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Pathways on demand: automated reconstruction of human

signaling networks
Anna Ritz1,4, Christopher L Poirel1,5, Allison N Tegge1, Nicholas Sharp1,6, Kelsey Simmons2, Allison Powell2, Shiv D Kale2 and

TM Murali1,3

Signaling pathways are a cornerstone of systems biology. Several databases store high-quality representations of these pathways

that are amenable for automated analyses. Despite painstaking and manual curation, these databases remain incomplete. We

present PATHLINKER, a new computational method to reconstruct the interactions in a signaling pathway of interest. PATHLINKER

efficiently computes multiple short paths from the receptors to transcriptional regulators (TRs) in a pathway within a background

protein interaction network. We use PATHLINKER to accurately reconstruct a comprehensive set of signaling pathways from the

NetPath and KEGG databases. We show that PATHLINKER has higher precision and recall than several state-of-the-art algorithms, while

also ensuring that the resulting network connects receptor proteins to TRs. PATHLINKER’s reconstruction of the Wnt pathway identified

CFTR, an ABC class chloride ion channel transporter, as a novel intermediary that facilitates the signaling of Ryk to Dab2, which are

known components of Wnt/β-catenin signaling. In HEK293 cells, we show that the Ryk–CFTR–Dab2 path is a novel amplifier of β-

catenin signaling specifically in response to Wnt 1, 2, 3, and 3a of the 11 Wnts tested. PATHLINKER captures the structure of signaling

pathways as represented in pathway databases better than existing methods. PATHLINKER’s success in reconstructing pathways from

NetPath and KEGG databases point to its applicability for complementing manual curation of these databases. PATHLINKER may serve

as a promising approach for prioritizing proteins and interactions for experimental study, as illustrated by its discovery of a novel

pathway in Wnt/β-catenin signaling. Our supplementary website at http://bioinformatics.cs.vt.edu/ ~murali/supplements/2016-sys-

bio-applications-pathlinker/ provides links to the PATHLINKER software, input datasets, PATHLINKER reconstructions of NetPath pathways,

and links to interactive visualizations of these reconstructions on GraphSpace.
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INTRODUCTION

A major focus in systems biology is the identification of the
networks of reactions that guide the propagation of cellular
signals from receptors to downstream transcriptional regulators
(TRs). Over the past two decades, databases have been developed
to store the interactions present in signaling pathways,1–5 facilitat-
ing their retrieval for computational analyses. While these databases
have been iteratively improved over the years, they are still largely
built through extensive and time-consuming manual curation.
Further, the proteins and interactions within the same signaling
pathway may vary considerably from one database to another.
Inspired by these challenges, we sought to develop a

computational approach to automatically reconstruct signaling
pathways from a background network of molecular interactions
(the interactome). We conceptualized the problem as follows
(Figure 1): given as input only the receptors and the transcription
factors/regulators (TRs) in a specific signaling pathway, can we
analyze the interactome to recover the pathway with high
accuracy? Several earlier methods have addressed a computa-
tionally similar problem of connecting a set of sources or “causes”
(akin to receptors) to a set of targets or “effects” (akin to TRs)
through a compact sub-network of the interactome.6–18 However,

most of these methods are routinely evaluated on data in budding
yeast. To tackle the increased complexity of human signaling
pathways, we sought to develop an algorithm with two desirable
characteristics. First, the method must be able to compute a
reconstruction that captures a large subset of the interactions in
the curated signaling pathway. Ideally, it should have a tunable
parameter that smoothly determines the size of the solution.
Second, to reflect the process of signal transduction, the receptors
must be connected to the downstream TRs in the reconstructed
pathway.
We develop PATHLINKER, an algorithm that satisfies both criteria.

