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Simple Summary: Colorectal cancer is the third most common cancer type among men and women.

Prescription of medical treatments for cancer often relies on a process of trial and potential error, more

recently guided by patient stratification based on biomarkers. Nonetheless, available biomarkers do

not accurately predict patient response and there is a need for predictive and translational models to

provide proper clinical information on treatment guidance. Herein, we developed an ex vivo model

of colorectal cancer, using fresh tumour samples to establish explant cultures, taking advantage

of agitation-based culture systems. We performed a thorough characterisation over one month in

culture and observed preservation of original tumour genetic features and partial preservation of

architecture and non-malignant cells that compose the tumour microenvironment. Our findings

highlight the importance of detailed model characterisation and support the applicability of our

model in pre- and co-clinical settings.

Abstract: Colorectal cancer (CRC) is one of the most common cancers worldwide. Although short-

term cultures of tumour sections and xenotransplants have been used to determine drug efficacy,

the results frequently fail to confer clinically useful information. Biomarker discovery has changed

the paradigm for advanced CRC, though the presence of a biomarker does not necessarily translate

into therapeutic success. To improve clinical outcomes, translational models predictive of drug

response are needed. We describe a simple method for the fast establishment of CRC patient-

derived explant (CRC-PDE) cultures from different carcinogenesis pathways, employing agitation-

based platforms. A total of 26 CRC-PDE were established and a subset was evaluated for viability

(n = 23), morphology and genetic key alterations (n = 21). CRC-PDE retained partial tumor glandular

architecture and microenvironment features were partially lost over 4 weeks of culture. Key proteins
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(p53 and Mismatch repair) and oncogenic driver mutations of the original tumours were sustained

throughout the culture. Drug challenge (n = 5) revealed differential drug response from distinct

CRC-PDE cases. These findings suggest an adequate representation of the original tumour and

highlight the importance of detailed model characterisation. The preservation of key aspects of the

CRC microenvironment and genetics supports CRC-PDE potential applicability in pre- and co-clinical

settings, as long as temporal dynamics are considered.

Keywords: colorectal cancer; patient-derived explants; translational models

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers worldwide [1,2]. It is a
heterogeneous entity that derives from different pathways with clinical impact [3]. These
pathways include microsatellite instability (MSI), chromosomal instability (CIN) and CpG
island hypermethylation (CIMP) [3]. CRC can exhibit simultaneous features of several
pathways—e.g., about 25% of MSI tumours can exhibit CIN and most of them also present
CIMP [4]. CRC heterogeneity, amongst patients and within the same tumour, contributes to
drug failure and relapse [1,5]. CRC molecular subtype is associated with drug resistance—
MSI is linked with resistance to 5-Fluorouracil (5-FU) and CIMP may also imply a lack of
benefit from this therapy [4], while KRAS mutations confer resistance to cetuximab [6,7].

The importance of tumour microenvironment (TME) in CRC progression is widely
recognised [8]—drug resistance and drug targeting TME elements have been reported [9].
Examples of this TME relevance are the association between intraepithelial lymphocytes and
MSI-CRC [10], which seem to correlate with a more favourable outcome [11] and the positive
prognostic value of a high frequency of tumour infiltrating regulatory T cells in Mismatch
repair (MMR) proficient CRC [12]. Cancer-associated fibroblasts and M2 macrophages
also seem to correlate with clinical outcome [9,13], while a higher microvessel density and
endothelial cells secreted factors could be involved in therapeutic resistance [9,14].

