a negative slope) and so it is clear that the EMP

pathway is thermodynamically feasible.

Presuming the DrG9o values used are accurate and that our

concentration bounds reflect cellular concentrations, pathways are

thermodynamically feasible if and only if they have a positive

MDF. Moreover, the value of the MDF indicates the degree to

which a pathway is expected to be kinetically constrained by

backward flux. A pathway with a high MDF can achieve a steady-

state with very low backward flux as all of its constituent reactions

can achieve high driving forces simultaneously. On the other

hand, a pathway characterized by a low MDF contains reactions

that are expected to have low driving force in physiological

conditions. Due to the flux-force relationship, these reactions must

either sustain low flux or be catalyzed by an abundant enzyme.

For example, the green pathway shown in Figure 1B operates at

high MDF which results in a high pathway flux and/or a low

enzyme requirement. On the other hand, the blue pathway

operates at low MDF, containing near-equilibrium reactions

which reduce pathway flux and/or require higher enzyme levels.

The shadow prices determine whether a specific reaction or

metabolite constrains the pathway MDF, as described in detail in

the Methods section. A decrease in the DrG9o value of a reaction

with a positive shadow price would lead to an increase in the

MDF. Similarly, if the concentration of a metabolite with a

positive shadow price is permitted to violate the allowed

concentration range (becomes too high or too low), the MDF

increases (Methods).

According to our model, enzymes catalyzing reactions with

positive shadow prices are expected to be present at higher

concentrations or have higher-than-average kcat values. While it is

tempting to test this hypothesis systematically, it is, unfortunately,

very challenging using available experimental data. Specifically,

the MDF analysis requires that the magnitudes of all fluxes are

precisely determined (taking into account that the flux through

enzymes participating in the same pathway might differ due to an

overlap with other metabolic routes). However, even for the

relatively simple case of E. coli’s central metabolism, flux and

metabolite concentration measurements from different groups

vary significantly, even when performed under similar conditions

(e.g., [64,65]). In addition, proteomic measurements related to

lowly-expressed proteins are still quite noisy. Finally, most kinetic

parameters reported in the literature were measured in vitro,

which can differ considerably from those experienced in vivo
[66,67]. These issues limit our ability to perform a comprehensive

systematic analysis of the relationship between the thermodynamic

parameters, the measured kcat values and enzyme levels. Our

current contribution suggests specific predictions to be tested when

the needed experimental technologies mature.

In the sections below we demonstrate our methodology by

applying it to well-known central metabolic pathways. Our

analysis, although not systematic, provides several examples of

thermodynamic properties affecting pathway flux and suggests

thermodynamic based explanations for key biochemical phenom-

ena.

Malate dehydrogenase constrains the Max-min
Driving-Force of the TCA pathway

In most organisms, the TCA cycle is the pathway responsible for

the catabolic oxidation of organic compounds to CO2 (Figure 2A).

Figure 2B presents the MDF of the TCA cycle (solid blue line) as a

function of pH. We chose to vary pH, rather than other factors

that affect the MDF, because cellular pH can differ considerably

between organisms [37] and because the thermodynamics of many

biochemical reactions producing or consuming protons is greatly

Thermodynamics Constraints Shape Pathway Kinetics
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affected by changes in pH. Figure 2B shows that the TCA cycle

has a low MDF. In fact, it seems infeasible at pH#7, which

contradicts the observation that numerous organisms operate the

TCA cycle at low cytosolic pH values [37]. To understand this

puzzling finding, we asked which reaction(s) are responsible for

constraining the pathway’s MDF – i.e., which reactions have a

positive shadow price. We find that, at non-alkaline conditions, the

only reaction with a positive shadow price is malate dehydroge-

nase. The oxidation of malate to oxaloacetate using NAD as an

electron acceptor (marked in red in Figure 2A) is characterized by

a large positive DrG9o (.30 kJ/mol at pH#7). How, then, are cells

able to sustain high flux through the TCA cycle? The MDF

framework enables us to suggest solutions for this apparent

paradox.

First, a high turnover number can compensate for operating at a

low MDF: if the maximal activity of an enzyme is high enough, it

will be able to operate sufficiently fast even at a low Flux-Force

Efficacy. For example, an enzyme having a kcat of 100 s21 and

catalyzing a reaction with a driving force of only 0.3 kJ/mol (Flux-

Force Efficacy ,6%) is equivalent to an enzyme having a kcat of

10 s21 (the average kcat [31]) but catalyzing a reaction with a

driving of 3 kJ/mol (Flux-Force Efficacy .50%). Thus, the high

turnover number of malate dehydrogenase (well above 1000 s21

[31]) might have evolved to compensate for its low driving force.

