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Abstract—The grade groups (GGs) of Gleason scores 

(Gs) is the most critical indicator in the clinical diagnosis 
and treatment system of prostate cancer. End-to-end 
method for stratifying the patient-level pathological 
appearance of prostate cancer (PCa) in magnetic 
resonance (MRI) are of high demand for clinical decision. 
Existing methods typically employ a statistical method for 
integrating slice-level results to a patient-level result, which 
ignores the asymmetric use of ground truth (GT) and overall 
optimization. Therefore, more domain knowledge (e.g. 
diagnostic logic of radiologists) needs to be incorporated 
into the design of the framework. The patient-level GT is 
necessary to be logically assigned to each slice of a MRI to 
achieve joint optimization between slice-level analysis and 
patient-level decision-making. In this paper, we propose a 
framework (PCa-GGNet-v2) that learns from radiologists to 
capture signs in a separate two-dimensional (2-D) space of 
MRI and further associate them for the overall decision, 
where all steps are optimized jointly in an end-to-end 
trainable way. In the training phase, patient-level prediction 
is transferred from weak supervision to supervision with 
GT. An association route records the attentional slice for 
reweighting loss of MRI slices and interpretability. We 
evaluate our method in an in-house multi-center dataset 
(N=570) and PROSTATEx (N=204), which yields five-
classification accuracy over 80% and AUC of 0.804 at 
patient-level respectively. Our method reveals the state-of-
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I. Introduction 
rostate cancer (PCa) is the second most frequently 
diagnosed cancer for males worldwide, being one of the 

leading causes of cancer death among men [1]. The grade group 
(GG) of Gleason score (Gs) [2] reflects the biological behavior 
of tumors and remains the most powerful parameter to predict 
cancer survival [3] and guide treatment options [4], which are 
divided into five groups from 1 (best) to 5 (worst) by the latest 
criteria of the International Society of Urological Pathology [5]. 
GG of a patient helps clinicians choose appropriate decisions 
throughout the primary diagnosis, preoperative plan and 
postoperative treatment of prostate cancer treatment for 
personalized medicine. Clinically, current treatment options 
mainly depend on a patient-level GG from needle biopsies (NB) 
(GG-NB) [3]. The GG of radical prostatectomy (RP) (GG-RP) 
evaluated from a set of whole-organ slices is the gold standard 
for pathological evaluation of PCa. However, discrepancies 
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between GG-NB and GG-RP are incredibly high, which 
remarkably reduces the reliability and credibility of clinical 
treatment decisions. The consistency rate between GG-RP and 
GG-NB is reported as low as 40%-57% [6, 7], which limited 
application of the model with GG-NB as the gold standard. 
Further opportunities to optimize treatment should be 
researched, such as multi-classification model with ground 
truth (GT) of GG-RP for predicting patient-level GG. 

Magnetic resonance imaging (MRI) as a main diagnostic 
modality for PCa has shown the potential in clinical practice [8] 
for assessment of prostate lesions. T2 weighted imaging (T2WI) 
of MRI as the critical modality revealed the main potential for 
detecting tumors and differentiating characteristics of tumors. 
However, we still cannot obtain enough accurate evaluation 
from images relying on qualitative or semi-quantitative MRI-
based evaluation methods of the clinic. Deep convolutional 
neural network (DCNN)-based methods reveal exciting 
performance in slice-level prediction by pixel-wise analysis [9, 
10]. Furtherly, due to the limited inter-slice resolution of 
prostate MRI and the particularity of multiple foci in PCa, 
patient-level multi-classification tasks of MRI refer to combine 
slice-level results to obtain an overall conclusion, which poses 
new challenges to previous methods that only focused on slice-
level analysis. 

Hierarchical predicting GG-RP of a patient has always been 
a significant challenge for precision treatment [11] in PCa. 
Clinically, radiologists firstly explore signs from two-
dimensional (2D) images as slice-level analysis and then 
associate slice-level diagnosis for a patient-level conclusion. 
The most challenging problems of DCNN-based method of 
slice-level are as follows: (1) how to perform quantitative image 
analysis for each slice in the MRI of prostate, (2) how to 
eliminate the interference of redundant information on weak 
supervision, (3) how to transfer slice-level results to a patient-
level conclusion, and (4) how to make the decision-making 
process fit the logic of clinical workers for interpretability.  

Our contributions are summarized as follows: 
1. We design an end-to-end framework for patient-level 

multi-classification tasks, which diagnostic logic of radiologists 
was fully learned and applied in modeling for better 
performance and interpretability. 

2. GG-RP is used as the GT for the first time to pointedly 
predict the pathological grade of PCa patients. 

3. A dual attention network is designed for PCa to better 
pixel-wise analysis in the slice-level, and A DRL-based 
network is designed for joint optimization. 

4. A strategy to re-weight the importance of slices (RWIS) in 
training is devised. 

5. We evaluate our framework in both an in-house multi-
center dataset (PCa-GGDATA) and an open dataset 
(PROSTATEx).  

II. RELATED WORK 
DCNNs are popular for pixel-wise analysis and have shown 

the potential for application to PCa problems, including 
classification [9, 10, 12, 13], organ or lesion segmentation [13-
16], and registration [17]. These studies were mainly based on 
weakly supervised learning [9, 12, 18], which refers to the 
establishment of relations between GTs of patients and each 

slice of MRI as a supervised label. The GTs are from different 
sources for specific clinical applications: PI-RADS scores, GG-
NB, and GG-RP. Yang et al. and Wang et al. [9, 18] proposed 
a CNN-based framework to detect clinically significant prostate 
cancer (sPCa) in mp-MRI. The method identifies sPCa and 
lesions simultaneously using the consistency loss of different 
modal feature maps under only category supervision 
information (biopsy-proven Gs). Schelb et al. [12] combined 
T2WI and diffusion-weighted imaging (DWI) to detect and 
segment suspicious lesions that could indicate significant PCa. 
Due to the requirements of clinical applications, models with 
neither PIRADS-proven nor NB-proven GT are not suitable for 
directly predicting RP pathology. Therefore, Cao et al. [15] 
used an improved multi-class DCNN to jointly detect RP-
proven PCa lesions and predict the GGs from mp-MRI. This is 
the first study conducted to train or validate a DCNN for PCa 
detection at a slice-level from RP pathology.  

