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Abstract—This paper provides a detailed overview of the 

techniques and applications related to distribution system state 

estimation (DSSE), together with the classification of various 

types of state estimation. The paper also provides the state-of-art 

techniques applied in DSSE including forecasted-aided state 

estimation, close-loop DSSE methods, the application of 

computation intelligence in DSSE and the use of smart meters 

and phasor measurement units in load estimation. As more and 

more active elements and functionalities will be integrated in 

future distribution network, e.g. demand-side management, the 

increased penetration of decentralized generation and 

dynamically controlled storage/devices, DSSE will be one of the 

critical functionalities for secure operation of future distribution 

networks. As a pathway to cost-efficient DSSE for future 

distribution networks, this paper addresses the characteristics of 

future distribution grids that will affect DSSE, and also 

discusses the techniques and data that can be used to better 

understand/model the network behaviors and load profiles in 

order to ultimately improve the accuracy of DSSE. 

Index Terms—State estimation, smart meters, phasor 

measurement units, computation intelligence, load estimation. 

I. INTRODUCTION  

Secure operation of power systems requires a 
comprehensive understanding of the system operating status, 
which helps in identifying potential critical operating 
conditions and determining the necessary preventative 
measures. Power system state estimation (SE) plays an 
important role in secure operation of power systems [1]. It 
provides an optimal estimate of the system states based on 
both continuous monitored measurements and pseudo-
measurements. The concern of state estimation was first 
addressed in 1970’s [2], and later with the increasing 
capability of SCADA system computers and establishment of 
Energy Management Systems (EMS), this functionality was 
widely integrated in EMS and used for operation and 
management of transmission systems [3].  

With the increasing penetration of distributed renewable 
energy resources, the connection of medium-sized distributed 
generation (DG) and more and more electronic interfaced 
devices (e.g., different types of load storage and electric 
vehicles) connected in the distribution networks, it is required 
to have an improved observability of the distribution networks 
in order to ensure secure operation of distribution systems. 
This led to the intensive research and application of SE at 

distribution levels, namely Distribution System State 
Estimation (DSSE).  

Different from meshed transmission networks, most 
distribution networks are radial, often with high R/X ratios. 
Besides, application of real time measurement is very limited 
in distribution networks. The SE approaches developed for 
transmission networks such as decoupled methods and DC 
approximations cannot be applied to DSSE directly [4]. 
Furthermore, ill conditioned matrices and large number of 
nodes in distribution networks imposes great difficulty to 
DSSE. Different from transmission system SE which is to 
improve the reliability of the measured values, the usual 
purpose of DSSE is to extend the observability of the network. 
With the rigorous requirement of observability in distribution 
networks, the development of DSSE has attracted great 
attention recently. Various techniques have been investigated 
for DSSE in literature, such as Weighted Least Squares (WLS) 
based SE [1], fuzzy SE [5] and branch-based SE [6], and so on. 
Besides, various types of data in distribution networks 
including Advanced Metering Infrastructure data have been 
extensively explored for the purpose of DSSE [4, 7-13]. 

Future distribution networks will evolve into more flexible 
and automatically controlled networks with increasing “self- 
functionalities”. It is anticipated that more and more 
decentralized generation units (e.g., micro-CHP, solar panels 
and wind turbines) will be connected to the grid, and increased 
power will be injected at lower voltage levels. Furthermore, 
various stakeholder actors will take increased active 
involvement in network operation and control. Complicated 
interaction/collaboration among actors, e.g., the exchange of 
flexibility and services and demand side management, will 
change the grid configuration and load profiles frequently. To 
facilitate this, accurate state estimate of the network status will 
become unprecedentedly important. This paper addresses the 
characteristics of future distribution networks and discusses 
the techniques and data that can be used to develop accurate 
and efficient DSSE for future distribution networks.  