In the clinical setting, the prescription of medical treatments for cancer often relies
on a process of trial and potential error, more recently guided by patient stratification
based on biomarkers [15]. However, this approach still does not capture the complexity
associated with intratumoral heterogeneity, both hierarchical and stochastic, in the vari-
ability of chemotherapy response [16]. Improving CRC pre-clinical models is essential to
contribute to personalised treatment and therapeutic response prediction. Current drug
testing and screening rely on 2D cell lines and patient-derived xenografts (PDX), both with
recognised limitations [17]. Most cancer cell lines are selected subpopulations and do not
represent the architecture, physiology or progression of the native tumour [18,19]. PDX
in immunocompromised mice may capture features of tumour heterogeneity, but they
lack immune system interactions [17,19] and the TME is progressively replaced by host
cells [20]. Moreover, the establishment of PDX is cost and time-intensive, which may hinder
its clinical application [19,21]. There is a clear need for representative cancer 3D models
that can recapitulate the TME more faithfully than monolayer cultures [17]. 3D cell cultures
have been a growing approach to mimic CRC [8] and among the most applied methods is
the use of multicellular tumour spheroids; other attempts include the use of scaffolds, natu-
ral (such as Matrigel) or synthetic [8,21]. Patient-derived organoids recapitulate the genetic
properties of the original tumour, though they still lack cancer-associated stroma [22–25].
Patient-derived ex vivo models are promising approaches for preservation of the tumour
and its native microenvironment [20,26]. Amongst these, patient-derived explants (PDE)
and more recently ultrathin tissue slices and have been explored [27–30]. The short-term
duration of these ex vivo models, typically up to 72 h, hinders cyclic drug exposure regi-
mens and evaluation of resistance mechanisms [31]. Moreover, most reports focus on drug
response effects and readouts of cell death, and do not characterise thoroughly the model
at a baseline level [32]. Recently, we hypothesised that larger PDE could have advantages



Cancers 2021, 13, 4695 3 of 15

over thin slices by the higher representation of the tumour microenvironment components,
contributing to sustain heterotypic cellular crosstalk within the tissue and improving its
longevity in culture; we reasoned that dynamic culture would improve cell viability and
phenotype ex vivo, by guaranteeing efficient diffusion of oxygen and soluble compounds.
Recently, we successfully employed this rational to OvC-PDE [33], and here we tested its
applicability to CRC tissue.

In this work, we developed a patient-derived long-term, reproducible PDE model of
CRC (CRC-PDE), with the main objective of providing a more clinically relevant system to
address issues presented by precision medicine approaches. We show that CRC-PDE retain
key molecular and histological features of the parental tumours. Despite some degree
of morphological rearrangement and a decrease in cellularity, the TME components are
partially preserved in the CRC-PDE model.

2. Materials and Methods

2.1. Prospective Study of Ex Vivo Cultures of CRC-PDE

Study approval was performed by the clinical institution’s Review Board and Ethics
Committee and informed consent was obtained from the patients. Consecutive patients,
older than 18 years old, with CRC proposed for primary tumour surgery without neoadju-
vant therapy by Instituto Português de Oncologia de Lisboa, Francisco Gentil (IPOLFG)’s
Colorectal Cancer Multidisciplinary Group were selected for the study. Patients were ex-
cluded if informed consent could not be obtained or if they were human immunodeficiency
virus (HIV), hepatitis B virus (HBV) or hepatitis C virus (HCV) positive, due to the research
lab’s safety policy.

2.2. Tumour Tissue Collection and Processing

Fresh tumours were collected from patients at the time of surgery at IPOLFG. Tu-
mour samples were processed as recently published by our team for ovarian carcinoma
samples [33]. Briefly, tumour specimens were transported in Dulbecco’s Modified Eagle
Medium: Nutrient Mixture F-12 (DMEM/F12, Gibco) and processed within 4 h. Samples
were washed with Dulbecco’s Phosphate Buffered Saline (DPBS, Gibco), weighted and
mechanically dissociated into fragments of ~1 mm3.

2.3. Establishment of CRC-PDE Cultures

In total, 100 tumour fragments of ~1 mm2 (colorectal cancer patient-derived explants,
CRC-PDE) were transferred to 125 mL shake flasks (Erlenmeyer, Corning) with 20 mL of
DMEM/F12, supplemented with Primocin (ThermoFisher), B27 (ThermoFisher), Gastrin
I (Sigma), Prostaglandin (Sigma), Nicotinamide (Sigma), N-acetylcysteine (Sigma) and
EGF (ThermoFisher) [34,35], to generate cultures at 5 CRC-PDE/mL. Cultures were kept
under orbital shaking (IKA KS 260 basic) at 100 rpm, in an incubator (Nuaire US Autoflow)
at 37 ◦C, 5% CO2 in air. CRC-PDE were sampled at day 0 (surgery day), and each week
afterwards for the total duration of the culture. CRC-PDE cultures were dependent on
initial sample size and culture expenditure due to characterisation based on destructive
endpoints. Therefore, different CRC-PDE were terminated at distinct timepoints and not
all CRC-PDE cultures could be evaluated for all readouts.

