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Abstract

We prove pathwise uniqueness for stochastic differential equations driven by non-

degenerate symmetric �-stable Lévy processes with values in Rd having a bounded
and �-Hölder continuous drift term. We assume � > 1 � �=2 and � 2 [1, 2). The
proof requires analytic regularity results for the associated integro-differential opera-
tors of Kolmogorov type. We also study differentiability of solutions with respect to
initial conditions and the homeomorphism property.

1. Introduction

In this paper we prove a pathwise uniqueness result for the following SDE

(1.1) X t D x C

Z t

0

b(Xs) ds C L t , x 2 Rd , t � 0,

where b W Rd
! R

d is bounded and �-Hölder continuous and L D (L t ) is a non-

degenerate d-dimensional symmetric �-stable Lévy process (L0 D 0, P-a.s.) and d � 1.

Currently, there is a great interest in understanding pathwise uniqueness for SDEs

when b is not Lipschitz continuous or, more generally, when b is singular enough so

that the corresponding deterministic equation (1.1) with L D 0 is not well-posed. A

remarkable result in this direction was proved by Veretennikov in [25] (see also [28] for

d D 1). He was able to prove uniqueness when bW Rd
! R

d is only Borel and bounded

and L is a standard d-dimensional Wiener process. This result has been generalized in

various directions in [9], [13], [27], [6], [7], [5], [8].

The situation changes when L is not a Wiener process but is a symmetric �-stable

process, � 2 (0, 2). Indeed, when d D 1 and � < 1, Tanaka, Tsuchiya and Watanabe

prove in [24, Theorem 3.2] that even a bounded and �-Hölder continuous b is not

enough to ensure pathwise uniqueness if � C � < 1 (they consider drifts like b(x) D

sign(x)(jx j� ^ 1) and initial condition x D 0). On the other hand, when d D 1 and

� � 1, they show pathwise uniqueness for any continuous and bounded b.
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In this paper we prove pathwise uniqueness in any dimension d � 1, assuming

that � � 1 and b is bounded and �-Hölder continuous with � > 1� �=2. Our proof is

different from the one in [24] and is inspired by [7]. The assumptions on the �-stable

Lévy process L which we consider are collected in Section 2 (see in particular Hypoth-

esis 1). Here we only mention two significant examples which satisfy our hypotheses.

The first is when L D (L t ) is a standard �-stable process (symmetric and rotationally

invariant), i.e., the characteristic function of the random variable L t is

(1.2) E[eihL t ,ui] D e�tc
�

juj� , u 2 Rd , t � 0,

where c
�

is a positive constant. The second example is L D (L1
t , : : : , Ld

t ), where

L1, : : : , Ld are independent one-dimensional symmetric stable processes of index �.

In this case

(1.3) E[eihL t ,ui] D e�tk
�

(ju1j
�

C���Cjud j
� ), u 2 Rd , t � 0,

where k
�

is a positive constant. Martingale problems for SDEs driven by (L1
t , : : : , Ld

t )

have been recently studied (see [3] and references therein).

We prove the following result.

Theorem 1.1. Let L be a symmetric �-stable process with � 2 [1, 2), satisfy-

ing Hypothesis 1 (see Section 2). Assume that b 2 C
�

b (Rd
I R

d ) for some � 2 (0, 1)

such that

� > 1 �
�

2
.

Then pathwise uniqueness holds for equation (1.1). Moreover, if X x
D (X x

t ) denotes

the solution starting at x 2 Rd , we have:

(i) for any t � 0, p � 1, there exists a constant C(t , p) > 0 (depending also on �, �

and L D (L t )) such that

(1.4) E

�

sup
0�s�t

jX x
s � X y

s j
p

�

� C(t , p)jx � yjp, x , y 2 Rd
I

(ii) for any t � 0, the mapping: x 7! X x
t is a homeomorphism from R

d onto R

d ,

P-a.s.;

(iii) for any t � 0, the mapping: x 7! X x
t is a C1-function on Rd , P-a.s.

All these assertions require that L is non-degenerate. Estimate (1.4) replaces the

standard Lipschitz-estimate which holds without expectation E when b is Lipschitz

continuous. Assertion (ii) is the so-called homeomorphism property of solutions (we

refer to [1], [19] and [14]; see also [20] for the case of Log-Lipschitz coefficients).
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Note that existence of strong solutions for (1.1) follows easily by a compactness argu-

ment (see the comment before Lemma 4.1). On the other hand, existence of weak solu-

tions when b is only measurable and bounded is proved in [15]. Since C
�

0

b (Rd , Rd ) �

C
�

b (Rd , Rd ) when 0 < � � �

0, our uniqueness result holds true for any � � 1 when

� 2 (1=2, 1). Theorem 1.1 implies the existence of a stochastic flow (see Remark 4.4).

The proof of the main result is given in Section 4. As in [7] our method is based

on an Itô–Tanaka trick which requires suitable analytic regularity results. Such results

are proved in Section 3. They provide global Schauder estimates for the following re-

solvent equation on Rd

(1.5) �u � Lu � b � Du D g,

where � > 0 and g 2 C
�

b (Rd ) are given and we assume � � 1 and �C� > 1. Here L is

the generator of the Lévy process L (see (2.5), [1] and [22]). If L satisfies (1.2) then L

coincides with the fractional Laplacian �(�4)�=2 on infinitely differentiable functions

f with compact support (see [22, Example 32.7]), i.e., for any x 2 Rd ,

(1.6) �(�4)�=2 f (x) D

Z

R

d

( f (x C y) � f (x) � 1{jyj�1} y � D f (x))
Qc
�

jyjdC�

dy.

It is simpler to prove Schauder estimates for (1.5) when � > 1. In such a case, assum-

ing in addition that L D �(�4)�=2, i.e., L is a standard �-stable process, these esti-

mates can be deduced from the theory of fractional powers of sectorial operators (see

[16]). We also mention [2, Section 7.3] where Schauder estimates are proved when

� > 1 and L has the form (1.6) but with variable coefficients, i.e., Qc
�

D Qc
�

(x , y). The

limit case � D 1 in (1.5) requires a special attention even for the fractional Laplacian

L D �(�4)1=2. Indeed in this case L is of the “same order” of b � D. To treat � D 1,

we use a localization procedure which is based on Theorem 3.3 where Schauder esti-

mates are proved in the case of b(x) D k, for any x 2 Rd , showing that the Schauder

constant is independent of k (the case � < 1 is discussed in Remark 3.5).

In order to prove Theorem 1.1, in Section 4 we apply Itô’s formula to u(X t ),

where u 2 C
�C�

b comes from Schauder estimates for (1.5) when g D b (in such case

(1.5) must be understood componentwise). This is needed to perform the Itô–Tanaka

trick and find a new equation for X t in which the singular term
R t

0
b(Xs) ds of (1.1) is

replaced by more regular terms. Then uniqueness and (1.4) follow by L p-estimates for

stochastic integrals. Such estimates require Lemma 4.1 and the condition �=2C� > 1.

In addition, properties (ii) and (iii) are obtained transforming (1.1) into a form suitable

for applying the results in [14].

We will use the letter c or C with subscripts for finite positive constants whose

precise value is unimportant; the constants may change from proposition to proposition.

2. Preliminaries and notation

General references for this section are [1], [21, Chapter 2], [22] and [26].
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Let hu, vi (or u � v) be the euclidean inner product between u and v 2 Rd , for any

d � 1; moreover juj D hu, ui1=2. If D � R

d we denote by 1D the indicator function of

D. The Borel � -algebra of Rd will be indicated by B(Rd ). All the measures considered

in the sequel will be positive and Borel. A measure  on R

d is called symmetric if

 (D) D  (�D), D 2 B(Rd ).

Let us fix � 2 (0, 2). In (1.1) we consider a d-dimensional symmetric �-stable

process L D (L t ), d � 1, defined on a fixed stochastic basis (�, F , (Ft )t�0, P) and

Ft -adapted; the stochastic basis satisfies the usual assumptions (see [1, p. 72]). Recall

that L is a Lévy process (i.e., it is continuous in probability, it has stationary incre-

ments, càdlàg trajectories, L t � Ls is independent of Fs , 0 � s � t , and L0 D 0) with

the additional property that the characteristic function of L t verifies

(2.1) E[eihL t ,ui] D e�t (u),  (u) D �

Z

R

d

(eihu,yi
� 1 � ihu, yi1{jyj�1}(y))�(dy),

u 2 R

d , t � 0, where � is a measure such that

(2.2) �(D) D

Z

S

�(d� )

Z

1

0

1D(r� )
dr

r1C�
, D 2 B(Rd ),

for some symmetric, non-zero finite measure � concentrated on the unitary sphere S D

{y 2 Rd
W jyj D 1} (see [22, Theorem 14.3]).

