Pathwise Uniqueness for Stochastic Heat Equations with Holder
Continuous Coefficients: the White Noise Case

Leonid Mytnik ! Edwin Perkins 2

FacuLry OF INDUSTRIAL ENGINEERING AND MANAGEMENT,
TECHNION — ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL
E-mail address: leonid@ie.technion.ac.il

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF BRITISH COLUMBIA,
1984 MATHEMATICS ROAD, VANCOUVER, B.C., CANADA V6T 172
E-mail address: perkins@math.ubc.ca

Abstract. We prove pathwise uniqueness for solutions of parabolic stochastic pde’s with mul-
tiplicative white noise if the coefficient is Hélder continuous of index v > 3/4. The method of

proof is an infinite-dimensional version of the Yamada-Watanabe argument for ordinary stochastic
differential equations.

August 29, 2008
AMS 2000 subject classifications. Primary 60H15. Secondary 60G60, 60H10, 60H40, 60K35, 60J80.

Keywords and phrases. Stochastic partial differential equations, pathwise uniqueness, white noise.
Running head. Pathwise uniqueness for SPDE’s

1. Supported in part by the Israel Science Foundation (grant No. 1162/06).

2. Supported by an NSERC Research grant.



1 Introduction

Let 0 : Ry x R? — R and consider the stochastic heat equation

(L1) O X(ta) = SAX ()t + olt, 2, X (6 0)W (w,0) + bt 2, X(1,2).

Here A denotes the Laplacian and W is space-time white noise on Ry, x R. If o(t,z,X) and
b(t,z, X) are Lipschitz continuous in X it is well-known that there are pathwise unique solutions
to (1.1) (see (Wal86)). When o(t,z,X) = +/f(t,z, X)X such equations arise naturally as the
scaling limits of critical branching particle systems where the branching rate at (¢, ) is given by
flt,z, X(t,x)) and X(¢,x) is a measure of the local particle density at (£,z). Such coefficients are
not Lipschitz continuous and pathwise uniqueness remains open even in the case where f = 1,
b= 0 and X is the density of super-Brownian motion (see Section II1.4 of (Per(02)). In this case,
and more generally for f = X? for p > 0, uniqueness in law is known by duality arguments (see
(Myt99)). The duality arguments are highly non-robust, however, and pathwise uniqueness, if true,
would typically hold for a much less restrictive set of coeflicients. Our goal in this work is to show
pathwise uniqueness holds for solutions to (1.1) if o(t,z,-) is Holder continuous of order v and
v > 3/4. The attentive reader will have already noted that the motivating example given above
does not satisfy this condition.

The above equation does have the advantage of having a diagonal form—that is, when viewed
as a continuum-dimensional stochastic differential equation there are no off-diagonal terms in the
noise part of the equation and the diffusion coefficient for the x coordinate is a function of that
coordinate alone. For finite-dimensional sde’s this was the setting for Yamada and Watanabe’s
extension (YWT71) of Ité’s pathwise uniqueness results to Hélder (1/2) continuous coefficients,
and so our plan will be to carry over their approach to our infinite dimensional setting. This
programme was already carried out in the context of coloured noise in (MPS06), but the methods
used there when specialized to white noise given nothing beyond the classical Lipschitz uniqueness.
In fact for coloured noise in higher dimensions the results in (MPS06) did not even come close
to the known results on pathwise uniqueness for Lipschitz continuous coefficients (Dal99)-see the
discussion after Remark 1.5 in (MPS06). This is what led to our belief that there was room for
substantial improvement in the methods of (MPS06) and hence to the present work.

We introduce a growth condition, a Holder continuity condition on ¢ and the standard Lipschitz
condition on b:

(1.2) there exists a constant ¢;.o such that for all (¢, 2, X) € Ry x R?,
|o(t, 2, X)| + [b(t, z, X)| < cra(1 + | X]),

. or some y > there are Ry, Ro > 0 and for a > 0 there 1s an Ry
1.3 f 3/4 th Ri, Ry > 0 and for all T > 0 there i Ro(T
so that for all t € [0,7] and all (z, X, X’) € R,
lo(t, 2, X) — o(t,z, X")| < Ro(T)e™ (1 + | X| + | X'|) 2| X — X']7,

and

(1.4) thereis a B > 0 s.t. for all (t,z, X, X") e Ry x R3, |b(t,x, X) — b(t,z,X")| < B|X — X'|.



We assume W is a white noise on the filtered probability space (Q2, F, F;,P), where F; satisfies
the usual hypotheses. This means W;(¢) is an F-Brownian motion with variance [|¢||3 for each
¢ € L*(R,dz) and Wi(¢) and Wi(¢) are independent if [ é(z)d(x)dz = 0. We set py(z) =
(2mt) Y2 exp{—a?/2t}, Pif(z) = [ f(y)pe(y — x)dy, and let F}¥ C F; be the filtration generated
by W satisfying the usual hypotheses. A stochastic process X : Q@ x R, x R — R, which is
jointly measurable and Fi-adapted, is said to be a solution to the stochastic heat equation (1.1) on
(Q, F, F, [P) with initial condition Xy : R — R, if for each ¢t > 0, and z € R,

t
(15 X(ta) = /Rpt<y—x>xo<y>dy+ /O /Rpts<y—x)o(s,y,x<s,y>>w<ds,dy>

t
+/ /Rpts(y —x)b(s,y, X(s,y))dyds a.s.
0

To state the main results we introduce some notation, which will be used throughout this work:
IfEC Rd, we write C'(E) for the space of continuous functions on E. A superscript k, respectively
0o, indicates that functions are in addition k times, respectively infinitely often, continuously
differentiable. A subscript b, respectively ¢, indicates that they are also bounded, respectively have
compact support. We also define

[1£11x == sup |f(@)]e ",
zeR

set Crem := {f € C(R),||f]ln < oo for any A > 0} and endow it with the topology induced by the
norms || - || for A > 0. That is, fn — f in Ciep iff d(f, fn) = 5oy 27°(I1f = fallie A1) — 0 as
n — 00. Then (Ciepm,d) is a Polish space. By identifying the white noise W, with the associated
Brownian sheet, we may view W as a stochastic processes with sample paths in C(R, Ci,). Here
as usual, C(R,, Clep) is given the topology of uniform convergence on compacts.

A stochastically weak solution to (1.1) is a solution on some filtered space with respect to some
noise W, i.e., the noise and space are not specified in advance.

With this notation we can state the following standard existence result whose proof is a minor
modification of Theorem 1.2 of (MPS06) and is given in the next Section.

Theorem 1.1 Let Xo € Ciem, and let b,o : Ry x R* — R satisfy (1.2), (1.3), and (1.4). Then
there exists a stochastically weak solution to (1.1) with sample paths a.s. in C(Ry, Crem).

We say pathwise uniqueness holds for solutions of (1.1) in C(Ry, Cer,) if for every X € Chepn,
any two solutions to (1.1) with sample paths a.s. in C(R;, Cep,) must be equal with probability 1.
For Lipschitz continuous o, this follows from Theorem 2.2 of (Shi94). Here then is our main result:

Theorem 1.2 Assume that b,o : Ry x R? — R satisfy (1.2), (1.3) and (1.4). Then pathwise
uniqueness holds for solutions of (1.1) in C(Ry, Crem).

As an immediate consequence of Theorems 1.1 and 1.2 we get existence and uniqueness of strong
solutions and joint uniqueness in law of (X, W).

Theorem 1.3 Assume that b,o : R, x R* — R satisfy (1.2), (1.3) and (1.4). Then for any Xo €
Ciem there is a solution X to (1.1) on (Q, FYY, FIVP) with sample paths a.s. in C(Ry, Ciem). If X'
is any other solution to (1.1) on (Q, F, F;,P) with sample paths a.s. in C(Ry, Cier), then X (t,z) =
X'(t,x) for allt,z a.s. The joint law Px, of (X, W) on C(Ry, Cien) is uniquely determined by Xo
and is Borel measurable in Xg.



Proof. The Borel measurability of the law is proved as in Exercise 6.7.4 in (SV79). We now apply
Theorem 3.14 of (Kur07), with the Polish state spaces S; and Sy for the driving process (W) and
solution (X) in that work both equal to C(R, Ciep,). Theorems 1.1 and 1.2 imply the hypotheses
of weak existence and pointwise uniqueness of (a) of that result. The conclusions of an F}V-adapted
(strong) solution and uniqueness in law of (X, W) follow from the conclusions in Theorem 3.14 (b)
(of (Kur07)) of a strong compatible solution and joint uniqueness in law, respectively. (Note that
Lemma 3.11 of the above reference shows that a strong, compatible solution must be 7}V -adapted.)
]

Remark 1.4 (a) When assuming (1.2), it suffices to assume (1.3) for | X — X'| < 1. Indeed this
condition is immediate from (1.2) for | X — X'| > 1 with Ry =0 and Ry = 1.

(b) (1.3) implies the local Hélder condition:

(1.6) for some v > 3/4 for all K > 0 there is an Li so that for allt € [0, K]
and J},Xl,XQ S [—K, K], |U(t,l‘,X1) — U(t,l‘,Xg)‘ < LK|X1 — X2|'Y.

In fact it prescribes the growth rate of the Hélder constants Ly (polynomial in X and exponential

In order to give a bit of intuition for Theorem 1.2, we recall the result from (MPS06) which
dealt with the stochastic heat equation driven by coloured noise. Let W (t,z) be the mean zero
Gaussian noise on R, x R? with covariance given by

(1.7) E \W(t,x)W(s,y)| = do(t — s)k(x — y),
where
(1.8) k(x—y) < clz—y[™°,

for some « € (0,d A 2). Note that the white noise considered in this paper is the case k(x) = dp(x).
It formally corresponds to a = 1 in dimension d = 1. Now let X satisfies the SPDE:

(1.9) %X(t,x) = %AX(t,x)dt +o(X(t,z))W (z,1),

with W being the coloured noise just described. Then the following result was proved in (MPS06).
Theorem 1.5 ((MPS06)) For a < 2y — 1, pathwise uniqueness holds for (1.9).

Let @ = X! — X2 be the difference of two solutions to (1.9). The the proof of Theorem 1.5 relied
on a study of the Holder continuity of @(t,-) at points where u(¢, ) is “small”. Let £ be the Holder
exponent of u(t, -) at such points. The following connection between parameter ¢ and the pathwise
uniqueness was shown in (MPS06) (see condition (41) in the proof of Theorem 4.1 there): If

(1.10) a<&(2y-1),

then pathwise uniqueness holds for (1.9). Hence, the better the regularity one has for 4 near its
zero set, the “weaker” the hypotheses required for pathwise uniqueness. It was shown in (MPS06)



that at the points x where @(t, x) is “small”, u(t,-) is Holder continuous with any exponent £ such
that

(1.11) €< 11

(For the precise statement of this result see Theorem 2.2 in the next section.) Note that in the case
when o < 2y — 1, (1.11) turns into the following condition

(1.12) £ <1,

and this together with (1.10) imply Theorem 1.5.
Now assume W is white noise on R; x R and d = 1. This formally corresponds to the a = 1,
and in this case the conditions (1.10), (1.11) can be written as

(1.13) 1 < &2y-1),
1
For v > 1/2, we have ﬁ > 1 and hence one can take £ < 1 arbitrarily close to 1 (a proof of this

is given in Theorem 2.3 below), substitute it into (1.13), and get a vacuous condition for pathwise
uniqueness, namely

v > 1.

To improve on this we will need to get more refined information on the difference, u, of two solutions
to (1.1) near the points z¢p where u(t,z) ~ 0. To be more precise, suppose one is able to show that

(1.15) lu(t, z)| < clz — xol*
for any
(1.16) DL

' 20—7)

By substituting the upper bound for ¢ from (1.16) into (1.13) and doing a bit of arithmetic one
gets the following condition for pathwise uniqueness

(1.17) v > 3/4,

which is the result claimed in Theorem 1.2. We will in fact verify a version of (1.15) under (1.16)
and 7 > 3/4. A more detailed description of our approach, is given in Section 2.

The above discussion allows us to conjecture a stronger result on pathwise uniqueness for the
case of equations driven by a coloured noise:

Conjecture 1.6 If
(1.18) a<2(2y-1),

then pathwise uniqueness holds for (1.9).



The reasoning for this conjecture is similar to that for the white noise case. Let @ again be the
difference of two solutions to (1.9). Suppose that if @ (¢, xg) = 0 then at the points nearby we have

(1.19) a(t,x) < clr — 20/
for any

1_ ¢
1.20 2 A2
(1.20) R

By substituting the upper bound for ¢ from (1.20) into (1.10) and simple algebra one gets (1.18)
as a condition for pathwise uniqueness for (1.9). Note that (1.18) can be equivalently written as

1 a
1.21 > — 4+ —.
(1.21) T>5t7

In the next Section we give a quick proof of Theorem 1.1 and then turn to the main result,
Theorem 1.2. Following the natural analogue of the Yamada-Watanabe argument for stochastic
pde’s, as in (MPS06), the problem quickly reduces to one of showing that the analogue of the local
time term is zero (Proposition 2.1). As described above, the key ingredient here will be tight control
on the spatial behaviour of the difference of two solutions, when this difference is very small, that is,
when the solutions separate. Roughly speaking, as in Yamada and Watanabe’s argument we first
show that solutions must separate in a gentlemanly manner and therefore cannot separate at all.
Section 2 includes a heuristic description of the method and further explanation of why v = 3/4 is
critical in our approach. It also gives an outline of the contents of the entire paper.

Convention on Constants. Constants whose value is unimportant and may change from line
to line are denoted cyp,ca, ..., while constants whose values will be referred to later and appear
initially in say, Lemma i.j are denoted ¢; ; or C; ;.

Acknowledgements. The second author thanks the Technion for hosting him during a visit
where some of this research was carried out. This project was initiated during the visit of the
first author to the UBC where he participated in a Workshop on SPDE’s sponsored by PIMS and
thanks go to the Pacific Institute for the Mathematical Sciences for its support.

2 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1 This is standard so we only give a sketch and set b = 0 for simplicity.
By taking weak limits as 7' — oo we may assume Ry(T) = Ry is independent of T. Choose a
symmetric ¢, € C so that 0 < ¢, < 1, [|[¢]]lc < 1, ¥p(z) = 1 if |2| < n and ¢Y,(z) = 0 if
|z| > n+ 2. Let

on(t,z, X) = /U(t,$,X/)p2n(X/ — X)dX ), (X).
It is easy to then check the following:

(2:22) |on(t, 2, X)| < 2c12(1 + | X]),



(2.23) lon(t, 2, X') — op(t,z, X)| < cn| X' — X|,

and

(220)  Jowlt,z, X) — o(t,z, X)| < o [eR1IN(X[R2 £ 1)2779/2 4 (14 |X[)(1 = n(|X])
— 0 uniformly on compacts as n — oc.

Use (2.22), (2.23) and Theorem 2.2 of (Shi94) to see there are solutions X" to (1.5), (all with
respect to W)-here (1.5), is (1.5) but with o, in place of 0. Now argue as in Section 6 of (Shi94)
(see the proof of Theorem 2.2) or in the derivation of Theorem 1.2 of (MPS06) (the present white
noise setting simplifies those arguments) to see that { X"} is tight in C(R, Ciepn, ). More specifically,
using the growth condition (1.2), it is straightforward to carry over the proof of Proposition 1.8(a)
of (MPS06) (see Lemmas A.3 and A.5 of that paper) and show

(2.25) for all T,\,p >0, supE( sup sup | X"(t,z)Pe ) < oo
n 0T R

The above bounds in turn give uniform bounds on the pth moments of the space-time increments
of X" (see Lemma A.4 of (MPS06)) and hence tightness. Indeed, the orthogonality of white noise
makes all these calculation somewhat easier. By Skorohod’s theorem we may assume X"* converges
a.s. to X in C'(R4, Ctern) on some probability space. It is now easy to use (2.24) to see that (perhaps
on a larger space), X solves (1.5). [

Next consider Theorem 1.2 and assume its hypotheses throughout. By Remark 1.4(a) decreasing
~ only weakens the hypotheses and so we may, and shall, assume that

(2.26) 3/4 <y <1

Let X! and X2 be two solutions of (1.5) on (2, F, F;,IP) with sample paths in C(R,, Ciepn) a.s.,
with the same initial condition, X*(0) = X?(0) = Xg € Ciem, and of course the same noise W. For
adapted processes with sample paths in C(Ry, Ciern), (1.5) is equivalent to the distributional form
of (1.1) (see Theorem 2.1 of (Shi94)). That is, for i = 1,2 and ® € C°(R) :

(2.27) /IRXi(t,x da:_/XO d:r+/ /XZ 8, T)= A(I)( )dzds
+/0 /Ra(s,x,Xi(s,x))q>(x)vv(d5,dx)
+/Ot/Rb(s,x,xi(s,:c))@(x)dxds Vt>0 a.s.

Let

(2.28) Tx = inf{s > 0 :sup(| X' (s,9)| V | X2%(s,y))e ¥ > K} A K.
Yy

We first show that (1.3) may be strengthened to

(2.29) for some 1 >~ > 3/4 there are Ry, R1 > 1 so that for all ¢ > 0
and all (z,X,X") e R?, |o(t,z, X) — o(t, 2, X')| < Roe™l7l| X — X'|7.



Assume that Theorem 1.2 holds under (2.29) and that o satisfies (1.3). Define
ox(t,z, X) =o(t,z,(X V(-Ke")) A Kel*h1(t < K).

Then
ok (t, 2, X) — o (t, 2, X')| < Ro(K)e™2l(1 4 2Kl R2 | x — X7|7,

and so (2.29) holds with R; + R in place of Ry (the restriction that R; > 1 is for convenience and
is no restriction). Providing that for A =1, || Xo||x < K, we have

(2.30) o(t,z, X'(t,2)) = ox(t,z, X'(t,z)) for all z and t < Tk-.

Therefore o satisfies(2.29) and of course (1.2). So we may apply Theorem 1.3 with o in place
of 0. Using the law Py x, of (X, W) on C(Ry,Ciem)? (Borel in Xj) it is easy now to continue
the solutions X? to (2.27); (the K reminds us we are dealing with o) beyond Tk and construct
solutions X%, i = 1,2 to (2.27) starting at Xy such that (X'(- A Tx), X%(- A Tk)) is equal in
law to (X'(- A Tk), X?(- A Tk)). By pathwise uniqueness in (2.27), we get X' = X? and so
XY ATg) = X%(- NTk). Letting K — oo gives X! = X2, as required.

We now follow the approach in Section 2 of (MPS06) and reduce the theorem to showing the
analogue of the “local time term” in the Yamada-Watanabe proof is zero. Let

an = exp{—n(n+1)/2}

so that

(2.31) Ung1 = ane "L = ana?/™

Define functions v, € C°(R) such that supp(yy,) C (an,an—1), and

2
ne

an—1
(2.32) 0 <p(x) < for all z € R as well as / U (z)dz = 1.

Finally, set

lz|  ry
(2.33) oute) = [ [ )iz

From this it is easy to see that ¢, (x) T |z| uniformly in z. Note that each v, and thus also each ¢,,
is identically zero in a neighborhood of zero. This implies that ¢, € C°°(R) despite the absolute
value in its definition. We have

||
(2.34) ¢n(7) = sgn(x) ; Un(y)dy,
(2.35) n (@) = Yn(l2)).

Thus, |¢},(z)| <1, and [ ¢} (z)h(z)dz — h(0) for any function h which is continuous at zero.
Define
u= X' — X2



Let ® € CP(R) satisfy 0 < @ < 1, supp(®) C (—1,1) and [ ®(x)dz = 1, and set 7' (y) =
m®(m(x —y)). Let (-,-) denote the scalar product on L (R). By applying 1t6’s Formula to the
semimartingales (X¢, ®™) in (2.27) it follows that

(bn utu >)
/ / & (s, @) (5,9, X1 (5, ) — 0 (5,5, X2(5,9))) O™ ()W (ds, dy)

v ¢;<<us,@?>><us,§A@?>ds

1 [t . ,
+3 / /R bl ©)) (5,9, X1 (5,9)) — (5 X2(5,9)))
< B () dyds

t
+:/L/¢%«u&@?ﬁ(ﬂaprW&yD-—M&ng%&yD)®?@D@M&
0 JR

We integrate this function of x against another non-negative test function ¥ € C2°([0,to] x R)
(to € (0,00)). Choose K; € N large so that for A =1,

(2.36) | Xollx < Ky and T' = {x : Us(x) >03s < tp} C (—Kq, K7).

We then obtain by the classical and stochastic versions of Fubini’s Theorem (see Theorem 2.6 of
(Wal86) for the latter), and arguing as in the proof of Proposition I1.5.7 of (Per02) to handle the
time dependence in ¥, that for any t € [0, #¢],

(2.37) (Dn ((ug, @™)), Uy)

/ [ 7)), ) (o X 510 = 5, X25,9))) W )
/ (6, (10, 7)) s, SADT), .}
/ L e 820D (ot () = (s, X 5,9))°
<O Py + [ (60,07, ) ds

/ / & (110, ™)™ (), U, (b(s, 5, X1 (5.3)) — b(s, . X2(5,1))) dyds

=0+ L") + V() 4+ I () + I ().
(2.38)

The expectation condition in Walsh’s Theorem 2.6 may be realized by localization, using the
stopping times {Tx}.

Set m,, = a,, 1/12 = exp{(n—1)n/4} for n € N. In the integral defining Im’”’l’nJr we may assume

|z| < K1 by (2.36) and so |y| < K1 + 1. Let K € N8 If s < T, then for such a v,
|X7(s,y)| < KelVl < KeS1H) for i = 1,2.



Therefore (1.6), (2.32) and (2.31) show that if K’ = KeS1+1) (> K| + 1), then for all ¢ € [0, o],

17V A Tre)
1 tATk 3 3
= 5/ //2<”+ D7 (g, @7 ang1 < [(us, RU)| < an)
0

x Lic/|u(s,y) [P My @0+ (y) U (2)dydads
tA\TK
< Lioayta,'? / / / Want1 < [(us, ®51)| < an)luls,y)[*T @7+ (y) Vs (x)dydads
0

(239) < Loa, %220 | o [ [ 1o < e @2 < anluts, )0 ()W, o)y,
We define

) o= t [ [ o) < an)luts, )P ()0, (o)dydads.

