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Abstract

Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting 

long-established traditional cell lines as preferred models for conducting basic and translational 

pre-clinical research. In breast cancer, to complement the now curated collection of approximately 

45 long-established human breast cancer cell lines, a newly formed consortium of academic 

laboratories, currently from Europe, Australia, and North America, herein summarizes data on 

over 500 stably transplantable PDX models representing all three clinical subtypes of breast 

cancer (ER+, HER2+, and “Triple-negative” (TNBC)). Many of these models are well-

characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, 

and treatment response to a variety of standard-of-care and experimental therapeutics. These stably 

transplantable PDX lines are generally available for dissemination to laboratories conducting 

translational research, and contact information for each collection is provided. This review 

summarizes current experiences related to PDX generation across participating groups, efforts to 

develop data standards for annotation and dissemination of patient clinical information that does 

not compromise patient privacy, efforts to develop complementary data standards for annotation of 

PDX characteristics and biology, and progress toward “credentialing” of PDX models as 
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surrogates to represent individual patients for use in pre-clinical and co-clinical translational 

research. In addition, this review highlights important unresolved questions, as well as current 

limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of 

PDX use in translational breast cancer research.

Keywords

Patient-derived xenograft; breast cancer; immunocompromised/immunodeficient mice; 
translational research; PDX consortium

I. Introduction

Human breast cancer is now recognized, not as a single disease, but as a heterogeneous 

collection of diseases characterized by diversity in histology, genomic alterations, gene 

expression, metastatic behavior, and treatment responses [1–7]. In addition to heterogeneity 

between tumors across the patient population (or between two primary tumors in a single 

patient), recent data have also demonstrated considerable intra-tumoral heterogeneity (that is 

between cells within a single tumor, and between a primary tumor and its associated 

metastases in a single patient). This degree of heterogeneity is a significant hindrance for 

making effective treatment decisions, and begs for the development of personalized 

approaches to therapy based on the specific biology of an individual, and their unique tumor 

[8]. With respect to basic and translational research, the existence of disease heterogeneity, 

both within and among breast cancers, also presents significant challenges to generation and 

use of relevant pre-clinical models that represent the full spectrum of breast disease [9,10].

If our ultimate goal is to offer each breast cancer patient an individualized treatment plan 

tailored to her (or his) specific tumor and progression status, it will be essential to define 

fully the molecular and cellular heterogeneity within and among the tumor subtypes, and 

indeed within each patient’s tumor, and relate these differences to clinical behavior. 

Specifically, these characteristics need to be linked to metastatic behavior and differential 

treatment response, the lethal aspects of breast cancer, in order to ‘personalize’ effective 

treatment. Patient-derived xenograft (PDX) models hold high promise as a discovery and 

validation platform, particularly as a unified collection across multiple institutions, for 

meeting this daunting challenge.

I.A. The Problem of Inter-tumoral Heterogeneity

Clinically, breast cancers are divided essentially into three subtypes: 1) those that express the 

estrogen receptor alpha (ER+) (which typically also express the progesterone receptor (PR

+)), 2) those that are genomically amplified for and/or overexpress ERBB2 (HER2+) 

(encoding a member of the epidermal growth factor receptor family of tyrosine kinases), and 

3) those that express none of these three markers (termed “triple negative” breast cancer 

(TNBC)) [1–4]. While clinically useful, molecularly targeted therapies exist for ER+ breast 

cancer (e.g. Selective Estrogen Receptor Modulators (SERMs), aromatase inhibitors (AI), 

Selective Estrogen Receptor Downregulators (SERDs)) [11] and HER2+ breast cancer (e.g. 

Trastuzumab, Lapatinib) [12], there are currently no approved targeted therapies for TNBC. 
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Current treatment of TNBC entails surgery coupled with radio- and/or chemotherapy (most 

often taxane- or anthracycline-based, with platinum-based agents emerging as promising 

first line therapies (e.g. [13])) in either the neoadjuvant (before surgery) or adjuvant (after 

surgery) settings.

With the development of RNA expression array technology over 15 years ago, more detailed 

molecular classification of breast cancer became possible. In a landmark analysis of global 

RNA expression, five intrinsic molecular subtypes of breast cancer were proposed: luminal 

A (ER+, with signatures consistent with lower proliferation rates that can be correlated with 

comparatively lower Ki67 immunostaining), luminal B (ER+, with signatures consistent 

with elevated proliferation that can be correlated with comparatively higher Ki67 

immunostaining), basal-like (predominantly TNBC), HER2-enriched, and normal breast-

like. Each molecular subtype correlated with unique clinical behavior including differences 

in overall survival, patterns of metastasis, and response to treatment [5,4,7,6]. Subsequently, 

the claudin-low subtype was identified. Claudin-low tumors are predominantly TNBC, with 

comparatively low expression of Claudins 3, 4, and 7 [14], enrichment for mesenchymal 

markers [5], and enrichment of a stem cell-like (CD44+/CD24Neg/Low) gene expression 

signature [15,5,16].

Within the last 5 years, detailed genomic analysis of breast cancers by several groups 

including the ICGC, TCGA and METABRIC consortia [17–21], have shown that additional 

molecular subytypes associated with distinct survival trends can be distinguished, such as 

the 4% of breast cancers that are ER+ with complex amplifications around 11q [18] and 

those showing differential survival associated with PIK3CA mutation [22,23]. TNBC has 

been found to constitute at least two and perhaps more, distinct biological subgroups based 

on integrated genomics [24] – a genomically quiescent, PIK3CA mutation-containing, 

intermediate-good prognosis group (about 25% of TNBC), that group more with ER+ 

cancers (a proportion express AR) of the IntClust4 subtype and the remainder which are 

almost universally mutated for TP53, have unstable genomes, a basal epithelial gene 

expression signature type and poor prognosis with early relapse. Some TNBC gene 

expression studies have suggested TNBC could be subdivided further into four or more 

distinct subgroups [25–28]

I.B. The Problem of Intra-tumoral Heterogeneity

Pathologists have long appreciated heterogeneity in both histology and biomarker expression 

within a given tumor. For example, in ER+ tumors, not all cells express the receptor. 

Clinically, ER+ breast cancers can be qualified as such even if only 1% of cells express 

detectable levels of ER protein, though some low-expressing tumors may behave as ER-

negative tumors in response to targeted therapies [29,30]. Similarly, HER2+ tumors can 

show regional variation in expression by immunohistochemistry and copy number per cell 

by fluorescence in situ hybridization, with positivity clinically defined as 10% of cells 

positive (CAP Guidelines) [31,32,12].

Although clonal structure has been appreciated as a defining feature of cancers for several 

decades [33], methods for understanding clonal structure in solid epithelial cancers have 

only recently advanced. Until very recently, the existence of genetically distinct 
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subpopulations within tumors, and within metastatic cell populations, was not appreciated 

(see [34–36] and references therein). With the development of computational approaches to 

infer clonal structure from bulk tumor sequence data (eg. [37–40,20,41]), as well as methods 

for single cell DNA and RNA sequencing (eg [42–48]), breast cancers are now known to 

contain multiple genetically distinct subclones [49,50]. Primary TNBC have been shown to 

be clonally diverse among patients with the same stage/grade of tumour. Further work 

suggests that distinct subclones may, in some instances, be capable of interacting with one 

another to maintain homeostatic balance between clonal populations, and promote tumor 

growth [51].

I.C. Patient-derived breast cancer xenografts as potentially powerful tools for pre-clinical 
and translational research

In theory, if PDX models can represent the full spectrum of heterogeneity of breast cancers 

in the population, and can be fully “credentialed” to retain the critical molecular and 

biological properties of their tumor of origin, these models would then represent 

exceptionally powerful tools for translational research. In large part, their potential power 

lies in the fact that they have been demonstrated to be biologically stable (generally) and, as 

such, are renewable indefinitely. Thus, PDX models can be interrogated in greater depth 

both biologically and molecularly than any given patient sample is likely to be (unless very 

large). Further, PDX can be challenged with as many candidate therapeutics, or treatment 

regimens, as desired in a relatively short time frame versus what can be accomplished in the 

clinic. In contrast, the tumor of origin (and patient), can only be challenged sequentially with 

one treatment regimen at a time, and only at significant risk of potentially lethal or 

debilitating side effects.