However, in these studies, it is difficult to integrate slice-
level predictions into a patient-level result through a vote-based 
strategy (e.g., majority-vote, mean, or maximum), by using 
DCNN alone. Additionally, three-dimensional (3D) DCNN-
based models with massive parameters and a high 
computational cost are also inappropriate for abdominal MRI 
of low inter-slice resolution. For accuracy, decision logic, and 
clinical applications, we need a more elegant way to take 
advantage of pixel-wise analysis for patient-level tasks. 

Recent studies have shown that deep reinforcement learning 
(DRL) can potentially achieve final goals through actions of 
frames and be a bridge of joint optimization [19]. Mnih et al. 
[20] first proposed a deep Q-learning network (DQN) to 
simulate human behavior to compete in e-sport games. Actions 
are generated from encoding features of DCNNs with a higher 
reward. This work was then extended into the medical field for 
automated anatomical landmark searching [21] and lesion 
detection [22, 23] on DCE-MRI. The DRL was used to 
determining coordinates of locations within image blocks. 
However, to our knowledge, no model is applying DRL to learn 
from diagnostic logic of radiologists for modeling, especially 
for multi-classification tasks at the patient-level. 

Some studies also tried radiomics methods [24] to perform 
patient-level analysis for predicting pathological behavior by 
extracting quantitative hand-crafted image features in MRI of 
PCa  [25] directly. However, the PCa with limited radiological 
detection for low-volume foci brings a huge challenge to lesion 
segmentation, which reduces the repeatability of features 
extracted from MRI and restricts reliability of the models. 
Additionally, heavy labeling works also limits the scale of data 
involved in modeling. 

Clinically, the patient-level diagnosis of PCa in MRI-based 
examinations is constructed with slice-level evaluations. 
However, a single sequence of MRI examinations of a patient 
usually contains almost twenty or more slices with low inter-
slice resolution, which complicates decision-making. 
Radiologists use their experience to find the diagnosis-related 
slices and deduce a series of inferences to draw a patient-level 
decision [26]. Our previous study tried to combine DCNN with 
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DRL to build a model (PCa-GGNet) for predicting GG-RP [27], 
which effectively reduces the risk of up- and down-regulation 
in the pathological assessment of biopsy. However, the 
framework lacks sufficient attention to the tumor area in slice-
level and joint optimization. From previous research experience, 
image features will directly affect the decision path selection of 
the model, and then affect the final model performance. At the 
same time, there is a lack of methodological evaluation and 
comparison of international public data. 

III. FRAMEWORK METHODOLOGY 
The proposed framework consists of concatenated subunits: 

1) a browser unit for input preparation; 2) a vision unit (VU) for 
slice-level predictions and visual features extraction; 3) an 
association unit (AU) for reasoning and analysis area switching 
between slice-level results; 4) a decision unit (DU) for 
determining a patient-level prediction from series of slice-level 
predictions. As shown in Fig. 1, our proposed framework (PCa-
GGNet-v2) �(�) aims to construct a patient-level prediction 
for five-tier GG-RP in an end-to-end approach. The inputs are 
image areas of both prostate and tumor in T2WI � ={��, ��, … , ��} . Three arithmetic units were defined by �(�; ���, ���, �� , �� , ��), �(�⃗; ��), �(�⃗), respectively. The 
VU analyzes slices � by DCNN-based model, focuses on the 
character of the lesion in planar spatial information and 
environment of the prostate, and provides materials {�, ������} 
(feature vectors of slices � = {�����⃗ , ������⃗ , … , ������⃗ };  slice-level 
prediction vectors of slices �_����� ={�_����������������������⃗ , �_����������������������⃗ , … , �_����������������������⃗ }) as inputs to the DU. The AU 
is developed by DQN. Using feature �⃗, it moves by an action 
probability vectors �⃗ to switch the vision. The action is defined 
by �(argmax(�⃗)) , where �  is the action list. The selected 
slices from actions are defined as an association route �. The 
last unit is DU, which takes responsibility for the prediction of 
patient-level GG-RP ℙ = argmax(�_������������������⃗ ). Here, �_������������������⃗  is a 
probability vector of GG-RP, which is the same as the 
prediction of the current vision. The DU decides when to shut 

down the framework. Our PCa-GGNet-v2 is a recurrent 
architecture and continues until the status of the prediction 
satisfies the termination condition. For cycles � ∈ [1, T], we 
update the input image �����  of the VU according to the action 
to realize the next cycle � + 1. The patient-level prediction of 
GG-RP ℙ is captured from the terminal point of the framework. 
The patient-level prediction of GG-RP by PCa-GGNet-v2 is 
defined as  �(�) = ���(�(�; ���, ���, �� , �� , ��); ��)�       (1). 