Proposition 2.1 Suppose {Unrpnx : M,n, K € NJK > K} are F;-stopping times such that for

each K € N=K1

(H1) Ummr <Tk, Uupnk 1Tk as M — oo for each n, and
limps o0 sup,, P(Unrnx < Tr) =0,

and

(Hy) For all M € N, lim,,_,oo E(I"(to A Uptn,i)) = 0.

Then the conclusion of Theorem 1.2 holds.

Proof. We adapt the reasoning in Lemma 2.2 of (MPS06) for the coloured noise setting to our
white noise driven equation. As in (2.25) we have

(2.41) for all T, \,p >0, E( sup sup |u(t,z)Pe ) < .
0st<T zeR

Let
Zu(®) = [ 6ul(u0, 07 ¥1(z) da

Fix K e N2K1 and 0 <t < to. Note that since 0 < ¢, (z) < |z| and ¥ > 0,
0< Z,(tATi) < [ [ ult A Ties |82 ()W A T ) dyd

<2k [ [ o) u(e n Tic oy (ia] < K
(2.42) < 2Kef1tle (W),

With (2.41) in hand, the proof of Lemma 2.2(a) of (MPS06) is easily adapted (again it is in fact
easier) to show

(2.43) {I7™(s) : s < to} is an L*-bounded sequence of ? martingales.

10



The proof of Lemma 2.2(b) of (MPS06) applies directly to show that

Imn,n o Imn,n 1 + Imn,n 2
9 =

where for any stopping time 7,
tAT

mn,n,l 1 . 1

(2.44) Iy (tANT) — / /|u(s,x)|§A‘lls(x)dxd8 inL" asn — o0
0
(again the key bound here is (2.41)), and we have the one-sided bound
(2.45) ™2 (s) < a—nC(\Il) for all s <ty and n.
n

(In the notation of (MPS06), I;""™" (s) = [ Iy (r)dr and Iy"™*(s) = [ Iy'7"( )1y " (r)dr.)
The proof of Lemma 2.2(c) of (MPSOﬁ) also apphes dlrectly to show that for any stopplng time T,

AT
(2.46) """t AT) — / /|u(s,w)|\lfs(a:)d3:ds in L' as n — .
0

Since |¢),| < 1, (1.4) implies that for a stopping time T,

AT
(2.47) It AT) < B/ //\u(s,y)@?” (y)Vs(x)dydrds = BIg(t NT).
0
It follows easily from (2.41) that {IZ(to) : n € N} is L*-bounded and, as n — oo,

B AT
(2.48) IZENT) — / /\u(s,x)\\lls(ac)da:ds a.s. and hence in L' by the above.
0

Let € > 0. Then (Hy), (2.42),(2.43),(2.44) and (2.46) show that, by a standard result for uniformly
integrable random variables, there is an My so that

(2.49) s%pE«\Zn(t AT+ | (A Tie) |+ 115 A )|+ 1272 A Tic)
Ui i < Ti)) < & for all M > My,
From (2.37), (2.47), the non-negativity of I;"" and I, and Fatou’s Lemma, we have for M > My,
B( / [ult A T, ) Wiy ()

< lim infE Zn(t A TK)l(UM,n,K = TK)) -+ E(Zn(t A TK)l(UM,n,K < TK))

< liminf B(;""(¢ A Tk)) + BNt A Tri)) + B2t A Te) 1 (Unpn i) = T )

(
(1
E(I3™" (t AUntnxc)) + E(I™" (t AN Tx)) + BE(I3 (¢ A Tx))

( o (tA TK)I(UM,n,K <Tg)) — E(I;n"’n’l(t N TK)I(UM,n,K < Tk))
— E(Im"’ AT Unmnk <Tk)) + E(Zy(t NTr)1 (U, x < Tk))

tATi 1 a
< lim infE( / |u(s,x)|—A\IJS($)d:1:d3) + o)
0 2 n

n—oo

o /0 e / u(s, 2) ¥ (a)dads ) + BE( /O i / u(s, 2)| (a)dads ) + .
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by (2.43), (2.44), (2.45), (H2) (together with the bound (2.39)),(2.46) (2.48), and (2.49), respec-
tively. Let € | O to see that

5( / [ult A T, ) i () ) < B /0 i / |u(s,x)|(%A\Ifs(x) F(2) + B (2)drds).

Let K — oo and use Dominated Convergence (recall (2.41)) on each side to conclude that

¢ 1 .
/E(|u(t,x)|)\llt(x)dx < /0 /E(|u(s,x)|)(§A\Ifs(x) 4y (2) + BU(2))dads, 0<t<to

This gives (34) of (MPS06) with an additional drift term BWg(z). One proceeds exactly as in
Section 3 of that reference, using the semigroup e®!P; in place of P;, to see that since E(|u(t,)|)
is a finite (by (2.41)) non-negative subsolution of the heat equation with initial data zero, therefore
E(|u(t,z)|) = 0 and so X! = X? by continuity of paths. ]

The construction of {Ups i } and verification of (H;) and (Hz) will be the objective of the rest
of this work.

Notation. For ¢,t' > 0 and z,2’ € R let d((t,z), (t',2")) = /|t/ = t| + |2/ — x|

Note that the indicator function in the definition of I" implies there is an &9 € (z—v/a,,, z++/a,,)
such that |u(s, 20)| < an. If we could take #o = y we could bound I,,(t) by C'(t)an /> /"™7 and
(Hp) and (H2) would follow immediately with Uns » x = Tk. (The criticality of 3/4 in this argument
is illusory as it follows from our choice of m,.) The hypotheses of Proposition 2.1 now turn on
getting good bounds on |u(s, y) —u(s,#g)|. The standard 1/2—e-Hélder modulus ' not surprisingly,
gives nothing. In (MPS06) this was refined to a 1 — e-Hélder modulus near points where u is small

as we now describe. Let

Z(N,K)(w) = {(t,z) € [0,Tx] x [-K, K] : there is a (o, %) € [0, Tx] x R such that
d((fo, &), (t,2)) < 27N, and |u(fy, o) < 27V}

Return now to the SPDE driven by coloured noise (1.9) from Section 1. Let @ be the difference
of two solutions of (1.9) and a € (0,2 A d) be the covariance kernel exponent as in (1.8). Let
Z(N, K) be defined as Z(N, K) with @ instead of u. The following improved modulus of continuity
was proved in (MPS06) (see Theorem 4.1 and the first two paragraphs of the proof of Corollary 4.2
in that reference).

1—a

Theorem 2.2 For each K € N and 0 < £ < 1:2; A1 there is an Nog = No(§, K,w) € N a.s. such

that for all natural numbers N > Ny and all (t,z) € Z(N, K),

d((t', "), (t,2)) < 27N and t' < Tk implies |a(t', ') — a(t, z)| < 27V,

In the white noise setting the result holds with o = 1. Recall u is the difference of two solutions
to (1.1).

! Although this is well-known “folklore” result we were not able to find the exact reference. One can easily check
that the estimates in the proof of Corollary 3.4 in (Wal86) give 1/2 — e-Holder spatial modulus; similarly the result
of (SS02) can be immediately extended to cover the white noise case; in both works the Lipschitz assumptions on
noise coefficients can be relaxed to linear growth assumptions and the proofs still go through.
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Theorem 2.3 Assume v > 1/2. For each K € N and £ € (0,1) there is an Ny = No(§, K,w) € N
a.s. such that for all natural numbers N > Ny and all (t,x) € Z(N, K),

d((t', "), (t,z)) < 27N and t' < Ty implies |u(t', ') — u(t,z)| < 27N,

Proof. The proof of Theorem 2.2 applies with a = 1 (the dependance of ¢ on ¢,z alters nothing
in the proof). In fact it is now considerably simpler because of the orthogonality of white noise
increments. The required tools are Lemma 4.1 and Lemma 4.3 below. With this choice of o and
v > 1/2, the upper bound on ¢ in Theorem 2.2 becomes 1. In (MPS06) there was no drift term,
but the calculations for the Lipschitz drift term are simpler still. Here one uses Hélder’s inequality
to utilize the IL? bounds in Lemma 4.3. [

The proof of Theorem 1.2 is long and involved so before descending into the technical details of
the derivation of (H;) and (Hjz), we now give a heuristic description of the method with b = 0

throughout, and also try to explain why v = 3/4 is critical in our approach. The choice of

—-1/2 I - _
my, = anfé appears arbitrarily in the above so let us for the moment set m, = a % ~ a,

for some ap > 0. (Hy) and (Hs) are delicate ways of ensuring I"(t) approaches zero as n — oo and
so our goal is to show that

o0 et [ [ o) < anluls, ) P07 ()0 )dydods

—0asn — oo.

We have taken (and will take) some small liberties with the “local time term” I"(¢) (with this new
choice of m,,) in the first line. In the integrand in (2.50) the variable y must be within 2a5° of a
point Zp where |u(s,Zo)| < an. If we simply replace y with o, I"(¢) is at most

¢
a#—ao/o //a%“’q);”"“(y)\lfs(x)dydxds < Cta? =17 0,

if v > 1/2 and «ag is small enough. This is a bit too crude but shows it will be crucial to get good
estimates on u(s,-) near points where it is small (and also shows we are already forced to assume
v > 1/2). Theorem 2.3 implies that

(2.51) ~v > 1/2 implies u(t,-) is £&-Holder continuous near its zero set for £ < 1,

and so allows us to bound |u(s,y) — u(s,Zo)|. Use this in (2.50) and take 0 < ap < 1 to bound
I1"(t) by

t
ap '~ / / / Ca s @41 (y) W (x)dydards
0

< Ctay 170~ 0 as n — oo,

if ¥ > 1 and we choose «ag, & close to one. Of course v > 1 is not a viable choice but this shows
we are now getting close, and in fact in the coloured noise setting of (MPS06) the above argument

13



sufficed for the results there, although there was some work to be done to implement this idea
carefully.
To increase our control on u(s,-) near its zero set we will improve (2.51) to

(2.52) v > 3/4 implies u/'(s, ) is &-Holder on {z : u(s,x) ~ u/(s,2) ~ 0} for £ <1,

where u' denotes the spatial derivative. Corollary 5.9 below with m = m + 1 is the closest result
which comes to a formal statement of the above, although the condition on + is implicit.

We first make the case that for v < 3/4, we cannot expect the following slight strengthening of
(2.52):

(2.53) u(s,-) is C% on {z : u(s,z) ~ u/(s,x) ~ 0}.

A formal differentiation of (1.5) (recall b= 0 and u is the difference of the X*’s) gives for u(t,z) ~
u'(t,x) = 0,

@50 W)= [ [ A= oo X ) = oo X )V ).

If o is a Weierstrass-type function that realizes its Holder modulus at typical points we have
|0 (5,9, X (5,9)) — 05,9, X*(5,9))| = Llu(s,y)|",

and for s < t and very close to t, we have by a Taylor series expansion in space,

(y—2)

uls, )] ~ " (5,)|

Use these approximations in the finite square function associated with the right hand side of (2.54)
and conclude that

u'(s,x — )22y
OO>/ [0 o[ >£<y 1 gy
t—0

~ clu”(t,x \27/ /pt s 2(t—5)72 = (t — ) 122M dzds
tf

~ el (1, 3) | / (t - 52 ~bds,

t—4

which implies v > 3/4.
We next show how (2.52) will lead to (2.50). Taking further liberties with I"(¢) and recalling
my = ad®, we get

(2.55)
t
() ~ a, '~ Z/ //1(|u(8,x\ < an, ' (5,2) ~ Fap))u(s, y)| PP (y) U (2)dydads
8 0

> 15
B
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where 5 indicates we are summing over a finite grid 8; € |0, 3] (B to be determined below) and
are bounding u/(s,x) in the appropriate grid interval and its mirror image in the origin. As the
sum is finite we may fix 3 € (0, 3] and consider only u/(s, ) ~ a2. The value 8 = 0 is a bit special
but should be clear from the argument below. A Taylor series expansion and (2.52) with £ ~ 1
show that for y as in the integrand of Ij(¢),

lu(s,y)| < Ju(s, )| + (Ju/(s,z)| + Lly — 2[°)|y — x|
<ap,+ a£+o‘° + Laﬁo(gﬂ)

€ag)al
< Cm(fw)ﬂy

where a comparison of the first and last terms in the second line leads naturally to ap = 1/2.
Substitute this into the integrand of I7, integrate out y, and conclude

3 ¢
(2.56) I3(t) < Cayz *THE) / / (s, 2)] < an, (s, 7) ~ ) (x)dzds.
0

For 8 = /3 the precise meaning of u/(s,z) ~ df is 0 < u/(s,z) < al and we have from (2.56),

n Bty +y(2618)
(2.57) I5(t) < Ctaz 7 :

Consider 0 < 8 < (3. Recall that {z : U ,(z) > 0 for some s < to} C [~ K7, K1], let
S,(s) = {zx € [-K1, K] : |u(s,z)| < an,u'(s,z) > al}

and |S,(s)| denote the Lebesgue measure of Sy (s). From (2.52) we see that if x € S,(s), then
u'(s,y) > § if |y —z| < Lilag/g, and so by the Fundamental Theorem of Calculus,

u(s,y) > an if 40177 < Jy — x| < L71dP/E.
A simple covering argument now shows that |S,(s)| < ¢(L, Kl)a}l_ﬁayjﬂ/g and (2.56) implies

I5(t) < Ctar?SJW*'Y(Qﬁ/\é)JrLg,%
(2.58) < Ctav(lJr(ZB)/\g),%,B(H%)
. _ : |

So from (2.57) and (2.58) we see that lim,, .o I () = 0 will follow for all § < B if

Y14 (26 A1) > g and  y(1+ (28A1)) > % + 28,

that is, v > (14 (268 A 1))71(3 v (3 + 23)). The right-hand side is minimized when 3 = 1, and
leads to v > %, as required, and also establishes the range 0 < 3 < %, which will be used below.
The above heuristics show that v > 3/4 and the regularity of u given in (2.52) (or (2.53)) is
optimal for our approach. If we try weakening the regularity condition on u, the above discussion
shows we would have to increase 3/4 to show that I"(¢) — 0. The earlier discussion shows that a

strengthening of the regularity on u would require increasing 3/4 as well.
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A major obstruction to (2.52) is the fact that we cannot expect u'(s,z) to exist as soon as
u(s,z) # 0 (and don’t even know this is the case for u(s,x) = 0). So instead, if D(r,y) =
o(r,y, X (r,y)) — o(r,y, X%(r,y)), then we will use (1.5) to decompose u as

t—an t
@) uta)= [ [ow—oDeWnan + [ [ =Dl W )
= U, (6, 2) + U, (L, ).

U1 q, 1S smooth in the spatial variable and so the above arguments may be applied with u/l an (t, )
playing the role of u/(t,z), while ug,, and its increments should lead to small and manageable
error terms. Proposition 5.14 gives the required bounds on the increments of us o, and (as noted
above) Corollary 5.9 is the analogue of (2.52) for u} ,o (o € [0,1]). (The reason for the extension
to ag is discussed below.) The proofs of these results are incorporated into an inductive proof of a
space-time bound (P,,) for u(t, z) when (¢,z) is close to a point (fg,2) where

(2.60) |u(to, #0)| < an and [u] 44 (fo, &0)| < a).

n

If

(2.61) d = \/|t — to| + |z — 0|,

then, roughly speaking, (P,,) bounds |u(t, z)| by
(2.62) Al + 6l

where 4,, increases in m and equals 2 for m large, and £ < 1 as usual. When 4,, = 2 this does
capture the kind of bound one expects from (2.52). The reader may find a precise statement of
(P,,) prior to Proposition 5.1 (the statement of its validity).

The m = 0 case will be an easy consequence of our improved local modulus of continuity,
Theorem 2.3. Note that (2.29)) implies

(2.63) ID(r,y)| < Roe™¥lju(r,y)|.

The inductive proof of (P,,,) proceeds by using (2.63) and then (2.62) to bound the square functions
associated with the space-time increments of u’l ao and uz 4o for points near (to, %0) as in (2.60)(recall
(2.59)). These give good control of the integranﬁs of these square functions near the points where
they have singularities. This will then lead to Corollary 5.9 and Proposition 5.14, our “mth order”
bounds for the increments of u’l ag and ugqa. We then use the slightly generalized version of (2.59),

(2.64) u(t, ) = uy o (t, ) + ug e0 (t, )

to derive (Pp,+1). At this point we will optimize over « since decreasing « increases the regularity
of uy 4o but increases the size of the error term usg 4,o. The optimal choice will be so that aj, ~ d,
where d is as in (2.61).

There are at least two issues to address here. First, how do you control uia% (t,z) when all you

know is |u} , (t,7)] < al? Second, how do you control the time increments of u1,q0 when you only
have good estimates on the spatial derivatives? The first question is answered in Proposition 5.11
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which will give surprisingly good bounds on [u} 4a (to, Z0) — ul (to,#0)|. The second question is
answered in Proposition 5.13, where the key step is to note (see (5.70)) that for ¢ > ¢/,

1,0 (8, ) — a5 (¢, 2)| ~ | Prop (U103 (', ) (@) — ur,ag (¢, 7)),

where P, is the Brownian semigroup. The fact that the Brownian semigroup, P, f, inherits temporal
regularity from spatial regularity of f will give the required regularity in time.

A critical step in the above argument was finding a form of (P,,) which actually iterates to
produce (Pp41). Note also that although the required bound on Ij(t) (see (2.56)) only required
good spatial estimates for u(s,-) near points (s,x) = ({9, o) as in (2.60), the iteration of estimates
requires an expansion in both space and time.

Turning now to a brief description of the contents of the paper, we first set b = 0. In Section 3
we reduce (Hp) and (H2) to a result (Proposition 3.3) on control of the spatial increments of
ugq0 and size of u’l’a% on relatively long intervals near a spatial point where |u(s,Zg)| is small

and u’l’aa (s,20) =~ ag. This includes the covering argument sketched above. Section 4 gives some
integral hounds for heat kernels and their derivatives which will help bound the square functions
of the increments of u’l’a% and ugqa. The heart of the proof of Theorem 1.2 is given in Section 5
where the inductive proof of (P,,) is given. As was sketched above, this argument includes good
local expansions for u} ;o and ug qq near points where |u| and |uj 4| are small, although the (easier)
proof for ug 4o is deferred until Section 7. These expansions, with m large enough, are then used in
Section 6 to prove Proposition 3.3 and so complete the proof of Theorem 1.2 for b = 0. In Section 8
we describe the relatively simple additions that are needed to include a Lipschitz drift b in the
argument already presented.

3 Verification of the Hypotheses of Proposition 2.1

We assume throughout this Section that b = 0-the relatively simple refinements required to include
the drift are outlined in Section 8. Let X', X2 be as in Section 2, u = X! — X2, and assume the
hypotheses of Theorem 1.2 as well as (2.29). If D(s,y) = o(s,y, X'(s,y)) — o(s,y, X?(s,y)), then

t

(3.1) u(t,z) = / /pts(y —x)D(s,y) W(ds,dy) a.s. for all (t,z),
0

and by (2.29),

(3.2) ID(s,9)| < Roe™Mju(s, y)[".

d will always take values in (0, 1]. Let

(3.3) u15(t, x) = Ps(up—g)+)(w) and ugs(t, z) = u(t, z) — u1s(t, ).

Since Ps : Cyepy — Ciem is uniformly continuous (by Lemma 6.2(ii) of (Shi94)), u; s and ug s both
have sample paths in C(R, Ciep,). (3.1) implies that

w(toz) = /[/O(téﬁ /p(t6)+5(y — 2)D(s,y)W (ds, dy)] ps(z — w)dz.
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A stochastic Fubini argument (Theorem 2.6 of (Wal86)) then gives

t—9
(3.4) us5(t,x) = / /pt_s(y —x)D(s,y)W (ds,dy) a.s. for all (t,2) € Ry x R.
0

(The above identity is trivial for ¢ < § since u(0,-) = 0.) The expectation condition in Walsh’s
Theorem 2.6 may be realized by localization with the stopping times {Tx }, working with D(sATk),
and letting K — oo. It follows that

t
(3.5) ug5(t,x) = / /pt_s(y —x)D(s,y)W (ds,dy) a.s. for all (t,2) € Ry x R.
(t=6)*

Hence ;s (j = 1,2) define jointly continuous versions of the right-hand sides of (3.4) and (3.5).

Notation. If s, > 0 and z € R, let Gs(s,t,2) = Py_g)+45(u(s—s)+)(z) and
Fs(s,t,x) = —%G(g(s,t,x) = —GY(s,t, ), if the derivative exists.

Lemma 3.1 Gj(s,t,z) exists for all (s,t,z) € Ri x R, is jointly continuous in (s,t,z), and
satisfies

(s=6
(3.6) Fs(s,t,x) = / /p/(tvS)_r(y —z)D(r,y)W(dr,dy) for all s a.s. for all (t,z).
0

Proof. Since Gs(s,t,x) = [ pu_g+1s(y — )u((s — 0)*, y)dy and

(3.7 sup e Wu((s — 6)*,y)| < oo for all T > 0 a.s.,
s<Tyy

a simple Dominated Convergence argument shows that

(3.8) Gs(s,t,z) = — /p/(ts)++5(y —z)u((s —6)",y)dy for all (s,t,7) a.s

Another application of (3.7) and Dominated Convergence gives the a.s. joint continuity of the
right-hand side of (3.8), and hence of Gj.

To prove (3.6) we may assume without loss of generality that ¢ > s > 6. From (3.8) and (3.1)
we have w.p. 1,

s—0
Gs(s,t,z) = /pt ses(y / /ps s—r(z —y)D(r,z)W (dr, dz)} dy a.s.

Now use the stochastic Fubini theorem, as in the derivation of (3.4) above, to see that

Gilosta) =~ [ [ ey~ 25 1z )] Dl W, 02

_/OS é/pé_r(z—x)D(r, )W (dr,dz) a.s.

In the last line we have used Dominated Convergence yet again to differentiate through the integral
in the Chapman-Kolmorgorov equation. As both sides of (3.6) are continuous in s we may take
the null set to be independent of s. ]
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Remark 3.2 Since G;(t,t,z) = u1,5(t,2), as a special case of the above we see that uy s(t,z) is
a.s. jointly continuous and satisfies

(t—5)+
(3.9 uy s(t,x) = / /pt sy —x)D(s,y)W(ds,dy) a.s. for all (t,x).
Definition. For (t,z) € Ry x R,
it 2) () = nf{y € [z — Vam, 2 + v/ fu(t,y)] = inf{lut,2)| : |2 — 2] < Van}}
€ [z — Van, x4+ ay).

