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Patient-derived heavy chain antibody
targets cell surface HSP90 on breast tumors
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Abstract

Background: Monoclonal antibodies have been used to effectively treat various tumors. We previously established

a unique strategy to identify tumor specific antibodies by capturing B-cell response against breast tumor antigens

from patient-derived sentinel lymph nodes. Initial application of this approach led to identification of a tumor

specific single domain antibody. In this paper we optimized our previous strategy by generating heavy chain

antibodies (HCAbs) to overcome the deficiencies of single domain antibodies. Here we identified and characterized

a heavy chain antibody (HCAb2) that targets cell surface HSP90 antigen on breast tumor cells but not normal cells.

Methods: Eight HCAbs derived from 4 breast cancer patients were generated using an in vitro expression system.

HCAbs were screened against normal breast cells (MCF10A, HMEC) and tumor cell lines (MCF7, MDA-MB-231) to

identify cell surface targeting and tumor specific antibodies using flow cytometry and immunofluorescence. Results

observed with cell lines were validated by screening a cohort of primary human breast normal and tumor tissues

using immunofluorescence. Respective antigens for two HCAbs (HCAb1 and HCAb2) were identified using

immunoprecipitation followed by mass spectrometry. Finally, we generated MDA-MB-231 xenograft tumors in NOD

scid gamma mice and performed in vivo tumor targeting analysis of HCAb1 and HCAb2.

Results: Flow cytometry screen revealed that HCAb2 selectively bound to the surface of MDA-MB-231 cells in

comparison to MCF10A and MCF7 cells. HCAb2 showed punctate membrane staining on MDA-MB-231 cells and

preferential binding to human breast tumor tissues in comparison to normal breast tissues. In primary breast

tumor tissues, HCAb2 showed positive binding to both E-cadherin positive and negative tumor cells. We

identified and validated the target antigen of HCAb2 as Heat shock protein 90 (HSP90). HCAb2 also selectively

targeted MDA-MB-231 xenograft tumor cells in vivo with little targeting to mouse normal tissues. Finally, HCAb2

specifically targeted calnexin negative xenograft tumor cells.

Conclusions: From our screening methodology, we identified HCAb2 as a breast tumor specific heavy chain

antibody targeting cell surface HSP90. HCAb2 also targeted MDA-MB-231 tumor cells in vivo suggesting that

HCAb2 could be an ideal tumor targeting antibody.

Background

Antibodies against various tumor associated antigens

have been widely used in the treatment of different tu-

mors [1–3]. Emergence of Cetuximab [4], Trastuzumab

[5] and Ipilimumab [6] against solid tumors as well as

Rituximab [7] and Ofatumubab [8] against hematological

malignancies has highlighted the significant role and effi-

cacy of antibodies in cancer therapy. Trastuzumab and

Pertuzumab that target human epidermal growth factor

receptor 2 (HER2) have been shown to synergestically

inihibit growth of HER2 over-expressing breast cancer

cells and also kill them [9]. These examples highlight

the importance of antibodies in treatment of tumors as

well as the need for identifying additional tumor specifc

antibodies.

In order to develop tumor specific antibodies, iden-

tity of the target antigens has to be known. Previously

described examples of tumor specific antibodies were

developed by understanding the basic aspects of tumor

biology. For instance, breast tumors that over-express

HER2 receptor rely on this signaling pathway for survival

and proliferation. Therefore, anti-HER2 receptor antibodies
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such as Trastuzumab and Pertuzumab were developed to

specifically target HER2 over-expressing tumors. This tar-

geted approach is highly successful but is limited by our

understanding of tumor biology. Also this approach does

not lead to identification of novel tumor associated anti-

gens. Therefore, a strategy leading to the identification of

novel tumor associated antigens as well as antibodies that

target these antigens is warranted.

Humoral immune responses against tumor antigens

have been observed in various cancer patients as evi-

denced by serum antibodies [10, 11] as well as activated

B-cells in sentinel lymph nodes [12]. In our previous

study, we established a unique strategy to identify novel

tumor associated antigens [12]. Our strategy involved

identification of activated and proliferating B-cells in

sentinel lymph nodes of breast cancer patients. We hy-

pothesized that these B-cells could have been activated

by unique antigens derived from the tumors. Therefore,

analyzing antibodies produced by these B-cells could

lead to identification of tumor-associated antigens. Pre-

viously, we generated cDNA molecules of variable heavy

chain domains from activated B-cells. Variable heavy

chain cDNA molecules were sequenced and those that

were part of clonal groups as well as exhibited somatic

hypermutation within complementarity determining re-

gions were selected for subsequent analysis. In our index

study, single domain antibodies from activated B-cells were

synthesized and screened to identify tumor-associated anti-

gens [12]. Using this approach, neuroplastin was identified

as a breast tumor associated antigen that was expressed at

high levels in 20 % of invasive breast tumors and 50 % of

those that became metastatic to distal sites. Identification of

neuroplastin using these single domain antibodies validated

the power of this research strategy to identify novel tumor

antigens.

Single domain antibodies are small molecules (12-

15 kDa) that can bind to antigens with similar affinity as

intact antibodies [13–16]. But single domain antibodies

lack Fc region and thereby cannot mediate effector func-

tions such as antibody-dependent cell-mediated cytotox-

icity (ADCC) and complement-dependent cytotoxicity

(CDC). Also due to their small size, single domain anti-

bodies have a rather short serum half-life [17] thereby

requiring higher dosage for effective in vivo tumor tar-

geting. In order to circumvent these problems, single

domain heavy chain cDNAs were subcloned into a

mammalian expression vector and heavy chain anti-

bodies (HCAbs) made up of variable heavy chain re-

gions fused to mouse Fc region were generated.

In this study, eight unique HCAbs (HCAb1-8) de-

rived from our patient sentinel lymph node libraries

were screened to identify potential tumor targeting

antibodies. Of the 8 HCAbs, HCAb2 demonstrated

preferential cell surface staining on MDA-MB-231

cells but not on normal cells and also selectively bound

to human breast tumor tissues in comparison to nor-

mal tissues. The antigen for HCAb2 was identified to

be cell surface HSP90 and consistent with HSP90 lit-

erature, HCAb2 reduced migration of MDA-MB-231

cells in in vitro migration assays. Finally, we showed

that HCAb2 could target MDA-MB-231 tumor cells in

an in vivo mouse xenograft model, thus defining a po-

tentially useful anti-tumor antibody.

Methods

Patient samples

Primary breast normal tissues, tumor tissues and medial

sections of lymph nodes were obtained soon after resection.

Samples were placed in optimal cutting temperature

(OCT) media and stored at -80 °C until further use. All par-

ticipants provided written informed consent to participate

in the study. All samples were collected in accordance with

an IRB protocol (IRB number IE-01-205-2) approved by

the Institutional Review Board at University of Connecticut

Health Center and were devoid of any personal identifica-

tion information.

Cloning, synthesis and purification of heavy chain

antibodies

Forty six different variable heavy chain clones were selected

from our previously established cDNA libraries [12]. Vari-

able heavy chain clones were sequenced and analyzed using

IMGT/V-QUEST (http://www.imgt.org/IMGT_vquest/

vquest) to determine V, D and J gene segment usage.

Mutations within complementarity determining re-

gions (CDRs 1, 2 and 3) as well as framework regions

(FRs 1, 2, 3 and 4) were determined for each of the se-

quences in comparison to their respective germline

sequences. Variable heavy chain sequences were sub-

cloned from pCR®T7/CT-TOPO® (Life Technologies,

NY, USA) plasmid into a mammalian expression vector

pCMV6-AC-FC-S containing C-terminal mouse Fc se-

quence (OriGene technologies, MD, USA) using the

following strategy. Variable heavy chain sequences were

amplified by two rounds of PCR. First round of PCR was

performed using forward primer 5ˈ- TTCGGCGATCG

CCATGCAGGTGCAGCTGGTGSAGTCTGG - 3ˈ and re-

verse primer 5ˈ- GCCTTGGAAGTACAGGTTCTCACCG

GTACGCGTAGAATCGAGACCGAG - 3ˈ, while second

round of PCR was performed using the same forward

primer and the following reverse primer 5ˈ- TGGG

CTCGAGGCCTTGGAAGTACAGGTTCTCACCGGTAC

GCG - 3ˈ. PCR products were purified using QIAquick

PCR purification kit (QIAGEN, CA, USA) according to

manufacturer’s instructions. Purified PCR products and

pCMV6-AC-FC-S plasmid were digested with AsiSI

and XhoI (New England Biolabs, MA, USA) restric-

tion enzymes for 1 h at 37 °C. PCR products were
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ligated with cut pCMV6-AC-FC-S plasmid and result-

ant transformants were screened by restriction diges-

tion analysis. For this study, 8 variable heavy chain

domain clones derived from four different breast can-

cer patient lymph node libraries were selected.