However, this compensation effect does not answer how the cycle

can carry flux at pH#7, when malate oxidation is expected to

become infeasible.

Another possible explanation is that the concentration of

oxaloacetate – having a positive shadow price (Figure 2A) – is

lower than 1 mM, the lower-bound concentration assumed in our

analysis. As oxaloacetate is an unstable compound [68], it is

tempting to suggest that it is indeed found at a sub-micromolar

concentration in-vivo. As shown in Figure 2B, allowing oxaloac-

etate concentrations beneath 1 mM increases the pathway’s MDF

and the pH range in which it is thermodynamically feasible.

However, keeping the concentration of oxaloacetate so low might

be deleterious, as it would limit the rate of reactions which utilize

this metabolite, e.g., citrate synthase, aspartate transaminase and

PEP carboxykinase. In fact, the relatively high affinity of citrate

synthase towards oxaloacetate – KM being on the order of 1 mM

[31,69] – can be interpreted as representing an adaptation towards

a low oxaloacetate concentration.

A further possibility, also supported by experimental studies, is

that oxaloacetate is channeled between malate dehydrogenase and

citrate synthase [70,71,72,73]. If channeling indeed takes place,

the cellular concentration of oxaloacetate can be extremely low

without compromising the rate of the enzymes utilizing it. From a

thermodynamic point of view, malate dehydrogenase and citrate

synthase can then be treated as a single reaction [9,74]. This

unified reaction does not represent any thermodynamic difficulty

as its DrG9o is lower than 220 kJ/mol. As shown in Figure 2B,

such a scenario increases the pathway MDF and makes it feasible

in any physiological pH. Following the logic that substrate

channeling can alleviate thermodynamic constraints, we expect

that metabolites with positive shadow prices (i.e., whose concen-

tration constrains the pathway MDF) will have a higher propensity

to be channeled between enzymes, therefore potentially guiding

experimental efforts to such locations in search of evidence for

substrate channeling. When high throughput methods for

identifying channeling are developed, it will be possible to test

this hypothesis systematically.

Another solution to this thermodynamic puzzle might be the use

of electron acceptors with a higher reduction potential than that of

NAD. For example, various organisms operate a malate:quinone

oxidoreductase enzyme [75,76,77,78,79]. In many of these

organisms, this enzyme replaces more common NAD-dependent

enzymes as the major route of malate oxidation [76,77,78,79]. As

shown in Figure 2B, using malate:quinone oxidoreductase enables

the TCA cycle to operate at high MDF regardless of the

cytoplasmatic pH. The downside of this approach is that less

ATP can be produced via oxidative phosphorylation when using a

quinone as an electron carrier instead of NAD.

Finally, it is important to note that the TCA cycle is not actually

a cycle in many organisms and under various conditions (e.g.,
[80]). Instead, it often operates in a forked-mode, where malate

dehydrogenase catalyzes the favorable direction (i.e., oxaloacetate

reduction), eliminating the thermodynamic constraints due to

malate oxidation. Remarkably, it was recently suggested that E.
coli uses a forked TCA cycle even during aerobic growth, despite

the low ATP yield associated with this mode [65].

Several natural alternatives to the TCA cycle are also known to

support the complete oxidation of organic compounds to CO2

[64,81]. The structures of these pathways are given in Figure S1.

Figure 2C compares these metabolic alternatives on the basis of

their MDF and ATP yield per glucose. ATP is assumed to be

produced from substrate-level phosphorylation and from

NAD(P)H through oxidative phosphorylation. The P/O ratio –

measuring how many ATP molecules are produced per one

oxygen atom being reduced – was taken to be 1.5, the

representative value for E. coli [82]. Figure 2C suggests that the

TCA cycle represents a combination of high ATP yield and high

MDF which is better than most of its counterparts – especially if

assuming substrate channeling of oxaloacetate (‘TCA channel’) or

the usage of quinone instead of NAD (‘TCA MQO’). The

oxidative pentose phosphate pathway (‘OxPP’), while producing

less ATP molecules than the TCA cycle, supports the highest

MDF among all oxidative pathways.