A. VU with dual attention for multi-classification of slice-
level 

We firstly build the VU for pixel-wise analysis of 2D images 
as slice-level analysis. Fig. 3 shows a schematic illustration of 
the VU. The backbone of the VU is PNASNet [35]. The 
PNASNet is created by a progressive search strategy, which is 
sequential model-based optimization. Cell blocks (Cells) of the 
PNASNet help avoid the vanishing gradient problem within 
lower layers of DCNN during the training phase. It also enables 
the model to associate different low-level features with deeper 
convolutional (high-level) features. 

The input layer of VU requests a set of images �, including 
prostate image ��  and tumor image ��� . The tumor image is 
obtained by convolution of the prostate �� and the tumor mask �. ��� = �� ⊙ �                                  (2) 

Two PNASNet-based models without the last connection 
layer were parallel, which PNASNet-1 ���(��, ���)  and 
PNASNet-2 ���(���, ���) analyzes image information from the 
prostate area and tumor area respectively.  

The PNASNet-based models serve as a non-linear function 
to encode the image into a sparse matrix named deep maps �� 
and ��, representing feature maps of prostate (organ-level) and 
lesion (tumor-level), which are defined as �� = ���(��, ���)                           (3), 

 
Fig. 1. Workflow of PCa-GGNet-v2. PCa-GGNet-v2 for predicting GG-RP of patient-level (right). Mechanism of association for visions and 
association route for re-weighting slices during weak supervision of vision unit (left). 
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 �� = ���(���, ���)                          (4). 

The last feature maps of two branches are transformed into 
focal features ��  for focal attention (Focal-level), which is 
defined as �� = �� ⊙ ��                             (5). 

Then, the average pooling with filter size of 11×11 serves as 
a dimensionality reduction function to encode the features into 
fixed-length vector representations ������⃗  (organ-level),  ������⃗  
(tumor-level), and  ������⃗  (Focal-level), respectively. The vector 
with probabilities of slice-level prediction �_�������������������⃗  is integrated 
by three levels of predictions, which is defined as �_�������������������⃗ = �_�����������������������⃗ + � ∗ �_����������������������⃗ + � ∗ �_����������������������⃗   (6). 

Weights of predictions from tumor-level and focal-level are 
defined by � ∈ [0,1] and � ∈ [0,1]. If the input �  is missing 
the tumor mask �, � and � are both set 0. 

Outputs of three-level predictions by a fully connected layer �����(∙)  with parameters � , and is activated by a sigmoid 
function ��������(∙). The outputs functions are defined as  �_�����������������������⃗ = ���������F����(������⃗ ; ��)�          (7), �_����������������������⃗ = ���������F����(������⃗ ; ��)�          (8), �_����������������������⃗ = ���������F����(������⃗ ; ��)�          (9). 

We used the VU to generate deep features �⃗ of each slice for 
slice-level prediction �_�������������������⃗ , tumor slice searching, and 
patient-level results construction. 

B. AU for environmental awareness and tumor slice 
searching 

We build the AU to perceive the complete image 
environment of T2WI, and find a decision path for patient-level 
decision, which is composed of tumor slices. Inspired by 
behavioral psychology, RL can be learned by interaction with 
environments to maximize cumulative reward signals [28]. 
When a radiologist examines the MRI of the prostate, switching 
between slices of observations is a necessary process [26]. The 
result of a patient is obtained by combining the browsing path 
and association, which is the decision path named as an 
association route in our study. If a single sequence is not 
sufficiently reliable for diagnosis, additional sequences will be 
included. In our study, we mimic the process and create a 
learning agent (the AV) �. The agent works in environment � 

and makes an action �  based on variable status �  (encoding 
features of each slice) to build a slice list named association 
route � . The destination of the association route points a 
patient-level probability vector �_������������������⃗ . The final patient-level 
predicted signature ℙ is defined as ℙ = ������(�_������������������⃗ ). 

The DQN [20] is employed as the backbone for the AU, 
including a CurrentNet ��������(�, �; ��)  and a TargetNet �������(�, �; ��).  The CurrentNet only learns and updates 
during the training phase. In testing, there is only the TargetNet 
for action making. The agent will not receive any rewards nor 
update the model; it only follows the learned policy. The 
workflow and definition of architecture for the AU is illustrated 
in Fig. 3. The details of action � and states s for the agent are 
introduced as follows. 
1) Navigation Actions 

The agent takes the action steps � to interact with E, which 
implies a change of input for the framework. Slice with tumor 
is defined as an attentional slice ����������. The action list � is 
composed of seven actions {0, +1, +2, +3, −1, −2, −3}, which 
indicates the direction of movements and the step length. The 
positive numbers indicate the direction of the seminal vesicle 
gland and negative numbers toward the perineum. Action type 
of zero is represented as “Stay at the place,” which is a stop 
order, and the attentional slice ���������� is not updated during 
the testing.  
2) Environments and States 

Environment � represents the feature group of all slices of a 
T2WI, where each state � is an encoded feature �⃗ from the VU. 
During the training phase, the environment also contains the 
probability of slice-level prediction �_�������������������⃗  to evaluate reward � for each status-based action.  

C. DU for patient-level decision 

DU ���_�������������������⃗ , �� is followed by the AU and is responsible 
for the prediction of patient-level ℙ. It is established for the 
framework to stabilize the search routes and prevent getting 
stuck in repeated cycles. When � = 0, the association route 
satisfies patient-level prediction, and the patient-level 
prediction is inherited from the slice-level prediction of this 
slice. �_����������������������⃗  denotes slice-level prediction corresponding to 
the action �. An experienced timepoint (���) is used to capture 

Fig. 2. Architecture of the VU. 

