
RESEARCH ARTICLE Open Access

Patient-derived xenografts of triple-negative breast
cancer reproduce molecular features of patient
tumors and respond to mTOR inhibition
Haiyu Zhang1†, Adam L Cohen2†, Sujatha Krishnakumar3, Irene L Wapnir1, Selvaraju Veeriah4, Glenn Deng1,5,

Marc A Coram6, Caroline M Piskun1,7, Teri A Longacre8, Michael Herrler9, Daniel O Frimannsson1,10,

Melinda L Telli11, Frederick M Dirbas1, AC Matin10, Shanaz H Dairkee1,12, Banafshe Larijani4, Gennadi V Glinsky1,13,

Andrea H Bild14* and Stefanie S Jeffrey1*

Abstract

Introduction: Triple-negative breast cancer (TNBC) is aggressive and lacks targeted therapies. Phosphatidylinositide

3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are frequently activated in TNBC patient tumors

at the genome, gene expression and protein levels, and mTOR inhibitors have been shown to inhibit growth in

TNBC cell lines. We describe a panel of patient-derived xenografts representing multiple TNBC subtypes and use

them to test preclinical drug efficacy of two mTOR inhibitors, sirolimus (rapamycin) and temsirolimus (CCI-779).

Methods: We generated a panel of seven patient-derived orthotopic xenografts from six primary TNBC tumors and

one metastasis. Patient tumors and corresponding xenografts were compared by histology, immunohistochemistry,

array comparative genomic hybridization (aCGH) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit

alpha (PIK3CA) sequencing; TNBC subtypes were determined. Using a previously published logistic regression approach,

we generated a rapamycin response signature from Connectivity Map gene expression data and used it to predict

rapamycin sensitivity in 1,401 human breast cancers of different intrinsic subtypes, prompting in vivo testing of mTOR

inhibitors and doxorubicin in our TNBC xenografts.

Results: Patient-derived xenografts recapitulated histology, biomarker expression and global genomic features of

patient tumors. Two primary tumors had PIK3CA coding mutations, and five of six primary tumors showed flanking

intron single nucleotide polymorphisms (SNPs) with conservation of sequence variations between primary tumors and

xenografts, even on subsequent xenograft passages. Gene expression profiling showed that our models represent at

least four of six TNBC subtypes. The rapamycin response signature predicted sensitivity for 94% of basal-like breast

cancers in a large dataset. Drug testing of mTOR inhibitors in our xenografts showed 77 to 99% growth inhibition,

significantly more than doxorubicin; protein phosphorylation studies indicated constitutive activation of the mTOR

pathway that decreased with treatment. However, no tumor was completely eradicated.

Conclusions: A panel of patient-derived xenograft models covering a spectrum of TNBC subtypes was generated that

histologically and genomically matched original patient tumors. Consistent with in silico predictions, mTOR inhibitor

testing in our TNBC xenografts showed significant tumor growth inhibition in all, suggesting that mTOR inhibitors can

be effective in TNBC, but will require use with additional therapies, warranting investigation of optimal drug

combinations.
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Introduction
Triple-negative breast cancers (TNBCs), which lack expres-

sion of estrogen receptor (ER), progesterone receptor (PR)

and human epidermal growth factor receptor 2 (HER2), ac-

count for approximately 10 to 17% of all breast cancers

[1-3] and are associated with relatively poor clinical out-

comes. About 70 to 80% of TNBCs comprise the basal-like

breast cancer (BLBC) intrinsic subtype as defined by gene

expression profiling [4-6], although more recently, TNBCs

have been further subclassified into six subtypes distin-

guished by gene ontologies and gene expression patterns

[7,8]. The lack of targeted therapies for this aggressive

breast cancer subtype is a key treatment issue and testing

new therapeutic regimens is clinically important.

The mammalian target of rapamycin (mTOR) is a

key downstream regulator of the phosphatidylinositide

3-kinase (PI3K) pathway, one of the most commonly

activated signaling pathways in cancer [9,10]. mTOR

exists in two complexes, mTORC1 and mTORC2.

mTORC2 is less well understood but has been shown to

regulate cell proliferation and cytoskeletal organization

[11,12]. PI3K/mTORC1 is frequently activated in human

cancers by gain-of-function mutations and amplifications

of its upstream activators - such as epidermal growth fac-

tor receptor (EGFR), HER2 [13], PI3K or protein kinase B

(AKT) - and by the loss of its suppressors, such as phos-

phatase and tensin homologue (PTEN) [14], inositol

polyphosphate-4-phosphatase, type II (INPP4B) [15], or

the tuberous sclerosis complex (TSC), mediated by the

tumor suppressor genes, TSC1 and TSC2 [16,17]. Acti-

vated mTORC1, an evolutionarily conserved serine/threo-

nine kinase, will phosphorylate downstream proteins, such

as p70 ribosomal S6 kinase 1 (S6K1) [18] and eukaryotic

translation initiation factor 4E binding protein 1 (4EBP1)

[19], to regulate protein synthesis, ribosome biogenesis

and autophagy that contribute to cell proliferation, differ-

entiation and survival [17,20-22]. Activation of the AKT/

mTOR pathway is a poor prognostic factor for many types

of cancers, including breast cancer [23-27].

Rapamycin (sirolimus) is a specific allosteric inhibitor

of mTOR and is the active form of rapamycin analogs.

The rapamycin analogs CCI-779 (temsirolimus) and

RAD001 (everolimus) are approved for the clinical

treatment of advanced renal cell carcinoma [28], pro-

gressive neuroendocrine tumors of pancreatic origin

[29], subependymal giant cell astrocytoma associated

with tuberous sclerosis [30], and more recently for

postmenopausal women with advanced hormone receptor-

positive, HER2-negative breast cancer in combination with

the aromatase inhibitor exemestane [31]. Pertinent for other

types of breast cancer, increasing lines of evidence indicate

that the PI3K/mTOR pathway is activated in TNBCs and/or

BLBCs at the genetic, gene expression and protein levels

[14,32-37]. mTOR inhibitors show growth inhibition of

TNBC cell lines in both in vitro and in vivo preclinical stud-

ies [14,26,33,38]. PIK3CA mutations have been shown to be

associated with mTOR inhibitor sensitivity in both cell lines

and clinical studies [39-41]. mTOR inhibitors are among the

therapeutic agents being actively investigated in clinical trials

in patients with TNBC [42-44], and recently, a phase II trial

evaluating a combination of everolimus and carboplatin

showed a clinical benefit rate of 36% in metastatic

TNBC patients [42].