It is easy to use the continuity of u to check that Z,, is well-defined and B(R; x R) x F-measurable.
We fix a Ko € N2 and positive constants satisfying

1 3
']. N - N
(3.10) 0<51<100( 4) 0<Eo<100

We introduce a grid of 3 values by setting

L = L(eo,e1) = [((1/2) — 6e1)/e0],

and
1
(3.11) B = i50€[0,§—651], a; =2(B; +¢e1)€0,1], i=0,...,L,
1
BrL+1 = 5 el

Note that 3= 3;,i=0,..., L+ 1, satisfies

(3.12) 0<B<=—¢

N =

If s > 0 set

R Uy
Tno(s) = L+ lal < Ko, (s, @771)] < g (5,05, 2)) > 2},

BL

N a
Tuas) = o+ Jal < Ko (1 @290} < g0t (520 (5. 0)) € 0. 1},

and fori=1,...,L — 1 set

, . aptt o
Jn,i(s) = {fc‘ x| < Ko, [(us, @) < an, uy,, (5, 0(s, 7)) € [T’ 1 ]}-

Ifto >01is asin (Hy) and i =0,..., L, define

Ini = {(5,:1:) :0<s, € Jn,i(s)},

and if 0 <t < tg, let
_§_2
I't)=ap? ™ / //1(]7”(3 )|u(s y)\%’@m"“( VW (x)dydzds.
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Let
n _§_2 m
I ( n 2 "/ // Lan (s,Zn(s,2z)) > 0)1(|(us, PT"*1)| < ayp)

X |u(s, y) |2 @+ ()W (x)dydads.
Then to prove Proposition 2.1 it suffices to construct the stopping times {Upsp, = Upin.i, : M, 0 €
N} satisfying (H;) such that
(3.13) for each M € N, lim E(I7(to A Unn)) = 0.
n—oo

Note that (3.13) implies (H3) by symmetry (interchange X; and X»).
Our definitions imply

L
IT(t) <> IP(t) for all t < o,
=0

and so to prove (Hs) it suffices to show that for i =0,..., L,

(HQJ') for all M € N, lim E(Iln(to/\UMm)) = 0.

n—oo

Notation. I,(3) = ah ™.
Now introduce the related sets:

Tno(s) ={z € [~Ko, Ko+ [{us, @1)] < ap, ot

for all 2" € [z — 51,,(Bo), = + 50, (5o)],
[t g0 (5, 2") =ty g0 (5,2")] < 271 (2’ — 2" v ag 20U 721)
for all 2’ € [x — 4\/an, z + 4/a,), 2" € [2' — 1.(Bo), 2" + 1.(Bo)],
and |u(s,z')] < 3a1750/2 for all &' € [z — \/an,z + \/an]},

% (s,2") > ag1/16

Tn,1(s) :{1‘ € [~ Ko, Ko : [{us, DF)| < ap, U] o (5,2")] < aj

for all ' € [z — 51,(8L), = + 50,,(8L)],

and |U2’a2L (8, .1'/) o “2,a2L (8, ZC”)| < 2775G§L+1(|$/ _ m//| V. aszﬁL(lf’Y)*m)

for all 2’ € [z — 4y/an, x + 4y/ay), 2" € [z’ — 1,(BL), 2’ —l—E(ﬂL)]},

and fori e {1,...,L — 1},
Jnils) ={ € [~ Ko, Kol : [{uy, ®2)| < an, ) o (5,2') € [ /16, 0]

for all 2’ € [z — 51,,(3:), z + 51, (5:)],

and ‘u27a§i(87x/) — Uy 40 (s,2")] < 2—75agi+1(|x/ . x‘”\ Y a;‘{l—Qﬂi(l—’y)—al)

for all 2’ € [z — 4y/an, T + 4v/ay), 2" € [2' — 1,(3:), 2’ +E(ﬂi)]},
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Finally for 0 < ¢ < L, set 3 R
Jni=A{(s,z) : s> 0,2 € Jpi(s)}.

—epe1/4

Notation. nps(e1) = inf{n € N : a5 < 2774} ng(eg,e1) = sup{n € N : /@, < 27% +
where sup() = 1.
The following proposition will be proved in Section 6.

Proposition 3.3 jn,i(s) is a compact set for all s > 0. There exist stopping times
{Umn = Unn,i, : M,n € N} satisfying (Hy) from Proposition 2.1 such that for i € {0,..., L},
JIn,i(s) contains Jy, i(s) for all 0 < s < U, and

(3.14) n>n]\/[(€1)\/n0(50,€1).

Since Ko € NZ51 wag arbitrary this proposition implies that there exist stopping times satisfying
(Hy) such that the inclusion J, ;(s) D Jy.:(s) holds up to these stopping times for n sufficiently
large. This inclusion means that given a value of the derivative of u; 4, at some point in a small
neighborhood [z — \/ay,, x + \/a;] of x where |u] is small, one can guarantee that the derivative of
uy 4o (for a certain «) is of the same order at any point in a much larger neighborhood of x (note
that 1,(3) > Vap for 8 < % — 6¢1). Moreover we can also control us e on those long intervals.
Our goal now is to show that this implies (Hy;) for i = 0,..., L. The next three lemmas provide
necessary tools for this.

Throughout the rest of the section we may, and shall, assume that the parameters M,n € N
satisfy (3.14), although the importance of ng in (3.14) will not be clear until Section 6.

Lemma 3.4 Assume i € {0,...,L}, x € J,(s) and |2’ — x| < 4,/a,,.

(a) If i > 0, then |u(s,z") —u(s,2’)| < QaEi(\f’ — 2|V a?fmi(l*w*sl) for all |z" — 2’| < 1,(8;).
(b) If i < L, and a}, P07 < 1o — /) <T(8,), then

> 2_5(1%“(1:” -2 afa’ >4,

< 2—5agi+1 (l‘” . 1‘,) if " < 2.

u(s,x") —u(s, ) {

Proof. (a) For n,i,s,z,2’, 2" as in (a), we have (since f; + be1 < %)
(3.15) |z" — 2| V|2 — x| < 51,(5).
We can therefore apply the definition of jm and the Mean Value Theorem to conclude that
lu(s,z") —u(s,2")| < |u1’azi(s,x”) - u17agi(s,x/)| + \uZGgi(s,x”) - u27agi(s,x/)|
<alia" — 2| + 2*75a£"+1(|a:” —&'| v @)~
< 24P (j2" — 2’| v a2 men),

(b) Consider n,i,s,x,2’, 2" as in (b) with 2”7 > 2’/. We again have (3.15) and can argue as in (a)
to see that

i (87 x/)

u(s, @) —u(s, @) = uy 4oi (5,27) —uy o (5,2") + g 4oi (5,2") = uy 4o

2 (agi“/lG)(az” . x/) . 2775agi+1 (Qj// . Jj/)
> (a1 /32) (2" — o).
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The case " < 2’ is similar. B

Notation. I,(3;) = (65an ") v al 20071 B (s 2) = [ &1 (y — z)u(s, y)dy.

Lemma 3.5 Assume i € {0,...,L —1} and (s,z) € Jni-
(a) If 1n(B;) < & — | < 1n(Bi), then

i > 2750 (7 — if >z,
Fals, 8) = Fuls, ) {§ 2—%%'“(92 —z) ifr <.
() [& = 1a(Bi)s @ = W (B)] U [ + 1 (B2), & + Tn(5)] € Jni(s)°
Proof. (a) Assume 7 € [x + 1,,(3:), 7 + 1,(8;)]- Then
Van
(3.16) Fy(5,7) — Fy(s,2) = / B (2) (us, & + 2) — u(s, @ + 2))dz.
~an

For |z| < \/an, let 2" =% + z and 2’ = x + 2. Then |2’ — x| < \/a,, and
o — a2 =% — 2 € [l,(3),1.(3)]
Therefore Lemma 3.4(b) and (3.16) imply

Van

Fo(5,) — Fo(s,7) > / B ()25 5 (7 — 2)d

—Van
= 2_5a5i“(§: — ).

The proof for & < z is similar.

W) IfZ €[z —1,(B), 2 — L(B)] U [z + 1,(8:), x + 1,(6;)], then

[Fn(s,2)| 2 [Fu(s, ) = Fu(s, 2)| = [Fa(s, 2)|

> 2754y ,(6;) — an (by (a) and (s,2) € J,;)
33

> —apy.

Therefore & ¢ Jy, ;(s). [

To ensure that (b) is not vacuous we obtain some crude lower bounds on the interval given
there.

Lemma 3.6 Ifi € {0,...,L}, then

1 (66) < Vam < 5Tn(6)
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Proof.
(ﬂ) -1/2 _ (65 ﬂz+1)\/ n__ 28;(1—v)—e

5e 2’7_§_51 .
< (65a,°') Va, °* (since B; < 1/2)
<1

by (3.10) and because a>t < 2720 by (3.14). This gives the first inequality. For the second one,
use 3; < £ — 621 and (3.14) to see that

7= -1 $—Bi—be1 €1
vanln(ﬂi) = Qn <a;' < 1/2.

Let |A| denote the Lebesgue measure of A C R.
Lemma 3.7 For allic {0,...,L —1} and s >0,
| i ()] < L10KoLn (Bi) ™ ()

Proof. Fix s, i as above. Let Z,, ;(z) = (z — o (8:), 2 +1.(6;)) C Tni(z) = (& = 1,(8:), z +1.(5)).
This inclusion follows from Lemma 3.6. The compactness of J, ;(s) (Proposition 3.3) implies there
are z1,...,2Q € Jni(s) so that J,(s) C U?:lln,i(mj).

Assume that for some k # j, |z — ;| < 1,(5;)/2. We claim that Z,, ;(z;) C Iy, ;(x1). Indeed, if
Yy € Inﬂ-(xj) then

ly =zl <y — 5] + |z — xk] < 1(6) +1(8:)/2 < 1.(61),
the last by Lemma 3.6, and the claim is proved. Lemma 3.5(b) implies
Ini(8) 0 (Tni(xr) — To(r)) = 0,
and so the above claim gives
Tn,i(25) N Jni(s) C Ty ian) N Jpi(s) = Lo i(an) N Ty i(s).

Therefore we may omit Z,;(x;) and still have a cover of J,;(s). Doing this sequentially for

x1,...,TQ, we may therefore assume that
2k — zj| > 1,(31)/2  for all k # j.
) C [~ Ko, Ko, this implies Q < 2Ko(1,(83;)/2)~" + 1, and therefore
[Jni(5)] < (4KoLn (B:) ™" + 1)20(8:) < 10KoTn(8:) ™ 1n(5:)-

Since each z; € jm(s

Proof of (Hy). Fix M € N. Recall from our discussion after the definition of J,; sets that it
suffices to show that for all i € {0, ..., L},

(HQJ‘) lim E( ‘n(tO/\UM,n)) =0.

n—oo
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We will in fact show that if we strengthen (3.14) to

2
(3.17) n>nM(51)\/no(€o,€1)\/E—,
1

then we have the stronger I.°° bound

w

(3.18) IMto A Unpn) < e (W)t Koan 2,

Wthh clearly implies (Hs;) since v > 2. Proposition 3.3, Supp(®; ™) C [x — \/@n, = + \/an) and
2 < gy (by (3.17)) imply

(319) Iln(to/\UMn <a;7*51 /to// 3<UMn i (S( )‘U(S y)‘Z'y
x |y — x| < \fan) @0+ (y)V,(2)dydads.

Consider first (3.18) for i = 0. For x € J,,0(s) and |y — x| < \/a,, we have |u(s,y)| < 3al) 50/
and so from (3.19),

_3_ o _
I2(to A Unin) < an? 182702020 g / T (s)[ds
0

IA

_3_
an? 327010750 || W || o to10Koa, 2L ((65a1750) v a) 1) (by Lemma 3.7)
_3
< cl(‘Il)toKoa? QG;'YEOi?El
_3
< c1(W)toKoan *,

as required, where (3.10) is used in the last two lines.
Consider now i € {1,...,L}. Assume x € J,, ;(s) and |y—x| < \/a,,. We have |{us, ®;""")| < ay,
and

Supp(®z+) C & — an,  + /an].

Using the continuity of u(s, -), we conclude that
u(s, Zn(s, )| < an,
and of course we have |&,(s,z) — x| < \/a,. Therefore

(3.20) [y = Znls, 2)| < 2v/an
<1,(8) (by Lemma 3.6).
Apply Lemma 3.4(a) with 2" =y and 2/ = 2,,(s, ), to see that
[u(s, y)| < [uls, &nls,2))] + 27 (ly = Enls, )| v ag 20772
(3.21) < ay 44077 <5573

where (3.20) and Lemma 3.6 are used in the next to last inequality. Use (3.21) in (3.19) and
conclude that

_3_ 41 to
(3.22) IM(to A Unrn) < ap 5152%?”1*2)“\1:“00/ \Ji(s)lds, i =1,...,L.
0
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Assume now 1 < i < L — 1. Apply Lemma 3.7 to the right-hand side of (3.22) to see that

_3_ 41 )
Ity A Unin) < e (W)toKoay ® 00T (gm0t y g =281 =20y o=
(3.23) = Cl(q/)toKo[afll’i vV aff’i].

A bit of arithmetic shows that

1
prLi=7—5—26;(1 —v) —eo — 6ex

2

3
>27—§—€0—6€1 (use f3; < 1/2)

MUV

v 4’

where (3.10) is used in the last. We also have

3
P2i=—3 + 2y + Bi(4y — 3) — Tex

3 3
S22 Tey >y
i 2 €1 i 4’
again using (3.10) in the last inequality. Use these bounds on p;;, { = 1,2 in (3.23) to prove (3.18)
fori<:<L-1. 3
It remains to prove (3.18) for ¢ = L. For this, use the trivial bound |J, ;(s)| < 2Kj in (3.22)
and obtain

1
It AUnrn) < an® 527 2) |0 2Kt

3 1
—5—e1+7+2y(5—6e1—¢0)
c1 () Kotoan * 2

_3_
C1 (‘I’)Kotoa?;f 2 1oe1

A

IN

IN

1 () Kotoan *,

yet again using (3.10) in the last. This proves (3.18) in the last case of i = L. Having proved (3.18)
in all cases, we have finished the proof of (Hs). [

Proposition 2.1 therefore applies and establishes Theorem 1.2 for b = 0, except for the proof of
Proposition 3.3. This will be the objective of the next three sections.
4 Some Integral Bounds for Heat Kernels

If0<p<1l,geRand 0 <Ay <A; <t define

t—Ao

(t—s)q<1/\ tA )pds.

— S

Tpa(Ar, Ag, A) = /
t—Aq

These integrals will arise frequently in our modulus of continuity estimates.
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Lemma 4.1 (a) If ¢ > p — 1, then

2
. AL Ay, A) < — 2 (AANAPAITIP
(4.1) Jp,q( 1, 22, )*q—l—l—p( A Aq) 1

(b) If =1 < qg<p-—1, then
Jpvq(A17A27A)
(4.2) <((p=-1=¢) "+ @+ D)™ HAANAN)TI(A < A) + (A AA)PALTPT(Ay > A)]
(43)  <(p—-1-q '+ (g+1) HAP(AV Ay)TPHL
(c) If ¢ < —1, then
(4.4) Jpa(A1, Mg, A) < 2|+ 1| 7HA A Ap)PALTP,

Proof. For all p,q as above,

A1 A
Ipg = / uq<1 A —)pdu
Ao U

ANA1 Aq
(4.5) =1(Ag < A)/ uidu+ 1(Ay > A)/ APuIP d.
AV AsVA
(a) From (4.5),
(A A Al)q-I—l A%*p+1

Jp7q < 1(A2 < A) + 1(A1 > A)AP

+1 g—p+1
<S¢+ 1)+ (@-p+ 1) HAAAPATT,
which gives the required bound.
(b) Again (4.5) implies
(A A AT (Ay Vv A)at1-p
+1 p—1—gq
<A <A ANA)T g+ 1)+ (p—1—g) ) + 1(As > A) (A AAPATH,

Jp,q < 1(A2 < A) + 1(A1 > A)AP

which gives the first inequality. The second inequality is elementary.

(c) By (4.5),
AIT! AoV A)aH1-P
1(Ay < A) i AdF!
Ag AAPAITIP L 1Ay <A< A)—
S Tgra B NANA (B2 < V1o

(A A Ap)PALTITP
p—1—gq
(A A Ap)PALTP,

+ 1(A < Ag)

lg+1
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where we used AT < ATTN = (A A AQPATT P if Ay <A and g+ 1)1 > (p—1—¢) ! in the
last line. -

We let pj(z) = fLpi().

Lemma 4.2
()| < cant™pos(2).

Proof. Trivial. n

Lemma 4.3 (a) There is a cy.3 so that for any s <t <t ,z,2' € R,

d((t,2), (¢,2)*]
t—s

@6 [ty =y =) dy < casle— )21

(b) For any R > 2 there is a c43(R) so that for any 0 < p,r < R, no,m € (1/R,1/2), 0<s <t <
' <R, z,12 €R,
{/Jy“Wy—xP@tAy—x»—muAy—xUVMw—wd><ﬂ—sﬂ”%v2u“—xmw

d((t,z), (t', 2'))271-(m/2)
t—s ] '

(4.7) < cas(R)(t — s) Y2 exp{—m (t — )2 /33) [1 A

Proof. (a) Let f(u) = u~'/2. By Chapman-Kolmogorov, the integral in (4.6) equals

Dot —s) (0) + D2(t—s) (0) = 2py—s44-5(0) + 2(Pr—s41—5(0) — prr—sts—s(x — 33/))
< @n)TV2IFQ® — 5) + F2(t—5) = 2 (' — s+t —3)]

+ (' —s+t—s)"1/2 (1 - exp{ Q(tl_ixg_—ft,)j s) }>

(4.8) = (2n) V2T + T).

Clearly T is at most (' —s)~ /2 [1/\%}. o<u<u,0< f(u)—f(u) <u V2N —ul]
(by the Mean Value Theorem) and so

(4.9) 7 < [Va(t—5) 7 A (Ww —t))]

Use the above bounds on 77 and 7% in (4.8) to complete the proof of (a).

(b) This proof is very similar to that of Lemma 4.4 (b) below and so is omitted. There are some
minor differences leading to the factor of 1/33 (rather than the 1/64 in Lemma 4.4 (b))-e.g., the
much simpler analogue of (4.20) below has p,(w) on the right side. [
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Lemma 4.4 (a) There is a cq4 so that for any s <t <t z,2' € R,

a((t,@), (¢,
t—s

(41()) /(p:f’—s(y - .1‘/) - pi‘—s(y - x))Q dy < C4.4(t - 8)_3/2 |:1 A

(b) For any R > 2 there is a cs.4(R) so that for any 0 < p,r < R, no,m € (1/R,1/2), 0<s <t <
' <R, z,12 €R,

/er'y_’”'ly —zP(p_y(y — x) — ph_y(y — 2'))* 1y — x| > (' — s)Y27™0 v 2la’ — z|)dy

/,2))2q1=(m/2)
(W1) < era(R)E— ) 2exp{om (¥ o720 o4y [ o LLLLZTE
Proof. (a) We first claim that
ot a2t pa(w)
(1.12) [ i - zjaw = (5 - )7

To see this, first do a bit of algebra to get

(4.13) pe(w)pe(w — x) = pyja(w — (2/2))p2e ().
Therefore the left-hand side of (4.12) equals

/ el ) (w)prw — 2)dw = / D) o — (/2))dpan(z)

t2 12
x? par(T
= [ (- D) ppanZE = - (o/2)
_ (3 - xj)pm(az)
2 4 2
giving the right-hand side of (4.12).
Next we claim that
(4.14) [ dotw = o - 2w = ¢+ ) s (0)

Some algebra shows that

(4.15) Py (w)ps(w) = py(0)p_ye (w).

t+t/

Therefore the left-hand side of (4.14) equals

w2 w2
[ Fprwmdn = [ Gop w @)dupe i) = (4 ) pea(0),

t+t/

and we have (4.14).
The left-hand side of (4.10) is bounded by

@) 2 [l =) —rb sy 2Py [y 0) - vl - )Py
= 2(T1 + TQ)
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Now expand T} and use (4.12) to see that

za:2/muxy—@%y—z/m_xmm_4w+x—wa

B Pa(r—s)(0) ) (z — 2')?\ Po—s) (2" — )
= (' =)y — (=) - F5—)= & —9)2

/ -1 / (2" — x)2 /
= (' = 5)" (P2r—s5)(0) = Po—) (¥’ — x)) + mpz(tus) (z' — )

< (t/ N 8)_3/2 |:1 A (.1‘/ _ .1‘)2] + (Slip(ze_z)(t, o 8)—3/2) A ((l‘, - .1‘)2(t, - 8)—5/2)

t'—s

< co(t' — s) 3/2[1A%]

Finally let g(u , and expand T and use (4.14) to conclude

(u) =

(2 = ) pagr0)(0) + (2( — ) pagr_(0) = 2t — 5+ 1 = 5) " pr_gyu4(0)
= 2m) V2 [g(2(t' — 5)) + g(2(t — 8)) = 29(t' — s +1 —5)]

< (2m)7 22| 2(t = )72 A - 9) TR -1l

The last inequality follows as in (4.9). Use the above bounds on T} and 75 in (4.16) to complete
the proof of (a).

(b) Note that |y — x| > (t' — 5)'/270 v 2|2’ — z| implies that

tl o 1/2—7]0
(4.17) | 2yl — o' —a| 2y —alj2x T

and in particular from the second inequality,
(4.18) ly—al < 2ly - .

Assume p,r,n;,8,t,t" as in (b) and let d = d((¢,x), (¢, 2’)). By Holder’s inequality and then (a),
the integral on the left-hand side of (4.11) is at most

1-m/2
[/(pis(y —x) = py_,(y — 93’))2dy]
_ m/2
X [/ en VT Ny — PP (y—2) — Pl (y — )21y — x| > (' — )20 v 2w — w’\)dy]
7§ 3ny d2 _m
<a-s) 1A ] 2[/em”“w My — ) 4y — 2')?)