Purified plasmids containing variable heavy chain se-

quences were transfected into HEK293T cells. After

12-16 h, cells were washed with PBS and refed with

serum free media. Heavy chain antibodies synthesized

by HEK293T cells were released into conditioned

media due to the presence of an N-terminal secretion

signal sequence. 48 h after refeeding, conditioned

media was collected and centrifuged at 300 g to pellet

dead cells. Supernatants were filtered through 0.22 μm

filter (polyethersulfone membrane, Millipore, MA,

USA) and mixed with equal volume of PBS. Heavy

chain antibodies were purified by protein A affinity

chromatography using a 1 mL cartridge connected to

an AKTA Purifier 10 system. Heavy chain antibodies

were eluted with low pH glycine buffer (pH = 2.5) and

neutralized with Tris buffer (pH = 8.0). Purified heavy

chain antibodies were then concentrated and buffer ex-

changed using centrifugal concentrators (Microcon

YM-30, Millipore). Absorbance of heavy chain anti-

bodies was read at 280 nm and total protein content

was determined using calculated extinction coefficients

for each of the individual HCAbs [18].

Cells and cell culture

All the different cells used in this study were obtained

from American Type Culture Collection (ATCC, VA,

USA). HMEC and MCF10A cells were cultured in mam-

mary epithelial cell growth medium (MEGM - Lonza)

supplemented with 50 units/mL of penicillin and 50 μg/mL

of streptomycin, while HEK293T, MCF7 and MDA-MB-

231 cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM - Invitrogen) supplemented with 10 %

fetal bovine serum, 50 units/mL of penicillin and 50 μg/mL

of streptomycin.

Antibodies

Antibodies against HSP90 (4877), clathrin heavy chain

(4796), calnexin (2679) and cleaved caspase-3 (9661)

were purchased from Cell Signaling Technology, MA,

USA. Antibodies against HSP90 (sc-1055 and sc-1057)

and E-cadherin (sc-7870) were purchased from Santa

Cruz Biotechnology, TX, USA. Antibodies against CD31

(553370) and CD44-FITC (555478) were purchased from

BD Biosciences, CA, USA. Alexa Fluor® 488 anti-mouse

(A11001), Alexa Fluor® 594 anti-mouse (A11005), Alexa

Fluor® 594 anti-rabbit (A11012) and Alexa Fluor® 594

anti-rat (A21209) antibodies were purchased from Life

technologies, NY, USA.

Flow cytometry

Cells were trypsinized with 0.05 % trypsin-EDTA (Life

Technologies) and 0.5 × 106 cells for each cell type were

used for each analysis. Cells were washed thrice with

Hank’s balanced salt solution containing 3 % fetal bovine

serum and 1 mM EDTA (FACS buffer) and incubated

with 10 μg of respective HCAbs for 30 min on ice.

Bound HCAbs were detected using Alexa Fluor® 488

anti-mouse IgG antibody. Propidium iodide was used to

detect the population of dead cells. Samples were ana-

lyzed using a BD LSR II flow cytometer and histograms

were prepared using FlowJo software.

Immunofluorescence (IF) analysis

Cells were grown in 4-well or 8-well chamber slides

(Millipore) in their respective media. Cells were

washed with PBS and fixed with 4 % paraformaldehyde

(Electron Microscopy Sciences, PA, USA). Non-

permeabilized cells were used to detect cell surface

staining while intracellular staining was detected by

permeabilizing cells with 0.1 % Triton X-100 for

15 min. 50 μg/mL of HCAbs were used to stain each

cell line and bound HCAbs were detected using Alexa

Fluor® 488 anti-mouse IgG antibody.

Methanol-acetone (1:1) fixed breast normal (n = 26)

and tumor (n = 40) tissues were blocked with 3 % bovine

serum albumin and incubated with 25-50 μg/mL of

HCAb2 per section. Bound HCAb2 was detected using

Alexa Fluor® 488 anti-mouse IgG antibody. Epithelial

cells were detected using anti-E-cadherin antibody (1:50)

and Alexa Fluor® 594 anti-rabbit IgG antibody.

MDA-MB-231 xenograft tumor sections and normal

mouse tissue sections were fixed with ice-cold acetone

for 20 min at -20 °C. HCAb2 localization was detected

using Alexa Fluor® 488 anti-mouse IgG antibody. Anti-

CD44 (1:100), anti-CD31 (1:100) and anti-calnexin (1:50)

antibodies were used in respective experiments.

In all experiments nuclei were stained with 4′,6-

Diamidino-2-Phenylindole, Dihydrochloride (DAPI)

and images were taken using Zeiss LSM 780 confocal

microscope. Images were edited using ZEN 2012 (black

edition) as well as Adobe Photoshop CS4.

Cell lysates and cell fractionation

Cells were scraped in 1 % Triton X-100/PBS or 1 % Tri-

ton X-100 + 0.1 % SDS/PBS lysis buffers supplemented

with 1 mM EDTA, 0.2 mM sodium orthovanadate and

fresh protease inhibitor cocktail. Nuclei were pelleted

and supernatants were used for immunoprecipitation

assays.

Plasma membrane protein isolation kit (SM-005, Invent

Biotechnologies Inc., MN, USA) was used to fractionate

cells to obtain nuclei, cytosol, organelles and plasma mem-

brane fractions. Three P150 mm dishes with 90 % confluent
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cells were used to obtain cytosolic and plasma membrane

fractions as per manufacturer’s instructions. Plasma mem-

brane protein pellet was suspended in 1 % Triton X-

100 + 0.1 % SDS/PBS buffer. Cytosolic fraction was

brought to a final concentration of 1 % Triton X-100

and 0.1 % SDS.

Xenograft tumor pieces were placed in 500 μL of 1 %

Triton X-100 + 0.1 % SDS/PBS lysis buffer supplemented

with 0.2 mM sodium orthovanadate and fresh protease

inhibitor cocktail (1:100) and homogenized using poly-

tron homogenizer for 30 s - 1 min on ice. Homogenates

were spun at 14,000 rpm for 20 min at 4 °C and super-

natants were used for immunoprecipitation assay.

Immunoprecipitation (IP)

Cell lysates or tumor lysates were pre-cleared with pro-

tein A beads and incubated overnight with 20 μg of

HCAbs at 4 °C. Protein A beads were used to pull down

heavy chain antibody-antigen complexes. Beads were

boiled in sample loading buffer and proteins were re-

solved on a reducing SDS-PAGE gel. Proteins in the gel

were stained with SYPRO® Ruby stain (Life Technologies)

as per manufacturer’s instructions.

Recombinant human HSP90β (ALX-201-147-C025)

was purchased from Enzo life sciences, NY, USA and re-

suspended in PBS. 1 μg of HSP90β in PBS along with

bovine serum albumin was mixed with either 1 % Triton

X-100 + 0.1 % SDS or 1 % Triton X-100 + 1 % SDS

buffers and incubated overnight with 5 μg of HCAb1

and HCAb2. Immunoprecipitation was performed as ex-

plained above.

Mass spectrometry

All analyses were performed at Keck MS and proteomics

resource facility (Yale School of Medicine). In-gel trypsin

digestion of proteins was performed and peptides were

analyzed using LC-MS/MS on a Thermo Scientific LTQ-

Orbitrap XL mass spectrometer. Mascot search algorithm

was used to identify proteins from SwissProt database.