Substrate-level phosphorylation constrains the Max-min
Driving-Force of fermentation pathways

EMP glycolysis (Figure 3A) is the most investigated fermentation

pathway [10]. Substrate-level phosphorylation – coupled to

glyceraldehyde 3-phosphate oxidation – is the process responsible

for de novo ATP synthesis in the pathway (the downstream

pyruvate kinase only recoups the ATP invested at the beginning of

the pathway) [10]. Nevertheless, some organisms bypass substrate-

level phosphorylation altogether such that glyceraldehyde 3-

phosphate is directly oxidized to glycerate 3-phosphate, without

producing ATP (Figure 3B) [83,84]. Using the MDF methodology

we can offer some insight as to why this may be.

Figure 3C displays the MDF of the EMP pathway – with and

without substrate-level phosphorylation – as a function of cellular

pH. While the EMP pathway has a very low MDF and seems to be

infeasible at pH,6.5, the pathway variant which bypasses

substrate-level phosphorylation is characterized by a far higher

MDF. This suggests that organisms that do not depend on the

degradation of organic compounds for energy conservation – like

phototrophs or obligatory respiratory prokaryotes – can profit

considerably by skipping substrate-level phosphorylation and

operating at a much higher MDF, which can be translated into

higher flux or, alternatively, to a lower protein investment required

to sustain a given rate [13].

Notably, the trend shown in Figure 3C does not mean that the

two substrate-level phosphorylation reactions (glyceraldehyde

phosphate dehydrogenase and phosphoglycerate kinase) are the

only ones that constrain the pathway MDF. The five reactions

marked in red in Figure 3A are those with positive shadow price,

showing that multiple reactions constrain the driving force of the

Thermodynamics Constraints Shape Pathway Kinetics
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EMP pathway. In fact, if any reaction from fructose bisphosphate

aldolase to phosphoglycerate mutase had a more favorable DrG9o

value then the MDF of the entire pathway would increase.

Fructose bisphosphate is one of the two non-cofactor metabo-

lites with a positive shadow prices (Figure 3A), and the only one

whose concentration upper bound (10 mM) limits the pathway

MDF (Methods). Interestingly, the concentration of fructose

bisphosphate has been measured to be 15 mM [45], the only

glycolytic metabolite whose concentration is higher than 10 mM.

This 50% higher concentration adds ,1 kJ/mol to the driving

force of the thermodynamically-constrained reactions, increasing

their rather low Flux-Force Efficacies. This example demonstrates

how the methodology presented here can be used to rationalize

why certain compounds attain higher (or lower) concentrations

than others in cells. This further suggests a systematic study of

whether an energetic analysis, as the one outlined here, can predict

metabolite concentrations on a large scale. However, the

measurement of metabolite concentrations using current technol-

ogies remains quite noisy, as evident by the dramatic discre-

pancies between different quantification methods (e.g., [46]). As

measurement technology matures, the generality of the connection

between the range of metabolite concentrations and the ther-

modynamically-constrained reactions could be evaluated

systematically.

Several glycolytic variants are known to exist in nature and their

structures and shown in Figure S2. Figure 3D plots the MDF (at

pH 7.5) of each of these pathways against the number of ATP

molecules it produces per glucose molecule metabolized. As shown

in the figure, there is a clear tradeoff between the MDF and ATP

yield, with high- MDF pathways conserving less energy as ATP

than pathways with lower MDF. Specifically, the methylglyoxal

pathway (‘MGX’) – converting dihydroxyacetone phosphate into

the highly reactive compound methylglyoxal [85,86,87] – and the

non-phosphorylative Entner-Doudoroff (ED) pathway (‘EDNP’) –

used by hyperthermophilic archaea [84,88,89] – seem to be

promising choices for fermenting glucose if ATP production is not

important but a high glycolytic flux is required [13].

Within the general trend shown in Figure 3B, some pathways

seem better than others. The non-phsophorylative ED pathway,

the phosphoketolase pathway (‘PKT’) – using the pentose

phosphate pathway and cleaving xylulose-phosphate to glyceral-

dehyde-phosphate and acetyl-phosphate [90,91] – and the

pyruvate formate lyase pathway (‘EMP PFL’) – cleaving pyruvate

to acetyl-CoA and formate and performing substrate-level

phosphorylation on acetyl-phosphate – lie on the Pareto front

[92], i.e., no other pathway has both a higher MDF and a higher

ATP yield. Notably, despite their prevalence in nature, neither the

EMP nor the ED pathways are on the Pareto front, which suggests

that thermodynamic properties alone are insufficient to explain the

structure of central metabolism pathways, as we previously

analyzed in detail (e.g., [10]). Specifically, the phosphoketolase

and pyruvate formate lyase pathways have higher MDF values

than the EMP and ED pathways and yield at least as much ATP.