/2
x 1y — | > (' — §)/2m v 2z — x'\)dy] "

1_771

s] b2 [/em |‘w‘n1pt L) 21 (Jw] > (= 8)Y2M0)dw

Ay, 22 2
+ [ R g w1l > ¢ - 0 2)a0] "
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where in the last we used (4.17) and (4.18).
If |w| > $ul/27™ then by Lemma 4.2,

_ _ —2
pu(w)? < gu pou(w)® < cf qum e M0 py, (w)
(4.20) < c3(R)pau(w).
Use this to show that

=L lw 2 /2
[l a1l > (¢ = 52 2)du]”

EUATN _ n/2
< ar®)] [ Ml ¥y @)1(fu] > @ - )2 2)du]

< es(R)E(en V2B g 1ol ym/ap(|By| > %(t' — 5)"m)m/* (by Helder)
< co(R) exp{—m (t' — 5)~*" /64}.

Use the same bound with ¢ in place of ¢ to see that the right-hand side of (4.19), and hence of
(4.11), is at most

* exp{—(t' — 5) 2™ /64}.

cr(R)(t — s)®M/4(t — 5)73/2 [1 A td2 }1_"1

The result follows because (t — s)>"/4 < R. [

5 Local Bounds on the Difference of Two Solutions

This section is devoted to establishing the local bounds on the difference of two solutions to (1.5).
These bounds are crucial for the construction of the stopping times in Proposition 3.3, which is
then carried out in Section 6. We continue to assume throughout this Section that b = 0. Recall
that X', X2 are two solutions as in Section 2, u = X! — X2, and we assume the hypotheses of
Theorem 1.2 as well as (2.29).

We refine the earlier set Z (N, K) and define, for K, N,n € N and 3 € (0,1/2],

Z(N,n, K, B)(w) ={(t,z) € [0,Tx] x [-K, K] : there is a (fo,#0) € [0,Tk] x R such that
d((I?Oai‘O)a (t,l‘)) < 2_N7 ‘u(7§0)£‘0)‘ < Gn N\ (v an2_N)> and |u/1,an (£0>£0)‘ < ag}?
and for § = 0 define Z(N,n, K,0)(w) = Z(N,n,K)(w) as above, but with the condition on

\u'Lan (tAO, i0)| omitted.
Recalling v < 1, we let
(v—1/2) A —y™)

(5'1) TYm = 1 +1, Ym=Ym A2
-7

so that we have the recursion relation

(5.2) Ymt1 =VVm +1/2, v =1
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Clearly 7, increases to Yoo = (v —1/2)(1 =)' +1 = (2(1 —4))~! > 2 and so we may define a
finite natural number, m > 1, by

(5.3) m = min{m : Y41 > 2} = min{m : vy, > 3/2}.

Definition. A collection of [0, o0]-valued random variables, {N(a) : a € A}, is stochastically
bounded uniformly in « iff
lim sup P(N(«) > M) = 0.
M—0o0qcA

Finally we introduce the condition whose proof will be the goal of this section. Recall that K
is as in (2.36).
Property (P,,). For m € Z, we will let (P,,) denote the following property:
For any n € N, &, € (0,1), K € N5t and g € [0,1/2], there is an Nj(w) = Ni(m,n, &, e0, K, 3)
in N a.s. such that for all N > Ny, if (t,z) € Z(N,n, K, 3), t' < Tk, and d((t,z), (t',2')) <27, then
u(t',2')| < a; =02 N¢ [(\/av 9=NYim=1 1 481 (m > 0)].

Moreover Ny is stochastically bounded uniformly in (n, ().

Here is the main result of this section:

Proposition 5.1 For any m <m + 1, (P,,) holds.

Proof. (F) is an easy consequence of Theorem 2.3, as we now show—and we may even take €9 = 0.
Let £ € (0,1) and apply Theorem 2.3 with & = (£ + 1)/2 in place of £&. If (t,x) € Z(N,K)(D
Z(N,n,K,$3)) and (f,20) is as in the definition of Z(N, K), then (fg,2¢) € Z(N, K + 1) (we need
K +1 since |#o| < K +1). Theorem 2.3 implies that if N > No(¢', K+1)Vv4(1-&)~1 = N1(0,¢, K)
(it doesn’t depend on (n,3) and there is no ey), then

u(t, )] < 27N 4 Ju(fy, 20)| < 217N
If (#,2) is as in (P), the above and Theorem 2.3 imply
fu(t',2)] < [u(t, @)] + [u(t',2') —u(t,z)] < 217N 427N < 227N < 97 NE,

where the last inequality holds because N > 4(1 — ¢)~1. (P,) follows.
The induction step will require some additional continuity results which also will be used directly
in the next section. We start by noting that (P,,) easily gives some global bounds on |u|.

Lemma 5.2 Let 0 < m < m + 1 and assume (Pn). For any n,&,e0, K and B as in (Py,), if
dy =27V Vvd((s,y), (t,z)) and \/Cs2(w) = (4a,,%0 + 22N 2K eK) then for any N € N,

(5'4) On {w . N Z Nl(m7 n’ 5? 607 K7 /8)7 (t7 x) 6 Z(N7 n? K7 ﬁ)}?
we have
(5.5) lu(s,y)] S\/Cg,,ge‘y_”:@?v

X [(\/an Vdy) L 1(m > 0)d?| for all s < Tx and y € R.
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Proof. Assume N,w,t,x are as in (5.4).

Case 1. d = d((s,y), (t,z)) < 27N,

If d > 27N choose N; < N’ < N so that 27V "1 <« d < 27N and if d < 27N set N’ = N. Then
(t,z) € Z(N',n, K,$3), d < 2N < 27N v 2d < 2dy and so by (P,,) for s < Tk,

[u(s,y)] < a7 027N [(am v 2Nt 4 1(m > 0)a
< 4a;*(dy)* [(\/an Vdy) ™ 1(m > O)ag}.

Case 2. d > 2N,
As K > Ky, for s < Tk,

lu(s,y)| < 2KelVl < 2K el (g2Nr)e+7m=1
< 2K efelv=e192M (G ) e im =1,

The Lemma follows from the above two bounds. n

Remark 5.3 If m = 0 we may set g = 0 in the above and Ny will not depend on (n,eq,3) by the
above proof of (Py).

To carry out the induction we first use (P,,) to obtain a local modulus of continuity for Fj.
From Lemma 3.1, we have for s <t <t and s’ <

|F5(s,t,x) — Fs(s',t',2")| <|Fs(s,t',2") — Fs(s',t',2")| + |Fs(s,t',2") — Fs(s,t,2)|

(5.6 - /((S_ [ ety = D)W ()

(s—=8)*t
[0 =)~ By~ ) D)Wy
0

This decomposition and (3.2) suggest we introduce the following square functions for 79 € (0,1/2)
and 0 € (0,1], and s <t <t ¢ <t

(svs' =)t

Qrs(s, s, t',a") = /

SAs'—8)T

/ Py — 2 2e2P 8l )2 dydr,
Qi1 (s, t.2,',2') / / (ly—al > (' = )20 v 2z — o)
X (pé’—r(y - .I‘/) - péfr(y - x))ZeZRl‘y”u(rv y)|2’ydyd7ﬂ7
(s—8)T
Q572,5,770(87t7x7t/7x/) = / /1(|y - x‘ < (t/ - T)l/ZinO \ 2|x - x/|)
0

X (py_p(y — @) — pi_, (y — 2)) 22 (r, y) [P dydr.
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Lemma 5.4 For all K € NEKI,R > 2 there is a c5.4(K, R) and an N5 4 = No(K,w) € N a.s. so
that for all ng,m € (1/R,1/2),6 € (0,1],8 € [0,1/2] and N,n € N, for any (t,x) € Ry xR, on

(5.7) {w: (t,x) € Z(N,n,K,3),N > N54},

(5.8)
Qs1.0m (s, t,z,t',2") < 5424 N54(@) d2*’71+(d/\\/<_5)27"1(573/2(d/\1)47] for all s <t <t and 2’ € R.

Here d = d((t',2'), (t,x)).
Proof We let N54(K,w) = Ni(0,3/4, K), that is we recall from Remark 5.3 that for m =0, N;
depends only on ¢ and K and we take £ = 3/4. We may assume J < s as the left-hand side is 0
otherwise. Then for w as in (5.7) and s <t < #, Lemma 5.2 with m = 0 implies
QS71’5’770 8 t x t/
(s=&)*t
< Csa(w / / (ly — | > (' =)' 270 v 2le — /) (P, (y — @) = pi, (y — 2))°

x el 2lv=el(9=N v/ (V=7 + |y — x[))" 2 dyds

(s=&)*
< Csa(w) / / 1y — 2] > (¢ — )20 v 2z — 2/|) P (4 — 2') — Pl (y — 2))?
0

% e21~21K€2(R1+1)Iy—:c|[2K~y3/4 +2ly — x\73/2]dyds

2 q1-n1/2
d } m d
t—r

.

< Crat)eo(s. ) [ Ty e {0 —

In the last line we have used Lemma 4.4(b). Use the trivial bound (recall r < s <t <)

exp{ _771(15'6—4?”)—2770 } < eXP{W} N eXP{W}’

and then Lemma 4.1 in the above, to bound Qg 1,4x,(s,t,z,t',2’) by

s—§ 2 _ / —2
3 d 1-m/2 — t—t "o
Csa(w)eo (K, R)| / (k=) 1A —] drexp{%}
0

-T

+ /085(t — ?“)73/2 (1 A %) /2 exp{ —_m(tlggr)_%o }dr]

_ I 4\—2m0 s—6 2 \1-n/2
S 05'2(‘0)01([(’ R) |:(d2 A 5)1*771/2573/2 eXP{M} =+ CI(R)/ (1 A d ) n dr]
128 0 t—r

< Csa(w)ea(K, R) [(d A \/5)27771 (573/2(d A 1)47 + d2—n1]'

Now since we may set g = 0 in the formula for C59 by Remark 5.3, the result follows. |
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Lemma 5.5 Let 0 <m <m+ 1 and assume (P,,). For any K € N2K1 R>2neN,g e (0,1),
and 3 € [0,1/2] there is a c55(K, R) and N55 = Ns5(m,n, R,eq, K, 5)(w) € N a.s. such that for
any 1 € (R71,1/2),m0 € (0,71/32),6 € [an,1], N €N, and (t,z) € R xR, on

(5.9) {w: (t,z) € Z(N,n,K,3), N > N55},

QS,Q,(;J]O (57 tu x, t,7 Jj,)

(~—3
< s 5(K R)[ —2¢e0 4 24N5 5] |:d2 m [5](\7')/771*3/2)/\0 + (Ziﬁ’yé](\}y 2)/\0]
(A VOGR4 2|

foralls<t<t <K, || <K+1.

Here d = d((t, ), (t',2")), dv =d V2™ and Sy = § V d%,. Moreover Ns 5 is stochastically bounded
uniformly in (n,3).

Proof. Let { =1 — (8R)™! € (15/16,1) and define N55 = Ni(m,n,&, 0, K, 3) so that the last
statement is immediate from (P,,). We may assume s > §, or the left-hand side is 0. As d > a,,
when we use Lemma 5.2 to bound u(r, y) in the integral defining Q5.2 5,,, we have d((r,y), (t,z)) >
V/arn, and so we may drop the max with \/a,. So for w as in (5.9), s <t < ¢ and [2/| < K + 1,
Lemma 5.2 implies that

Q5257}0 57tax t Jj)

s—0
< 052/ /Pt/ — ) — P (y — 2)) 2R K 220K 4D g
) 27NV ((t =) 2 (= )Yy (2l — 2))))2E
- 2
x {[2—N V(=) =)y 2z - ) ag} " dr.

Let v/ = (1 — 2np). Recall that t < ¢/ < K, |z| < K and |2/| < K + 1, so that v/t —r <
K™t —7)Y/27m0 and |z — 2’| < (2K + 1)|z — 2/|*~2%. Use this and Lemma 4.4(a) to see that the
above is at most

s—09 2
Cl(K)C5.2/ (t— 7“)_3/2 (1 A td—) (2—2N"/ vt - r)“’, vz — x’|27/)5
0

- T
(5.10) X [2—2%(%—1) V(' =) Om= 1)y gl — g2 Gm=1) 4 0267) gp
Note that
(5.11) 272Ny (=) V[ — 2P <27 v (=) < 20dY v (t—) ],
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Use this to bound the summands in (5.10) and conclude that
QS,2,5,170(87 t) T, tlv .1‘/)

s—0 d2
< cQ(K)cs,Q/ (t — r)*3/2(1 As
0

- T

Nk v (=)
X [[cﬁv V (t — )] Ol a%’%} dr
tng d2 5
< _ \Y'E-3/2 i _ )Y (Gm—1) 26
_cQ(K)cs,g{/O (£ =) 2 (1A =) [t =) + a2 dr
e [ (0 Va6 1 )}
0 t—r N N n
(512) = CQ(K)C&Q{Il —‘1_[2}
Apply Lemma 4.1(c) to see that
(5.13) I < (d A VB2 ¢ [y O 20

In the integral defining I; we may drop the minimum with 1 and, adding a log(1/dx) factor just
in case the exponent on v is —1, we arrive at

t t
I < & [ / oY G e =52y, 4 26 / uv’575/2du]
4

N

(5.14) < ¢3(K)d?log(1/8y) 5%’(%4—5—1)—3/2}A0 +a%m5%'g—3/2mo}

The log 1/8y is bounded by ¢(R)d~"/2. A bit of arithmetic shows that our conditions 79 < 1,/32,
1—¢=1/8R and n; > 1/R allow us to shift £ to 1 and 74’ to 7 in the exponents on the right-hand
sides of (5.13) and (5.14) at the cost of multiplying by d~™/2. So using this, (5.13) and (5.14) in
(5.12), we get

QS,2,5,7}0 (57 tu x, t/7 Jj/)

< (K, R)C’g,,g{d%m [5][3%73/2}/\0 n aigmpf:’)/m/\o}
+ (d AVE)ETmETIR g 4 a?ﬂ%ﬁ@] }
The result follows from the definition of C59 and the identity
(5.15) [y(ym A2) = 3/20 A0 = (y7m — 3/2) AO

(use v > 3/4 here). ]

Lemma 5.6 Let 0 <m <m+ 1 and assume (P,,). For any K € N2K1 R>2neN,g € (0,1),
and 3 € [0,1/2] there is a ¢56(K) and N5 g = N5g6(m,n, R, e, K, 3)(w) € N a.s. such that for any
m € (R71,1/2),6 € [an,1], N €N, and (t,z) € Ry xR, on

(5.16) {w: (t,z) € Z(N,n,K,3), N > N5},
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QT,(S(Sv 8,7 tlv .Z‘/)

< 56K [, 220 + 28] — o1 [0 TYIN0 4 q25 YN
+1(8 < dR)d AT+ a%ﬂwd?\?]]
(5.17) foralls <t<t s <t <Tg, and|z'| <K +1.

Here d = d((t, ), (t',2")), dv = d V2™ and Sy = § V d%;. Moreover N5 is stochastically bounded
uniformly in (n,3).

Proof. Let ¢ =1 — (2R)~! and define N5 g = Ny(m,n,&, o, K, ) so that the last statement is
immediate from (P,,). We may assume sV s’ = § > §, or the left-hand side is 0. Let s = s A §'.
We again use Lemma 5.2 to bound |u(r, y)| in the integrand defining Q7 and the maximum with
\/ar can be ignored as it is less than v/# —r in the calculation below. So for w as in (5.16) and
s,t, 8t 2" as in (5.17), we have (note that r < § <t < Tk so that Lemma 5.2 applies)

QT,5(57 8/7 tlu ZE/)

5—6
<Coa [ [ty RN (T S

- 2y
X [(Q_N VIV =7+ y—x) ™t +a?| dydr.
Use Lemma 4.2, the inequality
(5.18) 2NV (VI —r+ly—al) < (2’N Ve — x/\) VT =T+ ly—a| <dy + VT —1+ |y -2,
and e2(FtDly=2l < ¢ (K)e2(F1+Dly=2'l {4 hound the above by

5—0
c1(K)Cs . / / (t' — ) paqr_p (2)22EHDIEIGRE 4 ( — )16 4 |2DE)
(s—0)*

X [(cﬁ\?(;’m_l) + (' — )Y |2 Om =Dy 4 a%’gw} dzdr

59 ~ -
< e2(K)Cs.5 / (t' = )72 + (= )] [(dﬁyﬁ"ﬁ“ + (¢ — )Gy 4 aiﬂ“’] dr
(s=0)*
5-48
< &2 (K)Cs.0{ / Ur <t = &) [ (¢ = ) Gt D32 4 @20 — €3/2 gy
(s—=0)*
5—0 -
+ / 1(r >t —di)(t — 7”)73/2d7“ {di?(%”Jréfl) + aiﬁ'ycmé} }
(s=0)*

50
/ Lr >t = di)(t' = r)7*Pdr <16 < dR)[(t' =5+ 0) s —s| A 2(t' — 5+ 0)/7]

<18 < d3)207%2(|s" — 5| A 6),
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and so

(5.20) Jo < 1(5 < d3)26732(|s' — s A §)dly 219 [vaﬂm + aiﬁ%ﬁg]
(5.21) < (KNS < d)a /2 (s — s| A o)1= 2 [d37 + a2,

In the last line we used y(1 — &) <1 - ¢ < (2R)"! <m/2 and |s' — 5] < 2K.
Turning to Ji, let p = y(fm + & — 1) —3/2 or v — 3/2 for 0 < m — 1 < m. Our bounds on

v and £ (both are bigger than 3/4) imply p € [v¢ —3/2,1/2] C [-15/16,1/2]. If p’ = p A0 and
0<e< —p, then

5—0

I(p) E/ 1(r <t —d&)(t —r)Pdr
5—0 ,
</ r <t —dZ)WVK{ —r)¥dr
(s

_, |s’—s| ,
< \/Emin<|5/ — 5|0k ,/ u? du)
0

/_ _
< 16VK|s' — s[P'*! min((‘sg S|> ! ,1) (use p' > —15/16)
N

’ r_ —p'—¢
< 16V - s+ (221)
ON

—ese+p’
(5.22) = 16VK|s' — s|' 565"
Define ¢ = p + (1 — &), so that ¢ = vy, — 3/2 or v — 3/2.
Case 1. ¢ <0.

Then p/ =p < 0. If e = (1 — &) < (2R)™! < n1/2, then € +p' = ¢ < 0 and so (5.22) applies, and
gives

(5.23) I(p) < 16VE|s' — 5" 6%, < 16K]|s' — s|' "2 6%,

Case 2. ¢ >0
Then p' = (¢ —v(1 =€) A0 > —y(1 —€). Let e = —p' < v(1 — &) < (2R)"! < m/2 in (5.22) and
conclude

1

(5.24) I(p) < 16VEK|s —s|' ¢ < 16K|s' — s|'~ = .

In either case we have shown that I(p) < 16K|s" — 8\17%5%0. This gives

(5:25) T L 0
Put (5.21) and (5.25) into (5.19) and use (5.15) to complete the proof. i

Notation. d((s,t,x),(s',t',2")) = \/|s' — s| + |t/ — t| + |2’ — z|.

Lemma 5.7 Let ¢y, c1, o, ko be positive (universal constants), n € (0,1/2), and A : Nx(0,1] — R
satisfy A(n, 27Nt < koA, 27N) for all n,N € N. Forn € N and 7 in a set S assume
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{Yon(s,t,x): (s,t,x) € RixR} is a real-valued continuous process. Assume for each (n,7), K € N,
and 8 € [0,1/2], there is an No(w) = No(n,n, K, 7, 8)(w) € N a.s., stochastically bounded uniformly
in (n,7,0), such that for any N € N, (t,x) € Ry xR, and s < K, if d = d((s,t,z),(s',t',2')) <
2N then

(5:26) P([Yrn(s,t,x) = You(s',t',2")| > d'7"A(n,27Y), (t,2) € Z(N,n, K, 8),N > No,t' < Tx)
< coexp(—crd?).

Then there is an Nj = N{(n,n, K, ,3) € N a.s., also stochastically bounded uniformly in (n,T,[3),
such that for all N > Nj(w), (t,z) € Z(N,n, K, B)(w), d = d((s,t,z),(s',t,2') <27V, s < K
and t' < Tk,

Yrn(s,t,2) = You(s't'a')| < 2Tk3d A (n, 27N).

Proof. Let
My = M]3 = max{| Ve (i +€)27%, (G + )27, (k + 9)27") = Yo (272, j27% k27)] -

(G272 k27 e Z(N,n, K +1,08),e, f = —4,-3,...4,i27 ¥ < K +1,
g=—-2—1,....2.(+ N2 H <Tgy1,i,jii+ej+fely kel

and

Ay ={w:30>N+3s. t. Myy >20"00A@m, 27N N > No(n,n, K + 1,7, 6)}.
For i,7,k, e, f, g as in the definition of M, y and £ > N + 3,
d(((i +e)272 G+ 272, (k+¢)279), 1272, j27 % k279) < 287 f < 27N,

Therefore (5.26) implies that for some ¢} = ¢} (n) > 0,

[ee] o0
P(U_NAN) < Z Z 5-922%(K + 1) + 12271 (K 4 1) + 1]eg exp(—cy (2376 71¢2)
N'=N ¢=N'+3
< e3(K) exp(—c;2V12).

Let
Ny = Na(n,n, K, 7,3) =min{N :w € NF_yAV }.

The above implies that
(5.27) P(Ny > N) = P(U_yAn) < e3(K) exp(—cj2V¢2),

Define
N(’)(”? /rl? K? T? /3) = (No(n7 /rl?K + 177_7 ﬁ) \/ N2(n7 /rl? K? T? /3)) + 3'

N} is stochastically bounded uniformly in (n, 7, 8) by (5.27) and the corresponding property of Nj.
Assume

(5.28) N >N}, (t,z) € Z(N,n, K, 3), d((s,t,z)(s',t,2")) <27V, s < K and t’ < T.
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Define dyadic approximations by s, = [22¢s|27% ¢, = |2%t]272¢, 2y = sgn(z)|2¢|x|]27¢, and simi-
larly define s}, ¢, and 2, for (s/,#',2'). Choose (fy,2¢) as in the definition of (¢t,z) € Z(N,n, K, 3).
Then |z < |z| < K, |2y < |2/ | S K+ 1, s) Vs <s'Vs <K, t) Vit <t'Vt <Tg,and if { > N,

d((ty, zp), (fo. 20)) < d((ty, zp), (t',2")) +d((¢', "), (t,2)) + d((¢, 2), (fo. 20))

<\t =t lag — o[+ 21N
< 22N,

This proves that

(5.29) (tp,xy) € Z(N —2,n, K +1,8) C Z(N —3,n, K +1,(3) for all £ > N,

and even more simply one gets

(5.30) (to,x¢) € Z(N — 3,n,K,3) for all £ > N.