In vitro scratch assay

MDA-MB-231 cells were grown to 90 % confluency in

6-well plates and serum starved for 2 h prior to forming

scratches with 200 μL pipet tips. Wells were washed

with PBS to get rid of floating cells and incubated with

1 mL of 1 % fetal bovine serum containing media. Cells

were imaged and termed as T = 0 h images. 5 μg of

HCAb1 and HCAb2 were added to respective wells and

cells were imaged after 19 h (T = 19 h images).

Acellular areas at T = 0 h and T = 19 h were deter-

mined for each well using Image-Pro Plus 5.1 software.

Experiment was performed in four independent wells for

each treatment and area values were averaged for the 4

wells. Average acellular area at T = 0 h for each

treatment was set to be 100 % and areas at T = 19 h

were normalized to the corresponding average acellu-

lar area at T = 0 h. Percent acellular area remaining at

T = 19 h was calculated accordingly.

Transwell migration assay

MDA-MB-231 cells were grown to 70 % confluency and

serum starved for 5 h. Cells were trypsinized and 50,000

cells were either left untreated or pre-treated with 10 μg

of purified HCAb1 or HCAb2 or anti-HSP90 (sc-1055)

antibody or 10 μM 17-demethoxy-17- [[2-(dimethylamino)

ethyl] amino]-geldanamycin (17-DMAG, item no. 11036,

Cayman chemicals, USA) for 15 min at room temperature.

Cells were seeded in 200 μL of serum free DMEM with

0.1 % BSA in the upper chambers of 8 μm polycarbonate

transwell inserts. Lower chambers were filled with 800 μL

of serum free DMEM with 0.1 % BSA and 10 ng/mL of re-

combinant human EGF (PHG0311, Life technologies, USA)

as a chemoattractant. Cells were allowed to migrate for

19 h at 37 °C, following which cells were fixed with 2 %

paraformaldehyde for 20 min. Cells were stained with 1 %

crystal violet (w/v) in 10 % ethanol for 20 min. Cells on the

upper side of the membrane were removed using a cotton

swab. Total numbers of cells that had migrated to the lower

side of the membrane were counted. Three different inserts

were used for each treatment and the average number of

migrated cells was determined.

MDA-MB-231 xenograft tumor model

MDA-MB-231 cells were trypsinized and a suspension

of 1 × 107 cells/mL in DMEM was prepared. Cells were

pelleted and resuspended in 70 % matrigel (BD biosci-

ences) + 30 % DMEM. 1 × 106 cells were injected sub-

cutaneously into mammary fat pad of 5 female NOD

scid gamma (NSG) mice. After 24 days, xenograft

tumors ranging from 300-500 mm3 were observed in

all the mice. At this point, mice were retro-orbitally

injected with 12 μg of purified and filtered sterile

HCAb1 (n = 2) and HCAb2 (n = 3) in 100 μL of

sterile saline. After 2 h, 6 h and 24 h, mice were eu-

thanized and tumors along with various normal

tissues were harvested. All animal experiments were

conducted in accordance with a protocol (protocol

number 100775-1016) approved by the University of

Connecticut Health Center Institutional Animal Care

and Use Committee.

Small interfering RNA knockdown

siRNAs targeting luciferase (D-001100-01-20) and calnexin

(ON-TARGET plus #L-003636-00-0005 SMARTpool) were

purchased from GE Dharmacon, CO, USA. MDA-MB-231

cells were seeded so that they are 50-60 % confluent on the

next day. siRNA lipofectamine complexes were prepared in

Opti-MEM®I reduced serum media and added to cells in
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Opti-MEM®I reduced serum media. 6 h post transfection,

cells were washed and refed with DMEM+ 10 % FBS with-

out antibiotics. After 72 h, cells were lysed in RIPA lysis

buffer and 15 μg of total protein was used to perform im-

munoblot analysis to validate knockdown.

Based on knockdown results, mock (transfection medium

alone) or 25 nM of siLuc or siCANX was transfected into

MDA-MB-231 cells. After 72 h, cells were trypsinized with

0.05 % trypsin-EDTA and 0.5 × 106 cells were incubated

with isotype control or HCAb2. Flow cytometry was per-

formed as explained above.

Statistical analysis

Data from individual experiments was represented as

mean ± standard deviation. Statistical analyses were

performed using GraphPad Prism 5.01 and significance

was determined by one-way ANOVA analysis and/or

2-tailed Student’s t test (* = p ≤ 0.05, ** = p ≤ 0.01).

Results

HCAb2 preferentially bound to the surface of

MDA-MB-231 cells

Previously we had generated antigen-driven variable

heavy chain cDNA libraries from sentinel lymph nodes

of breast cancer patients [12]. Our cDNA libraries con-

sisted of over 1100 individual variable heavy chain se-

quences. Using previously mentioned selection criteria

[12], variable heavy chain sequences that were generated

in response to antigens were determined. The selection

strategy included identifying variable heavy chain se-

quences that were part of clonal groups and contained

replacement mutations within complementarity deter-

mining regions (CDRs). Both these attributes are hall-

marks of B-cells that have been activated in response to

various antigens. Using this strategy, 46 different vari-

able heavy chain sequences were identified and sub-

cloned into a mammalian expression vector containing

a C-terminal mouse Fc region. In this pilot study, 8

(out of 46) variable heavy chain sequences (HCAb1-8)

derived from four breast cancer patients were selected.

Variable heavy chain sequences were analyzed using

IMGT/V-QUEST (http://www.imgt.org/IMGT_vquest/

vquest) to determine V, D and J gene segment usage.

Based on highest matching score, HCAb1 is made up

of V3-23, D6-19 and J4 gene segments while HCAb2 is

made up of V1-18, D5-18 and J4 gene segments. Re-

placement mutations in comparison to respective germ-

line VDJ segments were determined within CDRs (1, 2

and 3) and FRs (1, 2, 3 and 4). As depicted in Fig. 1a,

both HCAb1 and HCAb2 contained replacement muta-

tions (asterisks) throughout the variable region. HCAb2

though contained a larger number of mutations select-

ively in CDR1 and CDR2 compared to HCAb1. We

synthesized and purified bivalent HCAbs and observed

that the monomeric molecular weights of HCAbs on a

reducing gel approximated the expected size (50 kDa)

(Fig. 1b).

Heavy chain antibodies were screened against MCF10A

(non-tumorigenic cells), MCF7 (estrogen receptor positive

cancer cells) and MDA-MB-231 (triple negative breast can-

cer cells) by flow cytometry to ensure stringent identifica-

tion of cell surface targeting HCAbs. Moreover, flow

cytometry allowed us to quantitatively determine the size of

cell population that was targeted by HCAbs. As seen in

Fig. 1c, HCAb2 (yellow peak) bound strongly to MDA-MB-

231 cells (51.1 % positively stained cells) and showed weak

binding to MCF10A (4.37 %) and MCF7 (0.94 %) cells com-

pared to isotype control. HCAb1 did not bind to the sur-

face of any of the 3 cell lines and was used as a control for

subsequent experiments.

To visualize the staining pattern, immunofluorescence

analysis on primary normal human mammary epithelial

cells (HMEC), MCF7 and MDA-MB-231 cells was per-

formed. HCAb1 did not show staining on the surface of

HMEC (Fig. 1d), MCF7 (Fig. 1e) and MDA-MB-231 cells

(Fig. 1f ), while HCAb2 showed no staining on HMECs

(Fig. 1g) and weak staining on MCF7 cells (Fig. 1h).

HCAb2 though demonstrated definitive punctate stain-

ing on the surface of MDA-MB-231 cells (Fig. 1i). To

determine if the antigen recognized by HCAb2 was also

present within the cells, HCAb2 was incubated with

permeabilized cells (Fig. 1m-o). HCAb2 showed reduced

cytoplasmic staining in HMECs (Fig. 1m), while strong

cytoplasmic staining in both MCF7 (Fig. 1n) and MDA-

MB-231 cells (Fig. 1o). On the other hand, HCAb1 which

did not show cell surface staining on non-permeabilized

cells showed strong perinuclear staining in permeabilized

HMEC (Fig. 1j), MCF7 (Fig. 1k) and MDA-MB-231 cells

(Fig. 1l). Thus, both flow cytometry and immunofluor-

escence analysis on cells demonstrated that HCAb2

preferentially bound to the surface of MDA-MB-231

cells (Fig. 1c and i) and not to normal or MCF7 cells

(Fig. 1c and g).