In contrast to previous in vivo preclinical drug testing

studies using xenografts derived from established breast

cancer cell lines, we were interested in determining pre-

clinical drug efficacy in patient-derived TNBC orthoto-

pic xenograft models generated from human tumors

obtained fresh from the operating room. Personalized

tumorgraft models, also called “avatars”, propagated

using patient-derived tumors have shown some success

when used to guide clinical treatment in patients with

advanced cancer [45,46].

We generated a panel of seven patient-derived ortho-

topic xenograft models of primary and metastatic TNBC

and showed that these models recapitulated histologic

and molecular features of the patients’ tumors from

which they were derived. We used the Connectivity

Map, a compendium of genome-wide transcriptional

data from cultured human cells treated with bioactive

small molecules, to determine a rapamycin response sig-

nature. Applying this signature to large breast cancer

datasets stratified into intrinsic breast cancer subtypes,

we predicted that most BLBCs would show some sensi-

tivity to rapamycin. We then proceeded with in vivo

drug testing of two mTOR inhibitors, sirolimus and

temsirolimus, in our patient-derived TNBC models,

which demonstrated significant growth inhibition by

both drugs. However, while growth inhibition was very

impressive for all TNBC xenografts, none had complete

tumor ablation. Our results strongly support the use of

mTOR inhibitors as part of combined therapy for TNBC

in preclinical and clinical trials and suggest the need for

further investigations into appropriate drug combinations.

Materials and methods
Establishment of patient-derived orthotopic xenografts

Both the Stanford University Research Compliance Office’s

Human Subjects Research and IRB Panel and Stanford’s

Administrative Panel on Laboratory Animal Care (APLAC)

approved this study. After obtaining informed written

patient consent, breast cancer tissues were obtained

fresh from operating rooms at Stanford Hospital and

Clinics. In six cases of TNBC (SUTI097, SUTI103,

SUTI110, SUTI151, SUTI319, SUTI368), fresh tumor

tissue was sterilely obtained from primary breast cancer

tissue that was undergoing surgical excision, and in one

case (SUTI151M), the tumor tissue was taken fresh
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from a soft tissue TNBC metastasis to the quadriceps

muscle in the thigh that was undergoing biopsy

(SUTI151M is from the same patient who had months

earlier donated a piece of her primary breast tumor

SUTI151). Portions were frozen or placed in formalin

and embedded in paraffin for later analyses. Fresh

tumor tissue was kept on ice in RPMI 1640 medium

supplemented with penicillin/streptomycin and 10%

heat inactivated FBS (Invitrogen-Life Technologies,

Carlsbad, CA, USA) for transport, minced into one to

two millimeter fragments, then sterilely and orthotopi-

cally transplanted into the number two mammary fat

pads of 5 to 10 female NOD SCID mice (NOD.CB17-

Prkdc
scid/J, Jackson Laboratory West, Sacramento, CA,

USA). Briefly, the mice were anesthetized by inhalation of

1 to 3% isoflurane, their hair was clipped, and their skin

sterilized with povidone-iodine and alcohol. A small skin

incision was made in the lateral flank and minced tumor

chunks were mixed with LDEV-free Matrigel (BD Biosci-

ences, San Jose, CA, USA) and implanted into the mam-

mary fat pad by trochar insertion. The incision site was

closed with Vetbond tissue adhesive (3 M, St. Paul, MN,

USA). Mice were maintained in pathogen-free animal

housing. The established xenografts were subsequently

passaged from mouse to mouse to expand xenograft num-

bers; xenograft tumors were also stored frozen in FBS

containing 10% dimethyl sulfoxide (DMSO, EMD Chemi-

cals Inc., Billerica, MA, USA) solution for future engraft-

ment. Xenograft tumor tissue was frozen on dry ice for

RNA isolation and microarray analysis and for subsequent

protein analyses. Tumor fragments were also fixed in

phosphate buffered saline with 10% formalin (Sigma-Al-

drich, St. Louis, MO, USA) for histological studies. All

animal care was performed in accordance with Stanford

University and IACUC guidelines.

Immunohistochemistry

Formalin-fixed, paraffin-embedded tissue sections of pa-

tient or xenograft tumors were cut into 4 μm sections,

deparaffinized in xylene, rinsed in ethanol and rehydrated.

Staining was performed using the Ventana XT platform

and internal antigen retrieval CC1 standard. The antibodies

used were rabbit monoclonal antibodies for ERα (clone

SP1, 1:25 dilution, Thermo Scientific, Fremont, CA, USA)

and PR (clone 1E2, ready to use, Roche-Ventana Medical

Systems, Inc., Tucson, AZ, USA). The universal secondary

protocol and the DAB MAP kit (Ventana Medical Systems,

Inc., Tucson, AZ, USA) were used to detect and amplify

the signal. Both biomarkers were scored using a three-tier

system: 0 = negative, 1 = weak, and 2 = strong, respectively

defined as <1%, 1% to 50%, and ≥50% of tumor cell nuclei

staining positively. HER2 protein expression was per-

formed and interpreted using the Ventana PATHWAY

HER2 antibody (rabbit monoclonal, clone 4B5; Ventana,

Tucson, AZ, USA). The Food and Drug Administration-

approved Ventana PATHWAY is scored from 0 to 3+.

Staining in <10% of tumor cells is scored as showing no

overexpression (0 or 1+). Strong, complete, circumferential

membrane staining in >30% of tumor cells is considered

overexpression and is designated as strong positive (3+).

Strong circumferential membrane staining in <30% of

tumor cells, or circumferential but less than strong staining

in any proportion of tumor cells, is designated as equivocal

(2+). All immunohistochemical assays were conducted in

parallel with known positive and negative controls. The

slides were observed using a Nikon Eclipse 80i microscope

(Nikon Instruments Inc., Melville, NY, USA). Pictures were

taken using a Nikon Digital Camera DXM1200F and

images were obtained using Nikon ACT-1 software.