II. STATE ESTIMATION (SE) 

A. Description of  SE Processes 

SE processes are illustrated in Figure 1. First, topology 
processor verifies the up-to-date network parameters and 
configures the one-line diagram of the network; observability 
analysis tool identifies the un-observed branches in the 
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network and establishes the required but missing information, 
often referred to as pseudo measurements; given all available 
input data including topology, measurements and pseudo 
measurements, the state estimator searches for an optimal 
estimate of the system state; bad data processor identifies and 
eliminates the data affected by gross errors and noise. To 
continuously update and improve the pseudo measurements, 
the estimated results can also be used as feedback to adjust the 
methodologies of load estimation and load forecasting, and 
form a “close-loop” information flow. 

Real time 

measurement

V, P, Q, I, θ

State 

estimator

Topology 

processor
Observability 

Analysis

Bad data 

processor

V, θ 

CalculationLoad 

estimation/

forecasting
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P, Q
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Figure 1. Illustration of SE processes. 

B. Classification of SE and Application 

Depending on the timing and evolution of the estimation, 
SE schemes can be classified into three categories: 

1) Static SE – static SE is a data processing algorithm 
which converts measurements and other available information 
into an estimate of the state of an electric power system. For 
static SE, the measured data are taken to be time invariant. It 
relies on a single set of measurements all taken at one 
snapshot in time. Various methods have been investigated for 
static DSSE, and the most common approach to state estimator 
is WLS method [1].  

2) Tracking SE – tracking SE utilizes the recent available 
states of the network to update the network state non-
iteratively (usually using one iteration) for the subsequent 
sampling period. It calculates the error between the new 
measurements and recent estimated values, and then uses it as 
“feed-back error signal” to correct the old estimate and obtain 
the new estimates via a gain matrix [14]. Tracking SE has the 
merits of efficient computation and being suitable for real-
time implementation. 

3) Dynamic SE – dynamic SE is also named as Forecast-
Aided SE (FASE). To avoid confusion with true dynamic SE 
(the transients in power systems) that usually occurs at a much 
faster time scale, the abbreviation of FASE is used in this 
paper. FASE utilizes, in addition to the present states, the 
previous estimates of the states to perform one step ahead SE 
[15-19]. A short-term forecast (e.g. several seconds/minutes 
ahead) of the state variables is made, and each time when a 
new set of measurements becomes available, an “innovation 
analysis” is used to determine if the new measurements are 
significantly different from the predicted values. In FASE, 
dynamic model for the time behavior of system states is 
utilized, whereas tracking and static SEs do not require any 
dynamic model of the system states. FASE has the advantage 
of being able to forecast the state vector one step ahead. 
Furthermore, the knowledge of the time-evolution of the state 

can be also used as extra information to make a better 
estimation of current state. Although most FASE techniques 
and applications proposed to date are focused at the 
transmission level, FASE approaches are attracting increased 
attention in DSSE. 

C. Power Quality SE  

Recently, the increased awareness of power quality (PQ) 
issues in distribution networks has led to more research 
focused on PQ state estimation (PQSE). PQSE covers 
different types of analysis in PQ area. Figure 2 lists four types 
of PQSE [20], together with the purposes of their application.  
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Figure 2. Classification of PQSE. 

1) General SE – general SE is performed at fundamental 
frequency in order to estimate the network state represented by 
voltage, angle and power, etc. The estimated results can be 
used for distribution network operation and control, e.g., 
voltage regulation, load compensator, congestion management, 
phase imbalance correction and reactive power compensation 
[21], etc. The performance of voltage unbalance at all buses 
can also be estimated using general SE through post-
processing the estimated three-phase voltages [22-24]. 

2) Harmonic state estimation (HSE) – HSE generates the 
“best” estimate of the harmonic levels from limited measured 
harmonic data [25], in order to locate harmonic sources and 
estimate harmonic distribution. It provides the fundamental 
reference for installing active, passive filtering device or 
adjusting the system operating mode, to reduce system 
harmonic levels and hazards and ensure the safe operation of 
the System [26].   