PATHLINKER finds the k highest scoring paths from any receptor to
any TR, where k is a user-defined parameter (Figure 1). As the
value of k increases, the solution smoothly increases to capture
more interactions in the curated pathways. By design, every
interaction in the reconstruction lies on some path from a receptor
to a TR. Thus, PATHLINKER satisfies both criteria for a reconstruction
algorithm.
We apply PATHLINKER to a comprehensive set of 15 signaling

pathways in the NetPath database3 and 32 pathways in the KEGG
database,5 both of which are manually curated. Compared with
several other approaches,15–20 we show that PATHLINKER is the only
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method that can reconstruct this pathway with high recall while
also ensuring connectivity between receptors and TRs. To further
highlight PATHLINKER’s effectiveness, we examine results for the Wnt
pathway in detail. One of the highest scoring paths computed by
PATHLINKER in the Wnt pathway reconstruction suggests that cystic
fibrosis transmembrane conductance regulator (CFTR) and its
interactions with receptor-like tyrosine kinase (Ryk) and Dab,
mitogen-responsive phosphoprotein, homolog 2 (Dab2), both of
which are known members of the Wnt pathway, comprise a novel
signaling mechanism from Wnts to β-catenin. We experimentally
validate this role for CFTR using loss of function short interfering
RNA (siRNA)-based silencing.

RESULTS

We first evaluated the ability of PATHLINKER and other algorithms to
reconstruct a diverse collection of 15 signaling pathways in the
NetPath database (Supplementary Section S1). We then experi-
mentally validated a novel prediction from PATHLINKER on the Wnt
signaling pathway.

Pathway reconstructions from the NetPath database

Comparison to other algorithms. We compared PATHLINKER with six
other network-based algorithms (Table 1), including shortest path

(SHORTESTPATHS, BOWTIEBUILDER19), random walk with restarts (RWR20),
network flow (RESPONSENET

17), Steiner forest (PCSF15), ANAT,18 and a
greedy seed-based method (Ingenuity Pathway Analyzer (IPA16).
Brief descriptions of these methods and the user-defined
parameters we selected appear in Supplementary Section S2.
For each pathway reconstruction, we used the interactions in

the NetPath pathway as the set of positives and a subsampled set
of interactions not present in the NetPath pathway as the set of
negatives (Supplementary Section S3). For each algorithm, we
aggregated the reconstructions of these pathways to measure the
precision and recall (Figure 2a and Supplementary Section S3). We
observed that ANAT, PCSF, RESPONSENET, SHORTESTPATHS, and
BOWTIEBUILDER achieved values of recall o0.1. While IPA returned
sub-networks with larger recall values, the precision was never
above 0.2. RWR achieved the best precision for recall values
between 0.05 and 0.13, and PATHLINKER and RWR were comparable
for all other values of recall.
To determine the source of the false positive interactions in

PATHLINKER compared with RWR, we asked if the false positives were
“close” to the pathway as represented in the NetPath database.
First, we recomputed precision of all algorithms after ignoring
interactions that involved at least one true positive node in the
NetPath pathway (“pathway-adjacent negatives”) before sub-
sampling the negatives (Figure 2b). This modification increased
the precision for all the algorithms, with PATHLINKER clearly
dominating all the other methods at values of recall between
0.2 and 0.6. To further investigate this trend, we computed each
interaction’s distance from any protein in the pathway, where a
distance of zero indicated a true positive and a distance of one
indicated a pathway-adjacent negative (Figure 2c and Supplemen-
tary Section S3). At a recall of 0.2, RWR contained a larger
proportion of true positives (purple regions) than PATHLINKER, while
the proportion of true positives was similar at recall 0.4 and 0.6.
However, the larger proportion of interactions that were at a
distance of 1 from the pathway (dark blue regions) across all three
values of recall indicates that PATHLINKER’s false positives were
closer to the pathway than RWR’s false positives.
To compare PATHLINKER and RWR using the criterion where

we required receptors and TRs to be connected in the
reconstruction, we assessed how quickly PATHLINKER and RWR
recovered the curated receptors and TRs. For PATHLINKER and RWR,
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Figure 1. Overview of the PATHLINKER algorithm. Given an interactome, we identify a set of receptors and a set of TRs for a particular curated
pathway (e.g., Wnt). We apply PATHLINKER to reconstruct the pathway, ranking proteins and interactions by their first occurrence in the k shortest
paths from any receptor to any TR. Using the curated pathway as a ground truth, we evaluate the performance of PATHLINKER. We combine the
ranked lists for multiple curated pathways to obtain an aggregate evaluation.