Array CGH and PIK3CA mutation analysis

Genomic DNA was extracted from patient or xenograft

tumor samples using DNeasy Blood & Tissue Kit (Qiagen,

Valencia, CA, USA). Array CGH analyses were performed

at SciGene (Sunnyvale, CA, USA) using Human Genome

CGH Microarray 4x44K (Agilent Technologies, Santa

Clara, CA, USA), and processed on SciGene's robotic

aCGH workstations (ArrayPrep® Target Preparation System,

Mai Tai® Hybridization System, and Little Dipper® Proces-

sor, SciGene, Sunnyvale, CA, USA).

Mutations were detected by sequencing PCR products

derived from amplification primers in the introns flanking

PIK3CA exons 1, 2, 3, 5, 6, 7, 9, 18 and 20 using Ampli Taq

Gold DNA polymerase (Applied Biosystems-Life Technolo-

gies, Carlsbad, CA, USA). The primer sets used in these re-

actions are listed in Table S1 in Additional file 1. Exons

that had sequence homology with a known PIK3CA

pseudogene were not sequenced; however, the sequenced

exons included all common mutation hotspots. The reac-

tion was run using a touchdown PCR protocol where the

annealing temperature was started at 63°C and decreased

for 0.5°C per cycle for 12 cycles. Then the reaction was

continued for another 25 cycles at 94°C, 30 sec; 58°C,

30 sec; and 72°C, 30 sec per cycle. PCR products were

checked by 2% agarose gel against a GeneRuler 50 bp

DNA Ladder (Frementas, Glen Burnie, MD, USA) and se-

quenced by BigDye Terminator v3.0 Cycle Sequencing Kits

(Applied Biosystems-Life Technologies, Carlsbad, CA, USA).

The sequencing results were analyzed with Sequencher 4.8

software (Gene Codes Corporation, Ann Arbor, MI, USA).

Microarray and TNBC subtype analysis

Frozen tumor tissues from xenografts were cut into

small pieces on dry ice. RNA was extracted using

RNeasy Plus Mini Kit (Qiagen) following the manufac-

turer’s instructions. The quantity and purity of the RNA

sample was measured using the Agilent 2100 bioanalyzer

(Agilent Technologies). RNA samples were submitted to
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Stanford Protein and Nucleic Acid core facility for

microarray analysis using Affymetrix GeneChip Human

Genome U133 Plus 2.0 arrays. All xenograft microarray

datasets are posted on GEO under accession number

GSE47079 [47].

TNBC subtyping was done following the Pietenpol

group’s methods [7,8]. The microarray data of the pa-

tient derived xenograft tumors were robust multi-array

average (RMA) normalized and log transformed. For

genes containing multiple probes, the probe with the lar-

gest interquartile range across the samples was chosen

to represent the gene. The processed samples were

uploaded to the website [48], where the samples were

subjected to an ER-filter scrutiny and then assigned

TNBC subtypes.

Generation of an in silico rapamycin response signature

A rapamycin response signature was generated as de-

scribed previously [49] using Connectivity Map Build 02

gene expression data of 5 rapamycin treated and 18 con-

trol MCF7 cell samples [50]. The Connectivity Map stud-

ies highlight the ability to use drug treatment on cell lines

to identify a set of genes that reflect response to a drug;

therefore, independent of the cell type profiled, a “sig-

nature” of drug response can be identified from the

data that reflects the response to drug treatment [50].

Multiple studies by other groups and our own have

shown that such drug response signatures do also

function as drug sensitivity/resistance signatures, with

sensitive samples having gene expression patterns

more like untreated cells and resistant samples having

gene expression patterns more like treated cells [49-52].

Specifically, tumors with dysregulation of genes that are

modulated by treatment of rapamycin will be predicted as

“sensitive” or “resistant” based on their correlation to gene

dysregulation from rapamycin treatment in the Connect-

ivity Map data. This approach, which uses expression data

from cell lines before and after treatment with a drug, has

the advantage over using expression data from cell lines

classified as ‘resistant’ or ‘sensitive’ because cell line data

have confounding factors, such as subtype that can affect

prediction models. By using prediction models that in-

clude genes specific to a particular drug’s response, we are

not limited by these confounding factors. Thus, treated

cell lines of one subtype (for example, luminal MCF7

cells) may be used to predict drug response in samples of

different subtypes (for example, basal-like or HER2-

overexpressing cancer cells).

To generate the signature, Mas5 normalized gene ex-

pression data were quantile-normalized and log2 trans-

formed and used as the training set. A Bayesian binary

regression algorithm was then used on the training set to

generate the signature. It was further optimized and intern-

ally validated in leave-one-out cross-validation (LOOCV)

analysis, which tests each individual sample’s classification

by leaving it out of the model and predicting if it is treated

or untreated [49,51].

Validation and application of the rapamycin response

signature

For signature external validation, CEL files were down-

loaded from GEO GSE18571, which contains gene ex-

pression data for both in vitro and in vivo rapamycin

treatment samples on TNBC cell line MDA-MB-468

[26], and from Connectivity Map batches 2, 35, 44, 56,

63, 70, 626, 757 and 767, and analyzed as described by

Cohen et al. [49]. We then confirmed the ability of the

rapamycin response signature to predict sensitivity to

rapamycin in vitro by comparing the EC50 (see below)

for a diverse panel of cell lines to the predicted sensitiv-

ity, that is, similarity to untreated cells, based on gene

expression.