 
Fig. 3. Workflow of the AU. 
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the ���  action steps by the framework in searching for the 
prediction of patient-level GG-RP. The ℙ is defined as follows. ℙ = ���_����������������������⃗ , �� =                    � argmax��_����������������������⃗ �, � = 0argmax ��_�������������������������������⃗ � , � ≠ 0 ��� � ≥ ���      (10) 

The DU keeps the framework running until the given 
termination conditions. 

IV. EXPERIMENTS 

A. Training process 
We reduce the coupling between the VU and the AU so that 

arithmetic units could be trained and evaluated independently. 
In the training process, the fitting of the two units influences 
each other actively. We alternately train the VU and the AU to 
improve the overall performance of the framework. The VU 
adopts weakly supervised learning strategy by minimizing the 
loss of the VU �� to associate image representation with GG-
RP. A trained VU then provides a training environment for the 
AU. AU packs each slice of 3D-T2WI as a training object with 
GT to realize supervised training by minimizing action loss ��. 
The framework with the trained VU and AU generates an 
association route �  by footprints of actions. It re-weighs the 
loss of inputs ����⃗ = (��, ��, . . , ��) for training VU. The PCa-
GGNet-v2 builds a bridge between an identified slice of image 
and patient-level GG-RP, which realizes end-to-end training 
based on the pixel-wise analysis and joint optimization. Fig. 4 
shows a schematic illustration of the framework training. 
1) Training for the VU 

First, we train the VU to classify GG-RP by pixel-wise 
analysis at the slice-level. Model parameters of the basic 
network, which is trained by ImageNet [29], are used as a 
pretrained network for transfer learning. During the training 

phase, the parameters of the PNASNet-1 and PNASNet-2 are 
frozen until the last Cells. Then, the VU is trained by weakly 
supervised learning, and labels of slices copy from the patient-
level GG-RP. The loss of the VU �� is defined as  �� = ������ + 0.1 ∗ (�� + � ∗ �� + � ∗ ��)          (11). 

The classification loss of prediction of organ-level, tumor-
level, focal-level, and slice-level are ��, ��, ��, and ������, which 
are cross-entropy.  

To mitigate overfitting, data augmentation of random 
rotation, mirror transformation, and affine transformation are 
necessary to employ in the training. The masks of tumors for 
dual attention are randomly blinded. We select the organ region 
by a window size of 200 × 200 in the center area as the ROI to 
build the attention on the prostate, and the ROI is then scaled to 
331 × 331 as the input.  
2) Training for the AU 

The second step of the PCa-GGNet-v2 is training for the 
TargetNet of the AU �(�⃗, ��) = �������(�⃗, ��), which �⃗ is set 
by features of the organ-level. The CurrentNet and TargetNet 
are spatially parallel with time delay. Parameters ��  of the 
TargetNet are updated by another model named CurrentNet ��������(�⃗, ��) with the same design as the TargetNet. The 
CurrentNet is used for experience ℰ = {�, �� , �, ��} ∈ �, which 
is generated from the trained VU using a set of slices � ={��, ��, … , , ��}. Here, � denotes the number of slices per T2WI. 
The function of reward ℛ��, �_�������������������⃗ � = ℛ��⃗, �, �_�������������������⃗ �  is 
defined as follows. ℛ��⃗, �, �_�������������������⃗ � =�1 + ∑ ���_������������ , �(�⃗, �_�������������������⃗ ) = 0 ��� � = 11 , � = 10 , ��ℎ��    (12) 

 
Fig. 4. Training for Pca-GGNet-v2. 
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Here, we define ���⃗, �_�������������������⃗ �  as ������(�⃗) −��������_�������������������⃗ �.  The GT encoded vector of GGs �⃗ =(��, ��, ��, ��, ��) ∈ {0,1}  and GT of tumor existence for 
current slice � ∈ {0,1} is in the goal list � for the reward. The 
limitation of greedy policy randomly chooses action �, ignoring 
the real model output. The rate of random action was 0.9 during 
the training. 

When the experience pool reaches overflow (N=2000), we 
randomly select a subset (N=256) of experiences for CurrentNet 
learning. The error is the difference between the current 
earnings �������� and future earnings ������� . ��(ℰ) = �� + � max�� �������(��; ��) − ��������(�; ��)��

  (13) 

where � is the reward corresponding to the current status; � 
controls the influence of actions on the agent named learning 
rate, which was 0.9. The Adam optimizer with a basic learning 
rate of 0.01 was employed for the fitting.  

In the process of experience collection, we take each 
experience pool overflow as a short period to conduct the 
CurrentNet training. A normal training cycle includes 100 short 
cycles, and the TargetNet updates by the CurrentNet. When the 
slice corresponding to the next action contains tumor presence 
markers and is consistent with the GT, a new environment � is 
selected for training. We also improve the richness of the 
environment to mitigate overfitting by the normal distribution 
mode centering on the middle layer to randomly select the 
initial state of the environment. 
3) Re-weighting samples for training VU under Weak 
supervision 

The strategy named re-weighting the importance of slices 
(RWIS) is generated by attentional slices of the AU, and the 
weights are named impression weights �. We use � for VU 
training. The impression weights �  are generated by 
attentional weights �� and results of slice-level prediction ���.  � = �� + ���                             (14) 

Proportion of the times of the slice as an attentional slice ����������  to the total slices of a T2WI is denoted as the 
attentional weight ��. The �� was defined as follows. �� = ����� �� � ����� �� ��������������� ������ �� � ����                     (15) 

The impression weight of multi-rounds ���� for the circle � ∈ [1, �] VU training is defined as ���� = λ���� + ��.                          (16). 