Table 1. Method abbreviations

Abbreviation Algorithm name/type Reference

PATHLINKER k shortest paths from any
receptor to any TR

This paper

SHORTESTPATHS Shortest paths from every
receptor to every TR

RWR Random walk with restarts Haveliwala et al.20

RESPONSENET Network flow Yeger-Lotem et al.17

PCSF Prize collecting Steiner forest Tuncbag et al.15

ANAT Shortest paths/Steiner trees Yosef et al.18

IPA Ingenuity Pathway Analyzer Ingenuity Pathway
Analysis (IPA)16

BOWTIEBUILDER Approximation to the Steiner tree
connecting receptors and TRs

Supper et al.19

Abbreviation: TR, transcriptional regulator.
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we recorded the index of the first interaction that contained
each receptor or each TR. Figure 2d shows the results for the
first 1,000 ranked interactions, and Supplementary Figure S2
shows the full ranking. PATHLINKER and RWR recovered receptors
at about the same rate, although PATHLINKER’s long tail
indicated that the last few receptors were difficult for
PATHLINKER to retrieve. Conversely, PATHLINKER successfully

recovered 90% of the TRs in the pathways in the first 1,000
ranked interactions, compared with only 38% recovered
by RWR.

Evaluation of PATHLINKER’s performance. We assessed PATHLINKER’s
performance in several additional ways to investigate its robust-
ness to the inputs and its effectiveness for other pathway
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Figure 2. Evaluation of pathway reconstructions aggregated over 15 NetPath pathways. (a) Precision and recall of the interactions in pathway
reconstructions computed by PATHLINKER and other algorithms. (b) Precision and recall of PATHLINKER and RWR without considering interactions
adjacent to the pathway (distance= 1). (c) Distances of each interaction from the pathway for PATHLINKER and RWR at recalls of 0.2, 0.4, and 0.6.
(d) Rank of receptors (top) and TRs (bottom) in the first 1,000 interactions from PATHLINKER and RWR reconstructions (rank for all interactions in
Supplementary Figure S2). (e) Median values of precision and recall of PATHLINKER when oversampling and undersampling receptors and TRs.
(f) Precision and recall of PATHLINKER when recovering proteins compared with interactions. (g) Precision and recall of PATHLINKER when
reconstructing 15 NetPath pathways compared with 32 KEGG pathways. RWR, random walk with restarts.
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databases. First, we added (incorrect) receptors/TRs to the input or
removed correct receptors/TRs from the input and compared the
resulting reconstructions (Figure 2e and Supplementary Section S3).
When we deleted 30% of the receptors and 30% of the TRs from the
input, the mean precision at recall of 0.3 and 0.6 dropped by 11%
(from 0.42 to 0.38) and 27% (from 0.28 to 0.22), respectively,
compared with the precision values with the correct inputs
(Supplementary Figure S3). The results were similar for random
additions of 30% of the receptors and 30% of the TRs.