2.4. Surface Area and Concentration of CRC-PDE

CRC-PDE surface area and concentration were quantified at each timepoint. In total,
1–2 mL of CRC-PDE culture were collected and observed by phase-contrast microscopy
(DMI6000 Leica Microsystems CmBH, Wetzlar, Germany). Size measurements were per-
formed using open-access Image J 1.53c Software [36,37]. A threshold was applied to
generate binary images and automatic analysis was done applying the Analyse Parti-
cles function and extracting the area measurements (mm2). Explant concentration was
determined as the number of explants per mL of culture.
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2.5. Cell Viability and Histological Characterisation of CRC-PDE

Viability was analysed by live/dead assay, resazurin reduction capacity and tissue
observation. Live/dead assay was performed as described previously [33]. Briefly, fluo-
rescein diacetate (FDA, 10 µg/mL in DPBS, Molecular Probes) and propidium iodide (PI,
2 µg/mL in DPBS, Molecular Probes) were used to label live and dead cells, respectively.
At each time point, 3–5 explants were collected, stained with FDA and PI, and visualised
using a fluorescence microscope (DMI6000 Leica Microsystems CmBH, Wetzlar, Germany).
Image analysis was performed with Image J Software.

Resazurin reduction capacity was evaluated using the PrestoBlue Cell Viability Reagent
(A13262, Invitrogen), as described before [33]. At each time point, 1 mL of culture suspen-
sion (on average, 5 PDE) was collected in triplicates, and incubated with PrestoBlue reagent
(diluted 1:10) for 1 h at 37 ◦C. After this, supernatants were collected to a 96-well black
fluorescence reading plate (Corning) and fluorescence reading was performed (Infinite 200
PRO NanoQuant plate reader, TECAN).

Cell viability was also documented by brightfield microscopy observation of Hema-
toxylin and Eosin (HE) stained tissue (Hematoxylin, Cat. Number CS700, Dako; and Eosin,
Cat. Number CS701, Dako). For each time point, at least 1 mL of the sample was fixed
in formol, embedded in paraffin, and stained with HE. At the end of each culture, all
explants were collected for a final evaluation. HE stained samples were evaluated for
gland density, tumour cell senescence, stroma cellularity and inflammatory cell density
using a semiquantitative manual (eyeballing) system, in 33% intervals. The reference value
was the status of each variable at day 0 (day of surgery) representing the phenotype and
morphology of the original tumour and for each time point of evaluation, the proportion
of each variable was compared to it. Gland density, stroma cellularity and inflammatory
cell density were scored 1 at day 0, while tumour senescence was scored 0. Glands were
defined as cohesive structures of epithelial cells surrounding a lumen/space; stroma cells as
mesenchymal cells in the stroma compartment; inflammatory cells as mature leukocytes in
the stroma (including lymphocytes, neutrophils, eosinophils, mast cells and macrophages).
The tumour senescent phenotype was defined by cell morphological change with increas-
ingly eosinophilic cytoplasm, flat shape, and vacuolisation [38,39]. The presence or absence
of capillaries was also documented. CRC-PDE and their original counterparts were also
assessed for architecture, p53 immunohistochemical expression (Cellmarque 453M-85) and
4 MMRp immunohistochemical expression (MLH1: Ventana 490-7535, MSH2: Dako IR085,
MSH6: Dako IR086, PMS2: Dako IR087). Expression of p53 was deemed overexpressed
when at least 50% of tumour cells showed nuclear staining, absent when there was no
nuclear staining and wild type otherwise, in keeping with this marker correlation to TP53
mutational status [40]. Image processing was performed with Aperio ImageScope software
(v12.3.3.5048, Leica).