As previously described [49], 18 breast cancer cell lines

were obtained from ATCC (HCC38, HCC1806, HCC1428,

HCC1143, BT483, BT549, BT474, MDA-MB-361, MDA-

MB-157, MDA-MB-435S (now considered to be of melan-

oma origin), MDA-MB-231, MDA-MB-453, SKBR3, ZR75,

CAMA I, MCF7, Hs578t, T47D) and used for dose-

response assays. Cells were seeded in 384-well plates

(Nunc, Rochester, NY, USA) in MEBM media (Lonza,

Walkersville, MD, USA) containing 5% fetal bovine serum

(Gibco, Grand Island, NY, USA), at a density to yield 80%

confluency in control-treated wells at 96 h post-treatment

(as determined by growth curves). After 24 h, rapamycin

was added at 10 doses of 0, 0.1 pM, 0.3 pM, 1 pM, 3

pM, 10 pM, 30 pM, 100 pM, 300 pM and 1 nM. A

BIOMEK 3000 (Beckman Coulter, Indianapolis, IN,

USA) robot was used to seed the cells and dispense the

drug. After 96 h, CellTiter-Blue Reagent (Promega,

Madison, WI, USA) was added to test cell viability.

After 2 h of incubation at 37°C, the fluorescence was

recorded (560(20)Ex/590(10)Em) using a Victor3V 1420

Multilabel Counter (Perkin-Elmer, Waltham, MA, USA)

plate reader. After subtracting background fluorescence,

EC50 was calculated using GraphPad Prism v5 (GraphPad

Software, La Jolla, CA, USA) to fit a constrained sigmoidal

dose-response curve. Predicted sensitivity for these cell

lines was computed using gene expression data from Co-

hen et al. [49] and applying the Bayesian binary regression

model. Detailed methods for running the regression

model are given in [53]. Predicted sensitivity was com-

pared to actual EC50 using linear regression.

To examine the relationship between intrinsic subtype

and rapamycin sensitivity, 1,401 breast cancer samples

from eight microarray studies were then analyzed (Table

S2 in Additional file 2, duplicate samples were removed

from GEO datasets GSE6532, GSE7390 and GSE3494). In-

trinsic breast cancer subtypes were assigned as previously
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described [49,54,55]. Rapamycin sensitivity of the patient

breast cancer sample was calculated as described by

Cohen et al. [49]. A detailed method, the input files, out-

put files and the logistic regression program used in this

study are available in [53].

In vivo TNBC xenograft drug treatment experiments

Rapamycin and CCI-779 (LC Laboratories, Woburn,

MA, USA) were stored as 50 mg/ml solutions in 100%

ethanol at -80°C. The stored solutions were diluted in

PBS containing 4% ethanol, 5% polyethylene glycol 400

and 5% Tween 80 for treatment. When tumor xenografts

grew to an average between 50 to 100 mm3 in tumor

volume, mice were stratified and randomized by tumor

volume into treatment groups of 5 to 10 mice each. The

treatment groups included: 1) rapamycin (sirolimus)

group, receiving intraperitoneal (IP) administration of

7.5 mg/kg rapamycin every other day for up to six

weeks; 2) CCI-779 (temsirolimus) group, receiving IP

administration of 7.5 mg/kg of CCI-779 every other day

for up to four weeks; 3) control group, receiving IP ad-

ministration of control vehicle for up to four weeks; and,

in some sets of experiments, 4) a doxorubicin group,

receiving IP administration of 2 mg/kg doxorubicin

(Sigma-Aldrich, St. Louis, MO, USA) diluted in PBS

once every week for three weeks. Tumors were mea-

sured twice a week with a caliper in two dimensions.

Tumor volume was calculated by the following for-

mula: tumor volume = (l x w
2)/2, where l is the longest

diameter of the tumor, w is the shortest diameter of

the tumor. Mean tumor volumes were calculated, and

growth curves were established as a function of time.

The error bars indicated the value of the standard

error of the mean. The Student’s t-test was used for

statistical analysis. We considered P <0.05 as statisti-

cally significant.

Protein extraction and Western blot analysis

For protein extraction, frozen xenograft tumors were gen-

tly thawed and washed in ice-cold PBS. They were then

homogenized using a glass homogenizer and lysed in

radio-immunoprecipitation assay buffer containing prote-

ase and complete phosphatase inhibitors (Roche, West

Sussex, UK). After quantification using Pierce’s BCA pro-

tein assay (Thermo Scientific Pierce, Leicestershire, UK), 5

to 10 μg total proteins were run on 4 to 12% SDS-PAGE

gels (NuPAGE Bis-Tris Gels, Invitrogen-Life Technolo-

gies, Paisley, UK), then immunoblotted with the anti-

bodies for PTEN, mTOR, p-mTOR (Ser 2448), 4EBP1,

p-4EBP1 (Ser 65), S6K1, p-S6K1 (Thr 389), eIF4E and

p-eIF4E (Ser 209) at 1:1,000 dilutions. Secondary

horseradish peroxidase (HRP)-labeled antibodies were

used at 1:5,000 dilutions. Tubulin was used as a load-

ing control. All antibodies were obtained from Cell

Signaling Technology (Hitchin, Hertfordshire, UK). Mem-

branes were visualized by the ECL developer system (GE

Healthcare Life Sciences, Piscataway, NJ, USA). Protein

expression was quantified by analyzing a representative

autoradiograph with Image Image J software (public

domain software developed at the Research Services

Branch, National Institute of Mental Health, Bethesda, MD,

USA) [56].

Results
Patient-derived orthotopic xenograft models of TNBC

We developed a panel of seven TNBC xenograft tumors

from six patients, generated from six primary tumors

(SUTI097, SUTI103, SUTI110, SUTI151, SUTI319,

SUTI368) and one soft tissue metastasis in the quadri-

ceps muscle of the leg (SUTI151M). In general, these

xenografts represented aggressive TNBC. Most pa-

tients from whom the xenografts were derived had

poor disease-free survival despite treatment with mul-

tiple standard therapies, with four of five patients who

had follow-up greater than one year showing meta-

static recurrence or death from disease (Table S3 in

Additional file 3).

We compared the xenograft tumors to the corre-

sponding patient tumors by histology, clinical bio-

marker expression, genome-wide array CGH, and

PIK3CA sequencing. Based on hematoxylin and eosin

(H&E) staining (Figure 1A, B), the original TNBC tu-

mors exhibited a variety of histologies that were con-

served in the corresponding xenografts. Specifically,

there were similarities in cancer cell morphology, mi-

totic index, stromal abundance and percent necrosis.

