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CHAPTER 8 

Pathways to the Optimal Set in 
Linear Programming 
Nimrod Megiddo 

Abstract. This chapter presents continuous paths leading to the set of optimal 
solutions of a linear programming problem. These paths are derived from the 
weighted logarithmic barrier function. The defining equations are bilinear and 
have some nice primal-dual symmetry properties. Extensions to the general 
linear complementarity problem are indicated. 

$1. Introduction 

Algorithms for mathematical programming can often be interpreted as path- 
following procedures. This interpretation applies to the simplex method [4], 
Scarf's fixed-point algorithm [19], Lemke's algorithm 1131 for the linear com- 
plementarity problem, homotopy methods for piecewise linear equations [5], 
and most of the methods for nonlinear optimization. This is the theme of the 
book by Garcia and ZangwillC81. More recent algorithms for linear program- 
ming by Murty [17] and Mangasarian [15] are also based on natural paths 
that lead to optimal solutions. Iterative algorithms for nonlinear optimization 
usually assign to any point x in a certain set S c Rn (usually convex) a "next 
point" x' = f(x) E S. Given a starting point xO, the iterative scheme generates 
a sequence of points {xk}, where xk+' = f(xk), that converges to a solution. 

It is often instructive to consider "infinitesimal" versions of iterative algo- 
rithms in the following sense. Given the iterative scheme x' = f(x), consider 
the differential equation 
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132 8. Pathways to the Optimal Set 

When this equation has a unique solution through x0 then it determines a 
path x = x( t )  such that the tangent to the path at any x is equal to the straight 
line determined by x and x'. If the algorithm generates the point x' close to 
x then the path may be a good approximation to the sequence generated by 
the algorithm. This is true at least during later stages of the execution if the 
sequence converges to a solution point. If the algorithm makes large steps 
during the early stages then the path may be a bad approximation. Trajectories 
corresponding to discrete algorithms for nonlinear optimization were analyzed 
in [6,8,10]. The analogy to differential equations is well known. 

Several people have recently worked on solution paths in linear program- 
ming. Nazareth [18] interprets Karmarkar's algorithm [12] as a homotopy 
method with restarts. Results about the infinitesimal version of Karmarkar's 
algorithm and related algorithms were recently obtained in [2 ]  and [16].  
Smale [20] showed that the path generated by the self-dual simplex algorithm 
[4]  can be approximated by the Newton's method path for solving a certain 
system of nonlinear equations. 

In this chapter we study solution paths related to barrier functions for 
linear programming. We believe the study of paths is essential for the design 
and analysis of algorithms for optimization. In Section 2 we describe the paths 
for linear programming problems in standard form. In Section 3 we develop 
essentially the same theory within a more symmetric framework. In Section 4 
we analyze some properties of tangents to the trajectories, whereas Section 5 
brings some observations on higher-order derivatives. In Section 6 we con- 
sider the behavior of trajectories near corners. In Section 7 we discuss gen- 
eralizations to the linear complementarity problem. 

$2. On the Logarithmic Barrier Function 

In this section we consider the linear programming problem in the standard 
form 

Maximize c T~ 

(P) subject to A x  = b, 

where A E Rm ", b E Rm, and c, x E Rn. We believe most of the readers are used 
to considering the linear programming problem in this form. However, an 
analogous analysis can be carried out with respect to other forms of the 
problem. We shall later discuss the problem in more detail, using another 
more symmetric variant. The presentation will therefore entail a fair amount 
of redundancy, which, we hope, will be of help to the reader. 

The logarithmic barrier function technique, usually used in nonlinear con- 
strained optimization, can of course be applied to the linear programming 
problem. This method recently came up in [9 ] ,  where Karmarkar's algorithm 
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[12] was analyzed from the barrier function viewpoint, but the idea of using 
this function in the context of linear programming is usually attributed to 
Frisch [7]. The technique gives rise to the following problem: 

Maximize cTx + p In xj 
j 

(Pfl) subject to Ax = b, 

where p > 0 is typically small. The barrier function approach is valid only if 
there exists an x > 0 such that Ax = b. However, it is easy to reformulate the 
problem, using one artificial variable, so that the feasible domain is of full 
dimension. We use e to denote a vector of 1's of any dimension as required 
by the context. Also, M denotes a real number always chosen to be sufficiently 
large or an "infinite" element adjoined to the ordered field of the reals. The 
following construction is well known. Given a problem in the form (P), con- 
sider the following problem: 

Maximize cTx - M5 

(P*) subject to Ax + (b - Ae)< = b, 

Obviously, x is an optimal solution for (P) if and only if (x, 0) is an optimal 
solution for (P*). It follows that the vector (x, <) = e satisfies the set of equa- 
tions. Thus, without loss of generality, we may assume the problem is given 
in the form (P) and also Ae = b. 

For any d-vector x, let D, denote the diagonal matrix of order d x d whose 
diagonal entries are the components of x. A vector x > 0 is an optimal solution 
for (P,) if and only if there exists a vector y G Rm such that 

Obviously, the problem (P,) may be unbounded. Let us assume, for a moment, 
that the feasible domain {x: Ax = b,x 2 0) is bounded. At least in this case 
both (P) and (P,) have optimal solutions (for every p). Under the boundedness 
assumption, (P,) has a unique optimal solution for every p > 0 since its 
objective function is strictly concave. Thus, under the boundedness assump- 
tion, the system (0) has a unique solution for x for every p > 0. 