HCAb2 bound strongly to primary breast tumor tissues in

comparison to normal tissues

To determine if HCAb2 reveals selective binding to hu-

man breast tumors, a cohort of fresh frozen human

breast tissue samples was screened with HCAb2. Our

cohort consisted of 31 estrogen receptor alpha positive

(ER+) breast tumor cases, of which 12 had matching

normal/non-tumor tissues from the same surgical resec-

tion. The cohort also consisted of 5 triple negative

tumor cases with 4 matched normal/non-tumor tissues

and 4 human epidermal growth factor receptor 2 posi-

tive (HER2+) tumor cases with 3 matched normal/non-

tumor tissues. Immunofluorescence analysis revealed

that HCAb2 showed no or weak staining on all of the 26
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Fig. 1 (See legend on next page.)
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normal breast tissues (Fig. 2a-d and m-o). Examination

of ER+ tumor tissues revealed heterogenous staining

pattern ranging from a few positively stained cells to

those with large clusters of positively stained cells

(Fig. 2e-h). HCAb2 staining on ER+ tumor samples

was found to be selective to epithelial cells as evi-

denced by positive E-cadherin staining (Fig. 2e, g and h).

In addition, we observed that HCAb2 showed cell sur-

face staining on tumor tissues (Fig. 2g-h). Interestingly

on some of the ER+ tumor samples, HCAb2 showed

strong staining on E-cadherin negative epithelial cells

(Fig. 2i-l). This can be clearly observed in Fig. 2i as

well as Fig. 2j (magnified view), wherein HCAb2

strongly stained E-cadherin negative cells while weakly

stained E-cadherin positive cells within the same clus-

ter. Overall we observed that 12 of the 31 ER+ tumor

samples, 3 of the 5 triple negative tumor samples and

1 of the 4 HER2+ tumor samples showed positive

staining with HCAb2. For each of the 3 basic tumor

types, approximately 5-10 % of tumor epithelial cell

populations were found to be positively stained by

HCAb2, thus indicating that HCAb2 bound specific-

ally to only a subset of tumor cells in each tumor. Also

in a majority of tumor samples, HCAb2 staining was

observed to be punctate in nature (Fig. 2g-h and k-l),

similar to the pattern observed with MDA-MB-231

cells (Fig. 1i).

In triple negative tumor tissues, HCAb2 showed mod-

erate (Fig. 2p) to strong staining (Fig. 2q-r) on N-

cadherin positive tumor cells. Similar to ER+ tumor

samples, HCAb2 showed preferential staining on triple

negative tumor tissues (Fig. 2p-r) in comparison to pa-

tient matched normal tissues (Fig. 2m-o). HER2+ tumor

tissues did not show strong staining with HCAb2 and

only 1 of the 4 samples revealed moderate staining with

HCAb2. Immunofluorescence analyses on primary

breast tissues demonstrated that HCAb2 preferentially

bound to tumor tissues in comparison to normal/non-

tumor tissues and thereby enabled HCAb2 as a lead anti-

body for further characterization.

Identification of target antigens of HCAb1 and HCAb2

In order to determine the antigens recognized by HCAb1

and HCAb2, immunoprecipitation of antigens followed by

protein identification using mass spectrometry was per-

formed. We chose MDA-MB-231 cell lysates since the

respective target antigens for both HCAb1 (Fig. 1l) and

HCAb2 (Fig. 1i) were abundant in MDA-MB-231 cells.

Immunoprecipitated proteins were run on a reducing

SDS-PAGE gel and visualized using SYPRO® Ruby

stain. Immunoprecipitation with HCAb1 revealed a

specific band (~MW 200 kDa) from 1 % Triton X-100

lysates, while immunoprecipitation with HCAb2 did

not show any specific band under these conditions

(Fig. 3a). On the other hand, immunoprecipitation with

HCAb2 revealed a specific band (~MW 90 kDa) from

1 % Triton X-100 lysates supplemented with 0.1 % SDS

(Fig. 3b). Furthermore, these buffer conditions were

unfavorable for HCAb1 to immunoprecipitate the

band seen previously in buffer lacking SDS (Fig. 3a).

Multiple repeats revealed similar results and led us to

conclude that the interaction between HCAb1 and its

antigen is abolished in the presence of 0.1 % SDS, while

the interaction between HCAb2 and its antigen re-

quires the presence of 0.1 % SDS. This could suggest

that the antigen recognized by HCAb2 requires SDS to

be solubilized in cell lysates.

Specific gel bands observed in Fig. 3a and b were ex-

cised and the tryptic peptides were analyzed by mass

spectrometry. Peptides identified from this analysis were

used to search SwissProt database to obtain a list of po-

tential target proteins. Tables 1 and 2 show the top five

proteins identified from HCAb1 and HCAb2 immuno-

precipitated bands, respectively. Keratin proteins ob-

served in the analysis are typical contaminants and were

probably introduced during handling of gel bands. The

top hit for HCAb1 was clathrin heavy chain 1 (CLTC)

protein with the identified peptides covering 40.7 % of

the protein (Table 1). Molecular weight of CLTC protein

(191.493 kDa) is similar to molecular weight of the ex-

cised gel band (Fig. 3a). This would suggest that the target

antigen of HCAb1 could be CLTC protein. Similarly, the

top hits for HCAb2 were heat shock protein HSP90-beta

and heat shock protein HSP90-alpha with peptide coverage

of 51.7 and 40.6 %, respectively (Table 2). Molecular weight

of the excised band (~90 kDa) (Fig. 3b) overlaps with mo-

lecular weights of both the HSP90 isoforms (Table 2), sug-

gesting that the target antigen of HCAb2 could be HSP90.

(See figure on previous page.)

Fig. 1 HCAb2 preferentially bound to the surface of MDA-MB-231 cells. a. Alignment of amino acid sequences of HCAb1 and HCAb2 revealing

mutations (*) in comparison to their respective germline VDJ sequences. HCAb1 and HCAb2 nucleotide sequences were analyzed using IMGT/

V-QUEST program to determine VDJ gene segments of the antibodies as well as mutations in complementarity determining regions

(shaded) and framework regions. b. Immunoblot depicting differences in monomeric molecular weights of 8 different heavy chain antibodies. Purified

heavy chain antibodies (~300 ng) were run on a reducing SDS-PAGE gel, transferred to a nitrocellulose membrane and detected using anti-mouse IgG

antibody. c. Flow cytometry screening of MCF10A, MCF7 and MDA-MB-231 cells using HCAb1 and HCAb2. HCAb1 (green peak), HCAb2 (yellow peak),

isotype control (red peak) and unstained (blue peak). d-o Immunofluorescence analysis of HMEC, MCF7 and MDA-MB-231 cells using HCAb1 and HCAb2.

d-i Non-permeabilized cells were stained with HCAb1 (d-f) and HCAb2 (g-i) to determine cell surface staining. j-o Permeabilized cells were stained with

HCAb1 (j-l) and HCAb2 (m-o) to determine intracellular staining. Scale bar represents 10 μm
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Validation of target antigens of HCAb1 and HCAb2

Clathrin heavy chain was found to be the putative target

antigen of HCAb1 (Table 1) and to validate this, co-

localization immunofluorescence analysis was performed

on permeabilized MCF7 cells using HCAb1 and a commer-

cial anti-CLTC antibody. As seen in Additional file 1: Figure

S1, HCAb1 and the commercial antibody co-localized to the

peri-nuclear region, suggesting that HCAb1 binds to clathrin

heavy chain.

From mass spectrometric analysis (Table 2), HSP90

was found to be the antigen for HCAb2. HSP90 is an

intracellular molecular chaperone that aids in appropri-

ate folding of a wide variety of proteins [19]. Four differ-

ent isoforms of HSP90 are present which include HSP90α

and HSP90β (cytosolic isoforms), Grp94 (endoplasmic

reticulum isoform) and TRAP1 (mitochondrial isoform)

[20]. In addition to its cytosolic localization, HSP90 has

been shown to be present on plasma membrane of cells as

well as in the extracellular space [21, 22]. Indeed HSP90

has been shown previously to be on the surface of MDA-

MB-231 cells [23]. In order to validate HSP90 to be the tar-

get antigen of HCAb2, MDA-MB-231 cells were fraction-

ated to obtain plasma membrane and cytosolic fractions

that were subsequently used for immunoprecipitation with

HCAb2. Immunoprecipitated proteins were run on a

reducing SDS-PAGE gel and immunoblot analysis was

performed using a commercial anti-HSP90 antibody.