As expected, all xenografts were confirmed to be

triple-negative by ER, PR and HER2 staining using the

same clinical laboratory protocols as were performed on

the patient samples (Figure 1C-E).

To compare global genomic profiles between patient

tumors and their corresponding xenografts, we per-

formed array comparative genomic hybridization (aCGH)

on two tumors, SUTI110 and SUTI151. The xenograft tu-

mors faithfully maintained the genomic DNA alterations

observed in the corresponding patient tumors (Figure 2

and Figure S1 in Additional file 4). Interestingly, a previ-

ously unreported 5q11-12 deletion was observed in both

patient tumor SUTI151 and its corresponding xenograft

(Figure 2), and was also maintained in the xenograft of the

soft tissue metastasis, SUTI151M, that developed months

later (data not shown).

PIK3CA sequencing showed that two of the seven

(29%) patient primary and metastatic tumors and xe-

nografts contained missense mutations (Figure 3A,

B). SUTI097 patient and xenograft samples contained

an exon 6 mutation (1173 A > G, I391M); SUTI110

patient and xenograft samples contained an exon 20
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mutation (3302 G > C, G1049R). We did not observe

any exon 9 mutations, which are common mutation

sites in ER positive tumors.

We also detected multiple SNPs in introns flanking

the sequenced PIK3CA exons, and these sequence varia-

tions were also maintained between all primary tumors

and their corresponding xenografts (SUTI097, SUTI103,

SUTI319, SUTI368, Figure 3C). In the one soft tissue me-

tastasis, however, the metastatic tumor showed an add-

itional SNP not present in the primary tumor or in the

xenografts generated from the patient’s primary or

metastatic tumors (SUTI151 and SUTI151M). When se-

quence variations were analyzed between multiple xeno-

graft tumor passages for primary tumor SUTI319, passage

3 of its xenograft tumor and passage 5 of its xenograft

tumor, both before and after rapamycin treatment, there

was conservation of three SNPs identified in introns

between exons 5 and 6, and between exons 6 and 7

(Figure 3C). In summary, our xenografts recapitulated the

histology, biomarker status, genomic profile and

PIK3CA sequence of corresponding primary patient

tumors.

Figure 1 Histology of patient TNBC samples and corresponding patient-derived orthotopic xenografts. A. H&E staining of patient tumors;

B. H&E staining of the corresponding xenograft tumors; C. ER staining of xenograft tumors; D. PR staining of xenograft tumors; and E. HER2

staining of xenograft tumors. Pictures were taken with 200× magnification. The scale bar is 100 μm in length. ER, estrogen receptor; HER2, human

epidermal growth factor receptor 2; PR, progesterone receptor.
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The xenograft models represent multiple TNBC subtypes

Human TNBCs have been shown to be heterogeneous,

comprised of at least six stable subtypes and a possible

seventh unstable subtype [7]. To determine the subtypes

of our panel of TNBC xenografts, we performed microarray

analyses on the xenograft tumors and classified them ac-

cording to the method developed by Pietenpol’s group

[7,8]. As shown in Table 1, of our panel of seven TNBC

xenograft tumors, five xenografts subclassified into four of

the six stable subtypes; two were classified with Pietenpol’s

“unstable” group. In particular, SUTI097 belonged to the

immunomodulatory (IM) subtype; SUTI103 and SUTI110

were classified as basal-like 1 (BL1); SUTI151 was classified

as basal-like 2 (BL2); SUTI151M, the soft tissue metastasis

of SUTI151, was identified as mesenchymal (M) subtype;

and SUTI319 and SUTI368 clustered with the “unstable”

group of TNBCs. We find it anecdotally fitting that the me-

tastasis of a BL2 subtype subclassified as M subtype, which

is associated with increased expression of genes involved in

cell motility, cellular differentiation, growth pathways and

TGF-β signaling [7]. Our xenograft panel thus represents a

majority of TNBC subtypes, making it suitable for pre-

clinical drug testing.

Rapamycin response signature and its validation

To explore how commonly rapamycin sensitivity is ex-

pected to occur among diverse breast cancers, including

TNBC, we developed a rapamycin response signature

that would predict sensitivity or resistance based on a

cancer’s gene expression. This builds on our previous

work with gene expression-based signatures, which were

derived using the same approach, and which showed

Figure 2 Array CGH profiling. Data for SUTI110 and SUTI151 show matching variations on chromosomes 5 and 14 for patient tumors and

corresponding xenografts. Green represents loss and red represents gain for each probe aligned along the chromosome. Other chromosome

profiles are provided in Figure S1 in Additional file 4. CGH, comparative genomic hybridization.
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that drug response signatures predict whether a tumor

or cell line will be sensitive or resistant to a drug

[49,51,52]. The rapamycin response signature contained

200 probe sets and represented 175 unique genes (See

Table S4 in Additional file 5). Figure 4A shows the

heatmap view of the expression pattern of the probe sets

from the signature in the training set samples from the

Connectivity Map database [50] displaying expression

changes in response to rapamycin treatment. When ana-

lyzed by leave-one-out cross validation, a method that

leaves a single sample out to predict whether it will be

classified as treated (probability >0.5 on the y-axis) or

untreated (probability <0.5 on the y-axis), 22 of 23 train-

ing set samples showed the expected prediction, includ-

ing all five treated cell line samples (Figure 4B), indicating

high consistency and robustness of our signature.

To validate our rapamycin response signature in TNBC,

we next tested its accuracy on an independent external

dataset containing both in vitro and in vivo rapamycin

treatment samples that were generated from the TNBC

cell line MDA-MB-468 [26]. For both the in vitro MDA-

MB-468 cells and the 22-day xenografts, the treated sam-

ples were all correctly predicted to be more like the

A C

B

Figure 3 PIK3CA sequence variations. A. This is a table of PIK3CA exon mutations in patient and corresponding xenograft samples. The exon

number, mRNA position and allele change, and protein position and residue change for each mutation are indicated. B. A sequencing image of

patient and corresponding xenograft tumors of the SUTI097 and SUTI110 at the mutated sites. MDA-MB-231 cell line is shown as a normal control.