The left-hand side of the system ( 0 )  represents a nonlinear mapping F,(x, y) 
of Rn+" into itself. The Jacobian matrix of this mapping at (x, y) is obviously 
the following: 

Suppose A is of full rank m (m I n). In this case, the value of y is uniquely 
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determined by the value of x. Also, it is well known that in this case the matrix 
AAT is positive definite and hence nonsingular. The linear system of equations 

can be interpreted as a "least squares" problem or a projection problem. A 
solution can be expressed in terms of the matrix (AD;AT)-', which is well 
defined since A is of full rank. It is interesting to observe the following: 

Proposition 8.1. The problem (P,) is either unbounded for every p > 0 or has a 
unique optimal solution for every p > 0. 

PROOF: Consider the interval I of values t for which the set 

has a nonempty interior. Obviously, I is an open interval. If for any t E I the 
function d(x) = x j l n x j  is unbounded on L(t) then, of course, (P,) is un- 
bounded for all positive values of p. Without loss of generality, assume +(x) 
is bounded over every L(t) (t E I). Strict concavity of +(x) implies that for each 
t E I there is a unique maximizer x = x(t) of + over L(t). Let g(t) denote the 
maximum value of +(x) over L(t). Consider first the case where oo E 1; that is, 
the function cTx is unbounded. Here there is a ray, contained in the interior 
of the feasible region, along which cTx tends to infinity. Since the domain is 
polyhedral, the ray is bounded away from the boundary. Thus, on the ray the 
function +(x) is bounded from below, and hence (P,) is unbounded for every 
p > 0. In the remaining case, notice that strict concavity of g(t) implies that 
t + pg(t) is bounded for every p > 0 if t is bounded. Thus, in the latter case 
(P,) has a unique optimal solution for every p > 0. 

It follows from Proposition 8.1 that if the system ( 0 )  has a solution for any 
positive value of p then it determines a unique and continuous path x = x(p), 
where p varies over the positive reals. When A is of full rank also a continuous 
path y = y(p) is determined. We are interested in the limits of x(p) and y(p) 
as p tends to zero. Suppose (for a moment) that the limits of x(p) and y(p) (as 
p tends to 0) exist, and denote them by Y and 7, respectively. It follows that 
AY = b, Y 2 0, and ATL 2 c. Moreover, for each j such that Fj > 0, AFy = cj. 
It follows that Y and L are optimal solutions for (P) and its dual, respectively. 
To relate these paths to an algorithm for the linear programming problem, 
we have to address at least two issues. First, we have to know a solution for, 
say, p = 1. Second, the limit of x(p) (as p tends to zero) should exist. 

It is easy to modify the objective function so that an initial solution becomes 
available. Note that instead of (P,) we can work with a problem of the form 

Maximize cTx + p wj In X, 
i 

subject to Ax = b, 
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where w E R: is any vector with positive components. Proposition 8.1 extends 
to this case. Suppose x0 and yo are interior feasible solutions for the primal 
and the dual problems, respectively. We will show later that any problem can 
be reformulated so that such solutions are readily available. We can choose 
w so that the vectors x0 and yo satisfy the optimality conditions with respect 
to (P,(w)) at p = 1: 

Specifically, w = Dxo(ATyO - c). Thus, given any pair of interior feasible solu- 
tions for the primal and the dual problems, we can easily calculate a suitable 
weight vector w, which in turn determines paths x = x(p) and y = y(p) as 
explained above. We discuss the role of the weights in more detail in Section 3. 

In view of the preceding discussion, let us assume that for every p > 0 the 
system ( 0 )  has a unique solution (x(p), y(p)). It is easy to show that cTx(p) 
tends to the optimal value of (P). This follows if we multiply the first row of 
( 0 )  by x(p), the second by y(p), and then add them up. We get bTy(p) - 
cTx(p) = np. The optimal value lies between bTy(p) and cTx(p) and this 
implies our claim that cTx(p) tends to the optimal value as p tends to 0. We 
are interested in conditions under which the point x(p) tends to an optimal 
solution of (P). 

Let V(p) = cTx(p) (where x(p) is the optimal solution of (P,)), and let V(0) 
denote the optimal value of (P). We have just argued that V(p) tends to V(0) 
as p tends to 0. Obviously, x(p) is also the optimal solution of the following 
problem: 

Maximize cTx + p 1 In xj 
j 

(p,) subject to Ax = b, 

cTx = V(p), 

The latter is of course equivalent to 

Maximize 1 In xj 
j 

subject to Ax = b, 

Our assumption of existence of the path x(p) is equivalent to existence of an 
optimal solution for the problem (F,) for any p > 0. Using the notation of 
Proposition 8.1, the function d(x) is bounded on every L(t) where t = V(p) for 
some p > 0. We assert that this implies that the set L(t) itself is bounded. The 
proof is as follows. If L(t) is unbounded then there is a ray, bounded away 
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from the boundary, along which at least one of the variables tends to infinity 
while the others are bounded away from zero. Along such a ray the function 
# ( x )  tends to infinity. It follows that the set L ( V ( 0 ) )  is bounded. The maximum 
value g(t) is a concave function oft. This concavity implies that g(t) is bounded 
from above as t tends to V(0) .  Let N denote the set of all indices j such that 
xj = 0 in every optimal solution. Thus, the optimal face is the intersection of 
the feasible domain with subspace { x :  xj = 0,j E N). Let 