The measure � is called the Lévy (intensity) measure of L and (2.1) is the Lévy–

Khintchine formula. The measure � is a � -finite measure on R

d such that �({0}) D 0

and
R

R

d (1^jyj2)�(dy) <1, with 1^j � j D min(1, j � j). Formula (2.2) implies that (2.1)

can be rewritten as

(2.3)

 (u) D �

Z

R

d

(cos(hu, yi) � 1)�(dy)

D �

Z

S

�(d� )

Z

1

0

cos(hu, r�i) � 1

r1C�
dr D c

�

Z

S

jhu, �ij��(d� ), u 2 R

d

(see also [22, Theorem 14.13]). The measure � is called the spectral measure of the

stable process L . In this paper we make the following non-degeneracy assumption

(cf. [23] and [22, Definition 24.16]).

HYPOTHESIS 1. The support of the spectral measure � is not contained in a

proper linear subspace of Rd .

It is not difficult to show that Hypothesis 1 is equivalent to the following assertion:

there exists a positive constant C
�

such that, for any u 2 R

d ,

(2.4)  (u) � C
�

juj� .
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Condition (2.4) is also assumed in [11, Proposition 2.1]. To see that (2.4) implies Hy-

pothesis 1, we argue by contradiction: if Supp(�) � (M \ S) where M is the hyper-

plane containing all vectors orthogonal to some u0 ¤ 0, then  (u0) D 0. To show

the converse, note that Hypothesis 1 implies that for any v 2 R

d with jvj D 1, we

have  (v) > 0 (indeed, otherwise, we would have �({� 2 S W jhv, �ij > 0}) D 0 and

so Supp(�) � {� 2 S W hv, �i D 0} which contradicts the hypothesis). By using a com-

pactness argument, we deduce that (2.4) holds for any u 2 R

d with juj D 1. Then,

writing, for any u 2 Rd , u ¤ 0,
R

S

jhu, �ij��(d� ) D juj�
R

S

jhu=juj, �ij��(d� ), we obtain

easily (2.4).

The infinitesimal generator L of the process L is given by

(2.5) L f (x) D

Z

R

d

( f (x C y) � f (x) � 1{jyj�1}hy, D f (x)i)�(dy), f 2 C1

c (Rd ),

where C1

c (Rd ) is the space of all infinitely differentiable functions with compact sup-

port (see [1, Section 6.7] and [22, Section 31]). Let us consider the two examples of

�-stable processes mentioned in Introduction which satisfy Hypothesis 1. The first is

when L is a standard �-stable process, i.e.,  (u) D c
�

juj� . In this case � has density

C
�

=jx jdC� with respect to the Lebesgue measure in Rd . Moreover the spectral measure

� is the normalized surface measure on S (i.e., � gives a uniform distribution on S;

see [21, Section 2.5] and [22, Theorem 14.14]).

The second example is L D (L1
t , : : : , Ld

t ), see (1.3). In this case  (u) D k
�

(ju1j
�

C

� � � C jud j
�) and the Lévy measure � is more singular since it is concentrated on the

union of the coordinates axes, i.e., � has density

c
�

�

1{x2D0,:::,xdD0}

1

jx1j
1C�

C � � � C 1{x1D0,:::,xd�1D0}

1

jxd j
1C�

�

with respect to the Lebesgue measure. The spectral measure � is a linear combination

of Dirac measures, i.e. � D

Pd
kD1(Æek

C Æ

�ek
), where (ek) is the canonical basis in R

d .

The generator is

L f (x) D

d
X

kD1

Z

R

[ f (x C sek) � f (x) � 1{jsj�1}s �xk
f (x)]

c
�

jsj1C�

ds, f 2 C1

c (Rd ).

Let us fix some notation on function spaces. We define Cb(Rd
I R

k), for integers k,d � 1,

as the set of all functions f W Rd
! R

k which are bounded and continuous. It is a Banach

space endowed with the supremum norm k f k0 D supx2Rd j f (x)j, f 2 Cb(Rd
I R

k). More-

over, C
�

b (Rd
I R

k), � 2 (0,1), is the subspace of all �-Hölder continuous functions f , i.e.,

f verifies

(2.6) [ f ]
�

WD sup
x ,y2Rd x¤y

j f (x) � f (y)j

jx � yj�
<1.
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C
�

b (Rd
I R

k) is a Banach space with the norm k � k

�

D k � k0 C [ � ]
�

. If k D 1, we

set C
�

b (Rd
I R

k) D C
�

b (Rd ). Let C0
b (Rd , Rk) D Cb(Rd , Rk) and [ � ]0 D k � k0. For any

n � 1, � 2 [0, 1), we say that f 2 CnC�

b (Rd ) if f 2 Cn(Rd ) \ C�

b (Rd ) and, for all

j D 1, : : : , n, the (Fréchet) derivatives D j f 2 C�

b (Rd
I (Rd )
( j)). The space CnC�

b (Rd )

is a Banach space endowed with the norm k f knC�

D k f k0 C
Pn

kD1kDk f k0 C [Dn f ]
�

,

f 2 CnC�

b (Rd ). Finally, we will also consider the Banach space C0(Rd ) � Cb(Rd ) of

all continuous functions vanishing at infinity endowed with the norm k � k0.

REMARK 2.1. Hypothesis 1 (or condition (2.4)) is equivalent to the following

Picard’s type condition (see [17]): there exists � 2 (0, 2) and C
�

> 0, such that the

following estimate holds, for any � > 0, u 2 R

d with juj D 1,

Z

{jhu,yij��}

jhu, yij2�(dy) � C
�

�

2�� .

The equivalence follows from the computation

Z

{jhu,yij��}

jhu, yij2�(dy) D

Z

S

jhu, �ij2�(d� )

Z

1

0

1{jhu,�ij��=r}r
1�� dr

D �

2��

Z

S

jhu, �ij2�(d� )

Z

1

jhu,�ij

ds

s3��
D

�

2��

2 � �

Z

S

jhu, �ij��(d� ).

The Picard’s condition is usually imposed on the Lévy measure � of a non-necessarily

stable Lévy process L in order to ensure that the law of L t , for any t > 0, has a

C1-density with respect to the Lebesgue measure.

3. Some analytic regularity results

In this section we prove existence of regular solutions to (1.5). This will be achieved

through Schauder estimates and will be important in Section 4 to prove uniqueness

for (1.1).

We will use the following three properties of the �-stable process L (in the sequel

�t denotes the law of L t , t � 0).

(a) �t (A) D �1(t�1=� A), for any A 2 B(Rd ), t > 0 (this scaling property follows from

(2.1) and (2.3));

(b) �t has a density pt with respect to the Lebesgue measure, t > 0; moreover pt 2

C1(Rd ) and its spatial derivative Dpt 2 L1(Rd , Rd ) (this is a consequence of Hypoth-

esis 1);

(c) for any � > �, we have by (2.2)

(3.1)

Z

{jx j�1}

jx j��(dx) <1.
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The fact that (b) holds can be deduced by an argument of [23, Section 3]. Actually,

Hypothesis 1 implies the following stronger result.

Lemma 3.1. For any � 2 (0, 2), t > 0, the density pt 2 C1(Rd ) and all deriva-

tives Dk pt are integrable on Rd , k � 1.

Proof. We only show that pt 2 C1(Rd ) and Dpt 2 L1(Rd , Rd ), following [23];

arguing in a similar way one can obtain the full assertion. By (2.4), we know that

e�t (u)
� e�C

�

t juj� , u 2 R

d , and so by the inversion formula of Fourier transform (see

[22, Proposition 2.5]) �t has a density pt 2 L1(Rd ) \ C0(Rd ),

(3.2) pt (x) D
1

(2�)d

Z

R

d

e�ihx ,zie�t (z) dz, x 2 R

d , t > 0.