Second, we evaluated the performance of recovering proteins
in the reconstructions. At similar values of recall, PATHLINKER’s
precision for protein recovery was much higher than that
for interaction recovery (Figure 2f). In fact, the precision values
of all algorithms improved considerably (comparing Figures 2a,b
with Supplementary Figure S4). When excluding proteins
that have an interaction with at least one protein in the pathway,
all algorithms have nearly perfect precision (Supplementary
Figure S4).
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Figure 3. Visualizations of Wnt pathway reconstructions. (a) Visualizations of PATHLINKER, RWR, and IPA pathway reconstructions at a recall of 0.2.
The displayed networks correspond to this value of recall (black arrows in the precision/recall curve.) Blue triangles: Wnt receptors; yellow
squares: Wnt TRs, green edges: NetPath interactions, purple edges: KEGG interactions that are not present in NetPath. (b) Network formed by
the 200 highest scoring paths in PATHLINKER’s reconstruction of the Wnt pathway. The number in each node denotes the index of the first path
in which that protein appears. Triangles: receptors; squares: TRs, green nodes/edges: NetPath proteins/interactions, purple nodes/edges: KEGG
proteins/interactions that are not present in NetPath, orange nodes: proteins known to be involved in Wnt signaling crosstalk. The blue region
highlights the novel Ryk–CFTR–Dab2 path, which we experimentally validate in this paper. IPA, Ingenuity Pathway Analyzer; RWR, random
walk with restarts.
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Our analysis thus far relied on 15 pathways from a single
database. Our last three assessments estimated the effect of
interactions present only in NetPath and extended the scope of

the analysis to a larger set of NetPath pathways and to the KEGG
database. First, we estimated the reliance of our reconstructions

on NetPath-only interactions by applying PATHLINKER to an
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interactome that excluded these interactions. Only 4% of the
interactions in the interactome were present in at least one
NetPath pathway; further, 35% of these interactions were
supported solely by NetPath (Supplementary Table S5). To
evaluate the resulting reconstruction, we used the 65% of NetPath
interactions that remained in the interactome as positives. While
the proportion of positives in the interactome dropped from 4%
to 2.6%, PATHLINKER’s performance was comparable to that in the
original interactome (Supplementary Figure S5). Next, we applied
PATHLINKER and RWR to an expanded set of 29 NetPath pathways
that contained at least one receptor and at least one TR, i.e., we
removed the criterion that at least three paths should connect
receptors to TRs in each pathway. We observed similar trends
in performance on the expanded set as on the original set of
15 pathways (Supplementary Figure S6). When we ignored
pathway-adjacent negatives, the precision of the reconstructions
for the expanded set was smaller than for the original set.
Nevertheless, PATHLINKER still clearly dominated over RWR
(Supplementary Figure S6). Finally, we assessed the performance
of PATHLINKER on another signaling pathway database. Accordingly,
we computed aggregate precision and recall over the reconstruc-
tions of 32 KEGG signaling pathways that contained at least three
paths from receptors to TRs, removing disease pathways from
consideration (Figure 2g). The aggregate precision-recall curves
for NetPath and KEGG pathways were comparable, with PATHLINKER
performing slightly better on NetPath pathways at very low
(o0.05) and high (40.4) values of recall.

Wnt pathway reconstructions. We visualized the topologies of the
Wnt pathway reconstructions from the PATHLINKER, RWR, and IPA at
a recall of 0.20 (Figure 3a and Supplementary Table S6). We
selected these three methods since every other approach
achieved a recall of at most 0.13 for the Wnt pathway
reconstructions (Supplementary Figure S7). In addition to the true
positive interactions from NetPath (green edges), all three
reconstructions contained interactions that are present in KEGG
but missing from NetPath (purple edges). IPA had a slightly higher
precision than PATHLINKER and RWR; however, the reconstruction
contained 13 connected components, and only 3 TRs were
connected to receptors. RWR’s reconstruction contained two
connected components and only two TRs. In contrast, PATHLINKER
produced a reconstruction with many receptor-to-TR paths that
contain NetPath and KEGG interactions, including 10 of the 13 TRs.
To more carefully explore the highest ranked paths in the