Let t j ( p )  denote the jth component of the vector x ( p ) ,  that is, the optimal 
solution at p. Since 4 N ( x )  is constant on the set { x :  xj = Sj(p), j E N ) ,  it follows 
that the point ~ ( p )  is actually the optimal solution of the problem 

Maximize &(x) 

subject to A x  = b, 

Since the optimal set is bounded, it follows that the problem corresponding 
to p = 0 ,  that is, 

Maximize ~ $ ~ ( x )  

subject to A x  = b, 

has a unique optimal solution which we denote by x(0). We claim that x(0)  is 
equal to the limit of x ( p )  as p tends to zero. This solution is also characterized 
by the following system: 

where 2 is a multiplier corresponding to the equation c T x  = V ( 0 )  and A; is 
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the jth row of AT. Any limit of a convergent sequence of points x(pk) (where 
pk tends to 0 as k tends to infinity) satisfies the latter system of equations and 
hence equals x(0). Thus, x(p) tends to x(0) as p tends to zero. We can thus 
state the following proposition: 

Proposition 8.2. If for some p > 0 the system (0) has a solution x > 0 then for 
every p > 0 there is a solution ~ ( p )  SO that the path x(p) is continuous and the 
limit of x(p) as p tends to zero exists and constitutes an optimal solution to the 
linear programming problem (P). 

The implication of Proposition 8.2 is that we can solve the linear pro- 
gramming problem by a "homotopy" approach. Starting from p = 1, where 
we readily have an optimal solution to problems of the form (PJw)), we follow 
the path of optimal solutions for such problems while p varies from 1 to 0. 
The limit as p tends to zero is an optimal solution to the linear programming 
problem, namely the point x(0). In the next section we will continue the study 
of the paths introduced above. However, henceforth we will consider a more 
symmetric form of the problem. 

$3. Duality 

We find it more instructive to consider the linear programming problem in 
the symmetric form (in the sense of the duality transformation): 

Maximize cTx 

(P) subject to A x  S b, 

where A E Rm '", b E Rm, and c,  x E R". The system {Ax I b )  can obviously be 
replaced by {Ax + u = b, u 2 0) where u E Rm. In this section we complement 
the results of Section 2 and provide additional insights. 

The following nonlinear concave optimization problem (where p is a fixed 
positive number) can be considered an approximation to (P): 

Maximize c T~ + p 

('') subject to AX + u = b, 

Notice that the gradient of the function d(x) = x j l n x j  is equal to D['e and 
also to D i 2 x .  A pair of vectors x E R; and u E R';, such that Ax + u = b, 
constitutes an optimal solution for (P,) if and only if there exists a vector 
y E Rm such that 
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It follows that such a vector y must satisfy u = pD,-'e and hence x is optimal 
in (P,) if and only if there is y E R': such that 

The system ( 0 )  has some nice symmetry properties. Consider the dual of (P), 
namely 

Minimize b y 

(D) subject to 2 c, 

An approximate nonlinear convex optimization problem is as follows. 

Minimize b T y  - p 1 In y, + 1 In vj 
( i  j 

(D') subject to ATy - v = C. 

It is easy to check that y is optimal in (D,) if and only if there exists an 
x E R; such that ( 0 )  holds. Note that the nonlinear objective functions of (P,) 
and (D,) (for p > 0) are strictly concave and strictly convex, respectively. Thus, 
each of the problems (P,) and (D,) has at most one optimal solution. The rela- 
tionship between the problems (P,) and (D,) is summarized in the following 
duality theorem: 

Theorem 8.1. 

(i) If the problem (P,) is unbounded then the problem (D,,) is infeasible, and if 
the problem (D,) is unbounded then the problem (P,) is infeasible. 

(ii) The problem (P,) has a optimal solution i f  and only if the problem (D,) has 
an optimal solution. 

(iii) If x and y are optimal solutions for (P,,) and (D,), respectively, then the gap 
between the values of the objective functions of (P,) and (D,) is equal to 
(m + n)p(l + lnp), whereas the gap between c T x  and bTy  equals (m + n)p. 

PROOF. Suppose x and y are feasible solutions to the problems (P,) and (D,), 
respectively. Let u and v be as above. It follows that 
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Thus, for p  I 1, 

b T y  - c T x  = u T y  + v T x  2 p(uTy  + v T x )  

Thus, 

The latter is analogous to the weak duality in linear programming. It implies 
that if (P,) is unbounded then (D, )  is infeasible and if (D, )  is unbounded then 
(P,) is infeasible. 

We know from the preceding discussion of the system (0) that (P,)  has an 
optimal solution if and only if (D, )  has one. The optimal solutions are unique. 
If x  and y  are the optimal solutions for (P,)  and (D,), respectively, then the 
system (0) implies 

0 . x .  = u . y .  = p. 
J J  1 1  

Thus, 
b T y  - c T x  = ( m  + n)p  

and 

= ( m  + n ) p ( l  - In p). 

Interestingly, the gap between the optimal values depends only on p  and 
the dimensions m and n and not on the data. It follows from Theorem 8.1 that 
the optimal solutions x  = x ( p )  and y  = y ( p )  are such that c T x ( p )  and b T y ( p )  
tend to the optimal value of ( P )  (which of course equals the optimal value of 
( D ) ) .  Moreover, the "duality gap" tends to zero linearly with the parameter p. 
It can then be shown, as in the preceding section, that the points themselves 
tend to optimal solutions of ( P )  and ( D ) ,  respectively. 