The weights of all training slices are initialized to 1 in the 
first training. � controls the effect of impression weight. The 
influence of the early weight decreases with the increase in the 
number of training cycles of the framework. Next, in the VU 
training, we assign weights to the loss of the corresponding 
sample for loss construction � ⊙ �� ,  thereby purposefully 
emphasizing some training samples to enhance the VU. The AU 
then benefits from a better previous unit because of the higher 
quality of features expression and slice-level prediction.  

B. Datasets 
Pre-operative MRI data from 575 patients who later 

underwent both NB and RP were included in the study as in-
house multi-center datasets (PCa-GGDATA). These patients 
are retrospectively enrolled in two Chinese hospitals, and 
includes three datasets of PUTH-p1, PUTH-p2, and PUPH 
(Table I). We use the principle of 4:1 to generate the training 
set (TS) and the internal validation set (VS) in PUTH-p1. The 
VS is a set for monitoring performance and mitigating 
overfitting during the training phase. Then, 187 patients of 
PUTH-p2 (N=178) without slice annotations are selected as an 
external test set (TeS1). The PUPH (N=87) is defined as another 
external test set (TeS2). The Chi-square test of distribution 
between the datasets reveals no significant differences among 
the sets (P=0.066). 

The MRI data in our study are collected before biopsy with 
3T MR scanners (Magnetom Trio, Siemens Healthcare, 
Erlangen, Germany; Discovery MR750, GE Healthcare, USA) 
without an endorectal coil. The pulse sequences consisted of 
T2WI is generated from axial diffusion-weighted imaging using 
vendor build-in software. Only DICOM data of T2WI are used 
for analysis in this study. For T2w sequences, we select TSE 
with fat suppression sequence (Siemens) or FRFSE with fat 
suppression sequence (GE).  

The GT of PCa-GGDATA consists of two parts: GG-RP of 
patient-level and slice annotation. The GT of GG-RP is 
captured by pathological evaluation of laparoscopic RP and was 
reported at patient-level according to the 2016 WHO five-tier 
criteria [5]. Each pathology report is read and verified by two 
board-certified pathologists with 6 and 22 years of PCa 
experience, respectively. The GT of slice annotation is used to 
record the slices related to a pathological diagnosis in T2WI, 
which are tumor slices in our study. The pathologists mark the 
diagnosis area in the whole slide image (WSI) for GG-RP 
during the pathological diagnosis. Lesions belonging to these 
areas are then delineated in the T2WI for accurate annotation of 
diagnosis-related lesions. The tumor contours are manually 
registered from whole-mount sections to the corresponding 
axial T2WI slides by one board-certified urological radiologist 
with 12 years of experience to generate lesion annotation (Fig. 
5(a)). The annotation of lesions help us locate the slice with 
pathological diagnosis-related area more accurately (Fig. 5(b)). 

Another dataset is a publicly available dataset named the 
PROSTATEx, which is the set for cross-task verification from 
the PROSTATEx challenge [30]. Different from the PCa-
GGDATA, the GT of PROSTATEx is GG-NB, which is used 
to evaluated model using MRI for sPCa for comparison. The 
slice annotation is tumor location in image, and is selected as 
the mask center with window size of 100 × 100 for tumor area 
in the VU. Due to the lack of GT in the test set, we use the 

TABLE I 
DATASETS 

Name Num MRI Slice 
annotation Propose 

PUTH-p1 310 T2WI √ Training and 
internal validation 

PUTH-p2 180 T2WI  Testing 
PUPH 80 T2WI  Testing 

PROSTATEx 204 T2WI √ Cross-task verification 
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training set of PROSTATEx, and evaluate models by five-fold 
cross-validation.  

V. RESULTS 

A. Baseline networks for discriminating GG-RP of slice-
level 

First, we used tumor slices as inputs to distinguish GG-RP 
based on the pixel-wise analysis. GT of defined slices were 
copied to patients’ GG-RP. Popular DCNN architectures with 
state-of-the-art performance on ImageNet [29] were evaluated 
for differentiating GG-RP in slice-level: Densenet121 [31], 
InceptionV3 [32], VGG16 [33], ResNet101 [34], and PNASNet 
[35]. The performance of DCNNs on ImageNet was reproduced 
by PyTorch [36]. These pretrained models were then fine-tuned 
to predict GG-RP at the slice-level. U-Net [37] is a popular 
DCNN architecture for various biomedical imaging 
segmentation tasks, and we reform the last layer by global 
average pooling combining softmax to output classification 
results. The models adopted the same strategy of data 
augmentation and condition of early-stop. The evaluations were 
executed by five-fold cross-validation in PUTH-p1 dataset. The 
results were listed in Table II. The best architecture of 
classification is the VU, which yields an accuracy of slice-level 
prediction (ACC-slice) of 0.628±0.011. The fine-tuned model 
has a similar rank to ImageNet. The models with better 
performance on ImageNet achieves better reliability of 
discriminating GG-RP of slice-level. Improvements from dual 
attention were also be demonstrated by the ablation experiment 
of VU, and comparison of f1-score was shown in Fig. 6(a). 

To compare training strategies for GG-RP of slice-level 
analysis, we also used total slices to build a model with six-
classification (VU-6). Normal slices, which are slices without 
tumor identification, were added as an extra category (the sixth 
category). The performance of basic architectures to six-tile 
classification was compared in Table II. Although the overall 
ACC-slice of VU-6 showed more outstanding than the VU, the 
f1-score of GG-RP was constrained. We eliminated the samples 
predicted to be the normal slices in the results and count the f1-
score of GG-RP again, which was still not satisfactory Fig. 6(b). 
In our experiments, the VU-6 focused on overall optimization, 
rather than the GG-RP, which revealed the risk of constrained 

joint optimization. Therefore, we regrettably abandoned this 
strategy of the VU-6 to build our framework.  