Note that (a) implies that pt (x) D t�d=� p1(t�1=�x). Thanks to (2.4) one can differentiate

infinitely many times under the integral sign and verifies that pt 2 C1(Rd ). Let us fix

j D 1,:::,d and check that the partial derivative �x j
pt 2 L1(Rd ). By the scaling property

(a) it is enough to consider t D 1. By writing  D  1 C  2,

 1(u) D �

Z

{jyj�1}

(cos(hu, yi) � 1)�(dy),  2 D  �  1,

�x j
p1(x) D

1

(2�)d

Z

R

d

e�ihx ,zi((�i z j )e
� 1(z))e� 2(z)dz, x 2 R

d .

We find easily that  1 2 C1(Rd ) and so, using also (2.4) we deduce that �i z j e
� 1(z)

is in the Schwartz space S(Rd ). In particular, there exists f1 2 L1(Rd ) such that the

Fourier transform Of1(z) D (�i z j )e
� 1(z). On the other hand (see [22, Section 8]), there

exists an infinitely divisible probability measure  on Rd such that the Fourier trans-

form O (z) D e� 2(z). By [22, Proposition 2.5] we infer that 1f1 �  D

Of1 � O . By the

inversion formula we deduce that �x j
p1(x) D ( f1 �  )(x) and this proves that �x j

p1 2

L1(Rd ).

Remark that (c) implies that the expression of L f in (2.5) is meaningful for any

f 2 C
1C

b (Rd ) if 1 C  > �. Indeed L f (x) can be decomposed into the sum of two

integrals, over {jyj > 1} and over {jyj � 1} respectively. The first integral is finite since

f is bounded. To treat the second one, we can use the estimate

(3.3)

j f (y C x) � f (x) � y � D f (x)j

�

Z 1

0

jD f (x C r y) � D f (x)jjyj dr � [D f ]


jyj1C , jyj � 1.

Note that L f 2 Cb(Rd ) if f 2 C
1C

b (Rd ) and 1 C  > �.
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The next result is a maximum principle. A related result is in [10, Section 4.5].

This will be used to prove uniqueness of solutions to (1.5) as well as to study existence.

Proposition 3.2. Let � 2 (0, 2). If u 2 C
1C

b (Rd ), 1 C  > �, is a solution to

�u � Lu � b � Du D g, with � > 0 and g 2 Cb(Rd ), then

(3.4) kuk0 �
1

�

kgk0, � > 0.

Proof. Since �u solves the same equation of u with g replaced by �g, it is

enough to prove that u(x) � kgk0=�, x 2 R

d . Moreover, possibly replacing u by

u � infx2Rd u(x), we may assume that u � 0.

Now we show that there exists c1 > 0 such that, for any � > 0 we can find u
�

2

C
1C

b (Rd ) with ku
�

k0 D maxx2Rd
ju

�

(x)j and also

ku � u
�

k1C

< �c1.

To this purpose let x
�

2 R

d be such that u(x
�

) > kuk0 � � and take a test function

� 2 C1

c (Rd ) such that �(x
�

) D 1, 0 � � � 1, and �(x) D 0 if jx � x
�

j � 1. One

checks that u
�

(x) D u(x)C 2��(x) verifies the assumptions. Let us define the operator

L1 D LC b � D and write

�u
�

(x) � L1u
�

(x) D g(x)C �(u
�

(x) � u(x)) � L1(u
�

� u)(x).

Let y
�

be one point in which u
�

attains its global maximum. Since clearly L1u
�

(y
�

) � 0,

we have (using also (3.3))

�ku
�

k0 D �u
�

(y
�

) � kgk0 C Cku � u
�

k1C

� kgk0 C Cc1�.

Letting � ! 0C, we get (3.4).

Next we prove Schauder estimates for (1.5) when b is constant. The case of b 2

C
�

b (Rd , Rd ) will be treated in Theorem 3.4. We stress that the constant c in (3.6) is

independent of b D k.

The condition �C� > 1 which we impose is needed to have a regular C1-solution

u. On the other hand, the next result holds more generally without the hypothesis �C

� < 2. This is assumed just to simplify the proof and it is not restrictive in the study

of pathwise uniqueness for (1.1). Indeed since C
�

0

b (Rd , Rd ) � C
�

b (Rd , Rd ) when 0 <

� � �

0, it is enough to study uniqueness when � satisfies � < 2 � �.

Theorem 3.3. Assume Hypothesis 1. Let � 2 (0, 2) and � 2 (0, 1) be such that

1 < �C� < 2. Then, for any � > 0, k 2 Rd , g 2 C
�

b (Rd ), there exists a unique solution



SINGULAR SDES DRIVEN BY STABLE PROCESSES 429

u D u
�

2 C
�C�

b (Rd ) to the equation

(3.5) �u � Lu � k � Du D g

on Rd (L is defined in (2.5)). In addition there exists a constant c independent of g,

u, k and � > 0 such that

(3.6) �kuk0 C �

(�C��1)=�
kDuk0 C [Du]

�C��1 � ckgk
�

.

Proof. Equation (3.5) is meaningful for u 2 C
�C�

b (Rd ) with � C � > 1 thanks to

(3.3). Moreover, uniqueness follows from Proposition 3.2.

To prove the result, we use the semigroup approach as in [4]. To this purpose,

we introduce the �-stable Markov semigroup (Pt ) acting on Cb(Rd ) and associated to

LC k � Du, i.e.,

Pt f (x) D

Z

R

d

f (z C tk)pt (z � x) dz, t > 0, f 2 Cb(Rd ), x 2 Rd ,

where pt is defined in (3.2), and P0 D I . Then we consider the bounded function

u D u
�

,

(3.7) u(x) D

Z

1

0

e��t Pt g(x) dt , x 2 Rd .

We are going to show that u belongs to C
�C�

b (Rd ), verifies (3.6) and solves (3.5).

PART I. We prove that u 2 C
�C�

b (Rd ) and that (3.6) holds. First note that �kuk0 �

kgk0 since (Pt ) is a contraction semigroup. Then, using the scaling property pt (x) D

t�d=� p1(t�1=�x), we arrive at

(3.8) jD Pt f (x)j �
t�1=�

td=�

Z

R

d

j f (z C tk)jjDp1(t�1=�z � t�1=�x)j dz �
c0k f k0

t1=�
,

t > 0, f 2 Cb(Rd ), where c0 D kDp1kL1(Rd ), and so we find the estimate

(3.9) kD Pt f k0 �
c0

t1=�
k f k0, f 2 Cb(Rd ), t > 0.

By interpolation theory we know that (Cb(Rd ), C1
b (Rd ))

�,1 D C
�

b (Rd ), � 2 (0, 1), see for

instance [16, Chapter 1]; interpolating the previous estimate with the estimate kD Pt f k0 �

kD f k0, t � 0, f 2 C1
b (Rd ), we obtain

(3.10) kD Pt f k0 �
c1

t (1��)=�
k f k

�

, t > 0, f 2 C
�

b (Rd ),
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with c1 D c1(c0, �). In a similar way, we also find

(3.11) kD2 Pt f k0 �
c2

t (2��)=�
k f k

�

, t > 0, f 2 C
�

b (Rd ).

Using (3.10) and the fact that (1 � �)=� < 1, we can differentiate under the integral

sign in (3.7) and prove that there exists Du(x) D Du
�

(x), x 2 Rd . Moreover Du
�

is

bounded on Rd and we have, for any � > 0 with Qc independent of �, u, k and g,

�

(�C��1)=�
kDuk0 � Qckgk

�

(we have used that
R

1

0
e��t t�� dt D c=�1�� , for � < 1 and � > 0).

It remains to prove that Du 2 C�

b (Rd , Rd ), where � D � � 1 C � 2 (0, 1). We

proceed as in the proof of [2, Proposition 4.2] and [18, Theorem 4.2].

Using (3.10), (3.11) and the fact that 2�� > �, we find, for any x ,x 0 2 Rd , x ¤ x 0,

jDu(x) � Du(x 0)j � Ckgk
�

 

Z

jx�x 0

j

�

0

1

t (1��)=�
dt C

Z

1

jx�x 0

j

�

jx � x 0j

t (2��)=�
dt

!

� c3kgk
�

jx � x 0j� ,

and so [Du]
��1C�

� c3kgk
�

, where c3 is independent of g, u, k and �.

PART II. We prove that u solves (3.5), for any � > 0. We use the fact that the

semigroup (Pt ) is strongly continuous on the Banach space C0(Rd ); see [1, Section 6.7]

and [22, Section 31].