For the symmetric primal-dual barrier approach to work, we need both 
( P )  and ( D )  to have full-dimensional feasible domains. We note that every 
linear programming problem can be reformulated so that both the primal and 
the dual have full-dimensional feasible domains. Given a problem in the form 
(P) ,  consider the following problem, where M is sufficiently large: 

Maximize c T x  - M t  

subject to A x  + ( b  - Ae - e)5 I b ,  
(P*)  

(c - ATe + e)Tx  I M ,  

x ,  5 1 0. 
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It is easy to verify that if M is sufficiently large then x is an optimal solution 
for (P) if and only if (x, 0) is an optimal solution for (P*). The point e E Rn+' 
lies in the interior of the feasible domain of (P*). Also, the point e E Rm+' lies 
in the interior of the feasible domain of the dual of (P*): 

Minimize bTY + Mq 

subject to ATy + (c - ~~e + e)q 2 c, 
(D*) 

(b - Ae - e)Ty 2 - M, 

Tricks of "Big M" are fairly standard in linear programming. Alternatively, 
to avoid numerical problems with large values of M, we can use here the 
equivalent of what is called "Phase I" in the linear programming literature. 

For simplicity of notation, we write (x, y) for the column vector obtained 
by concatenating two column vectors x and y. We find it interesting to con- 
sider the mapping $: Rn+" + Rn+", defined by 

This mapping underlies the system (0),  which can be written as $(x, y) = 
(- c, b). The Jacobian matrix of $ at (x, y) is equal to 

Assuming x and y are positive, the matrix H is negative definite since for any 
w E Rn and z E Rm, 

(z, w)~H(z ,  W) = -p(zTDi2z + wTD;'w). 

In particular, H is nonsingular. It is also interesting to consider a related sym- 
metric matrix 

Obviously, E? is the Hessian matrix of the function 

L,(x,y) = cTx + p x  lnxj - yTAx - p x l n y ,  + yTb, 
j i 

which is well defined for x, y > 0. Note that L is strictly concave in x for every 
y and strictly convex in y for every x. The pair (x(p), y(p)) (that is, the point 
where the gradient of L(x, y) vanishes) constitutes the unique saddle point of 
L(x, y), in the sense that x is a maximum and y is a minimum. 

The sum of logarithms added to the linear objective function cTx plays the 
role of a "barrier" [6] .  Suppose an algorithm for unconstrained optimization 
starts in the interior of the feasible domain and iterates by searching a line 
through the current point. The barrier "forces" the iterates to remain in the 
interior of the feasible domain. Another classical trick of nonlinear program- 



$3. Duality 141 

ming is to use a "penalty" function (where a penalty is incurred if a point 
outside the feasible domain is produced). Let us consider general algorithms 
that iterate on primal and dual interior points. Let p denote a parameter that 
determines primal and dual interior feasible solutions x(p) > 0 and y(p) > 0, 
respectively. Let 

and 

v(p) = ATy(p) - c > 0. 

If ~ ( p )  and y(p) tend (as p tends to 0) to optimal solutions of the primal 
and dual problems, respectively, then necessarily the products xj(p)uj(p) and 
yi(p)ui(p) tend to 0 with p. In other words, there exist functions pi(p) and vj(p) 
that tend to zero with p so that 

and 

The logarithmic barrier function method with uniform weights is characterized 
by the equations 

With general (not necessarily uniform) weights the functions pi and vj remain 
linear in p. 

In pursuit of "natural" barrier or penalty functions, let us consider a 
problem in the following general form: 

Maximize cTx + p f (xj) + p f (ui) 
(Pf.,) j I 

subject to Ax + u = b 

where f(5) is strictly concave. Let g(5) = f '(5) and for any d-vector a let 

A pair (x, u) is optimal for (PJ,,) if and only if there exists a vector y E Rm such 
that 

We would like to have optimality conditions that are "primal-dual symmetric," 
that is, similar to the system (0) above. More precisely, we are interested in 
functions f(() where the optimal solution for the approximate dual problem 
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provides Lagrange multipliers supporting the optimal solution of the approxi- 
mate primal, and vice versa. Such functions would give rise to duality theorems 
similar to Theorem 8.1. When u is eliminated by the substitution ui = g-'(yi/p), 
we obtain a set of equations that we would like to have the same form as 
pG,e - ATy = - c. In other words, we need the function g(<) to satisfy 

for every < and p > 0. The latter requirement is very restrictive. It implies 
g ( 5 )  = 9-'(5) so that pg(<) = g(</p). It follows that g(<) = g(l)/<. We reach 
the surprising conclusion that the only barrier or penalty functions that are 
primal-dual symmetric are of the form f(<) = k-ln(I</), where rc is some 
constant. Such functions are appropriate only as barrier functions, that is, 
for interior point procedures, and not as penalty functions (for exterior point 
procedures). 

We have already argued that for any pair (xO, yo) of interior feasible solu- 
tions (for (P) and (D), respectively), there exist weights that determine a pair 
of weighted barrier paths from x0 and yo to the optimal sets. The characteriza- 
tion of these paths is simple. For simplicity of notation, let the indices of 
columns and rows vary over disjoint sets so that we can use wi to denote a 
weight associated with a row and wj to denote one associated with a column. 
Given the interior points x0 and yo, let 

and 

Then the function 

has a maximum over the interior of the primal feasible region. Also, the 
function 

has a minimum over the interior of the dual feasible region. If W is the total 
of the weights then the gap between the values of the linear functions is equal 
to Wp. The gap between the values of the nonlinear functions is equal to 
Wp(1 - In p). The paths are characterized by the property that along each of 
them the products of complementary variables xjuj and yiui are proportional 
to p. In other words, the ratios across these products are kept constant. More 
explicitly, 
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and 

along the paths. In the following section we will study the differential descrip- 
tions of these paths. 