PATHLINKER reconstruction, we examined the network formed by the
top 200 paths computed by PATHLINKER using the receptors and TRs
in the Wnt pathway in NetPath (Figure 3b). For this analysis, we
added two receptors that were missing from the earlier precision-
recall analysis (Supplementary Section S1). The PATHLINKER network
included 16 proteins not previously known to be in the NetPath or
KEGG representations of the Wnt pathway (gray or orange nodes
in Figure 3b). Fifteen of these proteins are either involved in Wnt
crosstalk, have been shown to be involved in β-catenin signaling

in non-human models, or are involved in general post-
translational protein modifications (Supplementary Section S5).
The remaining protein, CFTR, was the highest ranked of all

proteins not previously known to be in Wnt pathway in the
NetPath or KEGG databases. It appeared in the 59th path
computed by PATHLINKER (Figure 3b). PATHLINKER indicated that CFTR
acted as a signal transducer from Ryk, a receptor tyrosine kinase
involved in Wnt signaling and organismal development,21–24 to
Dab, mitogen-responsive phosphoprotein, homolog 2 (Dab2), a
known negative regulator of β-catenin signaling.25,26 As Wnt
signaling is associated with several types of cellular differentiation
and specification, the closing of membrane channels to facilitate
morphological changes is biologically relevant.27

Exploring the role of CFTR in Wnt signaling

We designed a series of experiments to determine the role of Ryk,
CFTR, and Dab2 in Wnt/β-catenin-mediated signaling as predicted
by PATHLINKER (blue region in Figure 3b). We utilized a quantitative
TCF/LEF luciferase reporter assay and measurement of cellular
β-catenin levels to determine if silencing of Ryk, CFTR, or Dab2 has
a specific effect on Wnt/β-catenin signaling. We employed the
Wnt plasmid library28 to transiently express 11 different secreted
Wnt proteins (referred to hereby as Wnt) in HEK293 cells. Transient
expression of Wnts has been previously shown to induce the
expression of luciferase enzyme driven by a synthetic, tandem
TCF/LEF promoter when co-transfected into HEK293 cells.28 We
were able to determine and verify the extent of TCF/LEF-
promoted luciferase activity by each of the 11 Wnt proteins
tested (Figure 4a). Transient expression of Wnt 1, 2, 3, and
3a resulted in robust TCF/LEF-promoted luciferase activity
(X30-fold), while Wnt 2b2, 6, 7a, 7b, 8a, 9b, and 10b promoted
such activity to a much lesser extent (o30-fold) in comparison to
control samples not treated with Wnt.
We then determined the efficacy of transient silencing of

CFTR, Dab2, and Ryk by siRNA in HEK293 cells via western blot in a
dose-dependent manner (Figure 4b). In the No Wnt control cells,
cellular levels of β-catenin were not noticeably perturbed by siRNA
silencing of CFTR and Ryk, but increased as cellular protein levels
of Dab2 decreased. In these No Wnt control cells, we determined
there were no significant changes in TCF/LEF-promoted luciferase
activity in the absence of Ryk, Dab2, or CFTR. In the absence of
Dab2 or CFTR, both TCF/LEF-promoted luciferase activity (Figures
4c,d) and β-catenin levels determined by western blot (Figure 4e)
significantly increased for cells stimulated by nearly all Wnts (the
exception being Wnt2b2 in the absence of Dab2 for measurement
of β-catenin) in comparison to control scrambled siRNA-treated
cells. Conversely, in the absence of Ryk, there was (i) significant
ablation in TCF/LEF-promoted luciferase activity and (ii) decreased
levels of cellular β-catenin in the presence of only Wnt 1, 2, 3, or 3a
in comparison to control scrambled siRNA-treated cells. We noted
no significant difference of TCF/LEF-promoted luciferase reporter