Let AW D(A) � C0(Rd ) ! C0(Rd ) be its generator. By [22, Theorem 31.5]) C2
0 (Rd ) �

D(A) and moreover A f D L f C k � D f if f 2 C2
0 (Rd ) (we say that f belongs to C2

0 (Rd )

if f 2 C2
b (Rd ) \ C0(Rd ) and all its first and second partial derivatives belong to C0(Rd )).

We first show the assertion assuming in addition that g 2 C2
0 (Rd ). It is easy to

check that u belongs to C2
0 (Rd ) as well. To this purpose, one can use the estimates

kDk Pt gk0 � kDk gk0, t � 0, k D 1, 2, and the dominated convergence theorem. On the

other hand, by the Hille–Yosida theorem we know that u 2 D(A) and �u � Au D g.

Thus we have found that u solves (3.5).

Let us prove the assertion when g 2 C2
b (Rd ). Note that also u 2 C2

b (Rd ). We con-

sider a function  2 C1

c (Rd ) such that  (0) D 1 and introduce gn(x) D  (x=n)g(x),

x 2 Rd , n � 1. It is clear that gn , un 2 C2
0 (Rd ) (un is given in (3.7) when g is replaced

by gn). We know that

(3.12) �un(x) � Lun(x) � k � Dun(x) D gn(x), x 2 Rd .

It is easy to see that there exists C > 0 such that kgnk2 � C , n � 1, and moreover gn

and Dgn converge pointwise to g and Dg respectively. It follows that also kunk2 is

uniformly bounded and moreover un and Dun converge pointwise to u and Du re-
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spectively. Using also (3.3), we can apply the dominated convergence theorem and

deduce that

lim
n!1

Lun(x) D Lu(x), x 2 Rd .

Passing to the limit in (3.12), we obtain that u is a solution to (3.5).

Let now g 2C
�

b (Rd ). Take any � 2C1

c (Rd ) such that 0��� 1 and
R

R

d �(x) dx D 1.

Define �n(x) D nd
�(xn) and gn D g � �n . Note that (gn) � C1

b (Rd ) D
T

k�1 Ck
b (Rd )

and kgnk� � kgk
�

, n � 1. Moreover, possibly passing to a subsequence still denoted

by (gn), we may assume that

(3.13) gn ! g in C�

0

(K ).

for any compact set K � R

d and 0 < �

0

< � (see p. 37 in [12]). Let un be given in

(3.7) when g is replaced by gn . By the first part of the proof, we know that

kunk�C� � Ckgnk� � Ckgk
�

,

where C is independent of n. It follows that, possibly passing to a subsequence still

denoted with (un), we have that un ! u in C�C�

0

(K ), for any compact set K � R

d

and �

0

> 0 such that 1 < � C �

0

< � C �. Arguing as before, we can pass to the

limit in �un(x)�Lun(x)� k � Dun(x) D gn(x) and obtain that u solves (3.5). The proof

is complete.

Now we extend Theorem 3.3 to the case in which b is Hölder continuous. We

can only do this when � � 1 (see also Remark 3.5). To prove the result when � D 1

we adapt the localization procedure which is well known for second order uniformly

elliptic operators with Hölder continuous coefficients (see [12]). This technique works

in our situation since in estimate (3.6) the constant is independent of k 2 Rd .

We also need the following interpolatory inequalities (see [12, p. 40, (3.3.7)]); for any

t 2 [0, 1), 0 � s � r < 1, there exists N D N (d, k, r, t) such that if f 2 CrCt
b (Rd ,Rk), then

(3.14) [ f ]sCt � N [ f ]
s=r
rCt [ f ]

1�s=r
t ,

where [ f ]sCt is defined as in (2.6) if 0 < s C t < 1, [ f ]0 D k f k0, [ f ]1 D kD f k0, and

[ f ]sCt D [D f ]sCt�1 if 1 < s C t < 2. By (3.14) we deduce, for any � > 0,

(3.15) [ f ]sCt �
QN�r�s[ f ]rCt C

QN��s[ f ]t , f 2 CrCt
b (Rd , Rk).

Theorem 3.4. Assume Hypothesis 1. Let � � 1 and � 2 (0, 1) be such that 1 <

� C � < 2. Then, for any � > 0, g 2 C
�

b (Rd ), there exists a unique solution u D u
�

2
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C
�C�

b (Rd ) to the equation

(3.16) �u � Lu � b � Du D g

on R

d . Moreover, for any ! > 0, there exists c D c(!), independent of g and u,

such that

(3.17) �kuk0 C [Du]
�C��1 � ckgk

�

, � � !.

Finally, we have lim
�!1

kDu
�

k0 D 0.

Proof. Uniqueness and estimate �kuk0 � kgk0, � > 0, follow from the maximum

principle (see Proposition 3.2). Moreover, the last assertion follows from (3.17) using

(3.14). Indeed, with t D 0, s D 1, r D � C �, we obtain, for � � !,

[Du
�

]0 D [u
�

]1 � N [Du
�

]
1=(�C�)

�C��1 [u
�

]
1�1=(�C�)

0 � N Qc��(�C��1)=(�C�)
kgk

�

,

where Qc D Qc(!). Letting �!1, we get the assertion.

Let us prove existence and estimate [Du]
�C��1 � ckgk

�

, for � � !, with ! > 0

fixed. We treat � > 1 and � D 1 separately.

PART I (the case � > 1). In the sequel we will use the estimate

(3.18) kl f k
�

� klk0k f k
�

C k f k0 [l ]
�

, l, f 2 C�

b (Rd ), � 2 (0, 1).

Writing �u(x)�Lu(x) D g(x)Cb(x) � Du(x), and using (3.6) and (3.18), we obtain the

following a priori estimate (assuming that u 2 C
�C�

b (Rd ) is a solution to (3.16))

(3.19)
[Du]

�C��1 � Ckgk
�

C Ckb � Duk
�

� Ckgk
�

C Ckbk
�

kDuk0 C Ckbk0 [Du]
�

,

where C is independent of � > 0. Combining the interpolatory estimates (see (3.15)

with t D 0, s D 1C �, r D � C �)

[Du]
�

�

QN�

��1[Du]
�C��1 C

QN�

�(1C�)
kuk0, � > 0,

and kDuk0 �
QN�

�C��1[Du]
�C��1 C

QN�

�1
kuk0 (recall that � C � > 1 C �) with the

maximum principle, we get for � small enough the a priori estimate

(3.20)

[Du]
�C��1 � c1(kgk

�

C C(�)kuk0)

� c1

�

kgk
�

C

C(�)

�

kgk0

�

� c1

�

kgk
�

C

C(�)

!

kgk0

�

� C1kgk
�

,
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for any � � !. Now to prove the existence of a C
�C�

b -solution, we use the continuity

method (see, for instance, [12, Section 4.3]). Let us introduce

(3.21) �u(x) � Lu(x) � Æb(x) � Du(x) D g(x),

x 2 Rd , where Æ 2 [0, 1] is a parameter. Let us define 0 D {Æ 2 [0, 1]: there is a unique

solution u D u
Æ

2 C
�C�

b (Rd ), for any g 2 C
�

b (Rd )}.

Clearly 0 is not empty since 0 2 0. Fix Æ0 2 0 and rewrite (3.21) as

�u(x) � Lu(x) � Æ0b(x) � Du(x) D g(x) C (Æ � Æ0)b(x) � Du(x).

Introduce the operator S W C
�C�

b (Rd ) ! C
�C�

b (Rd ). For any v 2 C
�C�

b (Rd ), u D Sv is

the unique C
�C�

b -solution to �u(x)�Lu(x)�Æ0b(x) �Du(x) D g(x)C(Æ�Æ0)b(x) �Dv(x).

By using (3.20), we get kSv1 � Sv2k�C� � 2jÆ � Æ0j � Qc1kbk
�

kv1 � v2k�C� . By

choosing jÆ � Æ0j small enough, S becomes a contraction and it has a unique fixed

point which is the solution to (3.21). A compactness argument shows that 0 D [0, 1].

The assertion is proved.

PART II (the case � D 1). As before, we establish the existence of a C
1C�
b (Rd )-

solution, by using the continuity method. This requires the a priori estimate (3.20) for

� D 1.

Let u 2 C
1C�
b (Rd ) be a solution. Let r > 0. Consider a function � 2 C1c (Rd ) such

that � (x) D 1 if jx j � r and � (x) D 0 if jx j > 2r .