Commercial anti-HSP90 antibody used for immuno-

blot analysis detected the levels of total HSP90 as it

binds to both the isoforms (HSP90α and HSP90β). As

seen in Fig. 4a, HCAb2 pulled down HSP90 from both

fractions with higher amounts being pulled down from

the cytosolic fraction. Differences in the amount of

HSP90 being pulled down could be attributed to the abun-

dance of HSP90 in cytosol compared to plasma membrane.

Equal amounts of HCAb2 were pulled down in both im-

munoprecipitations as detected with anti-mouse antibody

(Fig. 4a).

The list of potential target proteins identified by

HCAb2 contained both HSP90α and HSP90β isoforms

with HSP90β being the highest scoring protein (Table 2).

This suggests that HCAb2 can bind to both isoforms or

that the peptides identified from mass spectrometric

analysis were common to both isoforms (amino acid se-

quence homology - 85.8 %). Analysis of mass spectro-

metric results revealed a total of 43 peptides that

matched to HSP90 protein. Of the 43 peptides, 14 pep-

tides were unique to HSP90α and 20 peptides were

unique to HSP90β while the remaining 9 peptides were

common to both isoforms (Additional file 2: Table S1).

(See figure on previous page.)

Fig. 2 HCAb2 bound strongly to primary breast tumor tissues in comparison to normal breast tissues. a-h Immunofluorescence analysis of

primary breast normal and ER + tumor tissues using HCAb2. Methanol-acetone (1:1) fixed normal (a-d) and ER+ tumor tissues (e-h) were stained

with HCAb2 and E-cadherin (epithelial marker). Matched samples represent normal and tumor tissues derived from the same patient. Arrows

indicate cells with positive HCAb2 staining on cell surface. Scale bar represents 10 μm. i-l Immunofluorescence analysis of ER+ tumor tissues

using HCAb2. ER+ tumor tissues were stained with HCAb2 and E-cadherin. HCAb2 showed positive staining of E-cadherin negative tumor

cells. Panel j is magnified view of the inset shown in panel i. Scale bar represents 10 μm.m-r Immunofluorescence analysis of matched normal and

triple negative tumor tissues using HCAb2.m-o Normal tissues were stained with HCAb2 and E-cadherin, while tumor tissues (p-r) were stained with

HCAb2 and N-cadherin. For all samples nuclei were stained with DAPI and the scale bar represents 10 μm

Fig. 3 Identification of target antigens of HCAb1 and HCAb2. a and b Immunoprecipitation of respective target antigens by HCAb1 and HCAb2.

20 μg of HCAb1 and HCAb2 were used to immunoprecipitate the target antigens from 1 % Triton X-100 (a) or 1 % Triton X-100 + 0.1 % SDS

(b) MDA-MB-231 lysates. Immunoprecipitated proteins were run on a reducing SDS-PAGE gel and proteins in the gel were stained with SYPRO®

Ruby stain. * indicates specific band for HCAb1 (a) and HCAb2 (b)
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Due to identification of a higher percentage of unique

peptides, HSP90β could be the target antigen of HCAb2.

To determine specificity of HCAb2, immunoprecipita-

tion of recombinant human HSP90β was performed

with HCAb2 and HCAb1 (control). Immunoprecipi-

tated HSP90β was detected using a commercial anti-

HSP90 antibody. As seen in Fig. 4b, HCAb2 pulled

down HSP90β strongly in the presence of 1 % Triton X-

100 and 0.1 % SDS. This interaction was abolished when

SDS concentration was elevated from 0.1 % to 1 %. A

faint diffuse band was seen from immunoprecipitation

with HCAb1 (1 % Tx100 + 0.1 % SDS) as well as for both

HCAb1 and HCAb2 (1 % Tx100 + 1 % SDS), which

could be due to a minor non-specific interaction. Taken

together these results validate that the target antigen of

HCAb2 is HSP90, that HCAb2 is capable of recognizing

both cytosolic and plasma membrane associated HSP90

protein and that a small amount of SDS was required to

facilitate the interaction between HCAb2 and HSP90.

HCAb2 affected in vitro migration of MDA-MB-231 cells

Cell surface and extracellular localized HSP90 has been

implicated in increased invasiveness of tumors [24–30].

Levels of secreted HSP90α have been shown to be posi-

tively correlated with malignancy of different tumor

types [24]. Cell impermeable anti-HSP90 antibody and a

cell impermeable small molecule inhibitor of HSP90

have both been shown to reduce tumor cell motility and

invasion [31–33]. Since HCAb2 binds to cell surface

HSP90, we aimed to determine if HCAb2 could reduce

migration of MDA-MB-231 cells. An in vitro scratch

assay was performed with MDA-MB-231 cells in the

presence of HCAb1 and HCAb2 and compared to un-

treated controls. Representative images were taken at

T = 0 h and T = 19 h to determine potential differences

in migration distances with different treatments. All

the wells had similar scratch areas at T = 0 h (Fig. 5a-c)

while at T = 19 h, HCAb2 treated wells (Fig. 5f )

showed reduced migration of cells into acellular area

in comparison to untreated (Fig. 5d) or HCAb1 (Fig. 5e)

treated wells. In order to quantify differences in migra-

tion, acellular area at 0 h and at 19 h was determined.

Percent acellular area remaining after 19 h was deter-

mined and values from 4 different wells were averaged.

As seen in Fig. 5g, percent acellular area remaining

after 19 h was highest in HCAb2 treated wells

(68.46 %) and lowest in untreated wells (48.29 %), while

HCAb1 treated wells had 60.3 % of acellular area still

remaining. This reduction could be due to internaliza-

tion of HCAb1 leading to an indirect effect on migra-

tion [34]. Percent acellular area remaining at 19 h between

untreated and HCAb1 treated cells was not significantly

different (p = 0.1336) nor was the difference between

HCAb1 and HCAb2 treated cells (p = 0.1124). Percent

acellular area remaining between untreated and HCAb2

treated cells was significantly different (p = 0.0173), sug-

gesting that HCAb2 was able to reduce migration of

MDA-MB-231 cells.

To further test the efficiency of HCAb2 in inhibiting

migration of MDA-MB-231 cells, an in vitro transwell

migration assay was performed. MDA-MB-231 cells

were serum starved for 5 h, following which cells were

left untreated or pre-treated with either 10 μg of HCAb1

or HCAb2. Our previous analysis with three different

commercial anti-HSP90 antibodies (CST #4877, sc-1055

and sc-1057) revealed that these antibodies did not bind

to cell surface HSP90 but bound to intra-cellular HSP90

(Additional file 3: Figure S2). Therefore, one of the com-

mercial antibodies (sc-1055) was used as a negative control

in the transwell migration assay. Also a positive control was

required to determine the extent of inhibition by HCAb2.

To this end, 17-DMAG (HSP90 inhibitor), which has been

Table 1 List of top five proteins identified from HCAb1 specific gel band

Score Gene name Swiss-prot accession no. Protein name MW (Da) % coverage

2366 CLTC Q00610 Clathrin heavy chain 1 191493 40.7

776 KRT1 P04264 Keratin 1 66027 24.4

720 - - Unnamed protein product 59492 27.3

682 KRT1 P04264 Keratin 1 66026 24.4

463 KRT2 P35908 Epidermal cytokeratin 2 65825 27.8

Table 2 List of top five proteins identified from HCAb2 specific gel band

Score Gene name Swiss-prot accession no. Protein name MW (Da) % coverage

1812 HSP90AB1 P08238 Heat shock protein HSP 90-beta 83212 51.7

1007 KRT16 P08779 Keratin, type I cytoskeletal 16 51236 45

1004 HSP90AA1 P07900 Heat shock protein HSP 90-alpha 84607 40.6

980 KRT6C P48668 Keratin, type II cytoskeletal 6C 59988 30.7

970 KRT6A P02538 Keratin, type II cytoskeletal 6A 60008 30.7
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shown to inhibit migration [33, 35, 36] was used at 10 μM

to determine the maximal inhibition of migration. As

shown in Fig. 5h, HCAb2 reduced migration of MDA-MB-

231 cells in comparison to untreated and HCAb1 treated

cells. Relative to untreated cells, HCAb2 revealed 48.85 %

inhibition of migration while HCAb1 only showed 12.64 %

inhibition of migration. Unfortunately, results with HCAb2

did not reach statistical significance in comparison to un-

treated (p = 0.0809) and HCAb1 (p = 0.095) treated cells

but showed trend towards significance. HCAb2 though sig-

nificantly reduced migration of MDA-MB-231 cells in com-

parison to the commercial anti-HSP90 antibody (p = 0.007).