Herein, we garner the collective experience of a new international consortium of breast 

cancer PDX developers to review the state-of-the-art in the field, to outline open questions 

remaining to be addressed, and to summarize the utility, limitations, and future promise of 

breast cancer PDX models in translational research.

II. The State-Of-The-Art In Breast Cancer PDX Modeling

II.A. Patient-derived xenografts (PDX) models that represent all three clinically-defined 
breast cancer subtypes have been established by various groups

In addition to the need to represent the heterogeneity of breast cancers as completely and 

accurately as possible, breast cancer is heavily influenced by the tumor microenvironment, 

making in vivo models desirable for studying complex processes like tumor metastasis and 

response to therapy. Efforts to establish stably transplantable xenograft lines directly from 

patients into immunocompromised mice have been going on for decades. Unfortunately, 

while initial take rates (i.e. initial outgrowths directly from patients) can be quite high (~40–

90%) [52–54], success rates of generating stably transplantable xenografts (generally, but 

not uniformly, defined as PDX with the ability to be serially transplanted ≥3 passages in 

mice (variously termed “passage 2 (P2)”, with P0 being the initial transplant from mouse to 

human, or “transplant generation 3 (TG3)”) (Tables 1 and 3) from early efforts were 

comparatively low, in the 10% range overall [52,55–64,53]. As a consequence, few stably 
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transplantable models were established for dissemination to the research community from 

this earlier work.

More recently, with newly-developed immunodeficient host mouse models [65], and 

modified transplantation conditions, overall stable take rates have now reached in excess of 

20% on a routine basis (e.g. [66,54,67–73,37,74,75,13]). Further, a concerted effort is being 

made to develop these collections of stable, well-characterized, PDX lines as quality-

controlled, renewable tissue resources for distribution to the research community. A list of 

PDX collections available for dissemination, along with the patient/tumor population 

characteristics from which they were derived, is presented in Table 1; contact information 

for each collection is listed in Table 2. In addition to collections resident in academic 

institutions, several commercial entities retain PDX collections of their own, consisting of 

PDX lines either generated in house, or licensed from academic institutions. These 

commercial collections are not discussed here.

Taken in aggregate, the academic institutions participating in this consortium have developed 

537 individual PDX lines, representing over 500 unique patients. With respect to clinical 

subtypes represented, 56% of patients yielding PDX lines had TNBC, with 36% of patients 

having ER+ cancer. Patients with HER2+ breast cancer are significantly underrepresented in 

these collections, representing only 8% of patients yielding PDX models, due to the 

combined facts that they represent only ~10–15% of all breast cancers, and show a lower 

overall take rate than TNBC (which also accounts for 10–15% of all breast cancers, but 

show a higher take rate) (Table 3).

Given the clinical observation that patients of different ethnic and racial backgrounds can 

have distinct treatment responses and disease outcomes, an important consideration is the 

ethnic and racial distribution of patients yielding PDX lines. In general, the diversity of PDX 

lines in a given collection represents the diversity in the associated patient population from 

which they were derived. While Caucasian women are most heavily represented across these 

collections, there are now a number of PDX lines representing African American and 

Hispanic women (Table 1). However, only a few PDX lines represent patients of Asian or 

African descent, and no PDX lines represent indigenous populations (e.g. Native 

Americans), or male breast cancer patients, among others.

Of note, the PDX lines representing Continental African patients from Ghana (Wicha et al, 

unpublished) were developed using primary tumor samples that had been viably frozen and 

shipped on dry ice prior to transplantation using a recently tested cryopreservation strategy 

(Table 3) (Lewis et al, unpublished), thus demonstrating that it should be possible to develop 

PDX tissue resources representing patients even from remote and underserved areas in the 

world where no active PDX development efforts may exist.

Finally, it is critical to recognize that the collections included in this review are exclusively 

from academic groups in Europe, Australia, and North America. Going forward, it will be 

important to include additional collections from other geographic regions that undoubtedly 

will have better representation of the patient demographics of the regions in which they 

function. Researchers and clinicians interested in participating in this International Breast 
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Cancer Patient-derived Xenograft Consortium should contact the corresponding author 

(M.T. Lewis) to be added to the mailing list.

III. Open Questions Regarding Generation and Use of Breast PDX Models

Detailed protocols currently used for generation of patient-derived xenograft (PDX) models 

breast cancer have been published recently by De Rose et al and Zhang et al. [54,72], and 

will not be discussed in detail here. Similarly, the advantages and limitations of PDX models 

relative to clinical samples and established cell lines have also been discussed in detail 

elsewhere [76–79]. For the purposes of this review, we will briefly restate and highlight 

some of these strengths and limitations, but in the context of particular unresolved questions 

and issues currently being addressed by the breast PDX community.

III.A. Are PDX really any better than xenografts made using long-established cell lines?

A number of immortalized or transformed cell lines have been established and extensively 

characterized over the last several decades, notably the MCF series, the MDA series, and 

more recently the SUM series (see [80–82] and references therein). Extensive efforts have 

been made to correlate gene expression, genomic copy number changes, and mutations with 

growth characteristics and therapeutic responses [83–86]. Unfortunately, while all of these 

cell lines grow in vitro under tissue culture conditions, only a percentage of these will grow 

when transplanted as cell line xenografts, and a fewer will form metastases despite many of 

them being derived from pleural effusions and ascites [87–91]. Thus, a large proportion of 

the studies aimed at translational endpoints using cell lines have been conducted in vitro, 

rather than in vivo as cell line xenografts.

It is now appreciated that gene expression patterns under 2-dimensional in vitro culture 

conditions can be quite different than expression patterns observed under 3-dimensional 

culture conditions, or when cell lines are grown as xenografts in immunocompromised mice 

[92]. Similarly, drug sensitivity under varied conditions can be different for a given cell line 

[93]. Indeed, in transcriptome studies of clinical samples versus established cancer cell lines, 

cell lines clustered together regardless of the tissue of origin, rather than clustering with the 

clinical samples they were intended to model [94]. Given these differences, it is perhaps to 

be expected that cell line based studies have failed to translate clinically with high 

frequency, and thus may not be suitable to address many clinical questions [95,8]. In 

contrast, PDX lines are, by their nature, established and maintained in vivo, and have been 

shown to retain a remarkable degree of biological, histological, genomic, transcriptomic, and 

biomarker fidelity with their tumors of origin (see below).

Most established human breast cancer cell lines have been maintained in vitro over several 

decades, and in many different laboratories. Long-term culture has, in several cases, been 

associated with extensive clonal selection, and loss of heterogeneity [94,96]. Further, 

inconsistent handling, as well as both inadvertent and deliberate selection, are known to have 

led to genetic drift such that a multitude of sub-lines of individual parental lines now exist. 

As such, isolates of a given cell line (e.g. MCF7) can vary considerably from laboratory to 

laboratory with respect to genomics and gene expression [97,98]. Each sub-line can thus 

possess its own unique attributes (invasive vs. not, metastatic vs. not, adherent vs. not, drug 
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resistant vs. sensitive, etc.). Further, since the tumor of origin from which a given cell line 

was derived cannot be studied in most cases, and only limited clinically-relevant data were 

collected, there is typically no way to evaluate what the original mutation spectrum in the 

patient was, or what the clinical behavior of the tumor of origin actually were. Taken 

together, these shortcomings limit the utility of established breast cancer cell lines for 

predictive/correlative studies. However, these shortcomings do not necessarily impinge on 

the use of established cell lines to investigate basic biological mechanisms. In contrast, PDX 

show behavioral, genomic, transcriptomic, and proteomic stability over at least 15 transplant 

generations in mice [54]. These attributes can be quality controlled from inception of the 

model, and in many cases, this can be done with direct comparison with the clinically 

annotated tumor of origin.

Finally, unlike the vast majority of long-established human breast cancer cell lines, a 

majority of PDX lines were established from primary tumors rather than tumor cells derived 

from pleural effusions, ascites, or other metastatic sites. Thus, in perhaps an important way, 

PDX lines may serve to complement existing cell lines rather than supplant them, depending 

on the question(s) being asked.

III.B. To what degree do PDX models truly recapitulate the biology of the tumor of origin in 
the patient, particularly with respect to treatment response?