B. Performance of PCa-GGNet-v2 for the patient-level 
prediction of GG-RP 

The ACCs of patient-level prediction (ACC-case) were 
obtained by bootstrap (N=1000) strategy within PCa-GGDATA, 
and yielded ACC-case (AVG±STD) of 0.849 ± 0.023 (TS), 
0.824±0.051 (VS), 0.8±0.029 (TeS 1), 0.824±0.044 (TeS 2) 
respectively.  

We reproduced state-of-the-art methods of PCa on the PCa-
GGDATA and compared the performance of these model for 
GG-RP of patient-level, including evaluation of biopsy [38], 
radiomics [39], 3D-ResNet [40], two vote-based and 2D-
DCNN models [9, 12], and our previous PCa-GGNet [27] 
(Table III). Except for radiomics-based models, all models 
were evaluated on the TS, VS, TeS 1, and TeS 2, respectively. 
Compared with clinical method of biopsy, PCa-GGNet-v2 
improved the accuracy by 29.8%–39.3%. Because of the 
dependence of radiomics on tumor segmentation, the 
performance was assessed in TS and VS. SVM [41] with linear 
kernel, and XGBoost [42] was employed to build models using 
radiomic features, respectively. For vote-based 2D-DCNN 
models, the grade with the highest frequency of GG-RP 
category was determined for GG-RP of patient, which is the 
most commonly used modeling method for predicting patient-
level indicators in MRI. Satisfactorily, the PCa-GGNet-v2 
obtains the best five-classification accuracy for GG-RP of 
patient-level. The average computation time was calculated 
using two NVIDIA Titan Xp GPU with 12GB memory. We 
provided computation time (average prediction time per patient) 
in the last row of Table III. 

C. Ablation experiments 
In order to evaluate the impact of each independent unit 

(branch of dual attention, AU, and VU), initial input state and 
RWIS on the performance of the PCa-GGNet-v2, we disabled 
these influencing factors one by one, and used PCa-GGDATA 
for evaluation (Table IV). Firstly，we chose the random slice 
(rs), median slice (ms), and random slice of five layers before 
and after the middle layer (interval slice, is) to be the initial 
input for the framework, and evaluate the best starting-point of 
the framework. From evaluation in TS, VS, TeS 1, and TeS 2, 
the ms of the T2WI is the best choice with a higher ACC-case. 
Next, we disabled the branch of dual attention, the contribution 
of the performance of pixel-wise analysis-based model to the 
accuracy of the framework's patient-level prediction has been 
confirmed once again. Another significant improvement came 
from RWIS, the model pays more attention to the area related 

 
Fig. 5. Datasets illustration. (a) Tumor annotation of WSI. (b) Tumor 
annotations of T2WI. 

Fig. 6. (a) Accuracy of slice-level GG-RP for TOP-3 models. (b) F1-
scores of GG-RP for training strategies. 
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to GG-RP of patient in the joint optimization by reconsidering 
the importance of slices in the training process of the VU. 

D. HyperParameter sensitivity analysis 
In our experiments, the hyperparameter selection was based 

on the performance of the validation set during the training 
process, which was independent of multi-center dataset 
validation. The hyperparameters of branch weight (�, �), effect 
of impression weight λ, and iteractions of RWIS were selected 
by slice-level results of cross-validation, and action list � and 
circle �  were determined by patient-level results of the VC. 
Sensitivity to hyperparameters of the VU was listed in Table V 
and heperparameters of  the AU was listed in Tabel VI, and 
Tabel VII. Finally, We chose the optimal hyperparameter 
combination in the experiments to construct PCa-GGNet-v2. 
More details was listed in Supplementary Materials. From the 
results of sensitivity analysis, the performance of PCa-GGNet-
v2 is mainly contributed to hyperparameters of the action list 
and the number of circles in the AU. Suitable hyperparameters 
settings of the VU also brought a slight improvement. The 
existence of hyperparameters provides more flexibility for the 
framework, which is hopeful for expansion in different tasks, 
but it also requires more experiments. 

E. Process visualization and interpretability 
To illustrate the forward process of PCa-GGNet-v2 for end-

to-end predicting GG-RP of patients, five typical cases were 

shown for visualization and interpretation (Fig. 7). The results 
demonstrated the robustness of the model under circumstances 
of different initial slices, single or multifocal lesions, different 
termination-action status, and decision paths. This process 
follows the diagnostic logic of radiologists and presents the 
image-based association ability of the model. The decision 
slices from the model also implied the risk area of PCa for 
significant tumor detection by the red area in heatmap. 

F. Performance of PCa-GGNet-v2 for sPCa detection 
We retrained the PCa-GGNet-v2 using PROSTATEx for 

sPCa detection, and evaluated by five-fold cross-validation. 
Four popular methods for sPCa and our previous work were 
employed for comparison under the same experimental 
conditions. The 2D DCNN-based models [9, 12, 43] were 
trained by weakly supervised learning and integrate the results 
of patients by vote-based strategy. The evaluation indicators are 
the accuracy of slice-level and patient-level (Table VIII). 
Patient-level performance logically relied on results from slices, 
but still depended on a better integration strategy. Additionally, 
improvements of the VU with dual attention was also 
demonstrated by ACC-slice. The PCa-GGNet-v2 keeps the 
state-of-the-art performance of patient-level against other 
models, including models with multi-modality inputs, which 
our model excavates more useful information related to 
diagnosis in both the slice-level and patient-level analysis.  