In addition, the fact that N > N{) implies w € A§_3 and N — 3 > N, which in turn implies

(5.31) My 3 < 26790 A(n, 27 N=3)) for all £ > N.

Choose N’ > N such that 2=V =1 < d((s,t,z), (s, t',2')) = d < 27", Then |2’ — z| < 2N which
implies z'y, = z 7 + g2~ for g € {—1,0,1}. Similarly s = s + 272N and thy =tn + fo-2N'
for e, f € {—1,0,1}. In addition, s; = sp—1 + ed™l ty =ty + f47¢ and xp = xpq + g2 ¢ for
some e, f € {0,...,3} and g € {—1,0,1}, and similarly for s}, t;, and . Let wy = (s¢, ¢, 2¢) and
wy = (s}, 1), x;). Now use (5.29), (5.30), (5.31), the definition of M x_3 and the continuity of Yz,
to see that for (s,t,z), (s',t',2) as in (5.28),

|Yrn(s,t,z) — YTm(s’, 2]
o0

< Yr(wie) = Yen(wn)l + D [Yea(wh) = Yeu(wioy)| + [Yen(we) = Yep(we-1)]
(=N'+1

o0
< My N—3+ Z 2My N—3
(=N"+1

[ee]
< [2(3—N’)(1—77) 19 Z 2(3_6)(1_"7)}A(n, 2=(N=3))  (by (5.31))
(=N"+1
< (36)27 N = A (p, 27 (N=3))
< 2Tk3d " A(n, 27N).

Notation. Introduce
(5:32)  Aylminiaie.27N) = a0 ap /2N g (a2 v N0

+ a2 a2y 27Ny

We often suppress the dependence on g and a.
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Proposition 5.8 Let 0 < m <m+ 1 and assume (P,,). For anyn € N, n; € (0,1/2), g9 € (0,1)
K eN2K1 o€ [0,1], and B € [0,1/2], there is an N5 = N5g(m,n,n,e0, K, a, 5)(w) € N=22 .5
such that for all N > Nsg, (t,z) € Z(N,n,K,[3), ' <Tg, s < K,

)

d((s,t,x), (s, ', 2")) < 27N implies that

|Fao (s, t,2) — Faa (', ', 2)] < 27%0d((s,t,2), (s, ¢, ")) ™™ Au’l (m,n, a, 0,27 ).
Moreover Nsg is stochastically bounded, uniformly in (n,«, 3).
Proof. Let R = 33n; ! and choose 19 € (R™*,m1/32). Let d = d((t,z), (t',2")), d = d+ +/]s' — 5|,
dy =dV 2_N, 5,17]\[ = a% \/d?\f and

2

Qa% (87 t7 Z, 8/7 t/u ZE/) - QT,a% (57 8/7 tlu ZE/) + Z QS,i,a%,no (57 tu Z, t/u ZE/).
i=1

By Lemmas 5.4, 5.5 and 5.6 there are is a ¢1 (K, 1) and No = No(m,n,n1, €0, K, 3)(w) stochastically
bounded uniformly in (n, ), such that for all N € N and (¢,z), on

(5.33) {w: (t,z) € Z(N,n,K +1,03), N > Ny},

(534) RgQa% (57t7x75/7t/7$/)1/2
< 1 (K, m)lag ™ + 22V)d =0 2 {3 + o d |

() T (o))

forall s <t <t s <t <Tk,|2/| <K +2.
Let N3 = (33/m1)[Na + N4(K,n1)], where Ny(K,n;) is chosen large enough so that
(5.35) ex (I ) a™ + 22N N4 < o (K a0 4 22822880

< a*EO 27 104
— n .
Let

A(m,n, dy) =27 Pag o {ar o Adg + ad d)

(o) T () ).

Let N’ € N and assume d < 2=V, Use (5.34) and (5.35) to see that on
{w:(t,x) € Z(N,n,K +1,8), N > N3, N’ > N3}

(which implies |2/| < K + 2),

(5.36)

RYQag (s, t,x, s, 1", a")/? < cr(K,m)a, = + 2222 mN/AG=Bm/ D102 A (m, n, d )
A(m) n, CZN)

< Jt—Bm/4)
=d 16

forall s <t <t s <t <Tg,|z|<K+2.
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Combine this with (5.6), (3.2), the definition of Qqa, and the Dubins-Schwarz theorem, to conclude
that for s <t <t, s <t, d((s,t,x), (s, t,2)) <27V,
P(‘Fa% (87 t) :C) - Fa% (8/7 tla .1‘/)| 2 d((‘g) ta .1‘), (Sla t/a 8/))1_771 A(mv n’ JN)/&
(t,])) € Z(N,’I?,,K—i— 175)7 N'AN > N3, t' < TK)
A(mv n, JN) )

< 2P| sup B > & 2

u<d?2=Gn1/2) (A(m,n,dy)/16)2
< 2P(sup |B(u)| > d~™/%)
u<l

(5.37) < coexp(—d"/2/2).

Here B(u) is a one-dimensional Brownian motion.
To handle s > ¢, recall that Fua(s,t,x) = Fya(s, sV t,x). One easily checks that

VsVt —s' V| <y|s—s|+ /|t 1t
and hence d((s,s V t,z),(s',s' V', 2")) < 2d((s,t,x),(s',t',z')) = 2d. So (5.37) implies that for
t <t and all 5,5, 2/, if d((s,t,z), (s',t',2')) < 27N'=1 then
P(|Fya(s,t,x) — Faa(s', ', 2")| > d((s, t,z), (s', ¢, 2N A(m,n, dy) /4,
(t,z) € Z(N,n, K +1,8), t' <Tg, N +1>N3+1, N> N3)
(5.38) < ¢oexp(—d M/ /2).
If (t,x) € Z(N,n,K,3), ' <t and d = d((t,z),(t',2')) < 27V, then we claim that (¢,2') €
Z(N — 1,n,K 4+ 1,8). Indeed if (fy,#o) is as in the definition of (t,2) € Z(N,n, K, (), then
d((to, &) ( 2')) <2=W=1_ Also |2/| < K+ 1, t' <t < Tk, and the claim follows. Note also that
as d < 27N we have dy = 27V. An elementary argument using vy, < 2 for k < m — 1 < and
Y < 2, shows that
(5.39) A(m,n,27N) > 47 A(m,n, 2= V1),
So, by interchanging (', ') and (¢,z), and replacing N with N — 1, (5.38) and (5.39) imply that
for ' <t,d <2 and d <27V,
P(|Fya(s,t,x) — Fua(s', ¢, ")) > d* " A(m,n, 27V,
(t,z) € Z(N,n,K,3),N' AN > N3 + 1)
< P(|Fag (s,t,3) — Foe (s, 2)| > d " A(m,n, 27N /4,
(t,2ye Z(N-1,n,K+1,8),N >N3+1,N —1> N3,t <Tg)

)

(5.40) < coexp(—d ™m/%/2).

If N5(m,n,meo, K, B)(w) = N3(w) + 1, then Nj is stochastically bounded, uniformly in (n, 3). We
have shown, (taking N’ = N in the above) that for all (s, ¢, x), (s, ¢/, 2'), if d = d((s, t, z), (s', ¢/, 2)) <
2N then

(5.41)
Pl|Fug (5. 1,2) — Fag (s, 1',2)] > A0 A, n, 27N, (t,2) € Z(N,m K, 5), N > Nt < Tic)
< ¢oexp(—dM/2)2).
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Now apply Lemma 5.7 with 7 = a € [0,1], Y;, = F,o and kg = 22, the latter by (5.39).
(5.41) shows that (5.26) holds with Ny = Nj. (The implicit restriction K > Kj in (5.41) from
Lemmas 5.4-5.6 is illusory as increasing K only strengthens (5.41).) Therefore there is an N5 g(w) =
Nss(m,n,m,e0, K, a, 3) > 2, stochastically bounded uniformly in (n, «, 3), such that for N > N5,
(t,z) € Z(N,n,K,(3), if t' <Tk, s < K and d= d((s,t,z), (s',t',2")) <27V then

(5.42) |Fa (s, t,2) — Fua(s', ¢, 2)] < 2B A(m,n,27N)d' ~m.
Note that
(5.43) A(m,n, 2_N) :2_100(1;50 [a;?’a/42_NWm + (af{/2 Vv 2_]\[)(“’“””_3/2)AO

+a (a, 22N 4 (a0 v 27N )12
§2_99afl° [a;3a/42—Nwm i (ag/Z Vv Q—N)(ymﬂ—mm
+ aﬁ”*%& (2N v ag/Q)'Y] )
Use this in (5.42) to complete the proof. [

Since Fs(t,t,z) = —uj 5(t,z) (see Remark 4.2), the following Corollary is immediate.

Corollary 5.9 Let 0 < m < m+ 1 and assume (P,,). Let n,m,c0, K, and [ be as in Proposi-
tion 5.8. For all N > Nsg, (t,x) € Z(N,n,K,3) and t' < Tk,
d((t,x), (t',2")) < 27N implies that
[0 g (1, @) = ul 4o (¢, 2")] < 27%0d((t,2), (¢, 2)) " Ay (m,m, 20,27 ).
We will need to modify the bound in Lemma 5.6 to control |uj s — uj , |. Note that if § > a,
and s =t — 0 + a, then

d d
(544) 5 (t2) = T Pa(uay)(2) = 2 Picsra, (4(s-a,1) (@)

= _Fan (8? t? 'T)
=—F, (t—90+an,t,x).

Therefore the key will be a bound on |F,,, (s,t,x) — Fy, (t,t,z)| in which the hypothesis (for Propo-
sition 5.8) v/ — s < 27V is weakened substantially.

Lemma 5.10 Let 0 < m <m+1 and assume (P,,). For any K € N=K1 R >92neN, e e (0,1),
and B € [0,1/2] there is a c510(K) and N5.19 = Ns.10(m,n, R, e¢, K, 5)(w) € N a.s. such that for
any 1 € (R71,1/2), N €N, and (t,z) e Ry xR, on

(545) {w : (t,x) S Z(N,H,K, ﬂ),N > N5.10},
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QT,an (87 ta t7 'T)
< e5.10(K)[a, > + 24N5'1°]{|t — | (= 5) V an) T2 4 a2PV (8= 5) V an) TP

+ 1(a, < 2—2N)((t —8)A an)a;3/22Nm/2[2—2NWm + aiﬁv2—2m]}

for all s <'t.

Moreover N5 19 is stochastically bounded uniformly in (n, [3).

Proof. Let ¢ =1—(4yR)~! and define N5.19 = N1(m,n,&(R), <o, K, 3) so that the last statement
is immediate from (P,,). We may assume ¢t > a,. By Lemma 5.2 (again the maximum with ,/a,
may be ignored in the calculation below) and then Lemma 4.2, we get for w as in (5.45) and s < t,

Q1.a,(s,t,t, )
t—an
= 052/ /Pt oy — )K=t N E— 4 |y — 2]
N Y —1 2

X [(2_ +Vt—r+ly—x|)™ —i—ag] dydr

t—an
< Cl( )052/ (t o ?”)71 /pQ(tr)(z)2€2(R1+l)z[22N’Y§ + (t _ T)’Yf + |z‘2’Yf]

( )t

S—an

% [(2721%(%*1) 4 (t— ) Gm=D) g [y 2rGm=1) 4 aiﬁw] dadr

t—an
< e3(K)Cs / (t— 1) 3/2[2 2N 4 (¢ )]
(s—an)*
x [(272NGm =) (¢ — ) Om=1)) 4 207y
t—an
e e i R Ol )
(s—an)*

t—an -
+ /( 1 >t — 272N (t — 1) =3/2dp22NE [ 2N Cm 1) | 267

s—an)t
(5.46) = Cg(K)Cg,.Q[Jl + JQ].
As in the derivation of (5.20), now with dy =27V, § = a,, and s’ = t, we get
(5.47) Jy < Uan < 272M)2(ay A (t = s))a;, 3222V 0= [272NYTm 4 2079=2N7]

For Jy, let p = v(m+£—1)—3/2 or p = v{—3/2. Our choice of £ and R implies p € [—15/16, 1/2]
and so, considering p > 0 and p < 0 separately, we arrive at

/t " (t —7)Pdr < 16[(t — s + a, )P — a2t < 16(2p+)(t —s)((t —s) Vay)?
(

s—an)t

< 24(t — s)((t — 8) V ap)P.
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Therefore
T < 24(t = 5)[((t = 9) V an) G HED2 4 2071 - 5) v 0,E 7]
(5.48) < 24(t = 51700 [((1 = 5) v ) T2 4 2Tt — )V )],
Put (5.47) and (5.48) into (5.46), noting that v(1 — ¢(R)) = (4R)™! < m/d and t — s < K, to

complete the proof. |

Proposition 5.11 Let 0 < m <m+1 and assume (P,,). For anyn € N, n; € (0,1/2), g € (0,1),
K e N5t and 3 € [0,1/2], there is an N51, = Ns11(m,n,n1,¢0, K, B)(w) € N a.s. such that for
all N > Ns11, (t,z) € Z(N,n, K, 3), s <t and /t —s < N4 implies that

‘Fan (87 t? :C) - Fan (t’ t? $)|
< 2—81(1;60 {2—1\7(1—771)(&711/2 V 2_N)('Ym+l_2)/\0

2~ N -
+ 2N771a;1/4( + 1) (2—N7Wm + a,g'y(mv 2—N)7)
Vv an

(=) (V=5 v a) T el (Vi v ya) ) |

Moreover Ns11 is stochastically bounded, uniformly in (n,[3).

Proof. Apply Lemma 5.10 with R = 2/n; so that on
{w: (t,x) € Z(N,n,K,3), N > N510(m,n,2/n1,¢e0, K, )},
for s <t,
RgQT,an(s,t,t,x)l/Z
G4 <alB)Rlae + 22 (TR AT E (VS T
+a (VE= 5V V/an) 2]

+ Q—Nm/4a;1/42Nm/2[2—Nv‘fm + ag"Q—N’Y]}'
_ 8 .
Let No(m,n,m,e0, K, B)(w) = nT[N5-10 + No(K)], where No(K) € N is chosen large enough so that

(5.50) c1(K)RY[a;%0 + 22N5:1012~ 3 N2 < o) (K) R] [a;,%0 4 22N5:10]2~ 2510~ 2No(K)
< 9710040
It follows from (5.49) and (5.50) that for N > Ny, (t,z) € Z(N,n,K,3), s < t,and v/t — s < 272,
RgQTﬂn (s,t,t,x)1/2
<9700 L (VI 5) T [(VE— 5 v Va4 (VIS Y Van) ]
+ a;1/42N771/2[2*N'Y’~Ym + ag’YQ*N’Y]}

= (Vt— s)lf%Al(m,n, VE—= sV an) + 282 Ag(m,n, 27N).
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Combine this with (3.2), (5.6) (now with ¢/ =¢ =, x = 2/, so the second integral there is 0) and
the Dubins-Schwarz theorem to see that if B(+) is a standard 1-dimensional Brownian motion, then
(5.51) P(|F,, (s,t,x) — F,, (t,t,2)| > (Vt— )\ "M A (m,n, VE— sV /an) + 2V Ag(m,n, 27N),
(t,x) € Z(N,n,K,B), N > Ny, \/t — s < 2712)
< P(sup |B(u)| > (VE—s)"M/2 A2NM/2)1 (1 — s < 1)

u<l

1
< c¢o exp{—§[(t — s)_”1/2 A 2Nm]}.

Let £y = 22(N+3) N=8/m and set

|F,, (127 2N+ jo=2(N+2) jip=(N+2)) _ | (2~ 2(N+2) 59—2(N+2) Jpp-(N+2))|

(V7 =2V I=m Ay (m,n, (VG — i2-N+2) v Jay,) + 281 Ag(m,n,2-N)
0<j—i<ly, (22N k2= N2)) € Z(N,n, K, B),i,j € Ly, k € Z}.

Mpy(w) = max{

If N3 = 2™ then
(5.52) N > N3 = N~¥m <o=Ne=l o\ [y o= N=2 _ gN—4/m < o=N2,
The fact that My =0 if /x5 < 1, (5.51), and (5.52) imply
P(My >1,N > Ny)
< (K +1)220 0+ (9 4 1)2N+2¢ exp{—%((fNTQ(N“))*W? A 2N’71)}1(£N > 1)
< o K3 exp{—%((\/az—fv) vy iy > 1)
< ¢ K325N exp{—2_5/2N4} (recall ;< 1/2).
If Ay = {My >1,N > N3} and

Ny = Ny(m,n,m, 0, K, f)(w) = min{N : w € NR_nyANV' }

then
P(Ny > N) = P(US,_yAn) < K2 3 2V exp{—2*5/2(N/)4}
N'=N
(5.53) < co(K) exp(—N1/6).

Let N5(m1) be large enough so that
(5.54) N > N5 = 2=V < N~4/m,

Define
N5.11(m>n7771>€07K76) = (N5.8 \ N3 \/N4 \/NS) + 2.
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It follows from Proposition 5.8, (5.53), and the definition of N3 that Nj 17 is stochastically bounded
uniformly in (n, ). Assume

(5.55) N > Nsi1,(t,z) € Z(N,n,K,3),s <tand VI —s < N~4/m,

Case 1. /I — s > 21N,
The condition N > N5 11 implies w € A§_5 and N — 2 > N3, which in turn implies

(5.56) My_s < 1.

Let sp = |2%5)2726 ¢, = |22¢]272¢ and 2, = sgn(z)[2|z| |27, be the usual dyadic approximations
to s,t and x, respectively, and let (£, 2o) be as in the definition of (¢,z) € Z(N,n, K, 3). Then

d((tn,xn), (fo,20)) <27V +VE—tn + |z —an| <227V, ty <t < Tk, |on| < |2z < K,
and so
(5.57) (ty,xN) € Z(N —2,n, K, 3).
Write
|F,, (s, t,x) — Fy (t,t,x)] < [\Fan(s,t,x) — F,, (snytn,zn)| + | Fu, (6, t,2) — F,, (tn, tN, zN)|

+ |:|Fan (sn,tn,zN) — Fo, (tN, tN, N)]
(5.58) =T+ T

The fact that (t,z) € Z(N,n,K,B), tyn <t <Tg,s<t<K,
d((t,t, ), (tn, tn,an)) Vd((s,t ), (sn, tv, an)) < 3(27Y) < 27 (V=2
and N — 2 > N5g, allows us to use Proposition 5.8 and infer that
(5.59) Ty < 27852 (W=20U=mIA L, (m,n, 1, 20,27V 72),
For Ty we have from N > N5, (5.54), and the last part of (5.55),
Vin — sy < Vi—s+ 21N <aNTVm < Jiy 27N,

In view of (5.57) and (5.56), this implies

Ty < My [\/tN — SN‘lfnlAl(m,n, VIN — 5NV Van) + 2N=2m A, (m, n, 2—(N—2))]
(560> < |:\/ tnN — SNl—TilAl(m’n’ ViIN — sy V M) 4 2<N_2)771A2(m,n, 2—(N—2))] )

As t — s > 2272V (recall this defines Case 1), we have

1
t—sS(t—tN)—l—(tN—sN)§2_2N—|—(tN—sN)§Z(t—s)—i—(tN—sN),
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and so
1

(5.61) tN — SN > 5(75—8).
More simply,
(5.62) ty —sy <t—s+2172N <2(t —s).
Use (5.61) and (5.62) in (5.60) and then combine the result with (5.59) and (5.58) to conclude that

‘Fan (87 t? :C) - Fan (t7 t? ’ x)‘

< 9859~ (N=2)(1=m) g —=o [(a}/Q v 2~ (N=2))(rm+1-2)A0

t a8/ [27(%2)% a7 (a/? v Qf(N*Q))’YH

(5.63) 4279950 (T = 5)lm [(\/t SV an)m e fa (VE= sV \/@vf%]

4 2—100(1;50*%2(N_2)n1 [2—(N—2)Wm + agvg—(N—%v] .

Next use

9-
Q—N(l—m)a;3/4 + 2N771a;1/4 — a;1/42N771 |:
Van

to combine the first and third terms in (5.63) and conclude, after a bit of arithmetic, that

‘Fan (87 t? :C) - Fan (t7 t’ x)‘

-N
< 2781a;50{ {a;1/42N’71 (2— + 1) (Q*Nwm + a2 (al/? v 2*N)'Y)

+1]

Van
427 NU=m)(gl/2 2—N)(7m+1—2)m}
(564 + (V=) (VE=s v an) T E e ad (V= v v )

Case 2. t — s < 21-N,
As (t,z) € Z(N—1,n,K,B) (by (5.55)),s <t < K, N—1 > Nsg, and d((s,t,z), (t,t,z)) < 2-N-1),
we may use Proposition 5.8 with a = 1 to conclude

[Py (5,1,2) — Fo, (1,1, 2)]

<278(VE= )M A, (m,n, 150,27V Y)

< 2—832—1\1(1—7;1)&7:50 [a;3/42—N«ﬂ/m 4 (a}lp v 2—N)('ym+1—2)/\0 4 a53/4+ﬁ7(a711/2 Y 2—N)'y}
9—N
NG
which is bounded by the first term on the right-hand side of (5.64). [

< 2—83%60{@;1/421% ( ) (2—Nwm +aP (a2 v 2_N)"/) o NA-m) (g1/2y Q—N)(wmﬂ—mm}

We also need an analogue of Proposition 5.8 for G4a. A subset of the arguments in Lemma 3.1
shows that

(s—0)*
(5.65) Gs(s,t,x) = / /p(tvS)_r(y —z)D(r,y)W (dr,dy) for all s a.s. for all (¢,z),
0
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which is just the analogue of the expression for Fys, (3.6), with p;—, in place of pj_,. Although we
only will need bounds on Gua(s,t,7) — Gae(t,t,2) (and for \/t — s small as in Proposition 5.8),
this seems to require bounds on the analogues of the three types of square functions handled in
Lemmas 5.4, 5.5 and 5.6, but now with no derivatives on the Gaussian densities. This results in
some simplification and a smaller singularity in af;. We omit the proof of the following result as
the details are quite similar to those used to establish Proposition 5.8.