C. Table of PIK3CA intron SNPs that flank sequenced exons in patient and corresponding xenograft samples. Note the conservation of sequence

variations between primary tumors and their xenografts, and also between different xenograft passages, before and after rapamycin treatment.

SNPs, single nucleotide polymorphisms.

Table 1 Classification of xenograft tumors based on TNBC

subtypes

Xenograft ID TNBC subtype

SUTI097 immunomodulatory (IM)

SUTI103 basal-like 1 (BL1)

SUTI110 basal-like 1 (BL1)

SUTI151 basal-like 2 (BL2)

SUTI151M mesenchymal (M)

SUTI319 unstable (UNS)

SUTI368 unstable (UNS)

TNBC, Triple-negative breast cancer.
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treated samples in the signature training set, and hence

more resistant to further rapamycin treatment, than the

untreated MDA-MB-468 cells (P = 0.0017) and xenografts

(P = 0.06) (Figure S2A in Additional file 6). These data

confirm that the rapamycin response signature can distin-

guish TNBC cells that have been treated with rapamycin

from untreated TNBC cells.

We also tested the rapamycin response signature on

other samples in the Connectivity Map that had avail-

able treatment data on rapamycin as well as other drugs.

As shown in Figure S2B in Additional file 6, only sam-

ples treated with rapamycin or PI3K inhibitors showed

the expected rapamycin response signature post-

treatment pattern whereas the samples treated with ran-

dom drugs did not (P <0.0001).

Finally, to show that the response signature does predict

sensitivity and resistance to rapamycin, we compared pre-

dictions of the rapamycin response signature in a panel of

18 breast cancer cell lines to the actual EC50 obtained

when these cells were treated with rapamycin. As shown

in Figure S3 in Additional file 6, we found a significant

correlation between signature prediction and in vitro drug

sensitivity as measured by EC50 (r = -0.3; P = 0.02). There-

fore, the response signature was confirmed to also be a

predictor of sensitivity to rapamycin.

Rapamycin sensitivity in intrinsic breast cancer subtypes

We then used the rapamycin response signature to per-

form a supervised analysis of eight published gene ex-

pression datasets including 1,401 breast cancer samples

from patients that were classified into the five intrinsic

molecular subtypes [54]. As shown in Figure 4C, D, 94%

of BLBCs, 68% of HER2-overexpressing tumors, 18% of

luminal A tumors, 58% of luminal B tumors and 37% of

normal-like tumors were predicted to be sensitive to

rapamycin. The predicted rapamycin sensitivity differed

Figure 4 Rapamycin response signature. A. Heatmap of rapamycin response signature gene expression of training set samples with 18 control

samples on the left and 5 rapamycin treated samples on the right. Each row is a probe set in the signature. Red indicates up-regulation and blue

indicates down-regulation of the gene. B. LOOCV from the Connectivity Map training set samples. On the y-axis, 0 = predicted as untreated; 1 = predicted

as treated. Control samples are in blue, and rapamycin treated samples in red. Note that only one control sample was misclassified. C. Heatmap of predicted

rapamycin response of 1,401 human breast tumors with a color scaled from red to blue indicating a high to low predicted sensitivity. Each column represents

an individual tumor sample, grouped by intrinsic subtypes. D. The percent of samples with predicted rapamycin sensitivity of >0.5 for each intrinsic subtype.

The background color represents the overall sensitivity of each subtype at the same scale used in 1C. LOOCV, leave-one-out cross-validation.
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between subtypes, with the more aggressive subtypes - such

as basal-like, HER2-overexpressing and luminal B - having

much more frequently predicted sensitivities. Among them,

BLBC had the highest frequency of rapamycin-sensitive tu-

mors. Signatures for other PI3K pathway inhibitors showed

similar patterns of predicted drug response among the dif-

ferent subtypes (data not shown).

Rapamycin and CCI-779 significantly inhibit tumor growth

in our TNBC xenograft models

We next used our panel of seven TNBC xenografts to

evaluate rapamycin sensitivity in vivo, measuring growth

inhibition of two mTOR inhibitors, rapamycin (siroli-

mus) and/or its analog, CCI-779 (temsirolimus) and

doxorubicin, a drug widely used to treat TNBC. Com-

pared to untreated tumors, growth rates of doxorubicin-

treated tumors in all seven orthotopic xenograft models

showed only a minimum to partial response, with

growth inhibition ranging from 2 to 52% (Figure 5 and

Table S3 in Additional file 3). In sharp contrast, the

overall efficacy of rapamycin and CCI-779 was signifi-

cantly higher than doxorubicin for the treatment of these

TNBC xenografts (P = 0.0003, Figure 5). On average, rapa-

mycin inhibited tumor growth by 94% (range 77 to 99%),

whereas the average inhibition by doxorubicin was only

36% (Figure 5, and Table S3 in Additional file 3). This sup-

ports the hypothesis that TNBCs are highly sensitive to

rapamycin. For the four xenografts treated with both

mTOR inhibitors, drug efficacy was similar. However,

none of the tumors disappeared completely, with most

maintaining a small volume of residual tumor, suggesting

that additional drugs may be necessary in combination

with mTOR inhibitors to totally ablate residual disease.

mTOR pathway activation in patient-derived TNBC

xenografts

To identify pathway activation, we performed Western

blot analyses on PTEN and other mTOR pathway pro-

teins. As shown in Figure 6, the protein levels of PTEN

vary among the xenografts. SUTI097, SUTI110, SUTI319

and SUTI368 have relatively higher PTEN protein levels

than xenografts SUTI103, SUTI151, SUTI151M, although

all samples exhibited in vivo sensitivity to mTOR inhibi-

tors (Figure 5). The PTEN levels generally remained

consistent pre- and post-treatment and its expression

did not appear to be associated with any particular

TNBC subtype.

Phosphorylated mTOR and its downstream proteins -

4EBP1, S6K1 and eIF4E - were detected in all xenograft

samples (Figure 6), demonstrating baseline mTOR path-

way activation. Treatment with one or both mTOR in-

hibitors decreased phosphorylation of mTOR and, to

varying extents, its downstream proteins. The exception

was metastatic tumor xenograft SUTI151M (Figure 6),

although both treatments still inhibited its growth by

over 90%, raising the possibility of other potential modes

of action of mTOR inhibitors. For all primary tumor xe-

nografts, the overall phosphorylation of mTOR, S6K1,

4EBP1 and eIF4E proteins was decreased by 53%, 33%,

62% and 64%, respectively, in rapamycin-treated tumors

compared with tumors in the pretreatment and control

groups (Table S5 in Additional file 7), supporting de-

creased mTOR pathway activity after treatment.