Similar levels of significance were not evident with either

untreated (p = 0.3233) or HCAb1 treated cells (p = 0.116) in

comparison to the commercial anti-HSP90 antibody treated

cells. Although HCAb2 reduced migration of MDA-MB-

231 cells, HCAb2 was not as effective as the HSP90 inhibi-

tor (17-DMAG), which revealed 96.16 % inhibition of

migration. This could be due to the fact that HCAb2 binds

to cell membrane associated HSP90, while 17-DMAG

could be targeting total HSP90. Therefore, binding of

HCAb2 to HSP90 could inhibit invasiveness of MDA-MB-

231 cells at a moderate yet significant level. The potential

of HCAb2 in inhibiting in vivo tumor metastasis will be

performed as a part of future directions.

HCAb2 preferentially localized to MDA-MB-231 xenograft

tumors

Leading up to this point, we observed that HCAb2 is a

tumor specific antibody (Figs. 1 and 2) that binds to cell

surface HSP90 (Fig. 4a) and inhibits invasiveness of tumor

cells in vitro (Fig. 5). We then wanted to determine if

HCAb2 can target tumors in an in vivo xenograft model.

To this end, MDA-MB-231 xenograft tumors ranging from

300-500 mm3 were generated in female NSG mice. Follow-

ing which, 12 μg of HCAb1 and HCAb2 were injected

retro-orbitally into circulation of tumor-bearing animals.

After 2 h, 6 h and 24 h post-injection of HCAb1 (control)

and HCAb2 into respective animals, xenograft tumors and

normal tissues were harvested and screened to determine

localization of HCAb1 and HCAb2. As expected, HCAb1

did not localize to xenograft tumors at either of the time

points (2 h and 6 h) (Fig. 6a-b), while HCAb2 was found in

tumors at 2 h (Fig. 6c), 6 h (Fig. 6d) and 24 h (Fig. 6e) time

points. In different xenograft tumors, only small popu-

lations of cells were observed to stain positively for

HCAb2 while vast majority of the tumors were nega-

tive for HCAb2 localization.

To determine the distribution of HCAb2 in non-

tumor mouse tissues, brain, heart, lung, liver and kidney

tissues at the 24 h time point were examined. As seen in

Fig. 6f and h, HCAb2 was not detected in brain or lung

tissues, respectively while heart (Fig. 6g), liver (Fig. 6i)

and kidney tissues (Fig. 6j) revealed weak staining for

HCAb2. Detection of HCAb2 in kidney tissue could be

due to renal clearing of injected HCAb2. These results

indicate that HCAb2 preferentially localized to xenograft

tumors in comparison to normal tissues.

To confirm that HCAb2 specifically targeted MDA-

MB-231 cells within xenograft tumors and not mouse

cells, a 24 h time point tumor section was probed with

anti-CD44-FITC and Alexa Fluor® 594 anti-mouse IgG

antibodies (note: there is little circulating IgG in NSG

mice). MDA-MB-231 cells are CD44+ and we observed

that the majority of xenograft tumor cells were CD44+

MDA-MB-231 cells (Fig. 6l) with very few mouse cells.

Also HCAb2 localized cells were positive for CD44

Fig. 4 Validation of target antigens of HCAb1 and HCAb2. a Validation

of HSP90 to be the target antigen of HCAb2. Immunoprecipitation of

HSP90 was performed from cytosolic and plasma membrane (PM)

fractions using HCAb2. Immunoprecipitated HSP90 was detected using a

commercial anti-total HSP90 antibody. b Immunoprecipitation of

recombinant human HSP90β protein using HCAb1 and HCAb2. HCAb1

and HCAb2 (5 μg each) were used to immunoprecipitate recombinant

HSP90β (1 μg) resuspended in either 1 % Triton X-100 + 0.1 % SDS or

1 % Triton X-100 + 1 % SDS buffers. Immunoprecipitated HSP90β protein

was detected using a commercial anti-total HSP90 antibody. Equal

amounts of HCAb1 and HCAb2 were pulled down as detected by

anti-mouse IgG antibody
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Fig. 5 HCAb2 reduced in vitro migration of MDA-MB-231 cells. a-f Representative images of scratch assay, T = 0 h (panels a-c) and T = 19 h

(panels d-f). Scratches were made using 200 μL pipet tips and T = 0 h images were taken. Subsequently cells were left untreated or incubated

with HCAb1 and HCAb2 (5 μg each) and imaged after 19 h. Scale bar represents 100 μm. g Quantification of percent acellular area remaining

after 19 h of treatment with HCAb1 and HCAb2. Acellular area at T = 0 h and T = 19 h was determined for each well using Image-Pro software

(n = 4 wells per treatment). Average area at T = 0 h for each treatment was set to be 100 % and areas at T = 19 h were normalized to the corresponding

average acellular area at T = 0 h. Percent acellular area remaining was calculated accordingly. Error bars represent standard deviation and statistical

significance was determined by Student’s t test, * = p ≤ 0.05. h Quantification of cell migration in a transwell assay. MDA-MB-231 cells were left

untreated or pre-treated with 10 μg of HCAb1 or HCAb2 or anti-HSP90 antibody (sc-1055) or 10 μM 17-DMAG for 15 min at room temperature.

Cells were allowed to migrate for 19 h at 37 °C with EGF as the chemoattractant. Cells were stained with crystal violet and total numbers of

migrated cells were counted. Average number of migrated cells with standard deviation was plotted for 3 transwell inserts per treatment.

Statistical significance was determined using Student’s t test, ** = p ≤ 0.01
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Fig. 6 (See legend on next page.)

Devarakonda et al. BMC Cancer  (2015) 15:614 Page 13 of 19



staining (Fig. 6l-n) but had lower levels of CD44 com-

pared to cells without HCAb2 localization. This would

confirm that HCAb2 specifically localized to MDA-

MB-231 xenograft tumor cells. HCAb2 was also ob-

served to be present in cytosol of targeted cells

(Fig. 6n), suggesting that the bound HCAb2 was inter-

nalized by target cells.

We also wanted to determine if HCAb2 can bind to

HSP90 from xenograft tumor lysates. Xenograft tumor

pieces were homogenized and incubated with exogenous

HCAb1 (control) and HCAb2. Immunoprecipitated pro-

teins were detected using a commercial anti-HSP90 anti-

body. It was readily apparent that HCAb2 pulled down

HSP90 from tumor lysates, while HCAb1 did not pull

down HSP90 at all (Additional file 4: Figure S3). In sum-

mary, we observed that HCAb2 bound preferentially to

a small population of MDA-MB-231 xenograft tumor

cells in comparison to mouse normal tissues and also

bound to HSP90 from xenograft tumor lysates.

HCAb2 localized to a subset of MDA-MB-231 xenograft

tumor cells

As seen from Fig. 6c-e and n, HCAb2 localized to a small

population of MDA-MB-231 cells within the tumors. To

determine if differential vascularization of tumors could be

responsible for unique localization of HCAb2; CD31 and

HCAb2 staining was performed on a 24 h tumor section

(Fig. 7a-h). We observed that HCAb2 localized to cells that

were in close proximity to blood vessels (Fig. 7b-d) suggest-

ing that these cells were accessible to HCAb2. But even

within this section, a majority of the cells that were in close

proximity to blood vessels were not found to be positive for

HCAb2 localization. This effect was seen more prominently

in other fields of the same tumor (Fig. 7e-h) wherein vascu-

larized regions of the tumor (Fig. 7g and h) did not show

any HCAb2 localization (Fig. 7f). This result eliminates

possibility that the unique localization of HCAb2 was solely

due to reduced accessibility to tumor cells in specific areas.