2.6. Molecular Characterisation of CRC-PDE

Genomic DNA was extracted from formaldehyde-fixed paraffin-embedded CRC,
normal mucosa and CRC-PDE samples using the KAPA Express Extract Kit (KAPABIOSYS-
TEMS). The MSI status was analysed using Bethesda microsatellite markers: BAT26,
D17S250, D2S123, BAT25 and D5S346 [41,42]. Each tumour and paired normal DNA
was amplified for all markers by PCR, using fluorescently labelled primers (Applied Biosys-
tems, Foster City, CA, USA), specific for each locus, as previously described [43]. PCR
products were analysed in the ABI Prism 3130 genetic analyser using the GeneMapper
software, version 5.1 (Applied Biosystems). In tumour samples exhibiting MSI in only one
marker, or without a conclusive result in at least one marker, two additional markers were
analysed (BAT40 and MYCL1). Tumours presenting MSI in two or more microsatellite
markers were classified as MSI-High (MSI-H), whereas MSI-Low (MSI-L) was defined
by the presence of MSI only in one of the respective markers. Tumours without MSI in
any of the markers were considered microsatellite stable (MSS). The mutational status of
KRAS exon 2, codons 12 and 13, was detected by qPCR with Idylla™ KRAS Mutation Test
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(Biocartis, CEIVD). For selected cases, DNA from samples of tumour tissue was amplified
by PCR using primers for KRAS exon 2 and BRAF exon 15 and the product was sequenced
using Sanger sequencing on Big Dye terminator v1.1 sequencing kit (Applied Biosystems)
on an automatic ABI PrismTM 3130 Genetic Analyzer (Applied Biosystems).

2.7. Cytotoxic Drug Assays

CRC-PDE from 6 distinct tumours (CRC5, CRC22, CRC23, CRC24, CRC25 and CRC26)
were distributed into 12-well plates (5–10 PDE/well, in triplicates) and cultured under
orbital shaking. These CRC-PDE were challenged with 100 µg/mL of 5-Fluorouracil (5-FU),
for two weeks; for 3 cases (CRC5, CRC21 and CRC22), cultures were also challenged
with the combination of 100 µg/mL of 5-FU and 3.2 µg/mL of Oxaliplatin (OXA). Drug
concentrations were chosen based on previous reports [44]. Drug challenge started at day
4 of culture (or at day 7 for CRC5-PDE) and the drugs were replenished daily; cultures
were sampled after 1 and 2 weeks of drug exposure. Cell viability was evaluated by
morphology (HE observation) and cell death by the leakage of lactate dehydrogenase
(LDH) into the culture medium (LDHCM). Drug-induced cell death was determined by
subtracting LDHCM, vehicle control to LDHCM, drug, relative to LDHtotal (LDHCM, vehicle control
+ LDHlysate, vehicle control). The PDE lysate was obtained by incubation of at least one vehicle
control well with 10% TritonX-100, overnight, to release all LDH content. LDH was
determined using the commercial kit Pierce LDH Cytotoxicity Assay (ThermoFisher).

2.8. Statistical Analysis

Data are shown as mean ± standard deviation (SD) of N (indicated in each figure
legend). Statistical and data analysis were carried out using GraphPad Prism 9.0.0 software
for Windows (GraphPad Software, La Jolla California USA, www.graphpad.com accessed
date 31 August 2021), as indicated in each figure legend.

3. Results

3.1. Viability and Histological Characterisation of CRC-PDE Cultures

We have recently reported a method for the generation of PDE from ovarian carcinoma
by mechanical dissociation of tumour tissue into fragments of approximately 1 mm3 and
their culture under orbital agitation [33]. Here, we adapted this methodology to establish
PDE cultures from surgically resected CRC parental tissue. Samples from a total of 26 CRC
were collected. Patient clinicopathological data are summarised in Table 1 and detailed in
Table S1.

Tumour samples were processed as described in the methods section and cultured as
CRC-PDE for 7–122 days (median, 28 days). For 92% of the cultures, the limiting factor for
culture duration was the CRC-PDE low number due to sequential sampling (N = 24/26).
One culture was terminated by the second week due to fungal contamination and another
one due to low cell viability.

CRC-PDE cultures derived from 23 tumours were characterised along the first 4 weeks
of cultures, with the evaluation of cell viability, tumour morphology, stroma constituents
and immunohistochemical and molecular features. Immediately after sample processing
(day 0), the average area of CRC-PDE was 1.0 ± 0.9 mm2 (Figure 1a).