We have argued that a solution path determined by a pair of interior feasible 
solutions (for the primal and the dual problems) is the locus of interior feasible 
points with the same ratios across products of complementary variables. This 
interpretation suggests a natural generalization. Consider the following set of 
equations: 

The original problem (P) requires that Ax < b and x 2 0. However, we can 
consider 2"'" different problems, corresponding to the 2"'" different ways of 
choosing the restrictions on the signs of the variables xj  and ui = bi - Aix .  
The dual problem to each of these is obtained by suitable changes of sign of 
the complementary dual variables. For all such pairs of primal and dual 
problems, the products of complementary variables have to be nonnegative. 
In other words, if all the products xjvj and yiui are nonnegative, then x and y 
are (respectively) primal and dual feasible solutions for at least one of these 
pairs of problems. In any case, x and y are feasible solutions of some pair of 
problems (not necessarily dual) that can be obtained from the original ones 
by changing the directions of some inequalities. The system (X) defines solu- 
tion paths for all the feasible combinations of primal and dual problems. 

A convenient description of the paths discussed above is obtained as 
follows. First, consider the problem 

Maximize 1 In xj  + In ui 
i i 

('w) subject to Ax + u = b, 

which is, in a sense, the limit of (P,) as p tends to infinity. If (P,) has an optimal 
solution xm then ~ ( p )  tends to x m  as p tends to infinity. Second, consider the 
problem of minimizing 

subject to the same constraints. It is easy to see that as p tends to infinity the 
path of the latter also approaches x m .  It seems nice to apply at this point a 
change of parameter so that the paths of the two optimization problems can 
be described in a unified way. Consider the substitution p = tan0. Equiva- 
lently, consider maximizing the following nonlinear objective function: 
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(cos 8)cTx - (sin 8) 

For 0 < 8 < n/2  we get the part of the path corresponding to the minimization 
problem, whereas the interval 7(/2 < 8 < n corresponds to the maximization 
problem. The value 8 = n/2  corresponds to maximization of the sum of log- 
arithms. If the intersections of level sets of cTx with the feasible polyhedron 
are bounded and the linear problem has a minimum then the path is well 
defined for 0 < 8 < n/2.  If the feasible polyhedron is unbounded then the 
path is not defined at 6 = 4 2 .  In fact, it diverges to infinity as 0 tends to n/2.  
The defining equations of the path have the form 

(sin 8)Di1 -ATy =-(cosQ)c, 

Ax +(sin 0) D,-' = (cos 0)b. 

Again, if the domain is bounded, this system defines a continuous path that 
leads from a minimum of cTx to a maximum of cTx through the maximum 
of the sum of logarithms. 

It is interesting to consider the system discussed above in the neighborhood 
of 8 = 0. We know that the limits x(0) and y(0) exist (if the paths exist). We 
first prove. 

Proposition 8.3. Let F, y, ti, and 5 denote the optimal values of variables in (P,) 
and (D,) at the end of the paths (that is, when ,u tends to zero, assuming the prob- 
lem has an optimal solution). Then, for each pair of complementary variables, 
(Fi, Ui) and (yj,Gj), one member of the pair is positive while the other equals 
zero. 

PROOF. Obviously, at least one of the members in each pair equals zero. It is 
well known that at degenerate vertices some pairs may have both members 
equal zero. However, degeneracy means that either the primal or the dual 
problem has an optimal face of dimension greater than zero. We claim that 
the solution paths converge to points in the relative interior of the optimal 
faces of the primal and dual problems. Consider, for example, the primal 
problem. The limit point 3 is where the sum x j l n  xj + x i l n  ui (taken over all 
the variables that are not identically zero on the optimal face) is maximized 
relative to the optimal face. Obviously, each variable that is not identical to 
zero on the optimal face does not vanish at F. This implies our proposition. 

Assuming the limits x(0) and y(0) exist, consider the variables that vanish 
at this point. They also vanish at every other point of the optimal set. Let 
I denote the set of indices i such that Aix = bi at every primal optimal soiu- 
tion x. Also, let J denote the set of indices j such that xj = 0 at every primal 
optimal solution x. It follows that for every dual optimal solution y, yi = 0 
for i 4 1 and ATy = cj for every j 4 J. Consider the following problem: 
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Minimize cTx 

subject to Aix 2 bi (i E I), 

This problem is approximated by 

Minimize cTx - p x In(-xi) + ln xi + z In(-%) + In ui 
( je  J i$J is1 i$I 

(',) subject to Ax + u = b, 

xj < O ( ~ E  J), xj > O ( j $  J), ui < O(ie I), ui > O(i$ I). 