However, it is known that other factors constrain the operation of

these pathways in nature. The pyruvate formate lyase enzyme (EC

2.3.1.54) employs an oxygen-sensitive radical mechanism and so

Figure 2. MDF analysis of oxidative pathways. (A) Structure of the
TCA cycle. The reaction marked in red is the only one with a positive
shadow price at pH 7.5. Non-cofactor metabolites shaded in green
show positive shadow prices. (B) MDF as function of pH, as calculated
for the TCA cycle and several of its similar variants. Solid cyan line:
default metabolite concentration range used throughout this study
(1 mM–10 mM). Dashed and dotted cyan lines: oxaloacetate concentra-
tion (marked as ‘OA’) is allowed to attain lower values, 100 nM and
10 nM, respectively. Solid magenta line: oxaloacetate is channeled
(‘channeling’) between malate dehydrogenase and citrate synthase.
Semi-dashed green line: quinone (‘MQO’) serves as the electron
acceptor in malate oxidation, instead of NAD. The Flux-Force Efficacy
axis, on the right, refers to the reactions that dissipate the smallest
amount of Gibbs energy, and hence equal to the pathway MDF. The
light grey line marks the values corresponding to pH 7.5, the pH used in
(C). (C) The MDF and ATP yield per glucose of the different oxidative
pathways. ‘PEP-GLX’ corresponds to the PEP-Glyoxylate pathway, which
was found to operate in E. coli under glucose starvation [64]. ‘P.
fluorescens’ corresponds to the pathway used by Pseudomonas
fluorescens under conditions of aluminum toxicity [81]. ‘OxPP’
corresponds to the oxidative pentose phosphate cycle, which can be

used to fully oxidize sugars into CO2, providing NADPH for cellular
activity. Reducing power was assumed to be converted to ATP via
oxidative phosphorylation, where NADH or a pair of reduced
ferredoxins give rise to 1.5 ATP molecules and reduced ubiquinone
produces one ATP molecule. The structures of all pathways are given in
Figure S1.
doi:10.1371/journal.pcbi.1003483.g002
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can only be used in anaerobic or microaerobic environments

[93,94,95]. This limitation may explain why the EMP-PFL

pathway is less abundant in nature than MDF analysis would

lead us to expect.

Discussion

We introduce a quantitative framework for analyzing the

thermodynamic profile of metabolic pathways and identifying

reactions that limit metabolic flux within feasible pathways (i.e.,
require high enzyme levels to sustain a specific rate). While near-

equilibrium reactions can significantly increase the protein burden

of a pathway, they may have certain advantages. For example, if

the direction of a reaction must change quickly in response to

some stimulus, operating near equilibrium (and at high enzyme

level) is a good strategy: a small change in reactant concentrations

can reverse the reaction direction while maintaining a similar

absolute flux. This may be particularly important for glycolysis,

where some carbon sources require glycolytic flux (e.g., glucose

and fructose) and others require flux in the direction of

gluconeogenesis (e.g., acetate and succinate). Therefore, fast

environmental fluctuations in the availability of carbon sources

may require speedy reversal of most glycolytic reactions, which is

consistent with recent measurements indicating that reactions in

glycolysis mostly operate with low driving-force in E. coli [45,96].

Other functional advantages of working near equilibrium were

recently suggested [97,98].

Our methodology takes into account the physiological condi-

tions, including pH, ionic strength, metabolite concentration

ranges and cofactor concentrations. This feature is useful when

comparing different organisms hosting the same pathway in

different conditions. At the same time, the exact values of some of

these parameters are not known with high certainty. In particular,

the definition of the metabolite concentration range used in the

optimization is challenging, as especially high (.10 mM) and

especially low (,1 mM) metabolite concentrations have been

measured (e.g., [45]). Furthermore, the physicochemical proper-

ties of the metabolites affect their cellular concentrations [44],

suggesting that the concentration ranges should be individually

tailored to each metabolite.