During culture, the PDE average size gradually decreased from 1.1 ± 0.7 mm2 at
day 0 to 0.8 ± 0.4 mm2 and 0.6 ± 0.5 mm2 at days 7 and 28, respectively (Figure 1b). In
parallel, we detected an increase in PDE concentration, with 9.1 ± 3.1 PDE/mL at day 0 and
21.0 ± 7.5 PDE/mL by day 28 (Figure 1c). This concomitant size reduction and concentra-
tion increase were probably due to PDE fragmentation. Despite the size decrease, CRC-PDE
retained high cell viability during culture, as observed by a fluorescent live/dead assay
that assesses cell membrane integrity. At day 0, viability was high but a few regions with
dead cells were typically observed in the explant periphery (Figure 2a), which could be a
consequence of the mechanical processing. In fact, CRC-PDE metabolic activity, measured
by resazurin reduction capacity, showed a decrease of approximately 50% during the first

www.graphpad.com
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week of culture but remained relatively stable throughout the later time points (Figure 2b).
Despite the initial cell death, the results suggest an adaptation to the in vitro setting and
cell viability could be maintained throughout the remaining culture period.

Table 1. Clinicopathological features of the 26 patients.

Clinicopathological Feature Number of Patients (%)

Sex
Female 7 (26.9)
Male 19 (73.1)

Age
Median 68
Range 51–87

Tumour location
Ascending colon 5 (19.2)
Rectum 1 (3.8)
Sigmoid 18 (69.2)
Transverse colon 2 (7.7)

Tumour histological type
Adenocarcinoma NOS 20 (76.9)
Adenocarcinoma with mucinous component 4 (15.4)
Mucinous adenocarcinoma 2 (7.7)

Tumour grade (WHO)
Low 26 (100)

Tumour TNM
pT1 N0 3 (11.5)
pT2 N0 5 (19.2)
pT3 N0 7 (26.9)
pT3 N1 4 (15.4)
pT3(m) N0 3 (11.5)
pT4a N0 1 (3.8)
pT4a N1 3 (11.5)

Tumour stage
I 8 (30.8)
IIA 10 (38.5)
IIB 1 (3.8)
IIIB 6 (23.1)
IIIC 1 (3.8)

Follow-up, median in years (range) 2 (0–4.75)
Chemotherapy for CRC 5 (19.2)

CRC, colorectal cancer; NOS, not otherwise specified.
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Figure 1. CRC-PDE area and concentration. (a) Measurement of CRC-PDE area after tumour sample processing (day 0); box-
and-whisker plot shows the median (middle lines), interquartile range (boxes) and minimum to maximum values (whiskers);
data were calculated from measurements of at least 15 explants. (b) CRC-PDE area and (c) CRC-PDE concentration, along
4 weeks of culture; data are presented as mean ± SD, calculated from at least seven biological replicates; statistical
significance was evaluated by a mixed effects model for analysis of repeated measurements followed by post-hoc Dunnett’s
test comparing with day 0; * p < 0.05, ** p < 0.01. CRC-PDE, colorectal cancer patient-derived explants.
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Figure 2. CRC-PDE culture cell viability. (a) Representative images of CRC-PDE culture at day
0 (immediately after processing of the tumour tissue) and after 4 weeks, stained with fluorescein
diacetate (FDA, green) and Propidium Iodide (PI, red) for detection of live and dead cells, respectively.
Scale bar: 500 µm. (b) Measurement of resazurin reduction capacity of the CRC-PDE cultures along
time. Data are presented as the mean of fold change relatively to day 0 ± SD, calculated from
10 biological replicates. Statistical significance was evaluated by a mixed effects model for analysis of
repeated measurements followed by a post-hoc Tukey’s multicomparison test. CRC-PDE, colorectal
cancer patient-derived explants; ns, non-significant.