Discussion
Developing more effective therapies would be of signifi-

cant benefit to patients with TNBC. We describe here

multiple patient-derived orthotopic xenograft models

that molecularly mimic patients’ original tumors and

represent diverse TNBC subtypes. We use these to dem-

onstrate the promising potency of mTOR inhibitors as

suggested by in silico testing of a rapamycin response

signature generated by our group.

We demonstrated that our models closely recapitu-

lated original patient tumors morphologically, by mo-

lecular biomarkers, global copy number variation and

PIK3CA sequencing. Such patient-derived models have

also been demonstrated by others to faithfully maintain

histology [57-63], gene expression patterns [60-63] and

genomic features [57,58,61,63,64] in diverse human

breast cancers, including triple-negative, ER positive and

HER2-overexpressing tumors. These models have also

been shown to be effective for preclinical therapeutic

studies [45,46,57,58,62,63,65,66].

By sequencing, we observed PIK3CA mutations in two

of our seven (29%) patient and xenograft pairs of TNBC

tumors, with mutations in exon 6 (I391M, n = 1), and

exon 20 (G1049R, n = 1). We also noted complete con-

servation of multiple SNPs in the flanking introns adja-

cent to the sequenced exons for the primary tumors,

even on subsequent xenograft passages. The soft tissue

metastasis of one of the primary tumors contained an

intron SNP, which was not observed in the primary

tumor or in the xenografts of the primary or metastatic

tumor. The reason for this is unclear but may reflect

lack of depth of our sequencing or increased heterogen-

eity in metastases.

Whole exome sequencing of 93 basal-like breast can-

cers by the Cancer Genome Atlas Network [34] identi-

fied PIK3CA mutations in 9 (10%). These were present

in exon 1 (R88Q, n = 1; R108H, n = 1), exon 4 (N345K,

n = 1), exon 9 (E542K, n = 1), exon 12 (F614I, n = 1) and,

most commonly, exon 20 (H1047R, n = 4), none of

which were detected in our panel. Another sequencing

series has reported a 10% PIK3CA mutation rate in 65

TNBCs [35], with one mutation in exon 9 (E545K) and

most in exon 20 (H1047R). For technical reasons, whole

exome sequencing may not always identify mutations
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Figure 5 In vivo growth curves of seven patient-derived orthotopic xenografts of TNBC. Treatment with vehicle control in blue;

doxorubicin in purple; rapamycin in red; CCI-779 in green. Tumor volumes in mm3. Each data point represents the mean tumor volume of each

treatment group. Error bars represent standard error of the mean. CCI-779, temsirolimus; TNBC, triple-negative breast cancer.
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when the mutant cells make up less than 10% of the

sample or because of lack of adequate sequencing cover-

age or depth. Thus, when a mass spectroscopy approach

evaluated SNPs for 23 known site-specific mutations in

PIK3CA, 8% of 240 TNBCs revealed mutations located

in exon 4 (N345K), exon 7 (E418K), exon 9 (E545K,

E542K, P539R) and exon 20 (H1047R, H1047L, H1047Y,

G1049R) [67]. In sum and including our tumors, PIK3CA

mutations in TNBC have now been identified in exons 1,

4, 6, 7, 9, 12 and 20. We also note that despite the known

genomic instability of TNBCs [68], we observed that all

PIK3CA sequence variations persisted between patient

primary tumors and xenograft models, and between xeno-

graft models assayed during different sequential passages.

Our seven patient-derived xenograft models spanned

different TNBC subtypes as described by Pietenpol’s

group [7,8], who analyzed gene expression profiles of

587 TNBCs from 21 datasets to determine different

TNBC subtypes. They identified six stable subtypes and

an unstable subtype (UNS). The stable subtypes included

two basal-like (BL1 and BL2), an immunomodulatory

(IM), a mesenchymal (M), a mesenchymal stem-like

(MSL), and a luminal androgen receptor (LAR). Using

their analytic tools, we found that five of our seven

TNBC xenografts represented four stable subtypes (BL1,

BL2, M and IM), and two were in the UNS group, con-

firming our panel’s subtype diversity. Chang’s group re-

cently analyzed 15 patient-derived TNBC xenografts and

found that 12 spanned three subtypes (BL1, n = 8; M, n = 3;

BL2/IM, n = 1) with three xenografts unclassified [69]. MSL

and LAR subtypes were not identified in our or Chang’s

series of patient-derived xenograft models.

Interestingly, we found that a xenograft generated

from a primary tumor (SUTI151) was classified as basal-

like 2 (BL2), whereas the xenograft generated from its

soft tissue metastasis (SUTI151M) was classified as mes-

enchymal (M). The BL2 subtype expresses genes involved

in growth factor signaling, glycolysis and gluconeogenesis,

whereas the M subtype is enriched for genes involved in

cell motility, extracellular matrix receptor interaction and

cell differentiation pathways, including the Wnt pathway,

anaplastic lymphoma kinase (ALK) pathway and TGF-β

signaling [7]. This adds support to the idea that distant

metastases acquire different signaling programs than the

primary tumor.

Here, we developed and validated a rapamycin re-

sponse signature that predicts sensitivity and resistance

to rapamycin. The signature predicted that the majority

of BLBCs should be sensitive to rapamycin, suggesting ac-

tivation of the mTOR pathway in this subtype. This is

consistent with data from the Cancer Genome Atlas Net-

work group [34]. They analyzed PI3K pathway activation

in 390 human breast tumors across five intrinsic subtypes

using mRNA expression signatures from different sources.