It is important to remember that the MDF methodology

assumes that metabolite concentrations are optimized to achieve

the most favorable thermodynamics. These optima are calculated

using thermodynamic and stoichiometric data with respect to a

single pathway and ignoring the rest of the endogenous metabolic

network. Yet, in-vivo metabolite concentrations are constrained by

Figure 3. MDF analysis of fermentation pathways. (A) Structure
of EMP-glycolysis. (B) Structure of an EMP pathway variant in which
substrate-level phosphorylation is bypassed. The reactions marked in
red are those with positive shadow prices at pH 7.5. Non-cofactor
metabolites shaded in green show positive shadow prices. (C) MDF as
function of pH, as calculated for the EMP pathway (cyan) and for an
EMP pathway variant in which substrate-level phosphorylation is
bypassed (magenta). ‘SLP’ corresponds to substrate-level phosphoryla-
tion. The Flux-Force Efficacy axis, on the right, refers to the reactions

that dissipate the smallest amount of Gibbs energy, and hence equal to
the pathway MDF. The light grey line marks the values corresponding
to pH 7.5, the pH used in (D). (D) The MDF and ATP yield per glucose of
the different fermentation pathways. ‘ED’ corresponds to the Entner-
Doudoroff pathway. ‘EDSP’ represents the semi-phosphorylative ED
pathway, known to operate in several hyperthermophilic archaea
lineages [84,88,89]. ‘EDNP’ represents the non-phosphorylative ED
pathway, also known to operate in hyperthermophilic archaea
[84,88,89]. ‘MGX’ corresponds to a variant of the EMP pathway in
which dihydroxyacetone phosphate is converted into the toxic
compound methylglyoxal when the concentration of inorganic
phosphate becomes limiting [85,86,87]. ‘PKT’ represents a pathway,
suggested long ago [103], that uses the pentose phosphate pathway in
conjunction with the enzyme phosphoketolase that cleaves xylulose-
phosphate to glyceraldehyde-phosphate and acetyl-phosphate [90,91].
‘EMP PFL’ corresponds to a variant of the EMP pathway that produces
more ATP by using the enzyme pyruvate formate lyase and performing
substrate-level phosphorylation on of acetyl-phosphate. The structures
of all pathways are given in Figure S2.
doi:10.1371/journal.pcbi.1003483.g003
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many other factors, including their stability, permeability and their

participation in other metabolic routes, and so cellular concen-

trations are unlikely to match these optima precisely. Hence, many

of the pathways we analyzed might be more thermodynamically

constrained than suggested by the MDF analysis

Our analysis is sensitive to the definition of reactions, i.e., what

counts as independent metabolic steps. Merging reactions into a

single metabolic step or splitting them into several steps can

considerably affect the MDF of a pathway and the Flux-Force

Efficacies of its reactions. For example, consider a reaction

dissipating 2 kJ/mol and hence operating at a Flux-Force Efficacy

of <40%. If this reaction is split into two steps, each of these will

optimally dissipate 1 kJ/mol and its Flux-Force Efficacy will be

only <20%. Hence, dividing a pathway into more steps results in

lower MDF and Flux-Force Efficacies. Yet, the definition of

metabolic steps is not arbitrary. A reaction should be treated as an

independent metabolic step if all of its substrates and products are

soluble. On the other hand, if two reactions involve a common

reactant which remains bound to the enzyme(s), they can be

treated as a single metabolic step [9,74], as was suggested for

channeling of oxaloacetate between malate dehydrogenase and

citrate synthase.

Notably, the MDF analysis is insensitive to the kinetic

parameters of the enzymes participating in the pathway. In

reality, the net reaction flux is determined both by the internal and

external reaction energetics. Internal reaction energetics refers to

the thermodynamic landscape associated with (i) the binding and

release of the reactants from the enzyme’s active site; (ii) the

different reaction intermediates formed during catalysis; and (iii)

the activation energies of converting one reaction intermediate to

another [99]. The internal reaction energetics determines the

apparent kinetic parameters of the enzyme catalyzing the reaction

(i.e., kcat, KM) [99]. On the other hand, the external reaction

energetics refers to the driving force of the net reaction, which

depends on the concentrations of the substrates and products, as

analyzed in this manuscript. Figure 4 schematically demonstrates

the interplay between the net reaction flux and the internal and

external energetic profiles. A reaction with a low kcat/KM should

be compensated by a high driving force (Figure 4A), because

otherwise the net flux will be low (Figure 4B). On the other hand, a

reaction having a high kcat/KM can operate closer to equilibrium

(i.e., at a low driving force) and still sustain a high net flux

(Figure 4C). Finally, a high driving force and a low internal

thermodynamic barrier result in a very high net flux (Figure 4D).