Histopathological characterisation of CRC-PDE derived from 23 tumours was per-
formed, and HE analysis showed that most CRC-PDE cultures had viable tumour cells for
the entire culture duration (96%; N = 22/23, Figure 3a–e and Figure S1a–d).
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features were performed considering day 0 of culture as the reference and scored as 1 for gland density, stroma cellularity
and inflammatory cell density and as 0 for senescence evaluations. White boxes indicate not determined. CRC, colorectal
cancer; CRC-PDE, colorectal cancer patient-derived explants; MSS, microsatellite stable; MSI-L, microsatellite instability-low;
MSI-H, microsatellite instability-high; Mut, mutated; Overexp, overexpressed; WT, wild type.
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All original tumours evaluated were gland forming (Figure 3(a1–a3)), had mitotic
cells (Figure 3(a2), grey arrow) and capillary structures were observed (Figure 3(a3), black
arrow), as well as cellular stroma rich in fibroblasts (Figure 3(a4), grey arrow) and dif-
ferent degrees of immune cells, such as tumour infiltrating lymphocytes (Figure 3(a2),
black arrow) and plasma cells (Figure 3(a3), grey arrow). During culture time, viable
stroma cells were observed as long as neoplastic cells were present (87%; N = 20/23,
Figure 3a–d). Simultaneously, a variable amount of necrosis was present in CRC-PDE
(Figure 3(b2,b3), white arrows). In most of the CRC-PDE cultures, tumour glandular ar-
chitecture (71%, N = 15/21, Figure 3(b2,b3)) and inflammatory cells in the stroma (76%,
N = 16/21) were retained throughout the first 4 weeks (Figure 3a–d). The gland density,
stroma and immune cells diminished up to the second week of culture but remained steady
for the remaining time (Figure 3(b3,c4,d4) and Figure S1a–d), with the identification of
T lymphocytes (CD3 positive cells) and macrophages (CD68 positive cells) along culture
time (Figure S2a). Tumour cells progressively gained a senescent phenotype in the first two
weeks of culture and had fewer mitoses, without further accentuation of this phenotype
thereafter (Figure 3(b3,b4,c2,d2), black arrows; Figure S1d). Towards the end of the culture,
tumour cells were predominantly located at the periphery of the CRC-PDE (Figure 3(c2,d3)).
At week 4, the vascular network of CRC was absent in 91% (19/21) of the explants.

3.2. CRC-PDE Representation of the Original Tumours

All original tumours included in this analysis (N = 21) extensively formed glandular
structures (low-grade tumours). The expression of p53 in the invasive parental tumours
was homogenous in 95% of the cases (N = 20/21), with overexpressed (N = 8), absent
(N = 8) or wild type (N = 4) expression patterns (Figure S1f). MMR protein detection was
retained in all original tumours except for CRC11, which lost PMS1 homolog 2, mismatch
repair system component (PMS2) expression. KRAS mutations were found in 50% of the
parental tumours (N = 8/16), BRAF V600E was present in 7% (N = 1/15) and MSI in 20%
(N = 3/15) (Figure 3e).

In general, CRC-PDE retained glandular architecture and immunohistochemical and
genetic features of their parental counterparts (95%, N = 20/21 Figure 3, Table S1). For one
of the cultures (CRC1), KRAS mutational status was consistently different from the original
counterpart. KRAS status was evaluated on four different areas of the original tumour,
including the mirror sample used for PDE culture and a lymph node metastasis, with the
same result (no mutation). On the other hand, the tumoral area, from which the CRC1-PDE
was generated, had a c.35G>A, p.Gly12Asp mutation, that was consistently detected at
day 0 and during culture. CRC1 tumour was also the only case with heterogeneous p53
staining. The tumour had areas of wild type and areas of mutant TP53 (IHC staining for
p53 as a surrogate of TP53 mutational status). In PDE culture, this heterogeneity was
retained (Figure S3). CRC13 had no p53 expression on the invasive tumour and a wild type
expression pattern on the dysplastic pre-invasive lesion (an adenoma). PDE retained both
patterns of expression (p53 absent type—day 0 sample; p53 absent and wild type—week 1
sample; p53 wild type—week 4 sample), suggesting that both invasive and pre-invasive
lesions were preserved in culture. The evaluation of the mutated allele peak at the Sanger
sequencing electropherogram relative to the wild-type allele peak showed that for 4 of 10
CRC-PDE with KRAS mutation, the mutated cells seemed to be positively selected over
time; by week 4 of culture, there were 50% more mutated clones in the culture relative to
day 0. The reverse was observed for the CRC15-PDE (evaluation at day 0 and week 1).