Proposition 5.12 Let 0 < m <m+1 and assume (P,,). For anyn € N, n; € (0,1/2), g € (0,1),
KeN=FKt ¢ [0,1], and B € [0,1/2], there is an N512 = N5.12(m,n,n1,e0, K, o, 3) € N a.s. such
that for all N > Ny.9, (t,x) € Z(N,n,K,3), s <t and /t —s <27V,

(Gag (5, t,2) — Gag (1,1, 3)| < 27%(t — 5)2(17m)q =0g 0/

n

x |(@a/ v o Nyin 4 (a2 v 2Ny,

We need to use our global modulus of continuity for uia% (Corollary 5.9) to get a modulus for
u1,qo itself. This is of course easy for spatial increments, but a key observation is that it is possible
to also use control of the spatial derivatives to get a better modulus on the temporal increments.

Notation. Define
(5.66) Ay, (m,n, g, Q*N) = a;5°*3°‘/4 [aﬁa?f‘m + agﬂy(aﬁ/2 vV Q*N)”YHL
— N\Y3m — -N
+ (a2 v 27N I L 1 (m > m) a4 (a2 v 27N,

Dependence on « or g is often suppressed.
4
If n > 0 let Nf ;5(n) be the smallest natural number such that 2" < N~ » whenever N > N ;5(n).

Proposition 5.13 Let 0 < m <m + 1 and assume (P,,). For any n € N, n; € (0,1/2), €g,e1 €
(0,1), K € N=K1 o € [0,1] and 8 € [0,1/2], there is an N5i13 = Nsis3(m,n,n,e0, K,a,5) € N
a.s. so that for all N > Ns13, n, a satisfying

(5.67) ap < 27 2(Nsa1(mnm /20, K,5)+1) o 9=2(Nz15(me)+l) - gnd o > ;.

(t,x) € Z(N,n, K, ), t' < Tk, if d((t,z), (t',z")) < 27N, then
Ut qa (t, 7) — ut e (t',2)] < 270d((t, ), (¢, 2) " Ay, (M, 0, o, 0, 2.
Moreover Ns 13 is stochastically bounded uniformly inn € N,a € [0,1] and § € [0,1/2].

Remark. Although n appears on both sides of (5.67), the stochastic boundedness of N5 11 ensures
it will hold for infinitely many n. This condition becomes stronger as « goes to 0 and a$ moves
away from the value a,, where the definition of Z(N,n, K, 3) ensures some control on u} , . This
effectively rules out a = 0 from the above conclusion.
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Proof. Let

N s(m,n,m,e0, K, o, 3) = ((2N5.8)(m,n,m /2,0, K+1,a, 3)V N5.12(m,n,n1,c0, K+1,, 3)) + 1.
Clearly N/, is stochastically bounded uniformly in (n,a, 5). Assume (5.67) and

(5.68) N > N!is, (t,z) € Z(N,n, K, 3), t' < Tk and d((t,z), (t',2')) <27V,

As in the proof of Proposition 5.8, (t',2') € Z(N — 1,n,K + 1,(3), and by interchanging (¢, z)
with (¢,2'), N with N — 1 and K with K + 1, in the argument below (again as in the proof of
Proposition 5.8) we may assume without loss of generality that ¢ < ¢. Indeed, this is the reason
for having K + 1 and adding 1 in our definition of NY,.

Recall that

(5.69) Gag (t',t,2) = Py yag (u((t' — a3, ) (@) = Py (ur,05 (¢, ) (2),
and so

1,05 (1, 2") = urag (8, )] < |uag (', 7)) — w105 (¢, 2)| + ur,aq (', 2) = Py (u1,ag(t', ) ()
+ |Gaa (¢ t,2) — Gaa (t,t, )|
(570) = T1 =+ T2 + Tg.

For T, let (fg,2) be as in the definition of (t,2) € Z(N,n,K,3). For y between x and z/,
d((t',y), (t,x)) < 27N and also d((tg,20), (t,x)) < 2=N. Therefore by Corollary 5.9 (twice) with
71/2 in place of ny,

‘ull,a% (tla y)| < ‘ull,a% (t/> y) - ull,a% (t’ x)‘ + |u/1,a% (ta x) - ull,a% (7?07 i‘O)|
+ ‘ull,a% (507 i‘O) - ull,an (7?07 £0)| + ag
(5.71) <2789 NU=IA , (m,n, a,80,277)

+ | Fy, (fo — a% + an, o, 20) — Fa, (o, t0, 20)| + al.

We have used (5.44) in the last line.
We now use Proposition 5.11 to control the F' increment in (5.71). Choose N’ so that

(5.72) 2Nl < o, < 27N
(5.67) implies \/a,, < 2~ Vo1 (mm 5 e Kh) =1 4nq g0
(573) N/ Z N5,11(m,n,771/2,€0,K, ﬂ)

In addition, (5.67) implies 2N -1 < /g < 2 Nsas(me)=1 and so N > N! |5 which in turn implies

4e 4

(5.74) a2/2 < 9N'e < goN'e < NI = N

Since
lu(fo, #0)| < an = an A (Van2™™')  (by (5.72)),
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we see that (f, o) € Z(N',n, K, (). (5.73) and (5.74) allow us to apply Proposition 5.11 with N’
in place of N, (tg, o) in place of (¢, ), n1/2 in place of 71, and s =ty — a2 + a,,, and deduce

‘Fan(i\o _ag—i_anvfo’i‘()) _F (50750732‘0”
<27 8g 0 \/@(1*%)\/—('ym+1 2)A +\/— (\/_'Y'Ym —HLM\/W)

+a§(1f%)<an(wm 2)_’_@57& (r— 2)”.

The middle term in the square brackets is bounded by the last term because \/a,, < a,?. Therefore
‘Fan (50 - ag + anp, £0> JA"O) - Fan (507 7?07 .i‘())|
1— n1

a my =3« a5 a
(5.75) < 27 Ta =0 [ a5y Ome 20 1 g U0 (0T 4 aag ) .

We also have
\/@ FH(rm41-2)A0 < (a2 P Vo N) +('Ym+1*2)/\0’

because the above exponent is positive since 1y < 1/2 and v > 3/4. Use this bound in (5.75) and
then insert the result into (5.71) to conclude that for any y between z and a/,

‘ull,a% (tla y)‘
S 2777a7;5() {271\7(17%)(&% v 27N)(’ym+172)/\0

_3a ~ a
+ 2_N(1_n71)(1n 4 |:2—N'Y'Ym + a,ﬁ"{(an% v 2—N)’yi|
+(an v 2~Vyl- Lt (Ymt1—2)A0

A —3a N fe

T e i (aﬁwm—l—aﬁ’aﬂ)}—i—a

5 _3a a -

< 2~ 76 (a V) N) 2 |:((17% \/2*N)(’Ym+172)/\0 +a, 1 (aﬁ \/27N)'Y'Ym
(576) = 2776AU1 (mvn’a>€0>n17 ag \ 27N) + ag.

Note that Aul is monotone increasing in the 27V Va2 variable due to the positivity of the exponents
(since 1 < 1/2). The Mean Value Theorem now shows that

(5.77) Ty < [aﬁ +27A,, (m,n, o, e0,m1, a3 V27| o — &),

Recalling that ¢ < t and that (from (5.68)) N > Ns 1o and v/t — t/ < 27V, we may apply Proposi-
tion 5.12 and infer

(5.78) Ty < 2792(t — ¢/)2(l-m) g —eo—a/4 | (/2 \y 9= Ny¥im 4 87 (q2/2 y 2—N)v].

For Ts, let {B(s) : s > 0} be a one-dimensional Brownian motion, starting at = under P,.
Assume first that

(5.79) IB(t —t') — 2| < 272N,
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Recalling (5.68) and that N5g > 2, we have

d((t', B(t — 1)), (t,2)) < VE— 1 +27 288 <27V 4 973 Nos
S 272N5.8 _I_ 2*%]\[5.3

< 97 Nss,
Define a random N’ € {N5g,...,N} by
(i) if d((¢', B(t — 1)), (t,2)) < 27" then N’ = N;
(i) if d((¢', B(t —t')), (t,z)) > 27N then 27Vt < d((¢, B(t — t')), (t,z)) < 27V
In case (ii) we have 27V =1 < 2=N 4 |B(t — t/) — x|, and so
(5.80) 2N <N L 9Bt —t') — 2,

a result which is trivial in case (i). If y is between x and B(t — t') we may argue as in (5.76), but
now using (¢t,z) € Z(N',n, K, 3), to see that

(5.81) \u/La% ' )| <27A, (m,n,a,e0,m1, a2 V 27N/) +dP.

n
Use (5.80) and the monotonicity of A,, observed above to see that

i

(5.82)  af*A,, (m,n, o0, m1, a2 \/27Nl)
< 8[[a§ v 2N LBt —t) — 21 F

3o

% {(a§ +2-N 4 \B(t — t’) _ x‘)(vm+r2)/\0 +a, * [(a? 492N 4 |B(t’ —t) — xm%
+af(ad +27N + B~ 1) — x| }].

Use (5.82) in (5.81) and then the Mean Value Theorem to obtain (the expectation is over B alone—
N5 g remains fixed—and we are dropping a number of small constants)

B (1(B(t —t') — 2 < 275V58) uy ga (¢, B(t — ') — ug o (', 2)|)

50-%)
n

< By(B(t — ¢){ad + az(af ' TF 427N 4 B - ) H) 05 27V 4 B - )
(a2 v 2 N) =000 g 30l (a2 4 27N B - 1)) }
< 01M{a5 Faso[(a2 v 2N 4 (¢ - )30 [a;?’a/‘*(a,% V2N LVt
n (aﬁ/Z v 2—N)(7m+1—2)/\0 n a;?’a/‘laﬁ“’(aﬁﬂ vo N4 m)w}
< CQM{aQ Fazo(a vV [(ag/Q v 27 N)Omr1=2A0 |y =8a/4 (/2 \s 9= N YYiim
+az73e/4e8Y (g2 v 2’N)”Y]} (since Vi—¢ < 27N)
(5.83)
=Vt —ta? + Ay, (m,n,a,so,m,aé v 2~V
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To handle the complementary set to that on the left-hand side of (5.83), note that for K > K; and
t' < Tk,

[ur,ag (8, 9)] < By(lu((t' = ap)*, Blay)]) < 2K B, (el < 2K !,
This and the fact that v/t — ¢/ < 272V5:8 imply that
Eo(L(B(t — 1) — ] > 273%55) juy o (¢, B(t — 1)) — upag (¢, 2)])
< Py(|B(t — )| > 27 2No8) 28K e 5, (2B 4 ¢2ll)1/2

)
< e3(K)Py(|B(1)| > (t — ')~ /8)1/2 (since |z| < K by (5.68))
< ca(K)(t =)

(5.84) < es(K)Wt —t'Ay, (m,n,a,e0,m1,a2 V2N,
where in the last line we use
Ay (myn, o e0,m a2 V2N > (a2 va )7 >N > /i 7.

(5.83) and (5.84) imply

(5.85) Ty < c6(K)WE—[a? + Ay, (m,n, o, 20,71, a2 v 2V,
Use (5.77), (5.78) and (5.85) in (5.70) to conclude
|u1,a% (tlv wl) — Ul,ax (t? J})‘
< cr(K)d((t,x),(t',2')[al + Ay, (m,n, o e0,m1, 08 V2~ Y)]
272 — )30 a0 e B (/2 v 27N (ag v 2N,
since d((t,z),t',2')) <27V a bit of arithmetic shows the above is at most
(er ()22 +27)d((t,2), (¢, ') a0
(5.86) x {( a/2 \/ 9=N) [(agﬂ v 2 NYYim 4 qBY(q0/2 v 2N
+ af’f“(aﬁp vV Q_N)(%”“J)AO} + af’f‘/%Q}.
Choose N1(K,n1) so that
2_N1771/267(K) < 2—92’

and define Nj513 = N!,5 VvV Ny, which is clearly stochastically bounded uniformly in (n,q, ) €
N x [0,1] x [0, 3]. Assume N > N5 3. Note that if m < m, then

a%a/él(ag/Z Vi 27N)(7m+172)/\0 — aia/4(a70;/2 vV 27N)'y'yyn7%

(5.87) < (a8l v 27N yvym
< (ap/? v 27 Nyrim,
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and so the last term in square brackets in (5.86) is bounded by the first term in the same brackets.

If m > m, the left-hand side of (5.87) is a%a/ 1 Therefore if N > N5 13 we conclude that

[u1,aa (t', 2") — w1 g0 (t, 7))
< 2704((t, z), (t', &) "M g c0 3/
% [ag+3a/4 + ag’Y(ag/Z Vi 27N)’Y+1 + (ag/Z V; 27N)’Y’S/m+1 + 1(m > m)(ag/Z Vi 27N)a2?31a/4]

=27%d((t, @), (t',2")) 7" Ay, (mym, a,80,277).

[
We also require an analogue of the bound on increments on u qa (Proposition 5.13) for u ga.
Notation.
Al,uz (m,n, e, 2_N) :a;602—N7 [(arll/2 v 2—N)w(‘fm—1) 4 aﬁ“’}

(%%)]'

w|R

Ag o (Mm,n, a,e0) =a +ad?a;

[ = 1
—eo [ 5(¥Im—3)
n 0 |:a’n

We often will suppress the dependence on €y and a below.

Proposition 5.14 Let 0 < m <m+1 and assume (P,,). For anyn € N, n; € (0,1/2), g € (0,1),
K e N2K1 o e [0,1], and B € [0,1/2], there is an N514 = Ns1a(m,n,m,c0, K, a, B)(w) € N a.s.
such that for all N > Ny14, (t,z) € Z(N,n, K, 3), and t' < Tk,

d=d((t,x), (', ") <27 implies that
[ug qa (t, ) — U2 40 (', 2] < 289 [dl_%ﬁlm (m,n, e, 2_N) + dl_mﬁgm (m,n,a,so)].
Moreover Ns14 is stochastically bounded, uniformly in (n,«, [3).
The proof is more straightforward than that of Proposition 5.13 and is given in Section 7 below.
Lemma 5.15 For alln e N, 0<3<1/2 and 0 <d <1,

' (Van VA" <dvadl.

Proof. Recall that vy — 1=+ — % and 2y — % > 1.

Case 1. d > ag.

al (an vt <dP 2 < d.

Case 2. d < ag.

aﬁv(\/@\/d)m_l < agv+ﬂ(“f—%) _ ag(%f—%) <dl. 1

We are finally ready to complete the
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Proof of Proposition 5.1. Let 0 < m < m and assume (P,,). We must derive (P,4+1). Let
go € (0,1), M = [%L € = ﬁ < ep/2 and set a;; = iey for i = 0,1,..., M, so that a; € [e1,1] for
i > 1. Let n, &, K, and (3 be as in (P,,) where we may assume £ > 1/2 without loss of generality.
Define gy = 1— € € (0,1/2), & = &+ (1—&)/2 € (&,1),

NQ(TR,H,&,EO, K? ﬂ)(W) = vi]\ilN5.13(mun77717€0/27 K + ]-7 Clhﬂ)(u}),

N3(m7n7€7€07 K? ﬂ)(W) = vi]\ilN5.14(mun77717€0/27 K + ]-7 CMi,ﬂ)(Cd),

N4(m7n7§7EO7K7 ﬂ) = (1—35((1\[5.11(7’”7”7771/2750/27K + 17&) \ Né.l?)(??lfl)) + 1)-|

= (1—i£N5(m,n7771a507 K, Bﬂ?

(recall £1 is a function of ) and
(5.88)  Ni(m,n,& e0, K, B)(w) = (NaV N3V Ny(m,n, & g0, K,8)) VIN1(0,§,K)+1€N as.

Recall that in the verification of (Fp), we may take eg = 0 and N7 = N;(0,¢’, K) was independent
of n and 3. Then N1 = Ni(m,n,&, e, K, ) is stochastically bounded uniformly in (n,3) because
Ng,.ll, N5.13 and N5.14 all are.

Assume

N >Ny, (t,z) € Z(N,n,K, ), t <Tg, and d=d((t,z), (' z")) <27V,
Suppose first that
(589) an > 27N5(m7n77717507K7ﬁ)'

Since N > N;(0,¢', K), we have by (Pp), with ¢g = 0 and ¢ in place of £, and the fact that
ﬁ/m-l-l -1<1,

ju(t, )] < 27N
< 9—N¢' [(M V. Q—N)imﬂ—l] 9Ns/2
< 97 NU=0/29No/ 29N |y 27Ny =L g ]

< 9~ N¢ [(,/an v 2 Nyimea—l ag],

where in the last line we used N > Ny > (1 — ¢)~!N5. This proves (P, 11).
So assume now that

(5.90) a, < 2 Ns(mnm.coK,5)

Let N’ = N—1 > NyV N3. Note that (o, %) (the point near (¢, z) in the definition of Z(N,n, K, 3))
isin Z(N,n, K+1,8) C Z(N',n, K +1,3) and by the triangle inequality d((fo, Zo), (¢, z")) < 2~V".
(5.90) shows that (5.67) holds with (¢0/2, K + 1) in place of (¢, K). Therefore the inequality
N’ > N, allows us to apply the conclusion of Proposition 5.13 for o = o; > &1, 1 = 1,..., M
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with (fg,20) in place of (t, ), £9/2 in place of 9, and N’ in place of N. Simpler reasoning, using
N’ > N3, allows us to apply the conclusion of Proposition 5.14 with the same parameter values.
Choose i € {1,..., M} so that

&4 Qi1 & _E1

(5.91) (d) if N > an, then a,2 < 9N <ap?® =altap?,

(i) if 27N < \/an, then i = M and so an?l = Va, >27V.

In either case we have

Qg

(5.92) a? V2N < Ja,vo TV,
and

_3qy , _3e1
(5.93) an * (Van V2 V)2 <q, .

Now apply Propositions 5.13 and 5.14, as described above, as well as (5.92), and the facts that
Am = Ym for m <M, Yma1 = YYm + % and d((to, &), (t',2")) < 2~N' o conclude

Ju(to, &0) — u(t',2")
< Juy goi (Fo, 20) = uy goi (¢, )| + Jug goi (fo, Z0) — g o (t, 7))
<20y LoVl g A (Y v Y g (a2 Y )om
+1(m =m)(Va, V 2—N/)} +27 NG (ay v 2N yom=1) 4 agv]
49N [(\/@ v 2N Omn=D) 4 oBY( Jan v 27N’)(%%)} }

i

_Z / _3%4 ’ /
<27 8g, 227N §{ag +an * (Vap V2l )%agw(\/an va N )("’_%)

3047; , , ,
tan * (Van V2 N3 (Va v 2N 0 T 4 1 (m = m)(Va, v 2
(5.94) + (an vV Q*N/)(’Y*%) (Van v 2 N yom=1) 4 aﬁ”}

+ (Van V 2—N’)(7m+1—1) + aﬁ”(\/ﬁ v 2—N’)('y—%)}'
Now apply (5.93) and combine some duplicate terms to bound |u(tg, o) — u(t’,z')| by
2 ¥y 1 Ve[l 4 (a2 N 4 (g v 2 )0 1 = )y v 2],
Use the fact that

(Van V 2~ NYrm+1=1) 4 1(m = ) (y/an V 27N < 2(/an V 2~ Ny ((im41A2)—1)

(consider m < m and m = m separately) and ¢; < £¢/2 in the above to derive
[ulo, 0) = u(t',a")| < 27%0a, %027Vl + ) (vVag v 207 4 (Y v 27N (D=1

(5.95) < 98409 N¢ [ag + @ (Jan v 20D 4 (Jan v 2—N)<(Wm+1“>—1>} .
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Finally combine (5.95) and |u(fy, #0)| < v/an2~ " to conclude

1
u(t, 2')| < Jan2~N + 28409~ NE [Z (27N v a4 (27N v ,/—an)%l—l}
k=0

1
(96) < a2 Nya N o ST el @V v a4+ 27N v )
k=0

Our definition of N (and especially Ny) ensures that N(1 —¢) > 1 and hence

B
\/@2—]\7(1—5) < V2 < a?”

In addition by Lemma 5.15
:B'Y( /an\/2 N)’Yl 1<aﬂ\/2 N<(1 (2 N\/\/_)’Yerl 1

Substitute the last bounds into (5.96) to obtain (P,,+1) and hence complete the induction. [

6 Proof of Proposition 3.3

We continue to assume b = 0 in this Section. Having established the bound (Ppm41) in Proposi-
tion 5.1, we are now free to use the conclusions of Corollary 5.9, Proposmon 5.11 and Proposi-
tion 5.14, with m = + 1, to derive local moduli of continuity for ) as and ug q4o. In view of our
main goal, Proposition 3.3, it is the space modulus we will need—the time modulus was only needed
to carry out the induction leading to (Pp41)-

We fix a Ky € N2E1 and positive constants £¢, €1 as in (3.10). For M,n € Nand 0 < 5 < %—61,
define

(61) o= a() =28+ 1) € [0.1]
and
U](Vl[?nﬂ = inf{t : there are ¢ € [0,27M], |z| < Ko+ 1, i, 2’ €R, s.t. |z —a/|<27M
|z — Zo| < e, |u(t,Zo)| < an A (Vane), |u'1,an (t,29)| < ag, and
\u'La% (t,z) — Ull,a% (t,z")| > 2_82a7:50_3871 |z — 2/ 1=¢o [a;?’ﬁﬂ(&‘ V|x — J:|)27 +1

_3
—|—a§('y 2)(6 VAR x\)'y] } ATg,.

Define U](\})n o by the same expression (with 3 = 0) but with the condition on |u} 4 (¢, Z0)| omitted.
{U](\/Al,)n 5 <t} is the projection onto 2 of a Borelx Fi-measurable set in K x [0,] x £ where K
is a compact subset of R, and so U](\})n 5 is an (F)-stopping time as in IV.T52 of (M66).

Lemma 6.1 For each n € N and (8 as in (3.12), UJE/l[,)n,ﬁ 1Tk, as M T oo, and in fact

lim  sup PUY < Tk)=0.
M=o, 0cpet o i
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Proof. By monotonicity in M the first assertion is immediate from the second. Proposition 5.1
allows us to apply Corollary 5.9 with m =m + 1, y; = g9, K = Ko+ 1, and «, 3 as in (6.1) and
(3.12), respectively. Hence there is an Ny = Ny(n,ep,e1, Ko+ 1,3) € N a.s., stochastically bounded
uniformly in (n, ) (as in (3.12)), and such that if

(62) N > N()(w), (t,l‘) € Z(N7n7K0 + 176)? ‘33 - .1‘/| < 2_N’
then

01,09 (£, ) = U] 4q (£, 27)]

3e
o0

—85 fi— -2 __on B(v=3), Bt N
<27 — 2T ay, [anQQ T+ 1+ap *(a, V2 )7]

_38
Note that a,, 2 +Bv+(B+e1)

7 <1 since ~v > 3/4, and so by the above we have
(6.3) [t} g (£, @) — Ul g0 (t,2"))]
—ep—3a1 _38 _3
< 984y 0T |z — m'\l_ao [an 297 2NY L1 4 ozg(7 2)2_N“’].