TABLE II 
ACCURACY (AVG±STD) OF PIXEL-WISE ANALYSIS FOR SLICE-LEVEL GG-RP IN CROSS-VALIDATION 

DNN-based model GG-RP 
(VU) 

Overall  
(VU-6) 

GG-RP 
(VU-6) 

Densenet121 [31] 0.601±0.023 0.72±0.016 0.451±0.018 
Inception V3 [32] 0.511±0.024 0.785±0.009 0.509±0.03 
VGG16 [33] 0.434±0.037 0.787±0.014 0.508±0.021 
ResNet101 [34] 0.589±0.028 0.784±0.009 0.481±0.018 
PNASNet [35] 0.615±0.036 0.797±0.015 0.521±0.033 
2D U-Net [37] 0.423±0.031 0.732±0.015 0.40±0.031 
PNASNet+T 0.6193±0.015 0.793±0.017 0.531±0.012 
VU 0.628±0.011 0.797±0.007 0.553±0.023 

+T: Branch of tumor-level prediction; PNASNet: organ-level CNN-based model; PNASNet+T: organ+tumor-level CNN-based model; VU: organ+tumor+focal-
level CNN-based model 
 

TABLE III. 
COMPARISON ACCURACY (%, AVG±STD) AND TIME COSTS (S/PATIENT, AVG) OF MODELS FOR GG-RP OF PATIENT-LEVEL 
Methods TS VS TeS 1 TeS 2 Time cost 

Evaluation of biopsy [38] 0.478±0.031 0.519±0.064 0.502±0.038 0.431±0.057 >120 
Radiomics [39]+SVM [41] 0.536±0.031 0.484±0.061 - - 3.15  
Radiomics [39]+XGBoost [42] 0.675±0.029 0.645±0.061 - - 3.27 
3D-ResNet [40] 0.73±0.029 0.643±0.061 0.574±0.035 0.615±0.052 0.257 
Wang et. [9] 0.701±0.028 0.631±0.059 0.622±0.036 0.578±0.053 0.966 
Schelb et. [12] 0.678±0.028 0.613±0.063 0.594±0.037 0.601±0.054 0.599 
PNASNET (vote-based) 0.747±0.05 0.676±0.052 0.648±0.054 0.676±0.052 2.394 
PCa –GGNet [27] 0.849±0.023 0.800±0.048 0.779±0.031 0.802±0.041 0.546 
PCa –GGNet-v2 0.858±0.022 0.824±0.051 0.8±0.029 0.824±0.044 0.593 

 
TABLE IV 

RESULTS (AVG±STD) OF ABLATION EXPERIMENTS FOR GG-RP OF PATIENT-LEVEL 
Models TS VS TeS 1 TeS 2 

PCa –GGNet-v2-AU (rs) 0.422±0.032 0.385±0.062 0.461±0.037 0.464±0.056 
PCa –GGNet-v2-AU (ms) 0.658±0.03 0.659±0.06 0.565±0.036 0.689±0.053 
PCa –GGNet-v2-AU (is) 0.633±0.031 0.582±0.063 0.52±0.037 0.622±0.054 
PCa –GGNet-v2 -TL 0.832±0.024 0.789±0.052 0.778±0.032 0.802±0.045 
PCa –GGNet-v2-FL-TL 0.847±0.023 0.805±0.049 0.779±0.031 0.813±0.044 
PCa –GGNet-v2-RWIS 0.782±0.026 0.696±0.058 0.666±0.034 0.687±0.052 
PCa –GGNet-v2 0.858±0.022 0.824±0.051 0.8±0.029 0.824±0.044 

rs, random slice; ms, median slice; is, interval slice; TL, branch of tumor-level; FL, branch of focal-level. 
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VI. DISCUSSION 
This work is inspired by artificial intelligence of the e-sports 

game proposed by Mnih et al.[20]: the goal of our game is to 
find which slices should be observed and construct the best 
individual prediction based on these findings. The 3D image 
block of a patient is defined as a game, and each slice of images 
is a frame of the game process. 

We aim to learn diagnostic logic from radiologists for MRI 
of PCa, which searching diagnosis-related slices to construct a 
patient-level prediction of variant pathological behavior. We 
define the patient-level prediction based on pixel-wise analysis 
as a decision path optimization problem, and used joint 
optimization. We propose an end-to-end framework (PCa-
GGNet-v2) mimicking this process by combining both DCNN 
and DRL for GG-RP of patient-level, which is a multi-
classification task. The AU, which is trained by interactions 
with the environment to maximize cumulative reward signals. 
Inputs are switched by the response of the AU with current 
image features. The AU finds attentional slices from T2WI, and 
identifies a patient-level prediction of GG-RP, mimicking 

radiologists’ behavior. To enhance features related to GT in 
pixel-wise analysis, we adopt the VU with dual attention with 
weakly supervised learning to encode images and achieve slice-
level prediction with high accuracy.  

For patient-level, we abandon the vote-based strategies 
(which use the results at the slice-level to transform the 
prediction results from the slice-level to the patient-level) 
because of their limited accuracy, suboptimal interpretability, 
and insufficient decision basis. Compared with the results of 
previous DCNN-based models using majority-vote strategy [9, 
15], our method achieved better performance in patient-level 
prediction. Previous researchers mainly focused on slice-level 
analysis rather than the patient-level problem. Except for the 
DCNN-based model, Cameron et al. [44] and Chaddad et al. [45] 
employed radiomics-based method to predict GG of PCa. These 
works rely on tumor delineation. For comparison, our 
framework does not depend on tumor masks, which reduces the 
error derived from the original segmentation. In the experiment, 
our proposed method outperformed DCNN (p-value<0.05) and 
radiomics (p-value<0.05) significantly. Overfitting is also 
mitigated properly. Compared with our previous work, we 
update the method of pixel-wise analysis by dual attention 
strategy and RWIS for weakly supervised learning. Significant 
improvements are revealed in both in-house multi-center 
dataset (PCa-GGDATA) and public dataset (PROSTATEx), in 
which the evolution and generalization of the method is proven.   