3.3. Challenge of CRC-PDE Cultures with Cytotoxic Drugs

As a proof of concept for drug susceptibility tests, CRC-PDE cultures derived from
five distinct cases were challenged with the standard of care drug for CRC, 5-FU. HE
analysis was performed for three of the cultures; in the control samples of each CRC-PDE
tumour and stroma cell viability was maintained (N = 3/3), whereas in cultures exposed to
5-FU no viable tumour cells were detected and viable stromal cells were sometimes present
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(Figure S2a). Using LDH leakage as readout, we also observed increased drug-induced
cell death in CRC-PDE challenged with 5-FU, compared to the vehicle control (N = 5/5)
(Figure 4).
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Drug-induced cell death ranged from 20 to about 70% of the total CRC-PDE, depend-
ing on the case (Figure 4). Differences were also observed for the three CRC-PDE cultures
challenged with a combination of 5-FU and Oxaliplatin (OXA, Figure S2b). These data
suggest distinct drug sensitivities for CRC-PDE derived from different cases.

4. Discussion

CRC heterogeneity and the native TME play important roles in drug sensitivity, thus
their preservation is expected to improve representability and predictive value of pre-
and co-clinical models [26]. Therefore, patient-derived models are expected to be relevant
tools to address clinical translational questions such as tumour and TME heterogeneity,
progression, and drug sensitivity. In PDX, tumour heterogeneity can be maintained, but
stromal and immune are absent or progressively replaced by host cells [45]. Ex vivo
cultures are mainly limited by the short duration and rapid loss of the original cellular
phenotypic features. Herein, we demonstrated that CRC-PDE cultures can be generated
from fresh surgical resection specimens, without the need for exogenous matrices or pas-
sage in immunocompromised mice [46]. CRC-PDE cultures were successfully established
from all tumour samples, and 80% of the cultures were maintained for at least 28 days;
shorter culture duration was mainly due to extensive sampling. PDE retained a complex
3D organisation lacking in many preclinical models and characteristic of tumour tissues,
with partial preservation of tumour cells, stromal matrix, fibroblasts and inflammatory
cells. We successfully cultured tumour samples from major different pathways of CRC
pathogenesis: MSI-high phenotype; MSS with BRAFV600E, possibly representative of a
CIMP-positive phenotype; KRAS mutated tumours. The non-MSI-high tumours possibly
represent cases with CIN, the most common form of genetic instability in CRC, for which
there is a lack of alternatives when standard chemotherapy fails. Therefore, the CRC-PDE
model may be appropriate to study and target CRC with CIN phenotype, to improve our
understanding of the most common form of genetic instability in CRC [47] and to develop
new therapeutic options. We took advantage of agitation-based systems to establish a
simple methodology culture of CRC-PDE, which does not resource to artificial or animal-
derived scaffolds and is easy to sample. Culture under agitation is reported by us and
others to present benefits in terms of oxygen and soluble factor diffusion [48–50]. Recently,
we have successfully applied it for breast and ovarian carcinoma explant culture [33,51].
CRC-PDE size decrease during culture, concomitant with concentration increase, points
to the hypothesis of fragmentation of the original PDE into smaller ones along culture
time. High cell viability was detected in PDE during culture, despite the decrease in PDE
cellularity. This can be associated initially with the shedding of the dead cells derived from
the mechanical processing, and later with the senescent and less proliferative phenotype
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observed for tumour cells and partial loss of other cell populations. Interestingly, over time,
tumour cells showed a preferential peripheral location within PDE. This spatial distribution
could reflect an adaptation to the culture setting, as the periphery should offer the best
exposure to culture medium and oxygen. Nonetheless, we have not observed zonation
in ovarian and breast cancer explants [51] cultured under agitation and previous reports
state that PDX-derived slice thickness was not a major determinant for cell viability [52].
Curiously, in vitro reports using spheroids of a lung cancer cell line combined with stromal
cells also exhibited this spatial organisation [53]. Therefore, other potential factors may
include tissue compactness, dependent on extracellular matrix composition, cellularity,
stromal composition and density, as well as cell metabolic status. Multiple CRC preclin-
ical models have been developed, namely PDX and in vitro/ex vivo approaches using
patient-derived material. PDX can retain original mutational tumour features, but they
are labour, cost intensive [54–57] and can exhibit deregulated genetic pathways, such as
upregulation of proliferative genes and downregulation of immune-related ones [58]. The