Let us assume § > 0 for if # = 0 we can just omit the bound on |u} 4 (t,29)| in what fol-
lows. Assume M > Ny(n,eo,€1, Ko + 1,5). Suppose for some t < Tk, (< Tk,+1) there are
£€10,27 M), |z| < Ko+1,20,2" € R satisfying |z —a'| < 27M | |2g—x| < e, |u(t, 20)| < anA(Vane),
and |u} , (t,%0)] < al. Iz # 2/, then 0 < |z — 2/| Ve < 27M < 27N and we may choose N > N
so that 27V=! < eV |z — 2| <27V, Then (6.2) holds and so by (6.3),

|u'1’a% (t,z) — u’l,a% (t,2")| < 2_82(1;5073%1 |z — o' |te0 [a;% (eV]z—2'|)> +1
+ 20D ey |a - 7))
If x = 2’ the above is trivial. This implies U J(Vl[)n’ 5= Tk, by its definition. We have therefore shown
P(UY), 5 < Try) < P(M < No).

This completes the proof because Ny(n,eg,e1, Ko + 1, 3) is stochastically bounded uniformly in
(n,0) (as in (3.12)). [

Turning next to ug qa, for 0 < 8 < % — €1, define
UJ(\/QI,)n,,B = inf{t : there are € € [0,27M], |z| < Ko+ 1, #0,2" € R, s.t. |z — 2| <27M,
|z — &0l <&, |u(t,@0)| < an A (Vane), |uy,, (t,20)] < a?, and
a5, (1) =z ()| > 2770 (|2 — o/ |3 [(Van Ve v [/ — al)®
+ a2 (Vap VeV — x\)“’]
+ |z — 2’ 1750ag+%>} A Tg,.
Define U ](\/2[?7170 by the same expression (with § = 0) but with the condition on [u} 4a (f, Z0)| omitted.

Just as for UMW, UJ(\/2[,)n,,6 is an Fi-stopping time.

o7



Lemma 6.2 For each n € N and (3 as in (3.12), U](\j)nﬁ 1 Tk, as M 1 0o, and in fact

lim sup P(U](\f,)nﬁ < Tk,) = 0.
M=o 0<p<i—e1 o

Proof. As before we only need to show the second assertion. Proposition 5.1 allows us to apply
Proposition 5.14 with m =m+1, n1 = €9, K = Ko+ 1, and «, § as in (3.12), (6.1). Hence there is
an Ng = Ny(n,e0,e1, Ko+ 1,3) € N a.s., stochastically bounded uniformly in (n,3) (as in (3.12)),
and such that if

(64) N > N()(w), (t,l‘) € Z(N7n7K0 + 17ﬂ)? ‘33 - .1‘/| < 27N>
then
‘UZG% (tv .1‘) — U202 (tv .1‘/)|
< 2789a;50{|x - x’|17% [(\/an V2 N2 1 (a, v 27N)'Y}
1 1
(6.5) + |z — z'|tee [agﬂ%l)(h 2) | aﬁ“’agzmsl)(v 2)] }
Since v > %,
a, PreD@—3) 4 a{jmﬁﬂ“l)(%%) < alter 4 ang% < 2a§+%.
Therefore (6.5) shows that (6.4) implies
‘ula% (t? x) — U2,q2 (tv $/)|

< 2_89(1;50{\1‘ - x'|1_% [(\/an v 2 4 o (ay, v 2_N)7]

(6.6) 4ol — /et 3

The proof is now completed just as for Lemma 6.1 where (6.6) is used in place of (6.3). [
Notation.

(6.7) Au’l (n,e,e0,8) = a;aos_ao{s + (ea;* + a; VY (52“’ +a?(ev \/@)7) }

For 0 < B < % — €1, define

_a;(ﬁ+51)50/4

27M) x| < Ko+ 1, @ € R, st

U](\?[?n,ﬁ = inf{t : there are ¢ € [2

‘x - 5%0\ < g, |u(t7i‘0>‘ < G, /\( an€)7 |u/1,an(tvi‘0)‘ < alraw and

! ! —78/ A g+%l
‘ul,an (t,z) — Ui go (t,z)| > 2 (Au/l (n,e,€0,8) +an )y ANTk,.

Define U ](\?[?n,o by the same expression (with 8 = 0) but with the condition on |t ,a (£, Z0)| omitted.

Just as for UMW, U](\j?nﬂ is an JF-stopping time.
Lemma 6.3 For each n € N and (3 as in (3.12), UJ(\EI,)n,ﬁ 1Tk, as M T oo, and in fact
lim  sup  P(Uy, 5 < Tx,) = 0.

M=00 ) 0<p<le
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Proof. It suffices to prove the second assertion. By Proposition 5.1 we may apply Proposition 5.11
withm=m+ 1, m1 =9, K = Ko+ 1 and 3 as in (3.12). Note also that if s =t — a% + a,, then

(6.8) Vi—5 < a®/? = gfter,

and

(6 9) a,@-‘ré‘l < N—4/50 — 2—N > 2—a;(ﬁ+51)50/4
: n = = .

So Proposition 5.11 shows there is an Ny = Ny(n,e0, Ko + 1,3) € N a.s., stochastically bounded
uniformly in (n, ), and so that if

—(B+e1)eg/4

(6.10) N > Ny, (t,z) € Z(N,n,Kog+1,3) and 27~ > 27 ,
then

‘ull,an (tv .1‘) - ull,a% (tv $)|

= |Fy, (t —ay + apn,t,x) — Fy, (t,t,2)| (by (5.44))
(6.11) < 2*81a;50{2N50 [TN Faz VA2 Na 12 1) (272N 4o (2N v \/_an)'y)}

+ agig—i—el)(l_eo) [a,(f“l)(?”‘%) + ag’7a7(1/8+61)(7_%):| }
We have used 3 +¢1 < 3 (from (3.12)) in the last line. The fact that

(842027~ 3) > B+ (B +e)(y — 3)

implies that

a

<0 (fte1)(1=20) [a,(fﬁl)(%’_%) " agv+(ﬂ+el)(v—%)

< 20 a£ﬂ+61)(1*€o)+ﬁ(27* $tei(r—3)

1 1
< Qag(%f— 3—€0)+e1(v—3—20)~ 155

g1
< 2ag+ 8

i

where (3.10) is used in the last two inequalities. This allows us to simplify (6.11) and show that
(6.10) implies

_81r& - B+%
(6'12) |u/1,an (t,l‘) - ull,a;‘{ (t’x)‘ <2 o [Au’l,so(nv 2 N7507ﬂ) + 2an ° ]
The proof now is similar to that of Lemma 6.1. As before, we may assume S > 0. Assume
—(B+e1)eg/4
M > Ny(n,e0, Ko+1,3). Suppose for some ¢ < Tk, there are e € [27%" e 27 M |z| < Ko+1,
and 29 € R, such that |29 — 2| < ¢, |u(t, 20)| < an A (V/ane), and [uf , (¢, %0)] < a. We may
choose N > M > Ny(w) so that 27¥=1 < ¢ < 27N, Then (t,z) € Z(N,n, Ko + 1,3) and
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—(B+e1)e0/
2= N > e > 27 o O~4, and therefore (6.10) holds. Therefore we may use (6.12) and the fact
that A(n,2e,e0,3) < 8A(n,e,e0, ) to see that

—78[ A +3
[0 0, (8,2) = sy (£,2)| < 2758 (my 2,20, 8) + an” © .

This shows that M > Ny(n,eo, Ko + 1, 3) implies U](\f’[)n 5 =Tk, and so

sup P(UJ(\ig[)nﬁ<TKo)§ sup P(Ng>M)—0as M — oo
n0<B<3—e1 o n,0<B<g—e1

by the stochastic boundedness of Ny uniformly in (n, 3). [
Finally for M € N, define
U](\jl[) = inf{t : there are € € [0, 2_M], lz| < Ko+ 1, &0,2" €R, sit. |z —2'| < oM

|z — 20| <e, |u(t,20)| <e, and |u(t,z) —u(t,z")| > (e V]2’ — x\)lfso} ATk, .

Lemma 6.4 U](\f[) 1Tk, as M T oo, and

lim P(U\} < Tk,)=0.

M—o0

Proof. It suffices to prove the second result. This follows easily from Theorem 2.3 as in the proof
of Lemma 6.1. The constant multiplicative factors arising in the proof can easily be handled by

applying Theorem 2.3 with £ =1 — £¢/2 in place of £ = 1 — &o. |
Let ‘
UM,TL,,@ = /\?ZlU](\j?n,ﬁ7
and
(6.13) Umn = (Af:(%O7EI)UM,n7gi) A Uﬁ),

where we recall that {; : ¢ < L} were introduced in (3.11). We have suppressed the dependence of
Ui on our fixed values of Ky, e and €1. Note that 3; € [0, % —¢&1] for i =0,...,L by (3.12) and
a; = of;). Lemmas 6.1, 6.2, 6.3 and 6.4 therefore show that {Un,,} satisfy hypothesis (H;) of
Proposition 2.1. Hence to complete the proof of Proposition 3.3 it suffices to establish compactness
of Jp,i(s), and the inclusion J,, ;(s) D Jyi(s) for all s < Uprp, (n, M) as in (3.14), and i = 0,..., L.
The next lemmas will show the inclusion part of the proof. We assume (n, M) satisfies (3.14)
throughout the rest of this Section.

Lemma 6.5 If i € {0,...,L}, 0 < s < Upmp, and x € Jy4(s), then (a) |uy, (s,2n(s,7)) —
‘ S 2—74a2i+§1

ull,affi (s, Zn(s,x)) ,

(b) fori >0, [t a,(5,En(s.2))| < an'/2,
(€) for i < L (5, s, ) = a8,
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Proof. (a) Assume (n,4,s,) are as above and set € = \/a,,. We have |(us, ®3"")| < a,, and
Supp(®z+) C & — Van,  + /an].

Using the continuity of u(s,-), we conclude that

(6.14) lu(s, Zn(s,2))| < ap = an A (Vane), |in(s,z)— x| <e.

The definition of J,, ; also implies

(6.15) ] o, (5, 2n(s,2))| < ali/4 fori> 0.

In addition, (3.14) and ¢; < 1/2 (by(3.10)) imply

—epe1/4

(6.16) 27 M> Ja,=e>2"%

Combine (6.14), (6.15) and (6.16) with |Z,(s,z)] < Ko+ 1 and s < Uy < U](\?[)n 5, and take

& = &y = #p(s,x) in the definition of U®), to conclude that

- el
(6.17) ()0, (5, En(5,2)) = 0, o (5, n(s5, 2))| < 27 (Ayy (. /a0, 61) +an” °).

Lan

Now

~ 1
Aoy (s VVam, 20, 51) < 0,502 ] g + 20, (@) + a?l(‘“?’)}

1y 1
< 4a;350/2[ /—an_i_az(ﬂri-z) 4] (Since B; < %)

=35 ﬁi—ﬂ-f—?’g—l . 3 1
§4[an2 +an 2 2} (usmg'y>zandﬂi§§—651)
i+
< 8a§ 8,

The last line follows from (3.10) and a bit of arithmetic. Use the above bound in (6.17) and conclude

that e
~ ~ _ i+
[0 a,, (5, n(s, @) = Uy o (5, 2n(s,2))| <27 Man"

(b) This is immediate from (a) and the fact that [u} , (s, %n(s,7))| < ai'/4 (by the definition of
Jn,i for i > 0).

el _ .
(¢) Since ¢ < £1/8 by (3.10), aﬁﬁ § < al*'. For i < L we have Uy 4, (8,Tn(s,7)) > ag“’l/él. The
result is now clear from (a) and the triangle inequality. [

Lemma 6.6 Ifi € {0,...,L}, 0<s < Upn, z € Jni(s) and |z — 2’| <50,(3;), then

; ! / Bi
(a) for i >0, |u1,aﬁi (s,2")| < ai,
(b) fori < L, u’lﬁazi(s,x’) > ag“’l/lG.

61



Proof. Let (n,i,s,x,2’) be as above and set € = |z — 2’| + \/a,,. Then we have (6.14), (6.15), and
also (by (3.14))

(6.18) e <5aX + /a, <27M,
and
(6.19) l' — & (s,2)| <e <27M iu(s,2)| <|z| +1 < Ko+ 1.

(6.14), (6.15), (6.18) and (6.19) allow us to use s < Upr,, < Uy, 5 and the definition of UJ})
(for : > 0 or i = 0), with &,(s, z) playing the role of x, and deduce that

[t e (5, 2") = 0] o (5, (5, )|
g1
< 2*82an50 2 (‘x _x/‘ _1_\/%)1750 [a;3ﬁi/2(|x/ _x| _i_m)}y
(y—3
+14a)0 2)(|;1:—g:’| +@)v}

Use the fact that 3; 4+ 51 < 1/2 (recall (3.11)) to infer | — 2’| + \/an < 6a > < al (by (3.14))
and so bound the above by

2779%:50—&Tla%ﬁﬂrf)sl)(l—so) [agi(%—%) 14+ agi(?‘f—%)}
S 2779017:50736%agﬁi+551)(1750)3
< 2777agi+1’
provided that £;11 < (8; + 5e1)(1 —€g) — 0 — 3%, or equivalently
g0 + (B; + 1)eo < ((7/2) — 5eo)er.
This follows easily from (3.10). We have therefore shown that
U] o (5,8") = U] o (5, 8n (s, 2))| < 27 7Tapi ™,

and so both (a) and (b) are now immediate from Lemma 6.5 (b), (c). [
Lemma 6.7 Ifi € {0,...,L}, 0<s < Upnp, « € Jpi(s), and |z — 2’| < 4\/a,,, then

g (5.27) — 0y (s, 2)| < 2P (1 — /) v 2200721 whenever |o! — a”| < To(%).
Proof. Assume (i,n,s,z,2') are as above and set € = 5\/a, < 2™, by (3.14). Then
\x'—i‘n(s,xﬂ S ‘$,—$‘+van§€, |.1‘/| S ‘J}|+1§K0—|-1, |U(S,i‘n(8,1‘))‘ San:an/\( an€)7
and the definition of (s,z) € J,; implies that for ¢ > 0,

U] 4, (5, 8n(s,2))| < ali/4 < ali.
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Let
Q. 20, Bis) = a1 =" [(Van v 1) + 0l (Van V)7

Assume |2 — 2" < 1,(8;) < 27, the last by (3.14). The condition s < Upzp, < Uj(\j)n 5, and the
definition of U®), with (z/,2") playing the role of (x,z'), ensures that

it g (5,2) = g g3 (5,0)] < 275a= [|o” = /| 3" [(5/am) V [a" = 2'])
T (GNP ey
(6.20) < 27%([Q(n,e0, B, |2" — 2/|) + |2" — @ 1_50a£i+%_50],
We first show that
(6.21) Q(n, €0, Bi,7) < 2(15”1(7“ V@)~ 2B0=N7E) for 0 < - < 1,(5).
Case 1. \/a, <71 < 1,(5).
Q(n,e0, Bis 1) = a,=° [TZ”Y*%*%O + agﬂrﬁéf%o],

and so (6.21), will hold if

(622) 7'27/7%7570 S agi+1+€0’
and
(6.23) a,ﬁ”ﬂ_%_%o < gliiteo,

(3.10) implies 2y — £ — 2 > 1 and so (6.22) would follow from

r< agiJrl +eo )

+oer < Pit220 and this is

Hence, by the upper bound on r in this case, it suffices to show that ay’
immediate from (3.10).

Turning to (6.23), note that
a{rﬁlmry_%_%()agﬂiﬂ—eo < a{rﬂli’y+(ﬁi+5s1)('yf%*%1)*5241*50

< aﬁi(%—%—%0)+561(7—§—%0)—2€0
= n

where in the last two inequalities we are using (3.10). This proves (6.23) and hence completes the
derivation of (6.21) in this case.

Case 2. aszi(lfwfsl <r < \/ay.

Then

_ 1-eg i+ _ 1-eq i+
Q(n,eo, Biy7r) = a,°r 2 [a%—kaz(’g 2)] < 2a,r 2 az(ﬂ 2),
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and so (6.21) will hold if

1+¢ _ 3. _ 41 a1 y
(6.24) PR s g Pmimeo(Bity) _ —Ail-mtg-2e0

Our lower bound on r implies that

Y00 _f1
2t3 2

P > g0 2B (He0)/2 5 (BN

which implies (6.24) by (3.10).
Case 3. r < a?fwi(l*w*sl.

This case follows from Case 2 and the monotonicity of Q(n, g, 3;,7) in r. Strictly speaking we also
need the fact that Case 2 is non-empty as was done in Lemma 3.6.

This completes the proof of (6.21). Consider next the second term in (6.20). If r > a,, then

—eo BitF—c0, Bir1 \— —eo . —2c0+F
7,,1 annz 2 (agwrlr) 1 — ann 1

;360-‘1-% <1

by (3.10). It follows that
(6.25) rl_soagiJr%_EO < agi“ (rva,) < agi“(r vV ax_%i(l_v)_al),
the last inequality being trivial.

Insert (6.21) and (6.25) into (6.20) to derive the desired bound. ]
Lemma 6.8 If0 <s < Uy and x € Jy0(s), then
(6.26) lu(s, z) — u(s, 2')| < (Van V |z’ — )15 whenever |z — 2’| < 27M,
and
(6.27) lu(s, z')| < 3(v/@n) 7% whenever |2’ — | < \/an.
Proof. Asin (6.14), if e = \/ay, (s,x) € Jp,o implies
(6.28) lu(s, Zn(s,x))| < ap <e, |Tn(s,z)—z| <e, and |z| < K.

In addition, (3.14) ensures that e < 27M and so s < Ups,, < U](\jl[) means that
lu(s,z') —u(s,z)| < (Van V|2’ —z|)t7%0 for all |2’ — 2| < 27M.

This proves (6.26). Next take 2’ = Z,(s,z) in the above inequality and use (6.28) to obtain for
2" — 2| < \/an,
u(s, @)| < |u(s,2") — u(s, @) + [u(s, z) — uls, &n(s, 2))| + |u(s, n(s, z))]
< 2/ap % +a, < 3@, .
This proves (6.27). [
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Proof of Proposition 3.3 The compactness is elementary and left for the reader—note here that
continuity allows us to replace the closed intervals on which the inequalities defining jm(s) hold
with open intervals.

The inclusions J,, ;(s) C Jyi(s) for 0 < s < Upr,, are immediate from Lemmas 6.6, 6.7 and 6.8.
[

This finishes the proof of Proposition 3.3 except for the proof of Proposition 5.14 which is the
objective of the next section.

7 Proof of Proposition 5.14

We now continue to assume b = 0 and give the proof of Proposition 5.14. Assume first ¢’ > ¢ and
use (3.5) to write

(7.1)
g 5(t' :v)—uQa(t )|

‘/t/\(t - /pt_s(y B x)D(s,y)W(d&dy)‘ i ‘/(:5)4_\” /pt’—s(y —2")D(s,y)W (ds, dy)

w1t =t <] [ [y =) = sl = 2D W )

This decomposition and (3.2) suggests we define the following square functions for 6 € (0, 1] and
no € (0,1/2) (noting also that (¢’ — 8T V>t — (A —t))):

At =)t

. )
Qras(t,t', z) = / /pt—s(:l/ — z)%e* 1y (s, y) [P dyds,

(=)
t/
QT,2,6(tat/71’/) = / /pt/_s(y — x’)QeQRl‘yHu(s,y)\Z'Ydyds,
(N (' —1))
t
Q&mm@xﬂﬂﬂ:1W—t<®/‘ /uw—xpwy—@ﬂ%%v@u—fm
(o)
X (py—s(y — ') — pr—s(y — )XW |u(s, ) |* dyds,
t
Qsasm(tot ) =10 —t<) [ [1ly=al <@ =9)"*P v @ - o)
(v—o)*
X (py_s(y — ') — pr_s(y — )22l |u(s, ) |* dyds.

Lemma 7.1 For any K € NZKt gnd R > 2 there is acr1(K,R) >0 and an N7; = N71(K,w) € N
a.s. such that for all no,m € (1/R,1/2), § € (0,1], Ny,n e N, € [0,1/2] and (t,z) € Ry xR, on
(7.2) {w: (t,z) € Z(N,n,K,B), N > N7},

Q51550 (t, 2,1 2") < ez 1 (K, R)2*M1[d((t, ), (', ")) AV ™82 for allt <t and 2’ € R
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Proof. The proof is quite similar to that of Lemma 5.4. We let d = d((¢,z,), (', 2")) and N7; =
N1(0,3/4,K), where Ny is as in (Pp). Recall here from Remark 5.3 that for m = 0, N; depends
only on (§, K) and we take { = 3/4. We may assume ¢’ —t < §. Then for w as in (7.2) and ¢t < ¢/,
Lemma 5.2, with m = 0, implies

QS,LCSUO t x, t' .1‘

< Gl / / (ly — x| > (¢ = )27 v 2z — /) (pr—s(y — 2') = pr—s(y — 7))
x 2=+ Ryl (=N v (Vi =5 + |y — z|))>/2 dyds

t
<Coaw) [ [y —e > @9 e =)oy ) sy =2

2K 2Rt Dly=ally 1y — 2272 dyds

t ! —2no d2 —=
B 12 gy (5T :
< e (K,R)C52(w) /t/—é(t s) exp( 33 ) [1 Nz 8} ds,

where we have used Lemma 4.3(b) in the last line. Now use

to bound the above by

c1(K, R)Cs.2(w) [exp(—M) /t,t 5(t_ §)1/2 [1 A d? ]17]21ds

66 t—s
: /j;t o <¥> 1) e
< ¢3(K, R)Cs5(w) [exp( ) A )12
n

t 3/2 d 1_7]2 S use
+ /”(t 5) [1 A ] d ] (use (4.2))
< e3(K,R)Cs0(w)(d2 A8)25%2  (use (4.1) and ¢/ — ¢ < d2 A §).