Signatures from both Saal et al. (PTEN loss in human

breast tumors) and Connectivity Map (PI3K/mTOR in-

hibitor treatment in vitro) showed similar patterns: the

basal-like subtype had the highest PI3K pathway activity

Figure 6 Protein expression and phosphorylation of PTEN, mTOR, S6K1, 4EBP1, and eIF4E in xenografts. Western blot images were

cropped at the molecular weight of each of the target proteins. Pretreatment samples were collected prior to initiation of treatment; control

samples (vehicle control), rapamycin-treated and CCI-779-treated samples were collected at the end of the treatment period. Tubulin was used as

a loading control. See also Table S5 in Additional file 7. CCI-779, temsirolimus.
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and luminal A had the lowest pathway activity [32,34].

These results agree with our rapamycin response signa-

ture predictions. In addition, they show that BLBCs have

the highest expression levels of PI3K/AKT pathway genes,

as well as a high PIK3CA gene amplification rate (49%)

[34]. Also consistent is that protein levels of the mTOR

pathway suppressors, PTEN and INPP4B, are relatively

low in BLBC or TNBC patient tumors compared with

other breast cancer subtypes [14,32,34,36]; and mTOR

pathway-related proteins, especially AKT and 4EBP1,

show high phosphorylation levels in BLBCs [33,34]. More-

over, Moestue et al. recently demonstrated that BEZ235, a

dual PI3K/mTOR inhibitor, had potent in vivo efficacy in

a patient-derived BLBC xenograft model, but not in a lu-

minal model [70], also supporting our findings.

Clinically, breast cancers are more commonly classified

by their biomarkers (ER, PR and HER2) rather than by

microarray analysis. As described above, most TNBCs

(about 70 to 80%) are basal-like subtypes by gene expres-

sion analysis. It is thus reasonable to expect high rapamy-

cin sensitivity among TNBCs according to our prediction

model. This was confirmed by a remarkable 77 to 99%

growth inhibition of either drug (mean 94%), whereas the

average inhibition by doxorubicin was only 36%.

Supporting our growth inhibition findings, we showed

that the mTOR pathway was activated in all our TNBC

patient-derived xenografts, as indicated by the phospho-

rylation of mTOR and downstream proteins 4EBP1 and

S6K1. This is consistent with observations in human

TNBCs [33,34]. After treatment of the xenografts gene-

rated from primary tumors, overall decreased phospho-

rylation of these proteins suggested decreased mTOR

pathway activity, which may have contributed to observed

tumor growth inhibition. We observed that mTOR inhibi-

tor treatment exerted a greater decrease in 4EBP1 phos-

phorylation (62%) than in S6K1 phosphorylation (33%),

although individual tumor responses varied.

In our study, mTOR inhibitors showed a cytostatic ef-

fect on tumor growth (growth inhibition) but did not re-

duce original tumor volume over time. To obtain tumor

shrinkage or complete ablation, it is likely that additional

drugs need to be added. Supporting this is a negative

Phase II single drug study of another mTOR inhibitor,

everolimus, which did not show partial or complete re-

sponses in any of five ER negative/HER2 negative pa-

tients with metastatic breast cancer [71]. In contrast, a

recent phase II clinical trial evaluating temsirolimus and

carboplatin achieved a 36% clinical benefit rate of pa-

tients with metastatic triple-negative breast cancer [42].

As well as investigating the addition of mTOR inhibitors

to current therapies, new drug combinations are also

under study, such as mTOR catalytic inhibitors, dual

kinase inhibitors of mTOR and PI3K, and combined

targeting of the selective allosteric pan-AKT inhibitor

MK-2206 with mTOR inhibition [70,72-76]. We are

optimistic that mTOR inhibitors will broadly affect the

treatment of breast cancer, especially TNBCs.

Conclusions
In summary, we generated seven patient-derived ortho-

topic xenograft models of TNBC that matched original

patient primary and metastatic tumors by histology, bio-

markers, genomic features and PIK3CA sequencing. These

models spanned at least four of six TNBC subtypes. We

developed a rapamycin response signature that predicted

sensitivity in BLBCs. Testing two mTOR inhibitors in our

TNBC xenograft models, we confirmed in vivo growth in-

hibition in all. Our data suggest that mTOR pathway inhib-

ition warrants further preclinical and clinical investigation

in TNBC in conjunction with other drugs.
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Additional file 1: Table S1. Primer sets for PIK3CA mutational analyses.

Additional file 2: Table S2. GEO breast cancer microarray datasets

used in Figure 4.

Additional file 3: Table S3. Summary of therapeutic responses in

patient-derived xenograft models of TNBC and clinical responses to

standard chemotherapy.

Additional file 4: Figure S1. Array CGH profiles of all chromosomes

comparing patient (p) and xenograft (x) for samples SUTI 151 and SUTI

110.

Additional file 5: Table S4. Rapamycin response signature probes.

Table showing 200 Affymetrix probes making up the rapamycin response

signature. The probes are annotated with gene name, gene symbol and

weight given to each probe relative to the first principal component in

the rapamycin-response signature.

Additional file 6: Figure S2. Validations of rapamycin response

prediction. A. Plots of predicted rapamycin sensitivity of MDA-MB-468

cells based on GEO data set GSE18571. As indicated, MDA-MB-468 was

treated with either vehicle control (DMSO) or rapamycin in both cell culture

and xenografts. Xenograft tumors were collected after 1 day or 22 days of

treatment. B. Plots of predicted sensitivity to rapamycin in Connectivity Map

samples from nine independent batches. Samples are grouped as untreated

controls (Untreated), rapamycin-treated (Rapamycin), PI3K inhibitors-treated

(PI3K inhibitors), or treated with drugs other than rapamycin or PI3K

inhibitors (Other drugs). The bar showed the mean of the predicted

sensitivity with 1 as the highest and 0 the lowest predicted sensitivity to

rapamycin. Figure S3 Correlation of actual sensitivity and predicted sensitiv-

ity. Correlation of actual sensitivity to rapamycin treatment (indicated by

EC50) and predicted sensitivity by the rapamycin response signature of 18

breast cancer cell lines (scattered dots). A regression line was drawn to

show the degree of correlation.

Additional file 7: Table S5. Phosphorylation levels of S6K1, 4EBP1,

eIF4E and mTOR by immunoblot after rapamycin or CCI-779 treatment.
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