Figure 4. Experimental validation of CFTR’s effect on Wnt-mediated signaling. (a) Normalized TCF/LEF promoter-driven luciferase activity in
the presence and absence of 11 different secreted Wnt (sWnt) proteins via transient expression. White bars signify a 30-fold greater activation
in comparison to the No Wnt control. Gray bars signify less than 30-fold activation in comparison to the No Wnt control.
(b) Efficacy of dose-dependent siRNA-mediated silencing of Ryk, Dab2, and CFTR on respective cellular protein levels and intracellular
concentration of β-catenin as determined by western blot. (c, d) Normalized TCF/LEF promoter-driven luciferase activity post silencing of Ryk,
Dab2, CFTR, or control scrambled siRNA in the presence or absence of 11 different sWnt proteins via transient expression. Graph is divided
into two groups to better visualize differences between control scrambled siRNA and Ryk-, CFTR- or Dab2-specific siRNA silencing.
(e) Intracellular concentration of β-catenin via western blot post silencing of Ryk, Dab2, or CFTR in the presence or absence of 11 different
sWnt proteins via transient expression. Please refer to Supplementary Figure S9 for quantification of these data. (f) Summary of the correlation
between Luciferase activity (c, d) and band intensity (e) under different experimental conditions. “++”, ⩾ 1.3-fold; “+”, 1.3-fold4x⩾ 1-fold;
“− ”, o1-fold; NRL, normalized relative luminescence; QNβ, qualification of normalized β-catenin intensity; VS, very strong (⩾30-fold); S, strong
(30-fold4x⩾ 15-fold); W, weak (o15-fold). (g) Co-immunoprecipitation of endogenous Ryk and Dab2 using endogenous CFTR as a bait in the
presence or absence of Wnts 1, 2, 2b2, 3, or 3a.
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activity or levels of cellular β-catenin for cells expressing Wnt 6, 7a,
7b, 8a, 9b, 10b in comparison to the control scrambled siRNA.
Cellular β-catenin levels determined by western blot were in

accord with the activation of TCF/LEF promoter when stimulated
by the respective Wnt (Figure 4e). In the presence of a stimulatory
Wnt (specifically Wnt 1, 2, 3, and 3a), an increase in β-catenin
levels in comparison to the No Wnt Control correlated with
increased TCF/LEF-promoted luciferase activity (Figure 4f and
Supplementary Figure S9). In instances where normalized relative
luminescence was ablated, quantification of β-catenin was
marginal or diminished as well (Figure 4f).
Utilizing endogenous CFTR as a bait, we were able to

co-immunoprecipitate both Ryk and Dab2 in No Wnt control cells
(Figure 4g). These interactions were qualitatively diminished in
HEK293 cells transiently expressing Wnt 1, 2, 2b2, 3, and 3a. We
hypothesize that Wnt-mediated receptor endocytosis triggers
CFTR to the degradation pathway rather than membrane
recycling, resulting in decreased cellular levels of CFTR and
potentially Ryk and Dab2. Further studies on cellular trafficking of
the Ryk–CFTR–Dab2 complex will provide insight into these
results.

DISCUSSION

Reconstructing multiple pathways

We have considered two distinct types of algorithms: those
that returned a single sub-network, producing a point on the
precision-recall curve (SHORTESTPATHS, RESPONSENET, PCSF, and ANAT,
BOWTIEBUILDER, and IPA and those that provided a ranked list of
interactions, producing precision-recall curves (PATHLINKER and
RWR). In the case of IPA, since changing parameters yielded
networks with substantially different precision and recall, we
present results for this algorithm for nine parameter values. Since
the single sub-network approaches had the goal of computing
compact sub-networks that connected sources to targets, they
were able to reconstruct pathways with high precision but only
with low recall. Only the algorithms that offered a ranked list of
interactions, PATHLINKER and RWR, reached a recall of ⩾ 0.6. These
results showed that an important component of a pathway

reconstruction algorithm was a parameter, such as k, whose
increase caused a smooth variation and expansion of the resulting
network. While both RWR and PATHLINKER had this property, only
PATHLINKER offered an additional guarantee of connecting receptors
to TRs (Figure 2d and the networks in Figure 3a). We conclude that
PATHLINKER reconstructions captured the structure of signaling
pathways much better than IPA and RWR, despite comparable
performance in terms of precision and recall.
Several previous studies have focused on recovering only the

proteins within a pathway, a methodology commonly used to
predict the biological processes of which a protein may be a
member.29 All algorithms improved considerably when evaluating
the proteins in the pathway reconstructions (Figure 2f), demon-
strating that reconstructing the interactions within a pathway is a
more challenging problem than that of recalling the proteins in
the pathway. In addition, false positive interactions in reconstruc-
tions that are “near” the curated pathway may indeed represent
valid interactions that have not yet been added to the pathway
through the curation process (Figures 2b,c). High-confidence
predictions adjacent to the pathway may be ideal candidates for
further experimental studies aimed at expanding known signaling
pathways.