One of the main open questions relates to whether PDX models retain the intra-tumoral 

heterogeneity of the tumor of origin. While many PDXs appear to retain the heterogeneity of 

the parental tumor of origin, loss of heterogeneity, or a “bottlenecking” clonal selection upon 

transplantation, has been observed in others [44]. An example of such selection came from 

comparative genomic sequence analysis of a primary tumor, a patient matched brain 

metastasis, and a PDX model derived from the primary tumor [37]. As expected, the 

metastatic lesion retained mutations found in the primary tumor, but also possessed de novo 
mutations and deletions not observed in the primary tumor. Also as expected, the PDX 

derived from the primary tumor retained the primary tumor mutations. Unexpectedly, the 

PDX showed the mutation spectrum found in the metastasis indicating that the metastatic 

subclone was present within the primary tumor, and that it was this aggressive subclone that 

grew as a PDX. Thus, it is critical to compare the tumor of origin with its related PDX line 

as carefully as possible, whenever possible, to ensure accurate recapitulation of as much 

patient/tumor biology as possible, including tumor heterogeneity.

As recounted above, the inability to relate a cell line to its patient of origin is one of the 

primary places where long-established cell lines fall short. Thus, cell lines simply cannot be 

used for this purpose. In contrast, PDX models, and the tumors from which they were 

derived, have been compared directly at multiple levels in several studies. At the histological 

level, several studies have demonstrated that PDX are virtually indistinguishable from the 

tumor of origin, including H&E stained sections, as well as by immunostaining for 

biomarkers such as ER, PR, HER2, and Ki67 positivity etc. At the genomic level, PDX show 

similar genomic rearrangements, copy number alterations, mutation profiles, and variant 

allele frequencies [99,71–73,100], observed in the tumor of origin. These results 
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demonstrate not only stability of the PDX when transplanted from one species to another, 

but also transplantability of clonal heterogeneity in many cases.

At the transcriptome level, PDXs generally show remarkable fidelity with respect to mRNA 

expression profiles (RNAseq) [101,73]. While proteomic comparisons between PDXs and 

their respective tumors of origin have not yet been completed, as stated previously, both 

transcriptomic and proteomic (RPPA) expression patterns have been shown to be remarkably 

stable across transplantation generations [54].

With respect to metastatic behavior, this is an open and active area of investigation across 

several groups. In general, PDX have been shown to produce circulating tumor cells, as well 

as disseminated micro and macro metastases to several distant sites ([71,102,54,103] and 

Miragaya et al, unpublished). When evaluated for fidelity with the metastatic behavior of the 

tumor of origin, PDX showed comparable metastatic site specificity ([71] and Miragaya et 

al, unpublished). As expected, PDX models are generally more metastatic in more 

immunocompromised hosts (e.g. larger metastatic nodules in NSG mice versus NOD/SCID; 

ALW unpublished data). This could be due to faster tumor growth and/or more permissive 

colonization of the distant sites. These observations warrant further investigation to test the 

generality of these initial findings, and to test the degree of influence of the immune system 

in the metastatic process.

III.C. What is the status of Patient-PDX “credentialing” for relevance of PDX models in 
therapeutic studies?

Among the most critical issues to be addressed is whether PDX models respond to a given 

treatment in a manner similar to the tumor of origin in the patient. If so, PDX models should 

serve not only as relevant as experimental models, but also as valuable translational research 

tools, especially if ultimately shown to have predictive value clinically. Again, this is a very 

active area of investigation in several groups. However, no “treatment standards” are yet 

available, largely due to the lack of comparative pharmacokinetic and pharmacodynamics 

data that would allow researchers to translate directly between PDX evaluation and clinical 

evaluation.

In preclinical treatment studies conducted to date, PDX showed comparable responses to the 

tumor in the patient of origin when treated with comparable therapeutic agents. An early 

study evaluating 7 xenografts showed an observed concordance of response between patient 

tumor and corresponding PDX of 71% vs. a statistically expected concordance of 47% [68]. 

However, sample size was limited for direct comparison due to the types of treatments used 

clinically (adjuvant or post-radiation chemotherapy) in this patient cohort that could not 

easily be recapitulated in mice, thus statistical significance was not quite reached using this 

sample size (Kappa=0.46, p=0.08). In a later study, a majority of xenograft lines tested also 

showed qualitatively identical treatment responses as the corresponding patient treated with 

a similar or identical agent in the neoadjuvant (before surgery) setting, and statistical 

significance was achieved using this increased sample size [54]. Overall concordance of 

responses was ~92% (Ƙ = 0.75, P = 0.003), and there was a significant association between 

the xenograft and patient-derived results (Fisher exact test, P = 0.04). While both studies 

were relatively small, taken together, PDX do recapitulate tumor responses seen clinically 
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with good efficiency. Importantly, at least with respect to these selected Standard of Care 

agents, and under the specific conditions tested, this recapitulation does not appear to be 

influenced by the immunodeficiency of the host mice used. Thus, PDX models and 

associated data should serve as useful predictors of response in patients with at least some 

agents under some conditions. However, this hypothesis remains to be tested in a rigorous 

manner in both retrospective and prospective (co-)clinical trials.

III.D. Which immunocompromised mouse model should be used for most efficient PDX 
generation while still retaining the highest possible fidelity with the human disease?

A variety of immunocompromised, or immunodeficient, mouse models now exist that can be 

used as transplantation hosts to develop breast cancer PDX models (Table 3). While all 

mouse models listed are capable of generating PDX models under various transplant 

conditions, and using various sample types, a consensus has yet to be reached as to the 

“best” host to use. Thus, choice of immunocompromised host remains largely a question of 

investigator preference until rigorous head-to-head studies are conducted, and a large enough 

body of data is available for multivariate analysis. Such data need to be related not only to 

the various transplantation conditions being employed, but also to the characteristics of the 

underlying patient populations, and tumor types, being evaluated in order for meaningful 

conclusions to be drawn.

III.D.1. Athymic nude mice—Until approximately a decade ago, the most commonly 

used immunocompromised mouse model used for generation of breast cancer xenografts 

was the athymic “nude” mouse [104–106], which is homozygous for loss-of-function 

mutation of the Foxn1 gene (encoding the Forkhead box N1 transcription factor) (a.k.a. nu, 
Hfh11) [107,108]. The Foxn1 gene is essential for the development of the thymus and some 

ectodermal derivatives, including hair follicles (hence the “nude” phenotype), and leads to 

loss of functional T- and B-cells. The mice retain functional natural killer (NK) cells, 

macrophages, and antigen presenting cells (APC).

To support growth of estrogen-dependent breast cancer cell lines, athymic mice require 

supplementation with estradiol due to low endogenous levels of circulating estrogen [109–

112]. The same appears to be true for other immunocompromised mice - even if they may 

have higher estrogen levels, cell lines only grow when the mice are supplemented with 

exogenous estradiol. While historical rates of generating stable PDX lines have been 

relatively low using nude mice, alternative transplantation methods (e.g. subcutaneous 

transplantation of tumor fragments into the intra-scapular fat pad or flank), does appear to 

allow efficient PDX establishment (Table 3) ([68,113,114], Gomez-Miragaya et al, 

unpublished).

III.D.2. Rag1/Rag2 mice—Rag recombinase-deficient (Rag1 and/or Rag2) mice have 

been used sporadically for xenograft studies, mainly for generating cell line xenografts. 

However, these mice have not been used extensively for attempts to generate PDX lines (see 

Table 3). Like athymic nude mice, B- and T-cell function is abrogated [115] due to loss-of-

function of the recombinases required for the somatic recombination of antibody chains and 

mature T-cell receptors. Rag knockout mice may be a useful alternative for some treatment 
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response studies using anthracycline-based or other DNA damaging therapies because the 

consequences of Rag mutations are relatively specific to the hematopoietic system. As such, 

these mice can tolerate higher levels of DNA damage than mice carrying the SCID mutation 

(Prkdc, which encodes a ubiquitious DNA repair enzyme, see below) [116].

III.D.3. SCID mice—Most of the major breakthroughs made in efficient generation of PDX 

lines have been made using newer, more immunocompromised, mouse models. These 

include SCID (severe combined immunodeficiency disorder) mice which carry a mutation of 

the Prkdc gene (protein kinase, DNA activated, catalytic polypeptide) encoding a protein 

kinase required for somatic VDJ (variable, diversity, joining) region recombination of 

antibody chains and T-cell receptors, as well as for DNA repair. Such mice show B- and T-

cell deficiency, but background-dependent leakiness does occur. SCID mice retain cellular 

immunity [117–121]. The SCID mutation is generally used in combination with other 

mutations that further cripple the immune system for xenograft work. However, SCID mice 

remain prone to premature death, due in part to their high prevalence of spontaneous T-cell 

lymphomas [121].