Let now x0 2 R
d and define �(x) D � (x� x0), x 2 Rd , and v D u�. One can easily

check that

(3.22)

Lv(x) D �(x)Lu(x) C u(x)L�(x)

C

Z

R

d

(�(x C y) � �(x))(u(x C y) � u(x))�(dy), x 2 Rd .

We have

�v(x) � Lv(x) � b(x0) � Dv(x) D f1(x) C f2(x) C f3(x) C f4(x), x 2 Rd ,

where

f1(x) D �(x)g(x), f2(x) D (b(x) � b(x0)) � Dv(x),

f3(x) D �u(x)[L�(x) C b(x) � D�(x)],

f4(x) D �

Z

R

d

(�(x C y) � �(x))(u(x C y) � u(x))�(dy), x 2 Rd .

By Theorem 3.3 we know that

(3.23) [Dv]
�

� C1(k f1k� C k f2k� C k f3k� C k f4k�),
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where the constant C1 is independent of x0 and �. Let us consider the crucial term f2.

By (3.18) we find

k f2k� �

�

sup
x2B(x0,2r )

jb(x) � b(x0)j

�

[Dv]
�

C kDvk0kbk
�

.

Let us fix r small enough such that C1 supx2B(x0,2r )jb(x) � b(x0)j < 1=2. We get

(3.24) [Dv]
�

� 2C1(k f1k� C kDvk0kbk
�

C k f3k� C k f4k�).

Note that k f1k� � C(r )kgk
�

. By the interpolatory estimates (3.15) and the maximum

principle, arguing as in (3.20), we arrive at

[Dv]
�

� C2(kgk
�

C k f3k� C k f4k�),

for any � � !. Let us estimate f4. To this purpose we introduce the following non-

local linear operator T

T f (x) D

Z

R

d

(�(x C y) � �(x))( f (x C y) � f (x))�(dy), f 2 C1
b (Rd ), x 2 Rd .

One can easily check that T is continuous from C1
b (Rd ) into Cb(Rd ) and from C

1C�
b (Rd )

into C1
b (Rd ). To this purpose we only remark that, for any x 2 Rd ,

jDT f (x)j � 5k�k2k f k1

�

Z

{jyj�1}

jyj2�(dy)C

Z

{jyj>1}

�(dy)

�

C 5k�k1k f k1C�

�

Z

{jyj�1}

jyj1C��(dy)C

Z

{jyj>1}

�(dy)

�

, f 2 C
1C�

b (Rd ).

By interpolation theory we know that

(C1
b (Rd ), C

1C�
b (Rd ))

�,1 D C
1C�2

b (Rd ),

see [16, Chapter 1], and so we get that T is continuous from C
1C�2

b (Rd ) into C
�

b (Rd )

(see [16, Theorem 1.1.6]). Since f4 D �T u, we obtain the estimate

k f4k� � C3kuk1C�2 .

We have k f4k� C k f3k� � c3(r )kuk1C�2 and so

[Dv]
�

� C4(kgk
�

C kuk1C�2 ),

where C4 is independent of � � !. It follows that [Du]C� (B(x0,r )) � C4(kgk
�

Ckuk1C�2 ),

where B(x0, r ) is the ball of center x0 and radius r > 0. Since C4 is independent of

x0, we obtain

[Du]
�

� C4(kgk
�

C kuk1C�2 ),
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for any � � !. Using again (3.15) and the maximum principle, we get the a priori

estimate (3.20) for � D 1. The proof is complete.

REMARK 3.5. In contrast with Theorem 3.3, in Theorem 3.4 we can not show

existence of C
�C�

b -solutions to (3.16) when � < 1. The difficulty is evident from the

a priori estimate (3.19). Indeed, starting from

[Du]
�C��1 � Ckgk

�

C Ckbk
�

kDuk0 C Ckbk0 [Du]
�

,

we cannot continue, since � < 1 gives Du 2 C�

b with � D � C � � 1 < �. Roughly

speaking, when � < 1, the perturbation term b � Du is of order larger than L and so

we are not able to prove the desired a priori estimates.

4. The main result

We briefly recall basic facts about Poisson random measures which we use in the

sequel (see also [1], [14], [19], [26]). The Poisson random measure N associated with

the �-stable process L D (L t ) in (1.1) is defined by

N ((0, t] �U ) D
X

0<s�t

1U (4Ls) D #{0 < s � t W 4Ls 2 U},

for any Borel set U in Rd
n {0}, i.e., U 2 B(Rd

n {0}), t > 0. Here 4Ls D Ls � Ls�

denotes the jump size of L at time s > 0. The compensated Poisson random measure
QN is defined by QN ((0, t] �U ) D N ((0, t] �U ) � t�(U ), where � is given in (2.2) and

0 � NU . Recall the Lévy–Itô decomposition of the process L (see [1, Theorem 2.4.16]

or [14, Theorem 2.7]). This says that

(4.1) L t D
Obt C

Z t

0

Z

{jx j�1}

x QN (ds, dx) C

Z t

0

Z

{jx j>1}

x N (ds, dx), t � 0,

where Ob D E
�

L1 �

R 1

0

R

{jx j>1}
x N (ds, dx)

�

. Note that in our case, since � is symmetric,

we have Ob D 0.

The stochastic integral
R t

0

R

{jx j�1}
x QN (ds, dx) is the compensated sum of small jumps

and is an L2-martingale. The process
R t

0

R

{jx j>1}
x N (ds, dx) D

R

(0,t]

R

{jx j>1}
x N (ds, dx) D

P

0<s�t , j4Ls j>1 4Ls is a compound Poisson process.

Let T > 0. The predictable � -field P on � � [0, T ] is generated by all left-

continuous adapted processes (defined on the same stochastic basis fixed in Section 2).

Let U 2 B(Rd
n {0}). In the sequel, we will always consider a P � B(U )-measurable

mapping F W [0, T ] �U ��! R

d .

If 0 � NU , then
R T

0

R

U
F(s, x)N (ds, dx) D

P

0<s�T F(s, 4Ls)1U (4Ls) is a random

finite sum.
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If E
R T

0
ds

R

U
jF(s, x)j2�(dx) <1, then one can define the stochastic integral

Z t D

Z t

0

Z

U

F(s, x) QN (ds, dx), t 2 [0, T ]

(here we do not assume 0 � NU ). The process Z D (Z t ) is an L2-martingale with a càdlàg

modification. Moreover, E jZ t j
2
D E

R t

0
ds

R

U
jF(s, x)j2�(dx) (see [14, Lemma 2.4]). We

will use the following L p-estimates (see [14, Theorem 2.11] or the proof of Propos-

ition 6.6.2 in [1]); for any p � 2, there exists c(p) > 0 such that

(4.2)

E

�

sup
0<s�t

jZs j
p

�

� c(p)E

"

�

Z t

0

ds

Z

U

jF(s, x)j2�(dx)

�p=2
#

C c(p)E

�

Z t

0

ds

Z

U

jF(s, x)jp�(dx)

�

, t 2 [0, T ]

(the inequality is obvious if the right-hand side is infinite).

Let us recall the concept of (strong) solution which we consider. A solution to the

SDE (1.1) is a càdlàg Ft -adapted process X x
D (X x

t ) (defined on (�, F , (Ft )t�0, P)

fixed in Section 2) which solves (1.1) P-a.s., for t � 0.

It is easy to show the existence of a solution to (1.1) using the fact that b is

bounded and continuous. We may argue at ! fixed. Let us first consider t 2 [0, 1].

By introducing v(t) D X t � L t , we get the equation

v(t) D x C

Z t

0

b(v(s) C Ls) ds.

Approximating b with smooth drifts bn we find solutions vn 2 C([0, 1]I Rd ). By the

Ascoli–Arzela theorem, we obtain a solution to (1.1) on [0, 1]. The same argument

works also on the time interval [1, 2] with a random initial condition. Iterating this

procedure we can construct a solution for all t � 0.

The proof of Theorem 1.1 requires some lemmas. We begin with a determinis-

tic result.

Lemma 4.1. Let  2 [0, 1] and f 2 C
1C

b (Rd ). Then for any u, v 2 Rd , x 2 Rd ,

with jx j � 1, we have

j f (u C x) � f (u) � f (v C x) C f (v)j � c


k f k1C ju � vjjx j
 , with c



D 31� .