Novel role of the Ryk–CFTR–Dab2 path in Wnt/β-catenin signaling

Wnt proteins are essential components of higher order eukaryotic
development, cellular homeostasis, and wound healing. The
canonical Wnt signaling pathway has been shown to be
specific for a subset of Wnts, while other Wnts are known to
signal through alternate means (reviewed in the study by
MacDonald et al.30). Using 11 of the 19 known Wnts, we further
this understanding by showcasing how the tested Wnts
differentially activate the TCF/LEF promoter via β-catenin to
significantly varying degrees. We show that Wnts 1, 2, 3, and 3a
are capable of Z30-fold activation of the TCF/LEF promoter, and
do so in part via a novel Ryk–CFTR–Dab2 pathway that further
regulates the cellular levels of β-catenin.
Ryk is a predicted tyrosine-protein kinase containing an

extracellular WIF domain that has been previously shown to
directly bind to Wnt 1 and Wnt 3a, though its signaling

Figure 5. Suggested model for Ryk–CFTR–Dab2-mediated amplification of Wnt 1-, 2-, 3-, and 3a-specific signaling. In the absence of Wnt 1, 2,
3, and 3a, a subset of Dab2 is associated with either homeostatic recycling of CFTR or formation and maintenance of the β-catenin destruction
complex. In the presence of these Wnts, Dab2 is recruited to the Ryk–CFTR membrane complex thereby allowing Axin and Dvl3 to be
recruited to the LRP5/6-Frizzled membrane complex and facilitating the phosphorylation and degradation of Axin. Freed β-catenin is
subsequently able to accumulate and translocate into the nucleus to catalyze gene-specific transcription.
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mechanism was unknown.23 Silencing of Ryk by siRNA in mice
results in defects in axon guidance and neurite outgrowth in
response to Wnt 3a induction.22 The interaction between Ryk and
CFTR was first determined in the CFTR interactome30 and was not
directly pertinent to the study’s dissection of the Hsp90
co-chaperone, Aha1, and CFTR interaction.31 We validated the
Ryk–CFTR and CFTR–Dab2 interaction via co-immunoprecipitation.
CFTR functions intrinsically as a membrane chloride ion channel
protein and known point mutations result in impaired function-
ality resulting in the clinical manifestation of cystic fibrosis.32 CFTR
is impacted by intracellular calcium (reviewed in the study by
Antigny et al.33), an alternate product of certain non-canonical
Wnt signaling pathways.33,34 Dab2 is involved in endosomal
recycling and degradation of CFTR and is a well-known regulatory
component of receptor-mediated endocytosis.35,36 Dab2 also
functions as a negative regulator of the β-catenin destruction
complex.26,37,38 Even though prior groups had previously identi-
fied these functionalities independently, there was no evidence or
speculation for the role of CFTR in Wnt/β-catenin-mediated
signaling particularly by Ryk or Dab2.
We present a model incorporating the Ryk–CFTR–Dab2 pathway

as an amplifier of Wnt 1-, 2-, 3-, and 3a-specific β-catenin signaling
(Figure 5). Our results suggest the recruitment of Dab2 to the
Ryk–CFTR membrane complex in the presence of specific Wnt
proteins. This process further impedes the formation of the
β-catenin destruction complex, thereby freeing additional
β-catenin to further amplify TCF/LEF promoter transcription. It is
currently unknown if Wnt signaling via Ryk modifies the sodium
transport function of CFTR in preparation for context specific
cellular processes or if Wnt-specific signaling facilitates the
degradation of CFTR. Further molecular characterizations are
required to provide insight into the novel role of CFTR in
facilitating Wnt 1-, 2-, 3-, and 3a-specific signaling.
In conclusion, we have presented PATHLINKER, an algorithm that