III.D.4. SCID/Beige mice—Combination of the Beige (Bg) mutation with the SCID 

mutation has been shown to enhance the take rate of human leukemias and other cell types, 

including breast cancers [122–125,54]. In addition to B- and T-cell deficiencies, disruption 

of Bg results in a lysosomal trafficking defect and eliminates NK cell function, but leads to a 

~3-fold increase in the number of macrophages relative to the parental wild type Balb/C 

mice [126,127,122,123]. Macrophages are essential for normal mammary gland 

development. As such, this increase in macrophage content may be advantageous [128,129]. 

Further, recent data showing promotion of tumor invasion and metastasis by immature 

myeloid cells of the macrophage lineage may account for some of the advantages of this 

immunocompromised background [130]. Use of this genetic background allows stable take 

rates in excess of 20% under various conditions, but successful transplantation in this 

background is enhanced significantly by estradiol supplementation (Table 3) [54], likely by 

an ER-alpha-mediated stimulation of bone marrow-derived monocytes [54,131].

III.D.5. NOD/SCID mice—A major advance for the generation of PDX models came after 

genetic introgression of the NOD (non-obese diabetic) mutation in to the SCID background, 

which compromises cellular immunity, via impaired function of NK, APC and macrophage 

cells. While impaired, presence of NK and macrophages in athymic and NOD/SCID mice 

can lead to elimination of tumor cells over time [132–134]. Use of this background has 

allowed take rates in excess of 20% on a routine basis (Table 3) (see [71,135,69,136] and 

Gomez-Miragaya et al., unpublished; Piwnica-Worms et al., unpublished).

III.D.6. NOG and NSG Mice—Development of the NOD/SCID background has continued 

with the addition of IL2-receptor gamma truncation/disruption mutations (“NOG” or “NSG” 

mice, respectively) which compromises the mouse immune system further by impairing 

cytokine signaling involved in innate cellular immunity [65,137,138]. Use of this 

background has been extensive across multiple groups, and has allowed take rates in excess 

of 20% overall to be achieved on a routine basis (Table 3) 
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([69,71,54,37,139,74,140,73,141]} and Gonzales-Suarez et al., unpublished; Bult et al. 

unpublished). The primary distinction of the NSG and NOG strains is that the function Il2rg 
in NSG is completely ablated. In NOG, the Il2rg mutation still produces a protein product 

that can bind to cytokines, but there is no signaling activation. NSG mice are less susceptible 

to thymic lymphomas than NOD/SCID mice, and have a longer lifespan, making them well-

suited for engrafting slower growing human tumors.

An interesting modification of the NSG is the NRG strain, which replaces the SCID 

mutation with a Rag1 mutation. These mice were used recently for the intraductal injection 

approach for PDX development [141]. Evaluation of NRG mice in experimental therapeutic 

studies involving DNA-damaging agents would be of considerable interest.

The NSG recipient mouse has been shown to support greater engraftment of human 

hematopoietic stem cells (hu-CD34+ cells) than some other currently available strains 

[137,142]. As a consequence NSG mice can be engrafted with functional human immune 

systems permitting the potential to study primary human tumors in vivo in the presence of a 

human immune system. However, NSG mice are also reported to develop lymphocytic 

neoplasms occasionally from human B- and T-cells co-transplanted with the human tumor 

fragments, which rapidly outgrow human epithelial tumor cells [143,144]. Nonetheless, 

NSG mice are currently the most popular choice for developing breast cancer PDX, with the 

majority of the consortium groups using NSG exclusively or in combination with other 

strains.

III.D.7. Comparisons of immunocompromised hosts with regard to breast 
cancer PDX modeling—With multiple host mouse models capable of generating PDX 

lines under a variety of conditions, using a broad range of tumor types, it is important to note 

that controlled head-to-head comparisons of single tumor fragments transplanted into 

multiple immunocompromised host models under otherwise identical transplant conditions 

have not been conducted extensively. Thus, it is not currently possible to state definitively 

that one immunocompromised mouse model is superior to any other for generating breast 

PDXs. Similarly, comparison of take rates achieved between various groups is difficult due 

to considerable differences in tumor types used for transplantation (e.g. low grade vs high 

grade primary cancers, primary tumors vs. metastatic tumors, before or after treatment) and 

patient cohort characteristics (e.g. ethnically diverse or not).

Limited side-by-side comparisons of engraftment efficiency have been performed suggesting 

the SCID/Bg or NOG/NSG backgrounds may provide superior engraftment of various types 

of human cells [122–125]. Indeed, when comparing two similar cohorts of breast cancer 

patients, primary tumors showed equivalent take rates in either the SCID/Bg or NSG 

backgrounds [54]. However, this study was not a head-to-head comparison using exactly the 

same patient sample into both backgrounds simultaneously. While the range of PDX models 

produced in these two backgrounds was similar, it remains possible that each genetic 

background might favor the establishment of different types.

Some studies have now shown that positive engraftment of breast tumors into certain mouse 

strains correlates with high tumor grade or poor patient outcome [145,71,66,99] Whether the 
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prognostic value of engraftment would extend to more immunocompromised hosts, or 

whether retention of some cellular immunity in the host provides more information 

regarding tumor aggressiveness in the patient is still unknown.

III.E. What is the best transplantation site?

A variety of transplantation sites are available in the mouse, and several have been used in 

attempts to generate breast cancer PDX models. Tissue can be transplanted into the anterior 

compartment of the eye [146,147], under the renal capsule [148–151], within the 

intrascapular fat pad [68], subcutaneously (ear, flank, etc.), orthotopically within the 

mammary fat pad (either the intact (IFP), or epithelium—free “cleared” (CFP) fat pad) [152] 

or injected into the mammary ducts themselves [153,154,141].

In addition to these approaches for modeling primary tumors"experimental metastasis” 

methods have been developed in which tumor cells are injected through the tail vein, the 

iliac artery, or by intracardiac injection, allowing establishment of tumors at other organ sites 

including bone, brain, lung, and liver (e.g. [155–160] and references therein). A bone-to-

bone xenograft experimental metastasis model has also been developed [161].

With respect to PDX model development, subcutaneous and orthotopic transplantation sites 

are generally used (Table 3), with orthotopic transplantation into the mammary fat pad 

considered preferable by some as it should more closely represent the human breast with 

respect to the microenvironment. However, the intraductal approach is also attractive with 

respect to the range of orthotopic options available. For example, in one study, cells from 16 

tumours that successfully formed primary grafts after intraductal injection failed to engraft 

at 26 subcutaneous injection sites [141], but direct comparison of intraductal with 

sophisticated extraductal grafting techniques has not been performed.

III.F. Is it necessary to eliminate endogenous mouse epithelium from the mammary fat pad 
(i.e. “clear” the fat pad) for efficient orthotopic transplantation?

Elegant transplantation studies conducted nearly six decades ago [162,152,163] 

demonstrated that the adult mammary gland contains growth-quiescent epithelial 

regenerative stem cells that are distributed throughout the entire gland. These stem cells 

could be activated to self-renew upon transplantation of small duct fragments (~1000–2000 

cells) into the epithelium-free mammary fat pad of recipient mice, and were capable of 

regenerating a morphologically normal and functional, ductal tree. However, these same 

fragments would not regenerate a ductal tree in the presence of pre-existing ducts in the 

recipient animal. Thus, the presence of endogenous normal epithelium is inhibitory to 

transplanted epithelium, thereby necessitating removal of the endogenous epithelium 

(“clearing”) for the transplant to grow.

In contrast, neoplastic tissue transplanted into an intact fat pad will grow in the presence of 

endogenous normal epithelium. However, this ability does not necessarily mean that 

inhibitory signals do not exist, only that neoplastic tissue is capable of overcoming them, or 

is unresponsive to them, should they exist. Thus, while neoplastic tissue may be able to 

overgrow normal epithelium, removal of whatever inhibitory influences may exist might 

allow neoplastic tissue to grow even better. Conversely, it is formally possible that normal 
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epithelium could promote growth of neoplastic tissue. These alternative hypotheses have not 

been tested in a controlled manner.