3) Voltage Sag SE (VSSE) – VSSE estimates sag 
characteristics at unmetered nodes, including the number of 
voltage sags and sag profiles/levels. This concept is borrowed 
from utility reliability management practice [27], and driven 
by the need to compare the PQ performance among utility 
companies or among various feeders. Various techniques have 
been explored for VSSE in literature, e.g., fault location, 
probability based methods and Monte Carlo methods [28, 29]. 

4) Transient SE (TSE) - TSE estimates the instantaneous 
voltages and currents at unmetered nodes in the distribution 
networks. It can be exploited to identify the cause of transient 
change in system parameters and can be a potential valuable 
tool for diagnostic purposes in power systems [30, 31].  
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D. Uncertainty and Estimation Accuracy 

The deviation/uncertainty of input data/information 
impacts the accuracy of DSSE to a certain extent.  

1) Measurement uncertainty: DSSE works with a limited 
number of real measurements. Measurement error and bias 
exist in each measurement. The measurement can be 
characterized by its own range of measurement errors which is 
primarily determined by the corresponding measurement 
devices [32]. Due to the lack of real measurements, pseudo-
measurements play an important part in DSSE. The deviation 
of both real and pseudo- measurements can greatly affect the 
accuracy of system state estimation. A number of dedicated 
papers provide the analyses regarding the impact of 
measurement uncertainty (pseudo-measurements and 
heterogeneous measurements) on SE accuracy [33-35]. 
Reference [36] analyses the relationship between the 
measurement errors existing in both load pseudo 
measurements and real-time measurements and the deviations 
of the system state estimation, presenting how increasing the 
load measurement accuracy will improve the estimated 
deviations of bus voltages. In [35], the impact of different 
types of measurements and the accuracies of the measurement 
devices on accuracy of DSSE is analysed. In [37], the classic 
WLS based SE is analysed to point out under which 
circumstance and to what extent SE results are affected by 
measurement uncertainty when a minimum number of 
measurements which is just enough to assure full observability 
is used. It provides a straightforward criterion to predict the 
overall worst-case SE accuracy or, dually, to establish the 
maximum measurement uncertainty that is able to keep the 
average or worst-case estimation accuracy within given 
boundaries.  

2) Uncertainty of operating conditions: The impact of the 
uncertainty of the network behavior (such as distributed 
voltage control and demand side management) on state 
estimation is analysed in [35], which demonstrates that 
investment in the improvement of the knowledge of the 
distribution grid behavior is inevitable in order to improve the 
accuracy of DSSE.  

3) Network parameters uncertainty: Network parameter 
uncertainty would also impact the accuracy of DSSE. The 
impact of  network parameters uncertainty on state estimator’s 
bias is analysed in [38], and the tolerance of the value of the 
network parameters is analysed by means of suitable Monte 
Carlo procedures in [39].  

4) Topology uncertainty: In distribution networks, the 
network topology in operation can change very frequently. For 
instance, switching is usually used as a resource to improve 
system operation or to reduce the impact of outages. The 
frequent topology changes in distribution networks together 
with the reduced number of installed measurement devices can 
lead to situations in which the topology is not known beyond 
any doubt even after running the topology processor. The 
impact of topology uncertainty on estimation accuracy is 
analysed in [40]. In [41], the network configuration changes 
are identified using recursive Bayesian approach by utilizing 
the outputs of state estimation function.  

5) Input data correlation: Correlation usually exists 
among different input data. For instance, a degree of 

correlation can often be assumed among power consumptions 
or generations of some particular nodes. The impact of 
parameters correlation on the quality of the estimation is 
analysed in [38], and the influence of input data correlation on 
DSSE is investigated in [42, 43]. 

III. STATE OF THE ART 

This section briefly describes some of the most advanced 
techniques and applications of DSSE in literature. 