majority of in vitro models rely solely on the presence of tumour epithelial cells or exhibit
short-term duration (few days) [28,29,59,60]. In comparison to state-of-the-art methods,
such as patient-derived organoids, in PDE we were able to retain both tumour cells and
features of TME that cannot be captured in epithelial-restricted organoids [61]. Recently,
metastatic CRC patients that received organoid-guided treatment choice did not show
clinical benefit [62], highlighting the need for additional studies on their therapeutic pre-
dictability. Although limited by initial sample size, CRC-PDE require a small amount of
original tumour to achieve multiple explants per sample. These explants are maintained in
parallel and can be simultaneously used for different drug studies. However, contrasting
to the proliferative nature of organoids, CRC-PDE could not be expanded. Generating
organoids from the same CRC samples could tackle the non-proliferative nature of CRC-
PDE, despite current limitations on deriving colorectal cancer organoids (culture success
rates have been reported from 50 to 70% in CRC) [61]. Other ex vivo models that have
been developed for CRC or CRC hepatic metastasis, such as tissue slice cultures, exhibit
short culture duration (up to 3 days) and often are poorly characterised [63,64]. We per-
formed a thorough histological characterisation of CRC-PDE along 4 weeks of culture. In
cultures established from 23 distinct tumours, key morphologic, immunophenotypic and
genetic characteristics of the original tumours were sustained. From our data, CRC-PDE
seem genetically stable, as amongst the driver mutations analysed, no additional ones
emerged during culture time and the ones observed initially were consistently present
afterwards. However, it is important to note that there were changes in specific features,
such as cellularity, the proliferative status of the epithelial population and cell ratios of
TME populations. One case showed a different major genetic alteration (KRAS mutation)
since day 0, which was probably due to the heterogeneity of the parental tumour causing
sampling bias, although we were unable to trace back the genetic alteration in the patient
matched-parental tumour or lymph node metastasis. The presence of KRAS mutations
could impact the treatment management [65], therefore it could be clinically relevant to
confirm this intratumoral heterogeneity. Our results provide insight into the dynamics
of tumour subclones over extended culture, as 40% of ten PDE with KRAS mutated cells
showed a positive selection of these clones over time. This selection could reflect clonal
competition within the tumour, possibly reflecting a faster growth as observed by Mousavi
et al. on CRC spheroids [66], and suggesting that our model may be suitable for exper-
imental studies including drug predictive assays. Patients for whom chemotherapy is
indicated could potentially benefit from chemosensitivity screening in CRC-PDE. As a pilot,
we challenged CRC-PDE derived from five patients with the standard of care, 5-FU. The
LDH leakage assay revealed distinct drug sensitivities in cultures derived from different
patients, that could not be identified by HE. This data corroborates our recent report on the
suitability of the LDH assay for evaluation of drug-induced cell death in explant cultures,
as it is not dependent upon the integrity of the sample at the experimental endpoint [67].
To address the translation potential of the model, it will be essential to expand the dataset
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of drug exposure and to collect data from patient follow-up, including the detection and
quantification of KRAS mutations on tumour recurrences (locally or in metastatic disease),
and clinical outcome. Overall, the rapid establishment of CRC-PDE cultures and their
long duration are advantages for their application to guide patient treatment selection and
potentially avoid overtreatment of non-responsive disease in the adjuvant setting. As long
as the temporal dynamics of CRC-PDE cultures are recognised, the CRC-PDE methodology
can be a useful tool to address clinical translational questions such as tumour heterogeneity
and progression, as well as drug sensitivity.

5. Conclusions

We established long-term, scaffold-free cultures of CRC patient-derived explants with
detailed histopathological characterisation and preservation of original tumour key genetic
features involved in CRC carcinogenesis. This model constitutes a potential preclinical or
co-clinical tool to predict therapeutic outcomes. Importantly, recognition of the temporal
dynamics may be critical to support the translational value of the patient-derived models.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13184695/s1, Figure S1: Morphological characterisation, Figure S2: Drug challenge in
CRC-PDE cultures, Figure S3: Representative electropherogram, Table S1: Scores of histopathological
characterisation of 21 CRC-PDEs relative to day 0, Table S2: Clinicopathological features of the 26
patients and respective original tumours.
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