From inspection of Table 3, use of the intact mammary fat pad (IFP) does not appear to 

interfere with effective transplantation of primary tumor tissue. In fact, there are preliminary 

indications that the IFP may be superior to the CFP for transplantation of both fresh, and 

previously cryopreserved, tumor tissue (Table 3). That said, the continued presence of 

endogenous mouse epithelium may complicate some downstream molecular analyses (e.g. 

transcriptome arrays, Reverse Phase Protein Arrays (RPPA) etc.), and so use of the IFP may 

not be desirable in all instances.

III.G. Is estradiol supplementation necessary? If so, what is the most effective way to 
deliver it?

With the possible exception of metastatic ER+ breast cancer, it has proven difficult to 

establish PDX models of primary, particularly lower grade, ER+ luminal A tumors. Further, 

once established ER expression can be lost over the course of passaging from mouse to 

mouse (e.g. [68,57,164], Miragaya et al. unpublished), though many current studies have not 

shown this behavior. These difficulties are offset, in part, by the fact that ER+ cancers 

account for approximately 75% of all breast cancers, thus offering more opportunities to 

make successful PDX models.

In attempts to increase the take rate of ER+ tumors, various forms of estradiol 

supplementation have been used, ranging from commercially prepared slow-release plastic 

pellets (e.g. Innovative Research), to hormone-loaded silastic tubes, or bee’s wax pellets. To 

date, progesterone supplementation, either alone or in combination with estradiol, has not 

been evaluated. Unfortunately, in addition to significant urinary tract complications 

associated with the use of estradiol-containing implants of all sorts, the major issue with this 

approach is that the implant becomes depleted of hormone over time, requiring periodic 

replacement if hormone levels are to be maintained long-term. To address these issues, 

several groups have revisited use of an old method by testing the ability of estradiol-

supplemented drinking water for its ability to support PDX growth with promising results 

(Table 3) (see [68,165–168,136] Lewis et al., unpublished). Given the significant limitations 

of delivery using implants, estradiol-supplemented drinking water may be a superior method 

of delivery. However, it remains unclear whether rates of PDX establishment will be 

comparable to those using other delivery methods.

While most groups engaged in PDX generation use some form of estradiol supplementation 

for ER+ tumors, use of supplementation is not always used when transplanting ER- tumors 

(Table 3) [71,114,113] - the reasoning for not using supplementation being that ER- tumors 

should not require estradiol supplementation for their growth. However, comparison of 

stable take rates of primary cancers from statistically similar cohorts in the SCID/Bg host 

strain, with and without supplementation with slow-release estradiol pellets, demonstrated 

that supplementation increased the stable take rate almost 10-fold, from 2.6% without 

supplementation (only a single TNBC PDX generated from 38 patients attempted) to 21% 

with supplementation (15 PDX representing multiple IHC subtypes from 70 patients 

attempted) in this host background [54]. These data indicating a requirement for estradiol 
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supplementation were consistent with previous studies showing that estradiol 

supplementation stimulates growth of breast cancer xenografts, including ER-negative 

xenografts [71,169,170,69]. Subsequently, the stimulatory effect of estradiol 

supplementation on ER-negative tumor was investigated specifically and shown to be due, in 

part, to an effect on bone marrow-derived myeloid cells that promote angiogenesis and 

tumor growth that was dependent on ERα [131,171].

Of potential significance, several groups have successfully used NSG mice without estradiol 

supplementation (Table 3), suggesting that unlike SCID/Bg, successful transplantation in 

NSG animals may not require supplementation. However, there may be significant 

differences in the patient cohorts and tumor characteristics from one group to another that 

may contribute to this apparent difference. That said, the intraductal approach appears to 

also one to grow ER+ cell lines and PDX in the absence of endogenous hormones [154,141].

It will be critical to address these potential host background differences going forward.

III.H. How can lower grade tumors, ductal carcinoma in situ (DCIS), and normal tissue be 
grown with higher efficiency?

While it has been comparatively easy to establish PDX models from metastatic sources such 

as ascites and pleural fluid, as well as from high grade, more aggressive primary tumors 

from the breast itself (Table 3), it has proven relatively difficult to establish PDX from grade 

I/II tumors, DCIS, and normal breast epithelium [153,75,54,66,70,114,113].

One possible explanation for elevated take rates in high grade primary tumors could be a 

higher frequency of tumor-initiating cells (TIC) (a.k.a. cancer stem cells) relative to lower 

grade tumors [172,173]. In one study, the frequency of cells expressing ALDH1 (aldehyde 

dehydrogenase 1), a marker associated with TIC properties in some, but not all, breast 

cancers, predicted the rate of engraftment as a PDX. The general hypothesis is that the 

higher the proportion of TIC, the higher the likelihood of successful transplant. This 

hypothesis makes intuitive sense from a statistical standpoint. However if this were the 

entire explanation for differential take rates, transplantation of larger fragments of lower 

grade tumors should address the problem of low take rates because more TIC would be 

present in the transplant. Given the widespread failure of several investigators to establish 

lower grade tumors under a variety of conditions, this explanation, while plausible, is not 

likely to account entirely for the elevated take rate in high grade cancers.

One other plausible explanation for differential take rates of low grade (including DCIS) 

versus high grade cancers is that immunocompromised mouse hosts do not express one or 

more factors that low grade tumors require for growth in mice - factors that at least some 

higher grade tumors do not require (analogous to a shift from hormone-dependent to 

hormone-independent tumor growth in some ER+ breast cancers).

In addition to this potential contribution of tumor evolution/progression, there are several 

known incompatibilities between human and mouse ligand/receptor pairs that may interfere 

with the ability to transplant human tumors into mice efficiently. For example, several mouse 

ligands (e.g. prolactin, hepatocyte growth factor (HGF), interleukin-6 (IL-6)) do not activate 
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their human receptor counterparts [174–176]. Thus, tissue-appropriate expression of one or 

more of these human ligands either as transgenes, or as knock-in constructs, in an 

immunocompromised mouse background may be necessary to stimulate growth of lower 

grade tumors.

One technical modification that may help with growth of lower grade tumors is the use of 

Matrigel or similar basement membrane extract preparation in the transplantation process. 

Head-to-head comparisons of take rates with and without Matrigel using otherwise identical 

host mice and tissue sources have not been conducted. That said, a comparatively high take 

rate of 37% (10 of 27 patients) was achieved [69] using primary tumor fragments or 

metastatic cells (pleural fluid/ascites) coated in Matrigel and implanted into the intact fat pad 

of either estradiol supplemented NOD/SCID or NSG mice. However, this reported take rate 

appears to have been attenuated with additional patient samples attempted (Table 3). There 

also may be some indication that the use of Matrigel in the context of the IFP may help 

somewhat (Table 3). However, using previously cryopreserved tissue, the addition of 

Matrigel under otherwise identical transplant conditions does not appear to enhance the take 

rate (Table 3).

Another promising approach is the use of intraductal injection of cells. This method has 

been used to grow DCIS [153], ER+ and HER2+ breast cancer [154] and molecular apocrine 

cancers [141], with excellent recapitulation of the biology of the source tissue. The 

intraductal approach may allow human epithelium to interact with normal epithelium in 

much the same way that it would in a patient, thereby perhaps allowing growth whereas 

isolated fragments of human tissue may not grow in the absence of such interactions.

III.H.1. Progress toward development of mouse models of human breast 
premalignant lesions—For a comprehensive review of human DCIS models including in 
vitro models, please refer to Kaur, H et al. [177].

Efforts toward developing models of premalignant breast lesions go back to 1975 when 

Outzen and Custer reported transplantation of small fragments of human “cystic 

hyperplasias” into cleared mammary fat pads of nude mice and the lesions were maintained 

for 2–3 months [178]. The hyperplastic lesions proliferated in mice and recapitulated the 

histologic patterns of the original patient biopsy specimens [60]. Other investigators also 

reported that fragments from human breast atypical hyperplasias could be maintained for up 

to ~ 6 months in nude mice and sometimes, the lesions would dedifferentiate meaning that 

they potentially progressed by forming disorganized epithelial hyerplasias. Three 

transplantation sites were used, cleared mammary fat pad, subcutaneous and intraperitoneal. 