A. Load Estimation 

In distribution networks, the lack of real measurements is 
compensated by the use of information from the loads. Thus a 
high proportion of the measurements can be pseudo-
measurements. Load estimation (or pseudo-measurements) 
plays an important role in DSSE. Computation intelligence 
methods have been investigated for DSSE. For instance, 
artificial neural network has been adopted to generate pseudo 
measurements based on a few real measurements in 
conjunction with typical load profiles [44]. In [45], machine 
learning methodologies have been investigated to provide 
reliable input information to a robust state estimation 
algorithm. Real time estimation of loads can also be obtained 
based on iterating between WLS estimator and load flow [46].  

B. Use of Measurements 

More comprehensive and accurate knowledge of the 
system is required in order to make efficient and reliable 
control actions. In particular, attention should be paid to phase 
angles estimation which can be used to avoid critical situations. 
In this context, the use of phasor measurement units (PMU), 
which provides synchronized local measurement with global 
time stamp, is promising. PMUs measure not only voltage 
phasors but also current phasors through all incident buses. 
With the increasing deployment of PMUs in the distribution 
grids, state-of-the-art SE are implemented using data from 
PMUs [7, 8]. The benefits of the use of PMU data and the 
approach of integrating PMU data in DSSE have been 
extensively investigated in literature [43, 47]. 

The roll-out of smart meters means that an unprecedented 
amount of detailed historical data on user loads is becoming 
available. This data can be used to better understand and 
model the behaviors of distribution network loads, allowing to 
improve load estimation techniques, and ultimately, DSSE 
accuracy [4]. Studies have been made into the incorporation of 
smart meter data in DSSE to estimate flows, voltages, and 
losses in low voltage distribution networks [9-12]. 

C. State Estimator 

Various advanced computation intelligence techniques 
have been extensively explored for DSSE. Auto-associative 
neural networks (autoencoders), which only require historical 
database and few quasi-real-time measurements to perform an 
effective SE, are used to learn the behavior of the grid and 
avoid the need of characterizing the grid parameters and 
topology [48]. Hybrid particle swarm optimization was 
adopted to estimate bus voltage magnitudes and angles, and 
discrete tap values of on-load tap changers [49]. In [45],  
machine learning methodology collaborating with SE forms a 
closed-loop information flow in order to continuously update 
and improve the performance of the state estimator. 
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Since distribution systems are typically very large and 
dense, to improve the calculation efficiency, distributed SE 
(also named multi-area) is investigated for processing separate 
sub-systems in parallel, in conjunction with a certain level of 
coordination or agent communication [7, 50, 51]. In order to 
accomplish very large-scale monitoring of interconnected 
power systems, multi-level, or hierarchical SEs, are also 
developed to integrate existing SEs that are designed to 
function at different levels of modeling hierarchy [52]. These 
distributed SEs can greatly enhance the computational 
performance and improve the reliability of SE algorithms. 

To allow the system operators to have more time in 
making control decisions, FASE approaches are attracting 
more and more attention in DSSE, particularly when high-
resolution data from synchronised metering devices such as 
PMUs are available. To make a more accurate mathematical 
description of the time evolution of the state, attempts have 
been made to generate a more accurate mathematical 
description of the time evolution of the state using Kalman 
filter and other techniques [7, 53, 54].  

IV. DSSE OF FUTURE DISTRIBUTION NETWORKS 

Future distribution networks will be characterised by an 
unprecedented integration of large-scale Renewable Energy 
Sources, a wide range of electricity generating technologies, 
various power electronics-interfaced storage devices, various 
dynamically controlled elements and different formats of 
demand response schemas. The networks will be engaged with 
a high level of active involvement from various actors (e.g., 
DSO, retailers, ESCOs, aggregators, customers, industrial and 
domestic prosumers) and will be highly affected by electricity 
market which will be more flexible and has more participants. 
The active actors will be able to access huge data streams and 
interface with different parts of the networks. They will be 
actively involved in electricity markets and manage their 
services/assets/loads dynamically in real time to improve 
operating efficiency and reduce cost. In summary, the future 
distribution networks will be much more flexible, smarter and 
more active compared to conventional passive distribution 
networks. The operation of future distribution networks faces 
the toughest challenge due to the randomness and 
uncertainties of the grid behaviors, e.g., the uncertain outputs 
of scattered distributed generators and the unpredictable 
behaviors of various actors, etc. Development of DSSE that 
addresses these new features is becoming more stringent than 
ever in terms of future network operation and control.  