Proof. For any x 2 Rd , jx j � 1, define the linear operator Tx W C1
b (Rd ) ! C1

b (Rd ),

Tx f (u) D f (u C x) � f (u), f 2 C1
b (Rd ), u 2 R

d .
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Since kTx f k0 � kD f k0jx j and kD(Tx f )k0 � 2kD f k0, it follows that Tx is continuous

and kTx f k1 � (2 C jx j)k f k1, f 2 C1
b (Rd ). Similarly, Tx is continuous from C2

b (Rd )

into C1
b (Rd ) and

kTx f k1 � jx jk f k2, f 2 C2
b (Rd ).

By interpolation theory (C1
b (Rd ), C2

b (Rd ))
 ,1 D C

1C

b (Rd ), see for instance [16, Chap-

ter 1]; we deduce that, for any  2 [0, 1], Tx is continuous from C
1C

b (Rd ) into C1
b (Rd )

(cf. [16, Theorem 1.1.6]) with operator norm less than or equal to (2 C jx j)1�
jx j .

Since jx j � 1, we obtain that kTx f k1 � c


jx j k f k1C , f 2 C
1C

b (Rd ). Now the

assertion follows noting that, for any u, v 2 Rd ,

j f (u C x) � f (u) � f (v C x) C f (v)j D jTx f (u) � Tx f (v)j � kDTx f k0 ju � vj.

The proof is complete.

In the sequel we will consider the following resolvent equation on Rd

(4.3) �u � Lu � Du � b D b,

where b W Rd
! R

d is given in (1.1), L in (2.5) and � > 0 (the equation must be un-

derstood componentwise, i.e., �ui � Lui � b � Dui D bi , i D 1, : : : , d). The next two

results hold for SDEs of type (1.1) when b is only continuous and bounded.

Lemma 4.2. Let � 2 (0, 2) and b 2 Cb(Rd , Rd ) in (1.1). Assume that, for some

� > 0, there exists a solution u 2 C
1C

b (Rd , Rd ) to (4.3) with  2 [0, 1], and moreover

1 C  > �.

Let X D (X t ) be a solution of (1.1) starting at x 2 Rd . We have, P-a.s., t � 0,

(4.4)

u(X t ) � u(x)

D x � X t C L t C �

Z t

0

u(Xs) ds C

Z t

0

Z

R

d
n{0}

[u(Xs� C x) � u(Xs�)] QN (ds, dx).

Proof. First note that the stochastic integral in (4.4) is meaningful thanks to the

estimate

(4.5)

E

Z t

0

ds

Z

R

d

ju(Xs� C x) � u(Xs�)j2�(dx)

� 4tkuk2
0

Z

{jx j>1}

�(dx) C tkuk2
1

Z

{jx j�1}

jx j2�(dx) <1.
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The assertion is obtained applying Itô’s formula to u(X t ) (for more details on Itô’s

formula see [1, Theorem 4.4.7] and [14, Section 2.3]).

Let us fix i D 1, : : : , d and set ui D f . A difficulty is that Itô’s formula is usu-

ally stated assuming that f 2 C2(Rd ). However, in the present situation in which L

is �-stable, using (3.1), one can show that Itô’s formula holds for f (X t ) when f 2

C
1C

b (Rd ). We give a proof of this fact.

We assume that  > 0 (the proof with  D 0 is similar). By convolution with

mollifiers, as in (3.13) we obtain a sequence ( fn) � C1

b (Rd ) such that fn ! f in

C1C 0

(K ), for any compact set K � R

d and 0 < 

0

<  . Moreover, k fnk1C� k f k1C ,

n � 1. Let us fix t > 0. By Itô’s formula for fn(X t ) we find, P-a.s.,

(4.6)

fn(X t ) � fn(x)

D

Z t

0

Z

R

d
n{0}

[ fn(Xs� C x) � fn(Xs�)] QN (ds, dx)

C

Z t

0

ds

Z

R

d

[ fn(Xs� C x) � fn(Xs�) � 1{jx j�1}x � D fn(Xs�)]�(dx)

C

Z t

0

b(Xs) � D fn(Xs)ds.

It is not difficult to pass to the limit as n ! 1; we show two arguments which are

needed. To deal with the integral involving �, one can apply the dominated conver-

gence theorem, thanks to the following estimate similar to (3.3),

j fn(Xs� C x) � fn(Xs�) � x � D fn(Xs�)j � [D f ]


jx j1C , jx j � 1

(recall that
R

{jx j�1}
jx j1C �(dx) < 1 since 1 C  > �). To pass to the limit in the

stochastic integral with respect to QN , one uses the isometry formula

(4.7)

E

�

�

�

�

Z t

0

Z

R

d
n{0}

[ fn(Xs� C x) � fn(Xs�) � f (Xs� C x)C f (Xs�)] QN (ds, dx)

�

�

�

�

2

D

Z t

0

ds

Z

{jx j�1}

E j fn(Xs� C x) � f (Xs� C x) � fn(Xs�)C f (Xs�)j2�(dx)

C

Z t

0

ds

Z

{jx j>1}

E j fn(Xs� C x) � f (Xs� C x) � fn(Xs�)C f (Xs�)j2�(dx).

Arguing as in (4.5), since k fnk1C � k f k1C , n � 1, we can apply the dominated con-

vergence theorem in (4.7). Letting n ! 1 in (4.7) we obtain 0. Finally, we pass to

the limit in probability in (4.6) and obtain Itô’s formula when f 2 C
1C

b (Rd ).

Noting that, for any i D 1, : : : , d,

Lui (y) D

Z

R

d

[ui (y C x) � ui (y) � 1{jx j�1}x � Dui (y)]�(dx), y 2 Rd ,
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and using that u solves (4.3), i.e., Lu C b � Du D �u � b, we can replace in the Itô

formula for u(X t ) the term

Z t

0

Lu(Xs) ds C

Z t

0

Du(Xs)b(Xs) ds

D

d
X

iD1

�

Z t

0

Lui (Xs) ds C

Z t

0

Dui (Xs) � b(Xs)ds

�

ei

with �

R t

0
b(Xs)dsC�

R t

0
u(Xs)ds D x�X t CL t C�

R t

0
u(Xs)ds and obtain the assertion.

The proof of Theorem 1.1 will be a consequence of the following result.

Theorem 4.3. Let � 2 (0, 2) and b 2 Cb(Rd , Rd ) in (1.1). Assume that, for some

� > 0, there exists a solution u D u
�

2 C
1C

b (Rd , Rd ) to the equation (4.3) with  2

[0, 1], such that c
�

D kDu
�

k0 < 1=3. Moreover, assume that

2 > �.

Then the SDE (1.1), for every x 2 Rd , has a unique solution (X x
t ).

Moreover, assertions (i), (ii) and (iii) of Theorem 1.1 hold.

Proof. Note that 2 > � implies the condition 1 C  > � of Lemma 4.2.

We provide a direct proof of pathwise uniqueness and assertion (i). This uses Lem-

mas 4.2 and 4.1 together with L p-estimates for stochastic integrals (see (4.2)). State-

ments (ii) and (iii) will be obtained by transforming (1.1) in a form suitable for apply-

ing the results in [14, Chapter 3].

Let us fix t > 0, p � 2 and consider two solutions X and Y of (1.1) starting at

x and y 2 R

d respectively. Note that X t is not in L p if p � � (compare with [14,

Theorem 3.2]) but the difference X t � Yt is a bounded process. Pathwise uniqueness

and (1.4) (for any p � 1) follow if we prove

(4.8) E

�

sup
0�s�t

jXs � Ys j
p

�

� C(t)jx � yjp, x , y 2 Rd ,

with a positive constant C(t) independent of x and y. Indeed in the special case of

x D y estimate (4.8) gives uniqueness of solutions.
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We have from Lemma 4.2, P-a.s.,

(4.9)

X t � Yt D [x � y] C [u(x) � u(y)] C [u(Yt ) � u(X t )]

C

Z t

0

Z

R

d
n{0}

[u(Xs� C x) � u(Xs�) � u(Ys� C x) C u(Ys�)] QN (ds, dx)

C �

Z t

0

[u(Xs) � u(Ys)] ds.