The cleared mammary fat pad site was reported to result in the highest take rate (reviewed in 

[178]). Later a study in 1997 reported transplantation of fragments from 25 cases of human 

ductal carcinoma in situ (DCIS) in the back of athymic nude mice [179]. Fragments were 

recovered 2–8 weeks after transplantation and maintained their DCIS components in 93% of 

transplants [179]. The purpose of this study was to analyze ER expression in the 

transplanted DCIS and to assess their response to estrogen supplementation. However, the 

authors reported no expansion in response to hormonal supplementation during the 8 week 

follow up. In a more recent study, human DCIS tissue fragments were implanted 

Dobrolecki et al. Page 18

Cancer Metastasis Rev. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subcutaneously in athymic nude mice in order to study the therapeutic efficacy of a farnesyl 

transferase inhibitor. The DCIS xenografts were maintained for up to 21 days and showed a 

take rate of about 66% [180]. Recently, Espina V, et al., demonstrated successful 

xenotransplantation of freshly procured DCIS organoids and in vitro propagated spheroids 

derived from patient DCIS biopsy or surgical specimens. This group reported that tumors 

formed in mice at a rate of ~80% (21/27 cases transplanted) from both freshly procured 

organoids from DCIS of any grade or propagated DCIS organoids passaged in vitro for 2–12 

months.

Towards the development of cell lines that would mimic the histologic and molecular 

features of premalignant breast lesions in xenografts, Miller, FR and colleagues developed 

MCF10AT cell line models. Xenografted lesions derived from MCF10AT cells generated the 

full spectrum of human breast lesions including normal ducts, hyperplasia, atypical 

hyperplasia, carcinoma in situ and invasive cancers [181,182]. A clonal derivative of a 

tumorigenic variant of MCF10AT xenografts, MCF10DCIS.com, produced comedo DCIS 

when transplanted at early passages into cleared fat pads of immunodeficient mice. 

Subcutaneous injection of MCF10DCIS.com into nude mice resulted in rapidly growing 

lesions that were predominantly comedo (a more-aggressive type of DCIS with central 

necrosis) [178]. When transplanted subcutaneously, the MCF10DCIS.com lesions appeared 

in about 3 weeks and were composed of luminal epithelial cells surrounded by both a 

myoepithelial cell layer and a basement membrane. Some areas of early lesions progressed 

to invasive cancers in about 5 to 6 weeks [183]. Another premalignant cell line model 

SUM225CWN was derived from a chest wall recurrence of a ductal carcinoma lesion [184]. 

Similar to those of MCF10DCIS.com, xenografts of the SUM225CWN cell line form DCIS-

like lesions in NOD-SCID mice in as early as 2 weeks [185].

With the idea that human DCIS initiates inside the ducts, Behbod, F et al., utilized the 

intraductal transplantation technique [153]. This approach, referred to as mouse-intraductal 

(MIND) involves injection of epithelial cells derived from DCIS patient samples or cell lines 

directly into the immunocompromised mouse mammary ducts. This is the first model to 

capture the natural evolution of human DCIS in mice since, similar to humans, the cancer 

cells initially form in situ lesions inside the mammary ducts followed by invasion as they 

bypass the natural barriers of ductal myoepithelial cell layer and basement membrane. 

Initially, MCF10DCIS.com and SUM225CWN cells as well as one case of primary human 

DCIS were utilized. The DCIS-like lesions generated from the MCF10DCIS.com 

(DCIS.com) and SUM225CWN cell lines formed DCIS-like lesions as early as two weeks 

and slowly progressed to invasive lesions in 10–14 weeks [153]. Later, in 2011, this group 

reported reproducible growth and expansion of epithelial cells derived from patient DCIS 

biopsy and/or surgical samples as well as hyperplasias in NOD-SCID IL2rg mice by the 

MIND method. The xenografted DCIS like lesions and hyperplasias expressed similar 

biomarkers (ER, PR and Her-2) as the original patient samples. The DCIS like lesions 

generated by the primary DCIS cells in MIND models formed in situ lesions as early as 8 

weeks and a fraction of those slowly progressed to invasive lesions in 6–12 months 

following transplantation (Behbod, F unpublished results). The take rate for primary DCIS 

MIND models is ~50%. A key difference of the MIND method is that pure epithelial cells 

Dobrolecki et al. Page 19

Cancer Metastasis Rev. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are injected intraductally as opposed to previous methods that transplanted organoids or 

pieces of tissues in the cleared mammary fat pads of immunocompromised mice.

III.I. Can “Humanization” of Immunocompromised Mice Enhance Take Rate and Improve 
Translational Relevance?

There are currently two different classes of “humanization” methods that are being explored 

for their ability to enhance PDX growth, and perhaps provide a more biologically similar 

environment as in the tumor of origin.

III.I.1 “Humanization” of the mammary fat pad—A few groups have attempted to 

increase the efficiency of primary tissue transplantation by “humanizing” the mammary fat 

pad of mice with the introduction of an immortalized human fibroblast cell line into the 

mammary fat pad prior to xenograft transplantation [75,87,186]. Use of this methodology 

allowed organotypic growth of normal human mammary epithelium, and appears to allow 

PDX establishment under some circumstances (Table 3). However, Zhang et al [54] showed 

that provision of immortalized fibroblasts attenuated take rates considerably using 

statistically comparable cohorts in the SCID/Bg background reducing the rate from 21.4% to 

3.4% under otherwise identical transplantation conditions. Thus, it remains unclear whether 

immortalized fibroblasts enhance PDX take rates.

Aside from immortalized fibroblasts, it is also possible that co-transplantation of 

mesenchymal stem cells may enhance PDX take rates. These cells were shown to enhance 

mammosphere formation in vitro [187,188], and to stimulate growth and metastasis of 

established xenografts in vivo [71,189,190,175]. However, this approach has not yet been 

tested extensively.

III.I.2. “Humanization” by reconstitution of the human immune system in 
immunocompromised mice—A disadvantage of any xenograft as a model for human 

cancer is growth of the tumors in immunocompromised mice, which is required in order to 

avoid rejection of the tumor by the host mouse immune system. Lack of normal immunity in 

tumor xenografts is an important caveat, given the well-established, multiple roles of the 

immune system in tumor initiation and growth, metastasis, and response to therapy. In most 

patients, tumors arise in the presence of a functional immune system, and the tumor evolves 

to evade immune rejection under selective pressure [191]. Once a tumor is detectable it has 

already avoided immune-mediated rejection, and thereafter, the immune system actually 

plays a paradoxical role in promoting tumor progression and metastasis [192–194]. For 

example, macrophages can assist with tumor cell intravasation to facilitate tumor 

dissemination [195]. Myeloid-derived suppressor cells can promote angiogenesis and 

suppress adaptive immune responses [196], and regulatory T cells reinforce the 

immunosuppressive tumor microenvironment [197].

On the other hand, it has been clear for a number of years that the immune system can, in 

some cases, be successfully stimulated to eradicate tumors. Indeed, recent advances in 

immunotherapy using immune checkpoint inhibitors have led to exciting therapeutic results 

in certain cancers [198,199]. The immune system is also instrumental in sustaining tumor 

regression upon oncogene inactivation [200], which is highly relevant when considering 
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therapeutic effects. Therefore, incorporation of a functional or partially functional human 

immune system into xenograft models might more accurately model human breast cancer 

growth, metastasis, and response to therapy, particularly those known to involve an immune 

system function in their mechanism of action.

Generation of mice with reconstituted human immune systems was first accomplished in 

1988 [201], and is now commonly used to study human blood cell development and diseases 

of the hematopoietic system [65]. The idea of using mice with ‘humanized’ immune systems 

to study human cancer is not new, but until recently has been mostly focused on tumors of 

the hematopoietic lineage. Immune humanization in mice carrying human breast cancers is 

now feasible [202], with two key stipulations: (1) the mouse host has to be appropriate for 

growth and development of human tumor cells and human immune cells; and (2) the 

immune system must not recognize the tumor as foreign and reject it (graft vs. tumor 

reaction). State-of-the-art strategies, as well as caveats, have been recently reviewed 

elsewhere [203–206].