It follows that the optimality conditions for (?,) are the same as those for (P,) 
in the sense that the solution paths (assuming they exist on both sides) can be 
joined continuously at the optimal face common to problems (P) and (p). 
Recall that the function cTx increases monotonically as p tends to zero. It 
follows that, as long as the path can be continued, it can be extended through 
the hyperplane arrangement so that in every cell it travels (monotonically in 
terms of cTx) from a minimum of the cell to a maximum of the cell, which is 
also a minimum of an adjacent cell, then to a maximum of this adjacent cell, 
and so on. The substitution p = tan 8 yields a continuous representation of a 
combined path that travels through a sequence of bounded cells. Each sequence 
of bounded cells can be extended on both sides with unbounded cells where 
the path tends to infinity. Except in pathological cases, the paths do not visit 
cells in which the function has neither a maximum nor a minimum. A patho- 
logical case is, for example, a polyhedral cylinder on which the linear function 
is unbounded (both from above and from below). 

$4. On Tangents to the Paths 

Let (xO, yo) be a pair of interior feasible solutions (for problems (P) and (D), 
respectively). Let u0 and o0 denote the corresponding slack vectors of the 
primal and dual problems, respectively. We use the products wj = xjOvjO and 
wi = yPuP to define a pair of paths as explained earlier. Let us now examine 
the tangent to this path at the starting point. 

The path is determined by the following equations: 
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Differentiation with respect to p yields the following equations: 

Consider a point (x', y') with x' = x0 - 6 i  and y' = yo - 63, where i and 3 
constitute the solution of the latter system of equations at x = xO, y = yo, and 
p = 1 and 6 is any positive number. Obviously, (x', y') lies on the tangent to 
the curve at x0 and yo. It is easy to verify that 

bTy'  - cTx'  = ( 1  - G)(bTy - cTx) .  

Let us denote the slack vectors corresponding to the pair (x', y') by u' and v ' ,  
and let wi and wj' denote the corresponding products of complementary 
variables. It follows that 

Similarly, 

For the points x' and y' to remain feasible in their respective problems, it 
is necessary and sufficient that the following quantities be less than or equal 
to 1: 

It is interesting to examine properties of the tangents. To establish some 
connections to other interior point methods, we return for a moment to the 
problem in standard form as in Section 2. Thus, we now work with the 
problem in the form 

Maximize c T x  

(P) subject to Ax = b, 

Given a pair (xO, yo)  where 

A x O = b ,  x O > O  and ~ ~ y O > c ,  
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the pair of paths x = x(,u), y = y(p) through (xO, yo) (that is, with x(1) = x0 
and y(1) = yo) is determined by the following system of equations: 

By differentiation, at p = 1 we have the following system (where (xO, yo) was 
replaced by (x, y) for simplicity): 

(AFy - cj)S + xjA;j = (ATy - cj)xj ( j  = 1,. . . , n), 

A i  = 0. 

Denote, as usual, 

v. = A T  , y - c j  ( j = l ,  ..., n). 

Thus, 

In matrix notation, 

Equivalently, 

Let us substitute Cj for i j ,  

and write D,'I2 = Diag(xii2,. . . ,x,'I2). Thus, 

Finally, this is equivalent to 

It turns out that the vector < = (<,, . . . , t,)T is the orthogonal projection of 
the vector D,'12D,'12e on the null space of the matrix AD;li2D,'". Thus, the inter- 
pretation of the direction in terms of x is as follows. Given a pair of primal 
and dual interior feasible solutions (x, y), the problem (P) is equivalent to the 
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following problem, where z is the optimization variable and x and y are fixed: 

Minimize (ATy - C ) ~ Z  

(P') subject to Az = 0, 

x - z 2 0 .  

The gradient of the objective function is the vector 

However, the algorithm takes a gradient step only after the following linear 
transformation has been applied: 

T(Z) = T,,,(z) = D , - ~ ' ~ D , - ~ ~ ~ Z .  

This transformation takes the current point x to the vector of geometric means 
of the values of complementary variables: 

X' = T(x) = Di12Di12e, 

that is, 

xj' = f i  ( j  = 1, ..., n). 

The variable z is transformed into 

5 = T(z). 

We thus have an equivalent problem 

Minimize (D,'I2 D;l2 e)T < 
subject to AD,-112D,'12< = 0, 

x' - 5 2 0. 

Here the gradient is the same vector x' of geometric means. The projection of 
the gradient on the subspace of the feasible directions is as explained above. 

$5. Differential Properties of the Solution Paths 

In this section we consider higher-order derivatives associated with the curves 
x = ~ ( p )  and y = y(p) of primal and dual interior feasible solutions discussed 
in the preceding sections. For convenience, we introduce notation that is 
usually used in the context of the linear complementarity problem. We denote 
by z = z(p) the (n + m)-vector obtained by concatenating x(p) and y(p), and 
we also use s = ~ ( p )  to denote the (n + m)-vector obtained by concatenating 
the slack vectors v(p) and u(p). Let M denote the matrix 
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and let q denote the (n + m)-vector obtained by concatenating the vectors c 
and -b. Let ii denote the derivative of z (as a function of p), and i = 
(i,, . . . ,in+,). We also extend the arithmetic operations to vectors (applying 
them component by component) so, for example, 

With the new notation the combined system of primal and dual constraints 
is the following: 

A pair of optimal solutions is characterized by the complementary slackness 
conditions 

A solution path through a point (zO, so) is determined by the equation 

which we wish to solve for z as p approaches 0. Let 

so we wish to solve F(z;p) = 0. 
We can evaluate the derivatives d k z / d p k  by differentiating F. Let wi = z ~ s ~  

and let w denote the vector consisting of the w:s. First, 

Whenever a is a vector, let 

denote as above a diagonal matrix whose diagonal entries are the components 
of a. It follows that the value of i at p can be obtained by solving the following 
system of linear equations (where i is the unknown, assuming z is known): 

Second, 
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Thus, the value of i is obtained by solving the following system of linear 
equations (assuming p, Z,  and i are known): 

Notice that the coefficient matrix 

is the same in the equations defining i and z. It can be shown that for every 
k, the value of the kth derivative z(') can be obtained by solving a linear system, 
where the coefficient matrix is yet the same matrix Q, and the right-hand-side 
vector is a polynomial in terms of l / z  and the derivatives i ,  z, . . . , z('-'). 