To determine if unique localization of HCAb2 was

due to differential expression of HSP90 in tumor cells,

a 24 h time point tumor section was probed with a

commercial anti-HSP90 and Alexa Fluor® 488 anti-

mouse IgG antibodies. HCAb2-localized tumor cells

did not show any changes in the intracellular levels of

HSP90 (Fig. 7i-l), however the levels of cell surface

HSP90 could have been increased. To understand the

factors that could lead to increased cell surface expres-

sion of HSP90, we focused on the function of HSP90 in

tumor cells. HSP90 along with ER chaperones calnexin,

calreticulin and protein disulfide isomerase aids in the

folding of various proteins. Variation in the levels of

different chaperones could lead to generation of mis-

folded proteins and in turn lead to stress at the level of

protein folding. Previously, calnexin deficient cells

have been shown to be in a state of constant stress and

have constitutively active unfolded protein response

[37]. Furthermore, cells that are undergoing stress have

been shown to translocate HSP70 from cytosol to

plasma membrane [38]. This suggests that the cell sur-

face expression of HSP90, similar to HSP70 could be

increased in cells that are undergoing stress. Indeed a

previous study has shown that the levels of cell surface

HSP90 were increased in a glioblastoma multiforme

cell line subjected to hypoxic conditions [39]. We

therefore hypothesized that the xenograft tumor cells

with HCAb2 localization were highly stressed and

thereby had increased levels of HSP90 on cell surface.

To test this hypothesis, a 24 h time point MDA-MB-

231 tumor section was stained to visualize HCAb2 and

calnexin. Cells that were positive for HCAb2 were ob-

served to be negative for calnexin staining (Fig. 7m-p).

Of note, another chaperone marker protein disulfide

isomerase (PDI) was unchanged in HCAb2 positive

tumor cells (Additional file 5: Figure S4). This surpris-

ing result suggested that HCAb2 specifically targeted a

unique population of cells that have significant stress

with respect to metabolic or unfolded protein response

events. It is unclear as to the significance or the cause of

reduced levels of calnexin in these tumor cells. Loss of cal-

nexin could also explain the reduced levels of CD44 on

cells that showed HCAb2 localization (Fig. 6k-n). Immuno-

fluorescence analysis on MDA-MB-231 cells in culture did

(See figure on previous page.)

Fig. 6 HCAb2 localized specifically to MDA-MB-231 xenograft tumors in immunodeficient mice. a-e Representative images showing localization

of HCAb2 to tumors at 2 h, 6 h and 24 h time points. Female NSG mice bearing tumors ranging from 300-500 mm3 were retro-orbitally injected

with 12 μg of HCAb1 (n = 2) and HCAb2 (n = 3) into respective animals. After 2 h, 6 h and 24 h mice were euthanized and tumors along with

various normal tissues were stained to detect HCAb1 and HCAb2 localization. HCAb1 did not localize to the tumors (panels a and b), while

HCAb2 localized to tumors at the earliest time point (panel c) and the later time points of 6 h (panel d) and 24 h (panel e). Arrows indicate

cells with HCAb2 staining. Insets reveal magnified image and scale bar represents 20 μm. f-j Immunofluorescence analysis of mouse normal

tissues to determine distribution of HCAb2. Frozen sections of brain (panel f), heart (panel g), lung (panel h), liver (panel i) and kidney (panel j) tissues

from 24 h time point mouse were analyzed to detect the presence of HCAb2. Low levels of HCAb2 were detected in heart (panel g), liver (panel i) and

kidney tissues (panel j). Arrows indicate HCAb2 localization. Insets reveal magnified image and scale bar represents 20 μm. k-n Immunofluorescence

analysis of xenograft tumor tissue to identify HCAb2 localization in MDA-MB-231 cells. 24 h time point tumor section was incubated with anti-CD44-FITC

and Alexa Fluor® 594 anti-mouse IgG antibodies. From panels l,m and n, it can be observed that HCAb2 localizes to MDA-MB-231 cells. Arrows indicate

cells with positive CD44 and HCAb2 staining. Scale bar represents 10 μm
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not reveal any cells that showed reduced levels of calnexin

or protein disulfide isomerase (Additional file 6: Figure S5).

This suggests that the loss of calnexin in xenograft tumor

cells occurred during tumor formation and/or within the

tumor microenvironment.

Finally, we wanted to determine if reduction in levels of

calnexin could lead to increased cell surface expression of

HSP90. To this end, calnexin was knocked down in MDA-

MB-231 cells (Additional file 7: Figure S6A) and HCAb2

binding to cells was determined. Confirmed calnexin knock

down led to a moderate increase in cell surface binding of

HCAb2 (Additional file 7: Figure S6B). This suggests that

reduction in levels of calnexin alone is not sufficient to

affect cell surface expression of HSP90 in cell culture

environment.

Discussion

The goal of this study was to identify cell surface target-

ing tumor specific antibodies derived from responsive

patient sentinel lymph nodes. To attain this goal, 8 heavy

chain antibodies were screened from a pool of 46 se-

lected antigen-driven antibodies. Owing to the fact that

HCAb1 did not bind to a cell surface antigen, nor did it

show differential staining between primary human breast

normal and tumor tissues (data not shown), HCAb1 was

ruled out as a tumor specific antibody. However, since

HCAb1 did not show cell surface staining, it was used as

a negative control throughout the study. Using stringent

screening procedures, HCAb2 was identified as a cell

surface HSP90 targeting heavy chain antibody. HSP90 is

an abundant intracellular chaperone (2-3 % of total

protein) whose expression increases in stressed cells

[40, 41]. Such high levels of HSP90 are postulated to

be necessary for efficient folding of a multitude of pro-

teins. HSP90 has been shown to be upregulated in a wide

variety of tumors including breast tumors [42] to aid in

folding and stabilization of various over-expressed or mu-

tant tumor associated proteins such as EGFR [43], mutant

B-Raf [44], mutant BRCA1 [45] and mutant p53 [46]. High

expression of HSP90 is therefore an essential requirement

for survival of tumor cells and has been shown to correlate

with reduced survival in breast cancer patients [42]. Indeed

HSP90 inhibitors have been shown to downregulate the ex-

pression of mutant epidermal growth factor receptor in

tumors [47] and selectively kill tumor cells [48]. HSP90 in-

hibitors such as DMAG and 17-AAG [33, 49–51] have

shown promising results, with 17-AAG showing anti-

cancer activity in a phase II trial [52].

In addition to intracellular localization of HSP90, nu-

merous reports have indicated the presence of HSP90

on cell surface as well as in extracellular space of tumors

[21, 22]. HCAb2 showed cytosolic staining in HMEC,

MCF7 and MDA-MB-231 cells but showed cell surface

staining only on aggressive MDA-MB-231 cells. Indeed

HSP90 has been previously shown to be present on the

surface of MDA-MB-231 cells [53]. Membrane associated

HSP90 can activate HER-2 and also interact with Cdc37

leading to increased invasiveness of cancer cells [27, 53].

Extracellular HSP90 has also been shown to activate matrix

metalloproteinase-2 [28] and plasminogen [54] leading to

increased cell motility. The actual mechanism by which

HSP90 gets to cell surface or is released outside the cells is

still unclear, with some evidence pointing to the role of exo-

somes [54]. MDA-MB-231 cells undergoing hypoxic stress

have been shown to release increased levels of exosomes

[55]. This surge in exosomal release during stress condi-

tions could result in higher amounts of extracellular HSP90

and in turn lead to increased invasiveness of cells. It is in-

teresting to note that HCAb2 demonstrates punctate stain-

ing pattern on MDA-MB-231 cells as well as primary

human breast tumor tissues. The punctate pattern very well

could represent vesicular structures/exosomes since HSP90

has been shown to be present in exosomes derived from

bladder and colorectal cancer cells [56, 57].

