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Abstract—Patient-specific models are instance-based learning
algorithms that take advantage of the particular features of the patient
case at hand to predict an outcome. We introduce two patient-specific
algorithms based on decision tree paradigm that use AUC as a
metric to select an attribute. We apply the patient specific algorithms
to predict outcomes in several datasets, including medical datasets.
Compared to the patient-specific decision path (PSDP) entropy-based
and CART methods, the AUC-based patient-specific decision path
models performed equivalently on area under the ROC curve (AUC).
Our results provide support for patient-specific methods being a
promising approach for making clinical predictions.

Keywords—Approach instance-based, area Under the ROC Curve,
Patient-specific Decision Path, clinical predictions.

I. INTRODUCTION

CLINICAL decision-making may be improved by using
predictive models [1]. Predicting patient outcomes under

uncertainty constitutes an important health care problem.
Enhanced decision models can lead to better patient outcomes
as well as efficient use of health care resources.

The typical paradigm in predictive modeling is to learn
a single model from a database of patient cases, which is
then used to predict outcomes for future patient cases [2].
This approach is known as population-wide model because
it is intended to be applied to an entire population of
future cases. Examples of popular population-wide methods
are decision trees, logistic regression, neural networks and
Bayesian networks.

In contrast to that general approach, a patient-specific
model consists of learning models that are tailored to the
particular features of a given patient. Thus, a patient-specific
model is specialized to the patient case at hand, and it is
optimized to predict especially well for that case. Moreover,
patient-specific models can also be seen as examples of
instance-based learning schemes, of which k-nearest neighbor,
local regression and lazy decision trees are examples.

Instance-based algorithms learn a distinct model for a test
instance and take advantage of the features in the test instance
to learn the model [3]. Typically, the instance-based algorithms
are lazy, since no model is constructed a priori before a test
instance becomes available, and a model is inferred only when
a prediction is needed for a new instance [4]. In contrast,
algorithms that learn population-wide models are eager since
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such explicitly build a model by training data before a test
instance becomes available.

There are several advantages of patient-specific models
over population-wide methods. For instance, patient-specific
models may have better predictive performance for taking
advantage of any particular characteristic of the case at
hand, whereas population-wide methods converge to an
average method, derived for an entire population. Second,
a patient-specific model structure is usually simpler than its
population-wide counterpart. Thus, a patient-specific model
can provide a more succinct explanation of its decision
making. Third, the construction of a patient-specific models
may be computationally faster, though this advantage is offset
by the observation that a patient-specific method has to
construct a distinct model for each patient case of interest
while a population-wide method has to construct just a single
model. Finally, the task of handling of missing features is
simplified on patient-specific approach.

In this paper, we investigate the performance of two
patient-specific methods, based on the lazy decision tree
approach. We compare the performance of the AUC-based
patient-specific methods with the entropy-based and CART
models. We focus on the discriminating performance of the
four methods and evaluate them using the area under the ROC
curve (AUC) [5].

The remainder of this paper is organized as follows. Section
II presents background and related work on instance-based
methods. Section III provides details of the patient-specific
decision path algorithms that we have developed. Section
IV describes the datasets, shows experimental methods and
presents and discusses the results of the patient-specific
decision path algorithm on several datasets. Section V presents
our conclusions.

II. BACKGROUND

The canonical instance-based method is the
nearest-neighbor technique, that is, when the most similar
training instance to a given test instance is located its target
value is returned as the prediction [6]. For a test instance, the
k-Nearest Neighbor (KNN) method, for example, selects the
k most similar training instances and either averages or takes
a majority vote of their target values. Modified versions of
kNN have been applied successfully to medical databases for
diagnosis and knowledge extraction [7]. Other instance-based
methods are not as reliant on a similarity measure as is the
case for the nearest-neighbor methods, taking advantage of
the values of the predictors in the test instance to learn a
model.
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One of the most popular algorithms of decision tree is
CART [8]. This algorithm is based on population-wide model
and it is used specially to explain and predict one outcome
from collected data. This method allows to build individual
groups that are characterized by the same values of attributes.
Another peculiarity is that CART is a kind of binary tree.
These characteristics make it easy to be interpreted.

Friedman et al. [4] have described the LazyDT method
that searches for the best CART-like decision tree for a
test instance. When compared to standard population-wide
methods, for inducing decision trees, as ID3 and C4.5, LazyDT
does not perform pruning, handles only discrete variables, and
has higher accuracy on average.