Interestingly, the thermodynamic driving forces of reactions can

be directly connected to their control coefficients [27,30,100,

101,102]: for a reaction that has a low thermodynamic driving

force, the forward and backward fluxes are considerably larger

than the net flux. For a near-equilibrium reaction, then, increasing

the enzyme concentration will increase the forward and reverse

fluxes to a comparable degree, bringing reactant concentrations

even closer to equilibrium. This, in turn, lowers the already-low

driving force of the reaction and neutralizes the effect of increasing

the enzyme concentration. In brief, increasing the abundance of

an enzyme catalyzing a near-equilibrium reaction will have only a

modest effect on pathway flux.

On the other hand, a reaction with a high driving force will

exert high control on the pathway flux. For such a reaction the net

flux roughly equals the forward flux, which is much larger than the

reverse flux. In this case, increasing the enzyme abundance will

mostly increase the forward flux (in absolute terms). Even if the

driving force decreases somewhat, the flux-force efficacy will

remain high (see Fig. 1A). Hence, an increase in enzyme

abundance will not be compensated and will have a considerable

effect on reaction rate. In the Methods and Text S1, we detail the

direct mathematical relationship between reaction driving forces

and flux control coefficients, which shows that upregulation of

enzymes catalyzing reactions with high driving force has a large

effect on pathway flux.

Our ultimate goal is to establish a single framework that

integrates pathway thermodynamics and enzyme kinetics. We

believe it should be possible to reformulate measured kinetic data

as thermodynamic potentials and analyze pathways in purely

energetic terms. By considering the chemical potential of reaction

intermediates and integrating these data with the concentrations of

soluble pathway intermediates, one can arrive at a more complete

analysis of pathway activity. It remains for future research to

develop such an integrated framework.

Supporting Information

Figure S1 Structure of oxidative pathways. (A) The ubiquitous

TCA cycle. (B) The PEP-glyoxylate pathway which was found to

operate in E. coli under glucose starvation. (C) A pathway used by

Pseudomonas fluorescens under conditions of aluminum toxicity.

(D) The oxidative pentose-phosphate cycle, which can be used to

Figure 4. Schematic representation of the interplay between
the net reaction flux and the internal and external (i.e., overall
or net) energetic profiles. DrG9 corresponds to the driving force of
the net reaction (which depends on the concentrations of the
substrates and products); DG`

fwd to the thermodynamic barrier of the
forward reaction, associated with the binding of the substrates and with
the different reaction intermediates formed during catalysis; and
DG`

bwd corresponds to the thermodynamic barrier of the backward
reaction, associated with the different reaction intermediates formed
during catalysis and with the release of the products. All reactions are
assumed to be catalyzed by the same amount of enzyme units. (A) High
internal thermodynamic barrier and high thermodynamic driving force.
(B) High internal thermodynamic barrier and low thermodynamic
driving force. (C) Low internal thermodynamic barrier and low
thermodynamic driving force. (D) Low internal thermodynamic barrier
and high thermodynamic driving force.
doi:10.1371/journal.pcbi.1003483.g004
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fully oxidize sugars into CO2, thus providing NADPH for cellular

activity. The reactions marked in red are those with positive

shadow prices (at pH 7.5 and ionic strength of 0.2 M). Non-

cofactor metabolites shaded in green show positive shadow prices.

(EPS)

Figure S2 Structure of fermentation pathways. (A) Entner-

Meyerhof-Parnas (EMP) glycolysis. Blue arrows correspond to the

pyruvate formate lyase shunt. Magenta arrows correspond to a

bypass of substrate-level phosphorylation. (B) Entner-Doudoroff

(ED) glycolysis. (C) Semi-phosphorylative ED glycolysis, as known

to operate in some hyperthermophilic archaea. (D) Non-

phosphorylative ED glycolysis, as known to operate in some

hyperthermophilic archaea. (E) The methylglyoxal pathway, in

which dihydroxyacetone phosphate is converted into the highly

reactive compound methylglyoxal when the concentration of

inorganic phosphate becomes limiting. (F) The suggested phos-

phoketolase pathway, which uses the pentose phosphate

pathway in conjunction with the enzyme phosphoketolase that

cleaves xylulose-phosphate to glyceraldehyde-phosphate and

acetyl-phosphate. The reactions marked in red are those with

positive shadow prices (at pH 7.5 and ionic strength of 0.2 M).

Non-cofactor metabolites shaded in green show positive shadow

prices.

(EPS)

Text S1 A mathematical derivation and characteristics of the

Max-min Driving Force and its relation to Metabolic Control

Analysis.

(PDF)
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