In summary, it has become clear that the “tumor cell-centric” approach to breast cancer 

therapy may not be sufficient to eradicate the disease, and a dual approach targeting both the 

tumor and its specialized microenvironment might be more effective [207]. Many promising 

therapies for breast cancer rely on an effective anti-tumor immune response, and they need 

to be tested pre-clinically in animal models before entering trials. Examples include vaccines 

for breast cancer prevention or inhibiting outgrowth of occult metastasis [208]; drugs to 

prevent macrophage recruitment into tumors where they promote metastasis [209]; or new 

immune checkpoint inhibitor combinations [210]. In all cases, a better understanding of 

human tumor-immune interactions is needed. Future development of PDX models in mice 

with matched, functioning human immune systems may hold potential to advance breast 

cancer research and lead to new treatments.

III.J. What do we need to do to make PDX repositories truly clinically relevant? Toward 
development of data standards for “clinical” annotation of patient breast cancer samples 
and their associated PDX models

As a newly formed international consortium, we herein report details of a large collection of 

breast cancer PDX models that recapitulate patient biology to a high degree. However, the 

patient-related clinical data, and PDX-related data collected by each individual group varies 

significantly, both in terms of content and terminology used. This review therefore provides 

an opportunity to begin a discussion about development of an international data standard that 

can be adopted by all PDX generating groups to allow direct comparison of collections 

worldwide, and provide the foundation for larger-scale international, multi-institutional 

collaborations. Ideally, data elements used should integrate well with existing data 

repositories and portals such as GEO, Oncomine, and cBioPortal etc. by having a shared 

conceptual understanding and similar terminology that allows direct mapping of data 

elements between PDX resources and data portals. Significant progress has been made in 

this area, including community discussions about standards for data format and content that 

will enhance data sharing and integration, which will be discussed in detail at a later date.
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There are two broad classes of data that can be collected: clinical data about the patient and 

tumor of origin, and PDX-centric data about the characteristics of the xenografts themselves. 

Within these two broad classes, the amount of data that can potentially be collected is 

relatively large, while the ability to collect detailed data may be limited by personnel 

availability and financial support. In particular, with patient privacy laws in effect in various 

countries, care must be taken to firewall personally identifiable health information from 

other data that can be shared publicly without concern that privacy will be compromised. To 

accomplish this division requires dedicated “clinical” personnel with clearance to access and 

abstract clinical data, and an independent group of dedicated “PDX” personnel with access 

to the abstracted clinical data, as well as PDX-based data elements and datasets. Finally, 

both of these efforts require significant involvement of bioinformatics and software 

development expertise for proper integration.

Clinical data can be collected with varying degrees of ease, and can be divided into what 

might be considered a “minimal”, or “essential” data set, and a more expanded “ideal” data 

set at both the patient level and the sample level. At the patient level, it is essential that one 

knows the gender of the donor, the clinical event point that defines the sample type(s) that 

have been collected from the patient for use in PDX generation (e.g. Benign/Normal, 

Primary tumor, Second Primary Tumor, Local Regional Recurrence, Distant Metastasis, 

Unknown) and pathological stage (including nodal status etc).

In addition to these minimal data, there are several other data elements that greatly increase 

the utility of a renewable tissue resource for use in translational studies and drug evaluation. 

These include, patient age at each clinical event point (e.g. biopsy, surgery at which time the 

sample used for generating a PDX was taken), parity history, race, ethnicity, family history 

of cancers, vital status and date of recording, and any sites of distant metastasis. These data 

would ideally also include treatments received by the patient, the timing of treatment relative 

to the time of tissue collection for the production of PDX models, and the treatment 

response of the tumor of origin (most easily evaluated in the neoadjuvant setting).

At the sample level, minimal data include pathological diagnosis of the sample taken, 

hormone receptor status (ER/PR) and percentage of positivity, HER2 status, and germline 

BRCA1/2 mutation status of the tumor of origin for the resulting PDX lines to be maximally 

useful. Additional data of interest related to the sample used for PDX generation include 

Ki67 labeling index, status of commonly mutated genes like TP53 and PIK3CA, pathologic 

stage and grade, molecular subtype (by multiple means), and treatment status at the time of 

collection. Short tandem repeat (STR) analysis is also essential, whenever possible, to 

ensure accurate patient/PDX relationships. Given the recent reports of selective outgrowth of 

Epstein-Barr virus-positive human lymphomas in attempts to generate solid tumor PDX 

models [143,144], it is imperative that each PDX model be validated appropriately with 

cytokeratin and CD45 immunohistochemical staining.

Because the PDX itself is a renewable sample type, tissue is not limiting. Thus, the PDX can 

be characterized to a high degree without concern of exhausting the tissue, although 

maintaining low passage lines is a clear priority. Key PDX-based data types are essentially 

identical with sample-level data types collected clinically. Namely, it is critical to confirm 
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ER/PR/HER2 status in the PDX at different passages, and to conduct STR analysis to 

establish the unique identity of the PDX line and to establish the direct patient/PDX 

relationship whenever possible, and for downstream quality control measures to ensure PDX 

identity and integrity over what are likely to be decades of passage in the future.

In addition to these minimal data, other data that are useful are PDX growth rates (doubling 

time), metastatic frequency (CTC, lung, liver, bone, lymph node, brain etc.), and any number 

of “-omics” characterizations. The “-omics” characterizations possible to generate include, 

but are not limited to, genomic copy number alterations, mutation status in various genes 

(whole genome sequencing, exome sequencing, Sequenom, SNP analysis etc.), methylome, 

gene expression at both the RNA level (RNAseq, Array-based, QPCR etc.) and protein 

levels (Reverse phase protein array, mass spectrometry, Western blot, CyTOF), metabolome 

(mass spectrometry-based), among other possibilities. All data can then be correlated to any 

subsequent behavior or response that a given PDX, or set of PDX models, may have to 

experimental manipulation. Such correlations should be particularly important for evaluation 

of drug treatment responses (any number of agents, but specifically standard of care agents). 

To be particularly powerful, PDX-based –omics characterizations should be matched to the 

corresponding data derived from the tumor of origin whenever possible. However, given that 

patient samples are typically limited by size, this is not always possible.

IV. Summary of Strengths and Limitations of PDX Models For Translational 

Research and Drug Development

PDX models are potentially important tools for identifying mechanisms of de novo and 

acquired drug resistance, for identifying new biomarkers of breast cancer biology, for 

driving drug discovery, and for evaluation of new experimental therapeutics. Although 

superior to cell lines in recapitulating tumor heterogeneity, PDX models are also biased 

towards more aggressive tumors and the rate of engraftment can be an independent predictor 

of patient outcome. While the majority of PDX models represent TNBC, there has been 

substantial improvement in establishing HER2+ and ER+ luminal B tumors. As predicted, 

more differentiated ER+ tumors with a low Ki67 staining index are very difficult to engraft, 

and in cases where they do engraft, it is likely that selection for the most undifferentiated 

components of the tumor has occurred, resulting in a tumor quite different from that in the 

original patient. Thus, rates of engraftment are skewed towards the most undifferentiated 

subtypes of breast cancer and do not fully encompass inter-tumor heterogeneity.

The recent findings that the clonal dynamics of tumors are highly variable, ranging from 

minor changes on engraftment to extensive changes that accompany selection for a minor 

clone of originating cells, adds a further degree of complexity [44]. Nevertheless, 

polyclonality is generally well-represented by breast xenografts, and they continue to serve 

as useful models provided their clonal repertoire is taken into consideration. Although 

metastatic lesions demonstrate improved take rates and growth, they cannot be used to study 

the process of metastasis from naïve tumors.

One of the major limitations of the PDX model is the deficiency of the mouse host immune 

system and selectively inappropriate microenvironmental influences. Severely 
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immunodeficient hosts must necessarily be utilized but these inevitably alter the growth 

kinetics of many PDX tumors and preclude evaluation of immune-modulatory therapies. The 

NSG mice is currently the most widely used strain, but these lack natural killer cells, B and 

T lymphoid cells. Humanization of the immune system could in theory be achieved by 

mobilizing peripheral blood stem cells from the same patient, although this remains 

challenging on more than one front. Other options include humanization of the mouse 

immune system by co-engraftment of human bone marrow cells [211].

In addition to immune system deficiency, PDX models lack human stromal components 

such as the different fibroblast populations, endothelial cells and adipocytes, being replaced 

by their mouse counterparts which do not function identically. The growth factors and 

stromal requirements necessary for effective engraftment are poorly understood and human 

fibroblasts are rapidly out-competed by mouse stromal cells following transplantation [71]. 