Considering the significance of membrane bound HSP90

in tumor metastasis, it is possible that targeting cell surface

HSP90 may suppress tumor metastasis. Indeed DMAG-N-

oxide, a cell impermeable HSP90 inhibitor has been shown

to inhibit migration of B16 melanoma cells as well as their

lung colonization [33]. Along similar lines, we have shown

that HCAb2 was also able to reduce migration of MDA-

MB-231 cells in vitro. The advantages of using an anti-

body such as HCAb2 to target cell surface HSP90 over

a small molecule inhibitor would be activation of im-

mune effector functions such as antibody-dependent

cell-mediated cytotoxicity and complement-dependent

cytotoxicity. The ability of HCAb2 in performing these ef-

fector functions will be tested in our future experiments.

(See figure on previous page.)

Fig. 7 HCAb2 specifically targeted a unique population of MDA-MB-231 xenograft tumor cells. a-h Immunofluorescence analysis of xenograft

tumor vasculature and HCAb2 localization. 24 h time point tumor section was incubated with anti-CD31 and Alexa Fluor® 488 anti-mouse IgG

antibodies. Nuclei were stained with DAPI. (a-d) Representative images depicting a region in the tumor that shows HCAb2 localization and

positive CD31 staining. (e-h) Representative images depicting a different region in the same tumor showing no HCAb2 localization but positive CD31

staining. Scale bar represents 20 μm. i-l Immunofluorescence detection of HSP90 and HCAb2 in xenograft tumor cells. 24 h time point tumor section was

incubated with anti-HSP90 and Alexa Fluor® 488 anti-mouse IgG antibodies. Isolated HCAb2 localization was observed (panel j) while uniform HSP90

staining was observed (panel k) throughout the tumor section. Scale bar represents 10 μm. m-p Immunofluorescence detection of calnexin

and HCAb2 in xenograft tumor cells. 24 h time point tumor section was incubated with anti-calnexin and Alexa Fluor® 488 anti-mouse IgG

antibodies. HCAb2 localized to MDA-MB-231 cells that lacked calnexin staining as seen from panels n-p. Scale bar represents 10 μm
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Presence of cell surface HSP90 seems to aid in increasing

the invasiveness of tumor cells. But the reasons for cell sur-

face localization are not clearly understood. HSP70 is also

an intracellular chaperone that is overexpressed in tumors

and localizes to plasma membrane of stressed cells [38, 58].

Similar to HSP70, HSP90 may also be translocated to

plasma membrane of stressed tumor cells. From our

screening analysis on primary human breast tumor tis-

sues, we observed that HCAb2 revealed staining of iso-

lated cells or clusters of cells within the tumors. It

could be possible that these isolated or clusters of cells

were exposed to different microenvironmental stresses

leading to increased cell surface expression of HSP90.

This feature of HCAb2 binding to stressed cells was also

observed in MDA-MB-231 xenograft tumors. HCAb2

localization in xenograft tumors was restricted to a

small subset of cells that were deficient for calnexin.

Calnexin along with other ER chaperones including

calreticulin and protein disulfide isomerase maintains

protein homeostasis and any perturbations to this sys-

tem could lead to cellular stress. Cellular stresses in tu-

mors can lead to generation of misfolded proteins,

which if left unresolved can activate unfolded protein

response. Previous studies have shown that cells with

reduced calnexin have constitutively active unfolded

protein response [37]. This strengthens our argument

that HCAb2 localized to highly stressed cells with in-

creased cell surface HSP90.

Calnexin aids in folding of MHC class I molecules and

may also aid in loading of peptides onto MHC class I

molecules [59]. Interestingly, calnexin has been shown

to be downregulated in brain metastases of breast tu-

mors compared to unpaired primary breast lesions [60]

as well as in metastatic melanoma lesions in comparison

to primary melanoma lesions [61]. Down regulation of

calnexin can lead to reduced MHC class I molecules on

cell surface and has been hypothesized to aid cells in es-

caping from adaptive immune response. We believe that

HCAb2 is an ideal antibody to target metastatic tumor

cells since HCAb2 binds to cell surface HSP90 as well as

to cells that are deficient in calnexin. The relationship

between reduced calnexin and increased HSP90 on cell

surface needs to be further evaluated. Preliminary results

with calnexin knockdown (Additional file 6: Figure S5)

indicated that this relationship is not direct or causal

and is probably accentuated in an in vivo tumor with

heterogenous microenvironmental stresses.

Conclusions
In conclusion, we have developed a powerful strategy

whereby a library of patient-derived heavy chain antibodies

can be screened to identify tumor targeting antibodies.

Identification of HCAb2 validates the strength of this re-

search strategy. The antigen for HCAb2 was found to be

HSP90 and HCAb2 bound to a unique subset of xenograft

tumor cells that were negative for calnexin. This raises in-

teresting questions regarding the connection between re-

duced levels of calnexin and increased expression of cell

surface HSP90. In addition, HCAb2 can be a unique re-

agent to target aggressive human tumor cells in vivo and

may be useful for therapeutic applications.

Additional files

Additional file 1: Figure S1. Clathrin heavy chain protein is the target

antigen of HCAb1. A-D. MCF7 cells were incubated with HCAb1 and a

commercial anti-clathrin heavy chain antibody. Arrows indicate regions that

show co-localization of HCAb1 and anti-clathrin heavy chain antibody. Nuclei

were stained with DAPI. Scale bar represents 10 μm. (TIFF 2942 kb)

Additional file 2: Table S1. List of different HSP90 peptides identified

from HCAb2 immunoprecipitated gel band using mass spectrometry.

(XLSX 14 kb)

Additional file 3: Figure S2. Commercial anti-HSP90 antibodies did not

bind to cell surface HSP90. Immunofluorescence analysis of MDA-MB-231

cells was performed with 3 different commercial anti-HSP90 antibodies.

Commercial anti-HSP90 Ab 1 (sc-1055), commercial anti-HSP90 Ab 2

(sc-1057) and commercial anti-HSP90 Ab 3 (CST 4877) were used as

indicated. Non-permeabilized cells were used to determine cell surface

staining and permeabilized cells were used to determine intracellular staining.

Nuclei were stained with DAPI. Scale bar represents 10 μm. (TIFF 2948 kb)

Additional file 4: Figure S3. Immunoprecipitation of HSP90 from

xenograft tumor lysates using HCAb2. RIPA lysates of xenograft tumor

pieces were used for immunoprecipitation with 15 μg of HCAb1 and

HCAb2. Immunoprecipitated HSP90 protein was detected on an

immunoblot using a commercial anti-HSP90 antibody. HCAb2 pulled

down HSP90 from 2 h, 6 h and 24 h tumor lysates while HCAb1 did not

pull down HSP90. Equal amounts of HCAb1 and HCAb2 were pulled

down as detected by anti-mouse IgG antibody. (TIFF 1627 kb)

Additional file 5: Figure S4. HCAb2-localized xenograft tumor cells

express protein disulfide isomerase. A-D. 24 h time point tumor section

was incubated with anti-PDI and Alexa Fluor® 488 anti-mouse IgG antibodies.

Uniform PDI staining was observed in all cells (panel C) throughout the tumor

section. Scale bar represents 10 μm. (TIFF 1344 kb)

Additional file 6: Figure S5. Immunofluorescence detection of CANX

and PDI in MDA-MB-231 cells. MDA-MB-231 cells were grown in multi-well

chamber slides and incubated with anti-CANX (panel A) or anti-PDI (panel B)

antibodies. Uniform CANX and PDI staining was observed in all cells. Scale bar

represents 20 μm. (TIFF 3108 kb)

Additional file 7: Figure S6. Calnexin knockdown did not lead to

increased HCAb2 binding to MDA-MB-231 cells. A. Immunoblot analysis

of MDA-MB-231 cells transiently transfected with mock (transfection

medium alone) or luciferase siRNA (siLuc) or calnexin siRNA (siCANX) at

different concentrations. β-actin was used as the loading control. B. Flow

cytometry analysis of mock, siLuc (25 nM) or siCANX (25 nM) transfected

MDA-MB-231 cells using HCAb2. Percentages of cells that showed positive

binding with HCAb2 in comparison to isotype control are shown in

the histograms. Unstained (blue peak), isotype control (red peak) and

HCAb2 (yellow peak). (TIFF 1523 kb)
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