The fact that all the derivatives of z can be evaluated as solutions of linear 
systems, with the same coefficient matrix, is due to the particular structure of 
the function F, namely 

where a and f i  are any C" maps of Rn+" into itself. It follows that 

dF Da . Dfi -- - p-z + -2  + a(z) ,  
dp Dz Dz 

so i is obtained from the following system: 

The second derivative has the form 

and it can be proved by induction on k that the kth derivative has the form 

$6. Behavior Near Vertices 

It is convenient to consider in this section the linear programming problem in 
standard form, that is, 

Maximize c 'X 

subject to Ax = b, 

x 2 0, 
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where A E Rm X n  (m I n), x, c E Rn, and b E Rm. Let B denote the square matrix 
of order m, consisting of the first m columns of A. We assume B is nonsingular 
and B-'b > 0. In other words, B is a nondegenerate feasible basis. Let N 
denote the matrix of order m x (n - m) consisting of the last n - m columns 
of A. 

We denote the restriction of any n-vector v to the first m coordinates by v, 
and its restriction to the last n - m coordinates by v,. Thus, the objects c,, 
c,, x,, and x, are defined with respect to the vectors c and x. We denote by 
D = D(x) a diagonal matrix (of order n) whose diagonal entries are the 
components of the vector x. Also, D, and D, are diagonal matrices of orders 
m and n - m, respectively, corresponding to the vectors x, and x,. 

We assume that both the primal and dual problems have feasible regions 
of full dimension. The path is defined whenever a pair of interior feasible solu- 
tions for the primal and dual problems is given. Thus, let x0 E Rn be such that 
Ax0 = b and x0 > 0 and let yo E Rm be such that ATyO 2 C. The path starting 
at (xO, yo) is given by the equations 

xj(A;y - cj) = px;(A;y0 - cj) ( j  = 1,. . . , n), 

It is obvious that for any point on this path, if we "restart" the path according 
to this definition then nothing changes since the products of complementary 
variables remain in the same proportions. Let 

Note that 

Also, along the path 

It is convenient to denote the vector in the right-hand side of the latter by 
(w,/x,). We now have 

On the other hand, for every j, 

Thus, 
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Suppose B - l b  > 0 is the unique primal optimal solution and B-'cB is the 
unique dual optimal solution, so the paths of the xis and the y,'s converge to 
these points, respectively. Asymptotically, as p tends to zero, the "nonbasic" 
variables, that is, xi, j = m + 1, . . . , n, are 

( j  = m + 1, ..., n). 

The denominator in the right-hand is sometimes called the reduced cost with 
respect to the basis B, that is, 

t. = c .  - A T B - T  
J J J C ~ .  

so, 

Note that if yo is close to the dual optimal solution B - T ~ ,  then we have 

xj - px? ( j  = m + 1, ..., n). 

In other words, if we start close enough to an optimal solution, the path takes 
us approximately in a straight line to the optimal solution. This is different 
from the linear rescaling algorithm where all paths tend to a single direction 
of approach to the optimal solution [16]. 

$7. Extensions to the Linear Complementarity Problem 

The trajectories described in the preceding sections lend themselves naturally 
to the general linear complementarity problem (LCP). The problem is as 
follows. Given a matrix M E RN and a vector q E RN, find a z E RN such that 

Note that if z is a solution to (LCP) then for every i, i = 1, . . ., N, the 
complementarity condition holds: 

It is well known that the (LCP) provides a unifying framework for a large 
number of problems, including of course the linear programming problem. 
The generic algorithm for the (LCP) was developed by Lemke [14], generalizing 
the self-dual simplex method of Dantzig [4]. The book by Garcia and Zangwill 
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[8] describes the method and the general underlying homotopy principle. The 
interested reader may refer to this book for more bibliographical notes. The 
paths described here can also be interpreted as homotopies. We are interested 
in the behavior of solution paths in some special cases of the (LCP). There 
has been considerable research on classes of matrices M for which Lemke's 
algorithm solves the problem. It would be interesting to investigate corre- 
sponding classes with respect to the paths described here. 