The future networks will be equipped with a significant 
increase and reliance on monitoring and processing of large 
amount of data streams. More and more data/information will 
be provided in different formats with different frequencies for 
different purposes. More PMUs will be deployed in future 
power grids, thus more phasor information will be available to 
make DSSE more dynamic and reactive to local disturbances 
before effects cascade through the system. Due to the high 
cost of PMU installation, PMU deployment in the distribution 
networks will continue to be selective for the foreseeable 
future. Other available sources of data/information should also 
be explored for DSSE, such as the massive amount of data 
coming from smart meters. DSSE will also take advantage of 
all other available data which could be originally used for 

other purposes (e.g., operation, pricing and control) in the 
networks, such as billing data, electricity market information, 
actors’ profiles, actors’ preference, flexibility service provided 
by actors and demand response scheme, etc. These data can be 
exploited and processed to extract useful information that can 
be used to understand and model the behaviors of distribution 
networks, improving load estimation and the estimation of the 
status of the network equipment/devices such as dynamically 
controlled storages and electric vehicles. This will also 
contribute to the identification of network configuration 
changes and network topology analysis, and ultimately, DSSE 
accuracy. Besides, instead of deploying dedicated data 
retrieving systems for DSSE purpose only, taking advantage 
of all available resources without needing additional specific 
devices in the grids is a cost-effective pathway for future 
DSSE development. In this context, methodologies of big data 
analyst (e.g., data and text mining approaches) which 
model/construct the correlation among different parameters 
will be required to convert data/text into information and 
transform it into actionable intelligence. The integration of big 
data techniques in DSSE (for load estimation and topology 
analysis) will be extensively investigated for SE purposes. 

On the other hand, when various types of data are shared 
and become available, there is a risk that the grid’s operator 
will be drowned in data. To facilitate huge data streams, 
communication infrastructure with large capacity is required 
throughout the grid, which suggests that a high cost of 
communication investment is required. To avoid this, an 
event-triggered approach for sensing, communicating and 
information processing would be quite appealing. The 
challenge here is to provide analytical performance guarantees 
in a distributed event triggering algorithm in a dynamically 
changing environment. In the event-triggered SE, the state 
estimates are updated only when the measurements received 
indicate that there is a potential issue [3, 4]. 

Most SE methods proposed to date in literature have the 
feature of using open-loop information flow. However, as the 
network becomes more complicated, a closed-loop DSSE is 
becoming more appealing, due to that it allows the predictive 
database to be continuously updated and improved based on 
feedback from the SE. In this way, loads, DG outputs and 
network configuration can be estimated more accurately and 
reliably. However, constructing the closed-loop information 
flow properly is challenging.  More research is still required in 
developing DSSE with close-loop information flow. More 
computation intelligence methods will be extensively 
investigated for future DSSE development, in order to allow 
DSSE to be more intelligent and adapt to network changes 
spontaneously and quickly [4]. 

V. CONCLUSIONS 

This paper provides a detailed overview of the techniques 
and application related to DSSE. Future distribution networks 
will be very different from present networks in terms of 
operation and active level of actors’ involvement. This paper 
provides a pathway to cost-efficient DSSE by taking 
advantage of the available resources of future distribution 
networks, e.g., big data collected for various purposes in the 
network. Useful information will be extracted from all 
available information resources and used to understand the 
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behaviors of the network elements (e.g., equipment/devices, 
loads and actors), and ultimately contribute to load estimation 
and topology analysis for DSSE. This paper also addresses the 
efficiency issue of processing a large amount of data, and 
discusses the potential solution, i.e. event-triggered SE. 
Finally, the paper also discusses the potential techniques to 
improve the performance of DSSE by focusing on close-loop 
DSSE and application of computation intelligence for the 
development of intelligent and dynamic DSSE.  
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