automates the reconstruction of human signaling pathways by
connecting the receptors and TRs for a pathway through a
physical and regulatory interaction network. Based on our
comprehensive analysis on 15 NetPath pathways, PATHLINKER
achieved much higher recall (while maintaining reasonable
precision) than several other methods. Furthermore, it was the
only method that could control the size of the reconstruction
while ensuring that receptors were connected to TRs in the result.
PATHLINKER’s reconstruction of the Wnt pathway indicated that CFTR
facilitates the signaling from Ryk to Dab2. In HEK293 cells, we
validated this path experimentally and showed its specificity for
4 of the 11 Wnts tested (Wnt 1, 2, 3, and 3a). Based on these
results, we propose a model that suggests Dab2 is recruited to the
Ryk–CFTR membrane complex in response to a defined Wnt
stimulus that ultimately amplifies Wnt 1, 2, 3, and 3a canonical
signaling. In summary, PATHLINKER provides a promising framework
for reconstructing a well-studied signaling pathway given
relatively little information about its components. It may serve
as a powerful approach for discovering the structure of poorly
studied processes and prioritizing both proteins and interactions
for experimental study.

MATERIALS AND METHODS

PATHLINKER

The problem of pathway reconstruction takes as input (i) a weighted
directed interactome G containing physical and regulatory interactions
between pairs of proteins, (ii) the receptors S in a signaling pathway of
interest, and (iii) the TRs T in the same pathway. A reconstruction of a
pathway P consists of a sub-network of G that connects the receptors in P
to the TRs in P using proteins and interactions in G.
Given an interactome G= (V, E), where every edge e in E has an

associated weight we between 0 and 1, a receptor set S, a TR set T, and a
user-defined parameter k, PATHLINKER computes the k highest scoring

loopless paths that begin at any receptor in S and terminate at any TR in T.
We define the score of a path to be the product of the edge weights along
the path. We add an artificial source s with a directed edge (s, x) for each
node x∈ S and an artificial sink t with a directed edge (y, t) for each node
y∈ T. We assign the following cost to each edge (u, v):

cuv ¼
- log wuvð Þ if u; v AV∖fs; tg

0 if u ¼ s or v ¼ t:

�

Let the cost of a path be the sum of the costs of the edges in the path.
Therefore, the least costly s t path is equivalent to the path from S to T
that maximizes the path score. PATHLINKER computes the k highest scoring
paths in this modified graph by incorporating a novel integration of Yen’s
algorithm39 with the A* heuristic (Supplementary Section S6). This
technique is up to 41 times faster than Yen’s algorithm by itself
(Supplementary Figure S8) and is thus capable of handling the complexity
of human interaction networks and signaling pathways.
We compute a pathway reconstruction Gk for each value of k by taking

the union of the k highest scoring paths. By construction, the interactions
in the k shortest paths are a subset of those in the (k+1) shortest paths,
thereby ensuring that our reconstructions vary smoothly with k. For
precision and recall calculations, we compute k= 20,000 paths and rank
each node and edge by the index of the first path in which it appears. This
value of k reflects the high degree of redundancy (edge reuse) among
paths in signaling networks.

Data sets

We constructed a directed human protein interactome from numerous
protein–protein interaction and signaling pathway databases.3–5,40 The
resulting network contained 12,046 nodes and 152,094 directed edges,
where multiple types of evidence supported many of the edges. We
weighted each edge in the network using a Bayesian approach that
computes interaction probabilities based on the sources of evidence.17 We
identified sets of signaling receptors and TRs from previously published
lists of human receptors41 and TRs.42,43 We selected 15 NetPath pathways
and 32 KEGG pathways that each contained at least one receptor, at least
one TR, and were connected by at least three paths (Supplementary Tables
S3 and S4). For more information, refer to Supplementary Section S1.

Experimental methods

We conducted experiments in HEK293 cells using the public Wnt plasmid
Library28 and validated siRNA. We present detailed methods in
Supplementary Section S7.
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