Since kDuk0 � 1=3, we have ju(X t ) � u(Yt )j � (1=3)jX t � Yt j. It follows the estimate

jX t � Yt j � (3=2)31(t) C (3=2)32(t) C (3=2)33(t) C (3=2)34, where

31(t) D

�

�

�

�

Z t

0

Z

{jx j>1}

[u(Xs� C x) � u(Xs�) � u(Ys� C x) C u(Ys�)] QN (ds, dx)

�

�

�

�

,

32(t) D �

Z t

0

ju(Xs) � u(Ys)j ds,

33(t) D

�

�

�

�

Z t

0

Z

{jx j�1}

[u(Xs� C x) � u(Xs�) � u(Ys� C x) C u(Ys�)] QN (ds, dx)

�

�

�

�

,

34 D jx � yj C ju(x) � u(y)j �
4

3
jx � yj.

Note that, P-a.s.,

sup
0�s�t

jXs � Ys j
p
� C pjx � yjp

C C p

3
X

kD1

sup
0�s�t

3k(s)p.

The main difficulty is to estimate 33(t). Let us first consider the other terms. By the

Hölder inequality

sup
0�s�t

32(s)p
� c1(p)t p�1

Z t

0

sup
0�s�r

jXs � Ys j
p dr .

By (4.2) with U D {x 2 R

d
W jx j > 1} we find

E

�

sup
0�s�t

31(s)p

�

� c(p)E

"

�

Z t

0

ds

Z

{jx j>1}

ju(Xs� C x) � u(Ys� C x) C u(Ys�) � u(Xs�)j2�(dx)

�p=2
#

C c(p)E

Z t

0

ds

Z

{jx j>1}

ju(Xs� C x) � u(Ys� C x) C u(Ys�) � u(Xs�)jp
�(dx).

Using ju(Xs�C x)� u(Ys�C x)C u(Ys�)� u(Xs�)j � (2=3)jXs� � Ys�j and the Hölder
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inequality, we get

E

�

sup
0�s�t

31(s)p

�

� C1(p)(1C t p=2�1)

�

 

Z

{jx j>1}

�(dx)C

�

Z

{jx j>1}

�(dx)

�p=2
!

Z t

0

E

�

sup
0�s�r

jXs � Ys j
p

�

dr .

Let us treat 33(t). This requires the condition 2 > �. By using (4.2) with U D {x 2

R

d
W jx j � 1, x ¤ 0} and also Lemma 4.1, we get

E

�

sup
0�s�t

33(s)p

�

� c(p)kuk
p

1C E

"

�

Z t

0

ds

Z

{jx j�1}

jXs � Ys j
2
jx j2 �(dx)

�p=2
#

C c(p)kuk
p

1C E

Z t

0

ds

Z

{jx j�1}

jXs � Ys j
p
jx j p

�(dx).

We obtain

E

�

sup
0�s�t

33(s)p

�

� C2(p)(1C t p=2�1)kuk
p

1C

�

 

�

Z

{jx j�1}

jx j2 �(dx)

�p=2

C

Z

{jx j�1}

jx j p
�(dx)

!

Z t

0

E

�

sup
0�s�r

jXs � Ys j
p

�

dr,

where
R

{jx j�1}
jx jp �(dx) < C1, since p � 2 and 2 > �. Collecting the previous

estimates, we arrive at

E

�

sup
0�s�t

jXs � Ys j
p

�

� C pjx � yjp C C4(p)(1C t p�1)

Z t

0

E

�

sup
0�s�r

jXs � Ys j
p

�

dr .

Applying the Gronwall lemma we obtain (4.8) with C(t) D C p exp(C4(p)(1 C t p�1)).

The assertion is proved.

Now we establish the homeomorphism property (ii) (cf. [14, Chapter 3], [1, Chap-

ter 6] and [19, Section V.10]).

First note that, since kDuk0 < 1=3, the classical Hadamard theorem (see [19, p. 330])

implies that the mapping  W Rd
! R

d ,  (x) D xCu(x), x 2 Rd , is a C1-diffeomorphism

from R

d onto Rd . Moreover, D �1 is bounded on Rd and kD �1
k0 � 1=(1� c

�

) < 3=2

thanks to

(4.10) D �1(y) D [I C Du( �1(y))]�1
D

X

k�0

(�Du( �1(y)))k , y 2 Rd .
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Let r 2 (0, 1) and introduce the SDE

(4.11)

Yt D y C

Z t

0

Qb(Ys) ds

Z t

0

Z

{jzj�r}

g(Ys�, z) QN (ds, dz)C

Z t

0

Z

{jzj>r}

g(Ys�, z)N (ds, dz), t � 0,

where Qb(y) D �u( �1(y)) �
R

{jzj>r}
[u( �1(y)C z) � u( �1(y))]�(dz) and

g(y, z) D u( �1(y)C z)C z � u( �1(y)), y 2 Rd , z 2 Rd .

Note that (4.11) is a SDE of the type considered in [14, Section 3.5]. Due to the

Lipschitz condition, there exists a unique solution Y y
D (Y

y
t ) to (4.11). Moreover, using

(4.4) and the formula

L t D

Z t

0

Z

{jx j�r}

x QN (ds, dx)C

Z t

0

Z

{jx j>r}

x N (ds, dx), t � 0

(due to the fact that � is symmetric) it is not difficult to show that

(4.12)  (X x
t ) D Y

 (x)
t , x 2 Rd , t � 0.

Thanks to (4.12) to prove our assertion, it is enough to show the homeomorphism prop-

erty for Y
y

t . To this purpose, we will apply [14, Theorem 3.10] to equation (4.11). Let

us check its assumptions.

Clearly, Qb is Lipschitz continuous and bounded. Let us consider [14, condition (3.22)].

For any y 2 Rd , z 2 Rd , jg(y, z)j � jzj(1C kDuk0) � K (z), with K (z) D (4=3)jzj (recall

that
R

jzj�1
jzj2�(dz) <1); further by Lemma 4.1 and (4.10) we have, for any y, y0 2 Rd ,

z 2 Rd with jzj � 1,

jg(y, z) � g(y0, z)j � L(z)jy � y0j where L(z) D C1kuk1C jzj
 ,

with
R

jzj�1
L(z)2

�(dz) <1, since 2 > �. Note that we may fix r > 0 small enough

in (4.11) in order that K (r ) C L(r ) < 1 (according to [14, Section 3.5], this con-

dition is needed to study the homeomorphism property for equation (4.11) without
R t

0

R

{jzj>r}
g(Ys�, z)N (ds, dz); see also [14, Remark 1, Section 3.4]).

By [14, Theorem 3.10] in order to get the homeomorphism property, it remains to

check that, for any z 2 Rd , the mapping:

(4.13) y 7! y C g(y, z) is a homeomorphism from R

d onto Rd .

Let us fix z. To verify the assertion, we will again apply the Hadamard theorem.

We have

Dy g(y, z) D [Du( �1(y)C z) � Du( �1(y))][D �1(y)]
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and so by (4.10) (since kDuk0 < 1=3) we get kDy g( � , z)k0 � 2c
�

=(1�c
�

)< 1. We have

obtained (4.13). By [14, Theorem 3.10] the homeomorphism property for Y
y

t follows

and this gives the assertion.

Now we show that, for any t � 0, the mapping: x 7! X x
t is of class C1 on Rd ,

P-a.s. (see (iii)).

We fix t > 0 and a unitary vector ek of the canonical basis in Rd . We will show

that there exists, P-a.s., the partial derivative lims!0(X
xCsek

t � X x
t )=s D Dek

X x
t and,

moreover, that the mapping x 7! Dek
X x

t is continuous on Rd , P-a.s.

Let us consider the process Y y
D (Y

y
t ) which solves the SDE (4.11). If we prove

that the mapping y 7! Y
y

t is of class C1 on Rd , P-a.s., then we have proved the as-

sertion. Indeed, P-a.s.,

Dek
X x

t D [D �1(Y
 (x)
t )][DY

 (x)
t ]Dek

 (x), x 2 Rd .