As we may take g = 0 in the formula for C52(w) (by Remark 5.3), the result follows. [

Lemma 7.2 Let 0 <m <m+ 1 and assume (P,,). For any K € NZK1 R~ 2 neN,g e (0,1),
and 3 € [0,1/2] there is a c7.2(K) and N7o = N7a(m,n, R, e, K, 3)(w) € N a.s. such that for any
m € (R71,1/2),m0 € (0,1m1/24),0 € [an,1], N €N, and (t,7) e Ry xR, on

(7.3) {w: (t,x) € Z(N,n,K,3),N > Ny},
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QS,Z,(SJ?O (t? z, tlv wl)

< era(K)ay 0 +2V12] [(d A V) F BT + a2
+ (dA VOSSR

forallt <t < K,|2'| <K + 1.

Here d = d((t,z),(t',2")), dy = dV 2™ and dy N = \/a, V dy. Moreover Nyo is stochastically
bounded uniformly in (n, [3).

Proof. Set ¢ =1 — (24R)~! and Nya(m,n, R, e, K, 3) = Ni(m,n,§, e, K, 3), which is clearly
stochastically bounded uniformly in (n, ) by (P,,). We may assume t' — ¢ < §. For w as in (7.3),
t<t' <K and |2/| < K + 1, Lemma 5.2 implies

QS,2,5,770 (t7 z, tlv x/)
< 05.2(W)C1(K)/( 5 [/(pt’—s(y —a') = pr-s(y — 33))26@] 2K A FaFDAK 1)
=

X (27N Vo = al) + (¢ = )3 )P (Vag V2V v o - al)

t

+(t - 3)%—770)2“1(%—1) + a%ﬂv] ds

t 2
d_] ((2—1\1 v d1—2no) (- S)é—no)%&

t—s)"1/2|1
( S) { /\t—s

< Csa(w)es (K) /

Dk

g v vy o s s
We have used Lemma 4.3(a) in the last line. Below we will implicitly use the conditions on 7,71,

R and ~y to see that
w-2mne> (57) (1) (%) > 3

and also use the conditions on t,z,t', 2" which imply d < ¢(K) (the latter was also used in (7.4)).
By considering separately the cases

1_

(t—s)27™ < 27Ny g2 (1 5370 > fgov 2Ny l-2m
and 27N v @m0 < (¢ — s)%_"O < an V2N v gt
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(the latter case implies /a, > 27 v d'=21), and then using Lemma 4.1 we may bound (7.4) by

t

d2
u—srvﬂ1A;jﬂdquvdk%w%€

05.2((41)63(K){/

(v—o)*

X [( fa, V2~V v d172170)2'y(*?m71) + aiﬂ'y]

t R 5 _l.1_ d?
+/ [(t — §) 3121 Gm =140 | 207(4 _ 5)=3+( 2770)75} [1 A }ds
(t’—5)+ t—s

2

t
+/ (t — 5)1—2m0)7E—3 [1 A td ]ds[ax(%m—l) n a%ﬂv]}
(

t'—6)+ -5
< 05,2(w)04(K){(d2 A 5)1/2(2*1\7 V d1*2no)2v€
X [(\/@ v 2Ny @20y 27 Gm=1) o a%ﬁv]
+(d2 A 6) [5(172770)7(%71%)7% + a%ﬁ'y(s(lenO)'ygfé}
+ (d2 A 5)(5(1—2770)’75_% [a;‘fl(ﬁ/m—l) + a%ﬂ'y]}

(by (4.2) and (4.1), respectively).

The last term is less than the middle term because § € [ay, 1]. Therefore Q&Qﬁmo (t,z,t',2') is at
most

05,2(w)05(K){(d AVIF (27N v @)1z
ni n

(7.5) « [(\/@ v o Ny d)(1—2no)2v(“7m—1)+7 + a%ﬂv(\/@ v o Ny d)r]

F (A5 [5(1—2ﬂo>vﬁm—1+s>—%+% + aiﬁ75(1—2no)v§—%+%l] }
Our conditions on 79, 11, and R imply

m < M -
(1 —2n0)27¢ + T >2vy, (1—=21n0)27(Am —1) + " > 29(F — 1),

~ 1 ~ 1
(T —210)y(m — 1+ &) + % > Vm, and (1 —2m9)7€ + % > 7.

Finally, insert the above bounds into (7.5) to derive the required bound on Q572,5,,70(t, z,t' 2'). g

Lemma 7.3 Let 0 <m <m+ 1 and assume (P,,). For any K € N2Er R~ 2 neN,g e (0,1),
and 3 € [0,1/2] there is a c¢7.3(K) and N73 = N7s3(m,n, R, e, K, 5)(w) € N a.s. such that for any
m € (R74,1/2),6 € [an, 1], N €N, and (t,z) € R, xR,

(7.6) on{w: (t,z) € Z(N,n,K,3),N > N;3}, and for allt <t' < Tk, |2'| < K +1,
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QT,l,(S(tvt,ax)
< era(K)lay ™ + 23] (VI =T AVE) S ay a0 + ol

+ (VI =t AVE)E™ [Wm—i + a7

and

Qras(t,t,z)
< era() a2 + 207 (VT = A VB H B [ + a2,

Here d, dy and Jn,N are as in Lemma 7.2. Moreover, N73 is stochastically bounded uniformly in

(n,3).
Proof. Set ¢ = 1 — (4R)™! and Ny3(m,n, R,co, K,3) = Ni(m,n,§, e, K, 3), which is clearly

stochastically bounded uniformly in (n, ) by (P,,). For w, t, z, t' and 2’ as in (7.6), Lemma 5.2
gives

QT,2,5(t7 tlv .Z‘/)

t/
< 05.2((4})01/ /pt/s(y — o) 2e2RA K Q(RI 1) =’ [12(R1 +1) (2K +1)
(SA(H —t))
x 27NV |z — 2|+ V= s+ |y —2||P¢
X {[\/an V2 NVIz — 2|+ VI — s+ |y — 2/ [P0 4 a2ﬂ7}dyd3

t/
< 05.2(w)02(K)/ (' =) 22N Ve — 2/ + (- 5)
(A (' 1))

(7.7)

<{(Vam v 2N Ve = a0 4 (¢ — 5GnD) 4 207 L,
For t <s <t and c,p >0,

(eV]|z—a')P 4+ {# —s)P/2 < 2(cVd)P.
Use this with ¢ = 27" or \/a,, V27" to bound (7.7) by
Csa(w)es(K) (¢ — 1) A8)z[2~N v )2 {(\/—n v 2Ny @)2m L) 4 aif”}
+77

n ~
< Csa(w)es(K) (VT —t AVE)Y =Tyt szlj]@m—luaglﬂw}

The conditions on 7; and definition of & imply 2v§ + 4 > 27, and so the bound on QT,2,5 is
established.
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Turning to QT71,5, we may assume t' > 4§, or else QTJ,(; = 0. Argue as in the derivation of (7.7)
to see that for w, ¢, ¢ and x as in (7.6),
N tA(t —6)
(7.8) Oris(t.t'z) < Csa(w)es(K) / (t— 8)V2[(272VE (¢ — s)]
(t=o)*

x{(\/ﬁ v2mMN)2m=l) 4 (3 — 57 Gm=l) 4 aiﬁv}ds.

Elementary calculations give

tA( —8)
(7.9) / (1 — 5)"2ds < 2T =1 A V),
t—48
and for p > 0,
tA(t —06)
(7.10) / (t — s)Pds < 6P((t' —t) N 9).
t—48

For the integral in (7.8) consider separately the cases (i) v —s < 27V, (ii) I — s > /a, V27,

and (iii) 27V <t — 5 < \/a, V27, the latter implying \/a, V2~ = \/a,, to bound QT,L(;(t, ', x)
by

tA(t —06)

05,2(w)04(K){/

(t — )~ Y2ds2 2N [( Van V2~ N)21Gm=1) 4 269
(t=8)*

tA(t —6) B N L
+ / (t — 8)YOImFED=5 4 ¢207(¢ — 5)7672ds
(t=0)T

A —5) ~
+ / (t — )¢ 3ds |:a71("fm_1) + aiﬁv]}
(t=0)*

< Csa(@)es(B){ (VB AVE =D a7 [0 + 2]
+0WWﬂ—ﬂﬁW”W%**%+a%m%—ﬂ
+(5/\U’—t»[&%*%azﬁmfﬂ_%5%f%a%%}}'

In the last we have used (7.9) and (7.10), and the fact that our choice of £ implies 7§ > 1/2 and
hence our choices of p are indeed non-negative when applying (7.10). Since § > a,,, the third term
above is dominated by the second term. Therefore

A ¢ ”]_1 -
Qraslt,t @) < Caa(w)es () {(VOAVT =D 3y [0 4 2]
FEA —t) T [5v(ﬁm+§—1)—%+% + a%ﬂvm&—%#’%] }
Our choice of £ and conditions on n; imply that

296 + 4 > 2y and A(§ — 1) + 5 >0,
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and the required bound on QT,L(; follows. |

The above square function bounds suggest we will need a modified form of Lemma 5.7 to obtain
our modulus of continuity for ug4a. The proof of the following result is almost identical to that of
Lemma 5.7 and so is omitted.

Lemma 7.4 Let cy,c1,ca, ko be positive (universal constants), n € (0,1/2), and A; : N x (0,1] —
Ry, i = 1,2 satisfy Ay(n,27 VT < kgAi(n,27N) for alln,N € N and i = 1,2. Forn € N and
T in a set S assume {Y;,(t,z) : (t,x) € Ry x R} is a real-valued continuous process. Assume
for each (n,7) € Nx S, K € N, and g € [0,1/2], there is an No(w) = No(n,n, K, 7,5)(w) € N
a.s., stochastically bounded uniformly in (n,7,[3), such that for any N € N, (t,x) € Ry x R, if
d=d((t,z), (' ,z") <27V, then

(7.11) P([Yrn(t,x) = Yy, 2)| > d20"DA (0,27 V) 4 d " Ag(n, 27 N),
(t,z) € Z(N,n,K,[),N > No,t' <Tk)
< cgexp(—cpd™"?).
Then there is an Nj(w) = Nj(n,n, K,7,3)(w) € N a.s., also stochastically bounded uniformly in
n,T,[), such that for all N > N}(w), (t,x) € Z(N,n, K, B)(w), d = d((t,z), (t',z") <27V, and
0
t' < Tk,
Ven(t,@) = You(t', o) < 273 {20 AL (n,27N) + d 7 1As(n, Q’N)].

Proof of Proposition 5.14. The proof follows closely that of Proposition 5.8, using Lemma, 7.4

in place of Lemma 5.7. Let R = f]—i’ and choose 7y € (%, 2). Define dy =dV 27N, as usual, and
set
2
Qa% (t) T, tlv wl) = Z QS,i,a%,no (t7 x, tla m,) + QT,I,a% (t) tla x) + QT,Q,a% (t) tlv .Z‘/).
i=1

By Lemmas 7.1, 7.2 and 7.3, for all K € N (the restriction K > K is illusory as these results
only strengthen as K increases) there is a constant c¢1(K,n1) and No(m,n,n1,e0, K,3) € N a.s.,
stochastically bounded uniformly in (n, 3), such that for all N € N, (¢,2) € Ry x R,

on {w : (t,l‘) € Z(N,TL,K—l—l,ﬁ),N 2 NQ}a
Rg@a% (tvxvt/ax/)l/Z
Pl

< aa(K,m)lay® +22%1{ (d A0 FOBY [(dy v alf2)0m D 4 o]

(7.12)
forallt <t <Tk, |2'| <K +2.

Let N3 = 3]—?[]\[2 + N4(K,m)], where N4(K,n1) is chosen large enough so that
e (B, )0 + 22N ]27 N/ < ) (I, gy a0 + 22N2]p-SNag 6N ()

(7.13) < a, 027104,
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Let Ajy, = 27100A; ,,, i =1,2. Assume d < 27, Use (7.13) in (7.12) to see that for all (¢,z), N,
on
{w:(t,x) € Z(N,n,K +1,0), N > N3} (which implies |2'| < K + 2),

RYQua (t, 2,2/ < (d N ad )20 A  (myn, 27N) /16

o
2

+ (dANag )1*5%A2,m(m,n)/16 for all t <t < Tk, 2’ € R.

Combine this with (7.1), (3.2), the definition of Qa% and the Dubins-Schwarz theorem to conclude
that for t <t/, 2/ € R, and d((¢,z), (t',2")) <27V,

P(\uZa% (t,2) — upae (', a")] = d2O"AL , (myn, 27N) /4 + d' " Agy, (myn) /4,
(t.x) € Z(N,n, K +1,8), N > Ny, ¢ <Tx)
<3P (sup{\B(u)| cu < @30T AL, (my 1, 27N) /16 + dV 8 Ag uy (m, n) /16)2)

> (@30 A y (m,n,27N) + 0V A () /12)

(7.14) < 3P(sg;1> 1B(u)| > d_%l) < exp(—d - )

NN

Here B(u) is a one-dimensional Brownian motion.

If (t,2) € Z(N,n,K,[3), d <27V, and ¢ < t, then as in the proof of Proposition 5.8, (,z') €
Z(N —1,n,K + 1,) and one can interchange the roles of (¢,z) and (¢,2') and replace N with
N —1 in the above to conclude (as in (5.40)),

P(‘UZG% (tvx) — U2,a% (t/vwl)‘ > d%(lim)Al,w (m?nv 27N) + dlimA?,UQ (mvn)v
(t.x) € Z(N,m, K.B), N > Ny +1)

_m
4

(7.15) < ¢ exp (—d 5 )

(7.14) and (7.15) allow us to apply Lemma 7.4 with 7 =a, Y7, = ug,eg, and kg = 4. The result is
then immediate once one recalls that 2714:(2)Ai,u2 = 2*89Ai,u2. [

8 Incorporating Drifts

Beginning in Section 3 we assumed that the drift b is zero. Here we point out what additional rea-
soning is needed to include a drift b satisfying (1.4). If B(s,y) = b(s,y, X'(s,v)) — b(s,y, X2(s,¥)),
then (3.1) becomes

(8.1)
t t
ult, z) = /O / pr_s(y — 2)D(s, y)W (ds, dy) + /O / prsly — 2)B(s, y)dyds as. for all (t,z)

= uD(tvw) + UB(t,.T),
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and by (1.4),
(8.2) [B(s,y)| < Blu(s,y)|.

If ujs,uss and Gj are defined as at the beginning of Section 3, then as for (3.4), (3.5) and
Lemma 3.1, but now using the ordinary Fubini theorem for up, we get

(t=o)t (t—8)*
uy5(t, ) = / /pts —x)D(s,y)W (ds,dy) / /pts —x)B(s,y)dyds

=uy ps(t, ) +uips(tx),

u2,5(t,x)):/ - /pts —x)D(s,y)W (ds,dy) /6 /pts —x)B(s,y)dyds
t— t

u2,D,5(t7 .Z') + UZ,B,(S(tv 'T)a

and

—GY(s,t,z) = Fs(s,t,x)

s—6)T (s—8)*
/ / Plevs)—r (Y — 2)D(r,y)W (dr, dy) + /0 / Plove)—r (Y — ) B(r, y)dydr

= Fps(s,t,x) + Fps(s.t, ).

In addition, no changes are required in the verification of (Fp) (including the refinement noted in
Remark 5.3) or the proof of Lemma 5.2.

The theorems in Section 5 apply directly to quantities like u; p 5 and Fps. The correspond-
ing expressions u; g5 and Fp s are in fact much easier to handle because we are dealing with a
deterministic integral and so regularity properties are easy to read off directly from the bounds in
Lemma 5.2. Furthermore, the Lipschitz condition on b effectively sets v = 1 for these calculations.
To illustrate this, we now prove a simple result which includes both Propositions 5.8 and 5.11 for
Fp.qe and only requires (Fy), a consequence of the “crude” modulus Theorem 2.3, already noted
above.

Proposition 8.1 For any m1 € (0,3) and K € N=E1 there is an Ngi(m, K)(w) € N a.s. such
that for allm € N, a € [0,1] and 3 € [0, %], N > Ng1(m, K), (t,z) € Z(N,n,K,[3), and t’ < Ty,

d=d((t,x),(t',2") <27 and |s' —s| < N~ imply
|Fpag (5,1,0) — Fpag (s, a')| < 278 || — 5227 N0=m) 4 |s/ — 5173
+d (1 + a3/ 272N |
Proof. Let £ =1 — "t and assume first that
(8.3) N >N (0,6, K+1)+1,

where N7 is as in (Fp) and Remark 5.3. Assume

(8.4) (t,x) € Z(N,n,K,B),t' <Tk,d <2V and |s' —s| < N7L.
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One easily checks that [t A s — ' As'| < N~! and so, by replacing (s,s’) with (t A s,# A 8'), we
may assume that s < t and s’ < t/. Define s = sV s and s = s A s. As before, (t',2') €
Z(N —1,n,K 41, 3), and again, by interchanging (¢,x) with (¢, z"), we may assume ¢ < ¢’ (this is
the reason for the K 4+ 1 and adding 1 to Ny in (8.3)). As for (5.6), (8.2) implies

‘FBaa(Sth FBaa(S t .T)|
(5—a¥ (s—a¥%
/( / 1Py (y — )| Blu(r, y)|dydr + / / Py — ) — By — )| Blutr,y)|dydr

=T —I—Tg.

To bound 77, we may assume 35 > af. Elementary inequalities using t’ < Tk < K, show that
for p > 0,

(8.5) / Py (g — @)y — 2/ Pelv—ldy < (¢ / ly — 2P py_(y — o)y
< e (K. p)(t — )7

Now apply Lemma 5.2 with m = 0 to see that
§_
T < B\/C5,2/ /|pt, y—a) \e‘y ‘B/‘e‘x_’”,'((\/t—r—l—\y—aﬂ)\/2_N)5dydr
< oo(K \/052/ +/|pt/_,_ (y — 2V =N[(|z — 2| v 2NV £ VT =T + |y — 2] dydr
s a(’

< c3(K \/@/ o 1/2[2 Ne (@ r)i/Z]dr (by (8.5) and |z — 2/] < 27V)
< ea(K)2M s — \1/22—N<1—— +s' = ']
< C4(K)22N1(w) [2*N771/2 + ‘8/ _ s|”1/4][|s _ 8|1/227N(17m) +ls— 8/‘17%]

(8.6)
< ey(K)2PN @ [ Nm/2 . N=m/A[|g — 51297 NO=m) g — /13,

Recall in the above that we may set g = 0 in the definition of C5 (see Remark 5.3).
For T, we use both |u(r,y)| < Kelvl for r < < Ty (K > K;) and Lemma 5.2 with m = 0 to
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write (we may assume s > a),
/ P} (y — 2') = P (y — @) BKe1(ly — x| > (' = )25 v (20’ — ) dydr
/ i (y — ") = i (y — 2)| BV Cs2e I [(Vi=7 + |y — x]) v2 V]

m

Wy — o < (' = )24 v (2’ - a]))dydr

<es(K) v/ / / Py — ) — Py (y — )]
Wy — x| >t —r)2= T v (2 — z|))e vldydr
/ / -y~ 2') — pi (y — )Ly — 2] < 202K + D)dy((¢ — )3 v 2 — 2 v 2 V]
<c6(K)\/Cs2 / / Pip(y — ') — ph_(y — )%t
1y =2l > (=% v @l — ay?( [ eHr-slag) Car
b [T [0ty bl - PR 1) B,
where in the last line for the second term we use d < 2~ and

_m _m _m _m
e Yy SIS e I L N
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Now apply Lemma 4.4 and conclude

s—a% _ — ) m/2 2 2= 4
Ty <c7(K,m)v C5~2{/ (=)= eXp{ i }(1 " )2 dr
0

128 t—r
s=an d* \1/2 m
_p)3/4 — /2y 9 NE(-3)
+/0 (t—r7) (mt_r) [(t —7)Y/2 v 2] 2dr}
s—a B _ t—rp —m /2 d2 1_m
§C7(K7771)\/05.2{/0 (t—r) 3/46XP{ il 128) }(1At—r)2 tdr
s=an 3,€61_m d? \1/2
—_ )y ats=3)
_|_/0 (t ?”) 173 2 (1 A o ?”) dr

s—al d2 1/2
+/ 1r >t —272V)(t — )1 (1 A ) er*Nf(lf%l)}
0 t

s—al d2 %
<cs(K,m)vV 05.2{/0 (1 A7 r>
+1(a® < 272M)d(d? v ag)—1/42—N5<1—"71>}

<co(K,m)V 05.2{d1_%1 + 1(ay < 2_2N)da53a/4a§/22_]v§(1_%)}

—3a _ 3Nm 1_3m

§C9(K,771)\/C5.2d1_3%[1—1—%72_ 79 No—N( T)}

(8.7) <eio(K,mp ) 22N Wlg=Nm/Agl=m[1 4 ¢, oo ].

We have used Lemma 4.1 in the above with a bit of algebra to see which case applies, and in the
last two lines again used d < 27V, (8.6) and (8.7) together show there is an Ng (91, K)(w) € N
a.s. such that Ng1(n, K) > N1(0,§, K +1)+ 1 and, if N > Ng 1, then

_3a
Ty + Ty <2 8|]s' — s|/22"N0=m) 4|/ — 1= 4 @' M1 +qp * 2—2]\’]].
| |

A bit of arithmetic shows that the above bound in the contexts of Propositions 5.8 and 5.11
lead to upper bounds that are bounded by the ones obtained there for increments of Fp qa. For
Proposition 5.8 one only needs the first two terms in Au’l and we leave this easy check for the
reader. For Proposition 5.11 we may set (s',t',2’) = (¢,¢,x) in the above so that the upper bound
becomes

2788“15 o 8‘1/227N(17171) + ‘t - 8‘17%]
< 2 N0 (=) T (WVE s v Va) ],

which is bounded by two of the terms on the right-hand side of the upper bound in Proposition 5.11.
Hence we may combine these bounds for Fp 4o with those derived in Propositions 5.8 and 5.11 for
Fp 4o and hence complete the proofs of Propositions 5.8 and 5.11 (and hence also Corollary 5.9)
for solutions with Lipschitz drifts.

We omit the analogues of the above for Propositions 5.12 and 5.14 as they are even simpler. The
proof of Propositions 5.13 and 5.1 now proceed as before. With Propositions 5.1, 5.13, 5.14, and
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5.11, and Corollary 5.9 in hand, the proof of Proposition 3.3 may now be completed for Lipschitz
drifts b, exactly as in Section 6. Then verification of the hypotheses of Proposition 2.1 may now be
completed for Lipschitz drifts b exactly as in Section 3 and this finishes the proof of Theorem 1.2.
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