During weakly supervised learning of the VU in PCa-
GGNet-V2, it may be risky to apply individual assessment 
directly as each slice’s GT during the supervised training 
because of asymmetric information. Specifically, it means that 
a low-level holistic assessment (individual, at the patient-level) 
is applied indiscriminately to a high-level detailed assessment 

TABLE V 
SENSITIVITY TO HYPERPARAMETERS IN THE VU 

(�, �) ACC-slice λ ACC-slice ����� ACC-slice 
(0,0) 0.615±0.036 1 0.613±0.021 0 0.628±0.011 
(1,0) 0.619±0.037 0.9 0.614±0.020 1 0.659±0.012 
(0,1) 0.607±0.04 0.5 0.622±0.019 2 0.669±0.011 
(1,1) 0.623±0.014 0.2 0.624±0.015 3 0.670±0.014 
(0.1,1) 0.611±0.023 0.09 0.628±0.011 4 0.673±0.014 
(1,0.1) 0.621±0.017 0.05 0.627±0.012 5 0.671±0.013 
(0.1,0.1) 0.628±0.011 0.02 0.628±0.012 6 0.669±0.012 
(0.01,0.01) 0.619±0.020 0 0.625±0.019 7 0.669±0.013 �����: Iteraction of RWIS 

TABLE VI 
SENSITIVITY TO ACTION LIST IN THE AU 

 TS  VS  TeS1  TeS2 
ACC-tumor ACC-case  ACC-tumor ACC-case  ACC-case  ACC-case 

Type A 0.854±0.022 0.772±0.025  0.804±0.071 0.77±0.077  0.71±0.028  0.703±0.027 
Type B 0.85±0.021 0.86±0.02  0.839±0.068 0.8±0.076  0.783±0.031  0.82±0.028 
Type C 0.864±0.02 0.858±0.022  0.834±0.068 0.824±0.051  0.8±0.029  0.824±0.044 

Type A, � = {0, +1, −1}; Type B, � = {0, +1, −1, +2, −2}; Type C, � = {0, +1, −1, +2, −2, +3, −3} 
 

TABLE VII 
SENSITIVITY TO CIRCLES OF THE PCA-GGNET-V2 

 TS  VS  TeS1  TeS2  Time costs 
(s/ patient) ACC-tumor ACC-case  ACC-tumor ACC-case  ACC-case  ACC-case  

1 0.671±0.028 0.658±0.03  0.684±0.029 0.659±0.06  0.565±0.036  0.689±0.053  0.136 
2 0.89±0.019 0.716±0.027  0.798±0.075 0.735±0.082  0.622±0.037  0.688±0.052  0.279 
3 0.9±0.017 0.81±0.023  0.821±0.067 0.765±0.079  0.766±0.032  0.747±0.05  0.519 
4 0.864±0.02 0.858±0.022  0.834±0.068 0.824±0.051  0.8±0.029  0.824±0.044  0.401 
5 0.888±0.019 0.879±0.023  0.766±0.076 0.834±0.068  0.773±0.031  0.811±0.044  0.541 
6 0.837±0.022 0.88±0.021  0.832±0.069 0.801±0.075  0.715±0.034  0.787±0.047  0.795 
7 0.885±0.019 0.86±0.023  0.763±0.073 0.732±0.081  0.725±0.032  0.762±0.047  1.03 

ACC-tumor, accuracy of slice with tumor in the final decision slices. 

TABLE VIII 
PERFORMANCE OF MODEL FOR VALIDATION SET OF CROSS-VALIDATION IN 

PROSTATEX DATASET 
 Modality ACC-slice ACC-case 
Wang et. [9] T2-tra+ADC 0.761±0.011 0.755±0.025 
Schelb et. [12] T2-tra 0.674±0.020 0.6727±0.033 
Wang et. [43] T2-tra 0.604±0.013 0.64±0.046 
3D-ResNet [40] T2-tra - 0.725±0.022 
PCa –GGNet  T2-tra 0.697±0.014 0.783±0.028 
PCa –GGNet-v2 T2-tra 0.715±0.015 0.804±0.026 
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(each slice, at the slice-level), which may interfere with the 
model fitting and increase the risk of overfitting. Therefore, we 
define a set of attentional slices as the decision path, in which 
these slices are considered more by the framework to maximize 
prediction accuracy. We use the decision path to re-weight the 
importance of slices in the weakly supervised learning to 
weaken the fitting risk brought by the usage of asymmetric GT. 

In the future, we tend to combine inter-slice spatial contexts 
as an additional reference of slice selection and design a better 
DRL-based model with richer actions. Next, we hope to add 
more sequences to realize an mp-MRI-based framework and 
improve accuracy. Additionally, we plan to implement lesion 
detection and segmentation during the prediction, to help 
clinicians understand the decision logic of the model and 
improve the interpretability of the method.  

VII. CONCLUSION 
In this paper, we propose the PCa-GGNet-v2 for end-to-end 

predicting multi-classification task at the patient-level, and 
achieve state-of-the-art performance in both multi-center 
dataset and public dataset for variant clinical applications. The 

PCa-GGNet-v2 is designed to learn from radiologists to form 
slice-level findings to a patient-level decision, which realize 
joint optimization and avoid the risk of asymmetric use of GT. 
We also believe that our method can provide more accurate 
pathological evaluations for real clinical practice of PCa and 
provide a new path for patient-level tasks based on 3D images 
with low resolution of inter-slice. 
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