We rewrite (4.11) as

(4.14) Yt D y C �

Z t

0

u( �1(Yr )) dr C

Z t

0

Z

R

d
n{0}

h(Yr�, z) QN (dr, dz)C L t ,

t � 0, y 2 Rd , where

h(y, z) D u( �1(y)C z) � u( �1(y)) D g(y, z) � z,

and note that the statement of [14, Theorem 3.4] about the differentiability property

holds for SDEs of the form (4.14), provided that the coefficients �u Æ �1 and h satisfy

[14, conditions (3.1), (3.2), (3.8) and (3.9)]. Indeed the presence of L t in the equation

does not give rise to any difficulty. To check this fact, remark that, for any t � 0,

y 2 Rd , s ¤ 0, we have the equality

Y
yCsek

t � Y
y

t

s
D ek C

�

�

Z t

0

u( �1(Y
yCsek

r )) � u( �1(Y
y

r ))

s
dr

C

Z t

0

Z

R

d
n{0}

h(Y
yCsek

r� , z) � h(Y
y

r�, z)

s
QN (dr, dz)

�

,

where L t is disappeared. Thus we can apply the same argument which is used to prove

[14, Theorem 3.4] (see also the proof of [14, Theorem 3.3]), i.e., we can provide esti-

mates for

E

"

sup
0�t�T

�

�

�

�

�

Y
yCsek

t � Y
y

t

s

�

�

�

�

�

p#

and E

"

sup
0�t�T

�

�

�

�

�

Y
yCsek

t � Y
y

t

s
�

Y
y0

Cs 0ek

t � Y
y0

t

s 0

�

�

�

�

�

p#

,

p � 2, s, s 0 ¤ 0, y, y0 2 Rd , by using (4.2) and the Gronwall lemma (remark that in

[14] the term s�1(Y
yCsek

t �Y
y

t ) is denoted by Nt (y, s)), and then apply the Kolmogorov

criterion in order to prove that y 7! Y
y

t is of class C1 on Rd , P-a.s.
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Let us check that �uÆ �1 and h satisfy the assumptions of [14, Theorem 3.4] (i.e.,

respectively, [14, conditions (3.1), (3.2), (3.8) and (3.9)]). Conditions (3.1) and (3.2)

are easy to check. Indeed �u( �1( � )) is Lipschitz continuous on Rd and, moreover,

thanks to Lemma 4.1 and to the boundeness of D �1,

jh(y, z) � h(y0, z)j � Ckuk1C (1{jzj�1}jzj


C 1{jzj>1})jy � y0j, z 2 Rd ,

y, y0 2 Rd , with
R

R

d (1{jzj�1}jzj


C 1{jzj>1})
p
�(dz) < 1, for any p � 2. In addition,

jh(y, z)j � L0(z), z 2 Rd , y 2 Rd , where, since kDuk0 < 1=3,

L0(z) D
1

3
1{jzj�1}jzj C 2kuk01{jzj>1} with

Z

R

d

L0(z)p
�(dz) <1, p � 2.

Assumptions [14, (3.8) and (3.9)] are more difficult to check. They require that there

exists some Æ > 0 such that (setting l(x) D �u( �1(x)))

(4.15)

(1) sup
y2Rd

jDl(y))j <1I jDl(y) � Dl(y0)j � Cjy � y0jÆ , y, y0 2 Rd .

(2) jDyh(y, z))j � K1(z)I jDyh(y, z) � Dyh(y0, z)j � K2(z)jy � y0jÆ ,

for any y, y0 2 Rd , z 2 Rd , with
R

R

d Ki (z)p
�(dz) <1, for any p � 2, i D 1, 2. Such

estimates are used in [14] in combination with the Kolmogorov continuity theorem to

show the differentiability property.

Let us check (1) with Æ D  , i.e., Dl 2 C


b (Rd , Rd ). Since, for any y 2 R

d ,

Dl(y) D �Du( �1(y))D �1(y), we find that Dl is bounded on Rd . Moreover, thanks

to the following estimate (cf. (3.18))

[Dl]


� �kDuk0 [D �1]


C �[Du]


kD �1
k

1C

0 ,

in order to prove the assertion it is enough to show that [D �1]


<1. Recall that for

d�d real matrices A and B, we have (ICA)�1
�(ICB)�1

D (ICA)�1(B�A)(ICB)�1

(if (I C A) and (I C B) are invertible). We obtain, using also that D �1 is bounded,

jD �1(y) � D �1(y0)j D j[I C Du( �1(y))]�1
� [I C Du( �1(y0))]�1

j

� c1[Du]


jy � y0j , y, y0 2 Rd

and the proof of (1) is complete with  D Æ. Let us consider (2). Clearly,

Dyh(y, z) D [Du( �1(y) C z) � Du( �1(y))]D �1(y)

verifies the first part of (2) with K1(z) D c2kDuk


(1{jzj�1}jzj


C 1{jzj>1}).

Let us deal with the second part of (2). We choose  0 2 (0,  ) such that 2 0 > �

and first show that, for any f 2 C


b (Rd , Rd ), we have

(4.16) [Tx f ]
�

0

� C[ f ]


jx j
0

, x 2 Rd ,
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where (as in Lemma 4.1) for any x 2 Rd , we define the mapping Tx f W Rd
! R

d as

Tx f (u) D f (x C u) � f (u), u 2 Rd . Using also (3.14), we get

[Tx f ]
�

0

� N [Tx f ](� 0)=


[Tx f ]
1�(� 0)=

0 � cN [ f ]


jx j (1�(� 0)= )
� cN jx j

0

[ f ]


,

for any x 2 Rd . By (4.16) we will prove (2) with Æ D  � 

0

> 0.

First consider the case when jzj � 1. By (4.16) with Du D f , we get

jDyh(y, z) � Dyh(y0, z)j

D jDu( �1(y)C z) � Du( �1(y)) � Du( �1(y0)C z)C Du( �1(y0))jkD �1
k0

� C1[Du]


jy � y0jÆjzj
0

,

for any y, y0 2 Rd . Let now jzj > 1; we find, for y, y0 2 Rd with jy � y0j � 1,

jDyh(y, z) � Dyh(y0, z)j � C2[Du]


jy � y0j � C2[Du]


jy � y0j�
0

.

On the other hand, if jy� y0j> 1, jzj> 1, jDyh(y,z)�Dyh(y0,z)j � 4kDuk0jy� y0j�
0

.

In conclusion, the second part of (2) is verified with Æ D  � 

0 and

K2(z) D C3kDuk


(1{jzj�1}jzj


0

C 1{jzj>1}).

(note that
R

R

d K2(z)p
�(dz) <1, for any p � 2, since 2 0 > �). Since C



b (Rd , Rd ) �

C
�

0

b (Rd , Rd ), we deduce that both (1) and (2) hold with Æ D  � 

0.

Arguing as in [14, Theorem 3.4], we get that y 7! Y
y

t is C1, P-a.s., and this proves

our assertion. We finally note that [14, Theorem 3.4] also provides a formula for H
y

t D

DY
y

t , i.e.,

H
y

t D I C �

Z t

0

Du( �1(Y y
s ))D �1(Y y

s )H y
s ds

C

Z t

0

Z

R

d
n{0}

(Dyh(Y y
s�, z)H y

s�) QN (ds, dz), t � 0, y 2 Rd .

The stochastic integral is meaningful, thanks to (2) in (4.15) and to the estimate

sup0�s�t E[jHs j
p] <1, for any t > 0, p � 2 (see [14, assertion (3.10)]). The proof

is complete.

Proof of Theorem 1.1. We may assume that 1��=2< � < 2��. We will deduce

the assertion from Theorem 4.3.

Since � � 1, we can apply Theorem 3.4 and find a solution u
�

2 C
1C

b (Rd , Rd )

to the resolvent equation (4.3) with  D � � 1 C � 2 (0, 1). By the last assertion of

Theorem 3.4, we may choose � sufficiently large in order that kDuk0 D kDu
�

k0 < 1=3.

The crucial assumption about  and � in Theorem 4.3 is satisfied. Indeed 2 D 2� �

2C 2� > � since � > 1 � �=2. By Theorem 4.3 we obtain the result.
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REMARK 4.4. Thanks to Theorem 1.1 we may define a stochastic flow associ-

ated to (1.1). To this purpose, note that by (ii) we have X x
t D �t (x), t � 0, x 2 Rd ,

P-a.s., where �t is a homeomorphism from R

d onto Rd . Let �

�1
t be the inverse map.

As in [14, Section 3.4], we set �s,t (x) D �t Æ �

�1
s (x), 0 � s � t , x 2 Rd .

The family (�s,t ) is a stochastic flow since verifies the following properties (P-a.s.):

(i) for any x 2 Rd , (�s,t (x)) is a càdlàg process with respect to t and a càdlàg process

with respect s;

(ii) �s,t W R
d
! R

d is an onto homeomorphism, s � t ;

(iii) �s,t (x) is the unique solution to (1.1) starting from x at time s;

(iv) we have �s,t (x) D �u,t (�s,u(x)), for all 0 � s � u � t , x 2 Rd , and �s,s(x) D x .
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