Genetic targeting of multiple human cytokine genes into their respective loci within mice 

[212] might improve tumor engraftment through the provision of crucial stroma-derived 

species-specific cytokines. In addition, one might expect that co-engraftment of 

mesenchymal stem cells or cancer-associated fibroblasts could enhance tumor growth and 

stabilize tumor heterogeniety. Despite these ideas, the key to fully efficient tumor 

engraftment is not still known.

PDX models have been shown to recapitulate the drug sensitivity responses observed in the 

tumors of patients, from which they were derived. However, the implementation of PDX 

mice as ‘Avatar models’ to guide clinical decisions will require significant advances in this 

area, including rigorous comparison of pharmacokinetic and pharmacodynamics for various 

agents that will allow “preclinical trials” in PDX-bearing mice to be as comparable as 

possible to clinical trials as conducted with patients. Aside from the limitations owing to 

lack of a human immune or stromal system, one of the limiting issues is the time-scale 

required to establish PDX models for drug testing. We also need to collect data about 

adverse drug reactions in different mouse strains. Furthermore, not all patient tumors 

engraft, adding a level of unpredictability. In order for PDXs to be relevant to the individual 

patient, the engraftment rate and time required for engraftment need to be dramatically 

optimized and standardized, without compromising the biological properties of the original 

patient tumor.

At this stage in their credentialing, PDX models best serve as basic and translational 

research tools, where they can have considerable impact. One of the best examples has been 

seen in the case of colorectal cancer, where PDX studies showed that tumors with a mutated 

KRAS gene were not responsive to cetuximab [213], closely mimicking that seen in large 

clinical trials. These results provide compelling support for PDX models as predictors of 

clinical response and their further implementation could circumvent long-term, costly 

clinical trials in the future [214].

V. Focus for the future

At some point, perhaps even very soon, the more aggressive forms of breast cancer will be 

represented well enough in the PDX community that it is no longer necessary to expend 
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additional resources and effort to develop new PDX lines to represent them. Rather, it may 

be more fruitful to redirect resources to generate PDX lines for underrepresented tumor 

types or patient populations. These underrepresented tumor types and populations may offer 

insights into breast disease that would not be found otherwise, and would likely facilitate 

development of personalized medicine strategies.

It has already been mentioned that ER+ Luminal A and HER2+ tumors, grade I/II tumors, 

DCIS, and hyperplasias are significantly underrepresented in the PDX collections reported 

herein, but the increased use of the intraductal approach may remedy this situation. 

Similarly, there are very few claudin-low or metaplastic tumors present in the current 

collection; these are tumors with very poor prognosis and limited treatment options. As 

such, focused effort to establish PDX models representing these underrepresented tumor 

types may be preferable to the broader efforts currently underway.

In addition to these more familiar tumor types, there are other classes of tumors that are also 

underrepresented, on which focused attention might be warranted. For example, while some 

models do exist, tumors from Hispanic, African American, Asian, and Native American, and 

other indigenous peoples, are still underrepresented. Similarly, while males do develop 

breast cancers, there are presently no male breast cancers represented in the PDX collections 

presented herein. Finally, if the proper infrastructure were developed, we have the 

opportunity to try to generate PDX models from areas of the world in which health care is 

limited, and PDX generation efforts are entirely lacking. Together, these rare and 

underrepresented PDX models may provide unexpected insights that cannot be foreseen.

Conclusions

1. PDX models representing clinically-relevant subtypes of breast cancer are 

available as phenotypically stable, renewable tissue lines.

2. Breast cancer PDX recapitulate many key aspects of the biology of the tumor of 

origin and therefore may serve as excellent models for translational research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Unanswered Questions

1. To what extent can PDX models be used as patient “avatars” in preclinical 

evaluation of experimental therapeutics?

2. Can PDX-based “-omics” studies be used to develop predictive signatures and 

to identify key resistance mechanisms?

3. Under what circumstances does the lack of an intact immune system 

influence the usefulness of PDX models, and can this be overcome?
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Table 2

Contact Information for PDX Collections

Academic Institution Contact Name and E-mail

Baylor College of Medicine (USA) Michael Lewis (mtlewis@bcm.edu)
Lacey Dobrolecki (dobrolec@bcm.edu)

Bellvitge Institute for Biomedical Research (SPAIN) Eva Gonzalez-Suarez (egsuarez@idibell.cat)

British Columbia Cancer Agency (CANADA) Samuel Aparicio (saparicio@bccrc.ca)

Ecole Polytechnique Federale De Lausanne (CH) Cathrin Brisken (cathrin.brisken@epfl.ch)

Institut Bergonié (FR) Richard Iggo (r.iggo@bordeaux.unicancer.fr)

Institut Curie (FR) Elisabetta Marangoni (elisabetta.marangoni@curie.fr)

The Jackson Laboratory (JAX) (USA) Carol Bult (Carol.Bult@jax.org)
Susie Airhart (Susie.Airhart@jax.org)

MD Anderson Cancer Center (USA) -Meric-Bernstam Funda Meric-Bernstam (fmeric@mdanderson.org)

MD Anderson Cancer Center (USA) -Piwnica-Worms Helen Piwnica-Worms (hpiwnica-worms@mdanderson.org)

University of Colorado Anschutz Medical Campus (USA) Carol Sartorius (Carol.Sartorius@ucdenver.edu)
Peter Kabos (Peter.Kabos@ucdenver.edu)

University of Manchester Institute of Cancer Sciences (UK) Robert Clarke (Robert.Clarke@manchester.ac.uk)
Denes Alferez (denis.alferez@manchester.ac.uk)

University of Michigan (USA) Max Wicha (mwicha@med.umich.edu)

University of Utah -Huntsman Cancer Institute (USA) Alana Welm (Alana.Welm@hci.utah.edu)

Walter and Eliza Hall Institute of Medical Research (WEHI) (AU) Geoffrey Lindeman (lindeman@wehi.edu.au)
Jane Visvader (visvader@wehi.edu.au)

Washington University (USA) Shunqiang Li (shunqiangli@wustl.edu)
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Table 4

Host Mouse Strains Used By Insititution

Institution

Host Mouse
Strain

Abbreviation Full Strain Designation Vendor
Stock

Number

Baylor College of Medicine NSG
SCID/Bg

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ
CB17.Cg-PrkdcscidLystbg-J/Crl

JAX
CR

005557
250

Bellvitge Institute for Biomedical
Research IDIBELL (SPAIN)

NSG
NOD/SCID

Nude

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ
NOD.CB17-Prkdcscid/J
Athymic Nude - Foxn1nu

JAX via CR
JAX via CR

Harlan/Envigo

005557
001303

British Columbia Cancer Agency
(CANADA)

NSG
NRG

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ
NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ

JAX
JAX

005557
007799

Ecole Polytechnique Federale De
Lausanne (SW)

NSG NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ JAX 005557

Institut Bergonié (FR) NSG NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ JAX; bred in house 005557

Institut Curie (FR) Swiss Nude Crl:NU(Ico)-Foxn1nu CR

The Jackson Laboratory (JAX) (USA) NSG NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ JAX 005557

MD Anderson Cancer Center (USA)
- Meric Bernstam

Nude Athymic Nude - Foxn1nu MDACC Colony NA

MD Anderson Cancer Center (USA)
- Piwnica-Worms

NOD/SCID NOD.CB17-Prkdcscid/NcrCrl CR 394

University of Colorado Anschutz
Medical Campus (USA)

NOD/SCID
NSG

NOD.CB17-Prkdcscid/J
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ

JAX
JAX; bred in house

001303
005557

University of Manchester Institute
of Cancer Sciences (UK) NSG NOD.Cg-Prkdcscid Il2rgtm1WjI/SzJ JAX via CR 005557

University of Michigan (USA) NSG
NOD/SCID

NOD.CB17-Prkdcscid/J
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ

JAX; bred in house 005557;
001303

University of Utah Huntsman -
Cancer Institute (USA)

NOD/SCID NOD.CB17-Prkdcscid/J JAX 001303

Walter and Eliza Hall Institute of
Medical Research (WEHI) (AU)

NSG NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ JAX; bred in house 005557

Washington University (USA) NSG NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ JAX 005557
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