The general idea is a simple generalization of the case of linear program- 
ming. Given an interior point zO, that is, 

z?, MizO + q, > 0 ( i  = 1,. . . , N),  

consider the following set of equations: 

(LCP(p)) zi(AIiz + q,) = pzo(MizO + q,) (i = 1,. . . , N),  

where p is a parameter. Starting at p = 1, we attempt to drive p to zero while 
satisfying LCP(p). If we succeed then we have solved the problem. However, 
in general we may generate a path that does not reach the level p = 0. It may, 
for example, diverge to infinity as p approaches a certain positive limit. More- 
over, unlike the case of linear programming, the value of p does not always vary 
monotonically along a single path described by LCP(p). Before addressing 
these issues, let us first consider the basic requirement of existence and unique- 
ness of a path through a given interior point. Consider the mapping 

F(z;p) = A(z)A(Mz + q) - pA(zO)A(MzO + q), 

where A(x) = Diag(x). By classical theory, if the Jacobian matrix of F(z;p) 
is nonsingular at (zO; 1) then a unique path exists through this point. Let 
w = Mz + q as usual in the literature on (LCP) and notice that this w is not 
related to the weights introduced in the context of the linear programming 
problem. Let D, = Diag(z,, . . . ,z,) and Dw = Diag(w,, . . . , w,). It is easy to 
check that the derivative of F(z) with respect to z is 

Obviously, J(z) is nonsingular if and only if the matrix 

j(z) = M + DllD, 

is nonsingular. In the linear programming problem the matrix j(z) is positive 
definite (since M is skew-symmetric) and hence nonsingular for every interior 
point z. Obviously, whenever M is positive semidefinite the matrix j(z) is 
positive definite at every interior z. 

The (LCP) is intimately related to the quadratic programming problem. 
Consider first the following optimization problem: 

Minimize 3zTMz - q T~ 

subject to z 2 0. 
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An approximate problem is 

Minimize 3zTMz - qTz - p C lnzi, 
i 

where p is fixed. The necessary conditions for optimality of the approximate 
problem are 

In other words, 

Obviously, we can also incorporate weights wi (as we did for the linear pro- 
gramming problem) so that the (LCP) path could start from any interior point 
and be interpreted as a weighted logarithmic barrier path. Specifically, if zO is 
an interior point then we can define 

and consider a path of optimal solutions (parametrized by p) for the problem 

Minimize f zTMz - qTz - p 1 q l n  zi. 
i 

The path is of course described by the following system: 

It is interesting to write the defining differential equations: 

from which it follows that i # 0 along the path. We now consider some special 
cases: 

(1) The matrix M is positive semidefinite. 

Here the objective function is convex and the function including the barrier 

F,,,(z) = +zTMz - qTz - p C coilnzi 
i 

is strictly convex. Thus, in this case there is at most one optimal solution 
to the approximate optimization problem, and it is characterized by the 
equations 

ZT(M~Z + qi) = pmi (i = 1,. . . , N). 

Let w = (w,, .. . ,w,)~.  If there is an optimal solution for one value of p 
then, because of nonsingularity of the Jacobian, the path extends. Moreover, 
uniqueness implies that p varies monotonically. Let z(p) denote the optimal 
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Obviously, z ( p )  maximizes the sum xi  oi In zi over the set 

S(p )  = { z :  ~ Z ~ M Z  - q T z  = V ( p ) ) .  

(2) The quadratic programming problem. 

Consider the following problem 

Minimize +xTQx + c T x  

(QP) subject to Ax 2 b, 

x  2 0 .  

The approximate function, using the weighted logarithmic barrier, is 

F(x)  = 3xTQx + c T x  - 1 oj In xj - oi ln(Aix - bi). 
j i 

It is easy to derive optimality conditions using dual variables yi: 

As in the usual linear complementarity theory, we obtain a representation of 
the approximate quadratic programming problem as an approximate com- 
plementarity problem with the matrix 

and the defining equations are 

xj(Qjx + cj - ATy)  = pwj, 

yi(Aix - bi)  = p o i .  

Obviously, if Q  is positive semidefinite then the matrix M is positive semi- 
definite and hence J ( z )  is positive definite at any interior z .  This implies that 
the paths converge to optimal solutions. 

(3) Equilibrium in bimatrix games. 

The formulation of the problem of finding an equilibrium point in a bimatrix 
game as a linear complementarity problem is well known (see [3]). Let 

C, = { x  E Rn: e T x  = l , x j  2 0 ) .  

Given two matrices A, B E Rm ", an equilibrium point is a pair of vectors 
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x* E Cn and y* E Cm such that for every x E Cn and y E C,, 

yTAx* 2 ( Y * ) ~ A x * ,  

( Y * ) ~ B x  2 ( Y * ) ~ B x * .  

The matrices A and B are assumed without loss of generality to have positive 
entries. The equilibrium conditions are equivalent to 

Ax* 2 [ ( ~ * ) ~ A x * ] e ,  

BTy* 2 [ (y*)TBx*]e .  

By changing variables, one can set the equilibrium problem as follows. If x 
and y solve the following linear complementarity problem: 

A x > e ,  B T y 2 0 ,  x 2 0 ,  y 2 0 ,  

x j ( ~ F y  - 1 )  = y i (Aix  - 1 )  = 0 ,  

then the normalized vectors 

constitute an equilibrium point. Thus, the linear complementarity problem 
arising from bimatrix games has the underlying matrix 

and q = - e .  
The fundamental equations are the following: 

where the w,.)s and wj's are positive and can be chosen to suit the starting point. 
Since the matrices A and B are positive, it is easy to start the paths. We can 
choose any x0 E Rn and yo E Rm with sufficiently large components that 

and then define 
w. , = x . (  ," B;y0 . - 11, 

wi = y;(A'x0 - 1 ) .  

Consider the mapping F: Rn+"+' + Rn+" defined by 

The partial derivative of F with respect to (x ,  y)  at a point (x ,  y , p )  where 
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F ( x ,  y, p) = 0 is the following: 

We have not yet studied this matrix to draw conclusions about convergence 
of paths to equilibrium points. 
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