Zheng et al. [9] have developed an instance-based method
called the Lazy Bayesian Rules (LBR) learner that builds a
rule tailored to the values of the predictors of the test instance,
used to classify it. A LBR rule consists of: 1) a conjunction of
the features (predictor-value pairs) present in the test instance
as the antecedent, and 2) a consequent naive Bayes classifier
that consists of the target variable as the parent of all other
predictors that do not appear in the antecedent. The classifier
parameters are estimated from those training instances that
satisfy the antecedent. A greedy step-forward search selects
the optimal LBR rule for a test instance to be classified. LBR
uses values of predictors in the test instance to drive the search
for a suitable model in the model space and, when compared
to a variety of population-wide methods, LBR has reached
higher accuracy on average.

Visweswaran and colleagues have developed and applied
an instance-based algorithm that performs Bayesian model
averaging over LBR models [2], [10], using the features of
the test case to drive the search. The prediction for the test
case target variable is obtained by combining the predictions of
the selected models weighted by their posterior probabilities.
This method has obtained higher accuracy than LBR on a
range of non-medical datasets and also performed better than
several population-wide methods on a pneumonia dataset,
when evaluated within a clinically relevant range of the ROC
curve. Furthermore, instance-based algorithms that use the test
instance to drive the search over a space of Bayesian network
models have been developed and applied to patient-specific
modeling with good results [11], [12].

Ferreira et al. [13] have developed patient-specific decision
path (PSDP) algorithms that can build a decision path to
predict patient outcome. Given a patient for whom the values
of the features are known, these algorithms construct a
decision path using a subset of those features. Two selection
criteria were investigated for selecting features: balanced
accuracy and information gain. Results obtained with those
algorithms using clinical datasets were compared with CART
using the AUC metric.

III. PATIENT-SPECIFIC DECISION PATH ALGORITHMS
BASED ON AUC

The proposed patient-specific decision path algorithm uses
AUC as a metric to select patient‘s features that will compose
the path [14]. The Area under the ROC Curve (AUC)

is a widely used measured of performance of supervised
classification rules. It has the attractive property of circumvent
the need to specify misclassification costs.

Algorithm 1 Algorithm of decision models to patient-specific,
that use AUC-Split metric (PSDP-AUC-Split).

1:
2: Input: labels, dataset, testset
3: repeat
4: for i = 1 to size(testset) do
5: subset = getsubset(dataset, testset(i)).
6: diffset = dataset− subset
7:
8: partition(1) = sum(subset+, diffset+)
9: partition(2) = sum(subset−, diffset−)

10:
11: {descend, in sort function (below), means the way

of ordering the partitions}
12: coordinates = sort(partition,′ descend′)
13:
14: fpr = false positive rate based on coordinates matrix
15: tpr = true positive rate based on coordinates matrix
16: AUC = trapz(fpr, tpr) {trapz calculate the area

of an trapezoid, through of rates extracted from
coordinates matrix}

17:
18: AUCvector(i) = AUC
19: if AUC < AUCbest then
20: AUCbest = AUC
21: end if
22: end for
23: path = selected attribute according with AUCbest

24: dataset = dataset according with the selected attribute
25: dataset diff = dataset without instances according

selected attributes
26: eProbpath = calculate the prediction probability of one

label belong to positive or negative class
27: predictedLabel = max(eProblabel)
28: until dataset to be empty, dataset belongs only an

unique class or the number of attributes of the dataset
to be empty

29: Output: eProblabel, predictedLabel and path

The use of AUC as a metric to select attributes in a
decision tree was introduced by Ferri and colleagues [15], [16].
Based on the optimal choice of possible labels of the tree,
the AUC-split criterion leads to good AUC values, without
compromising the accuracy if a single labeling is chosen.
Thus, for a two class classification problem and a tree with
n leaves, there are 2n possible labels, of which n + 1 are
optimal. Such optimal labeling gives the convex hull for the
considered leaves. Algorithm 1 shows the pseudo code of the
patient-specific decision path that uses the AUC-split proposed
by Ferri.

In contrast, another way to use the AUC metric to select
patient features requires the prediction of a class probability
or some other score as proposed by [17].
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In this case, a leave-one-out cross-validation scheme was
employed in order to generate the probability estimate and
further calculating a Mann-Whitney-Wilcoxon test statistic,
which directly related to the AUC. To avoid over fitting,
Laplace smoothing [18] was employed when estimating class
probabilities. The patient-specific decision path that uses this
standard approach just described is shown in the pseudo code
of Algorithm 2.

Algorithm 2 Algorithm of decision models to patient-specific,
that use AUC metric (PSDP-STD-AUC).

1:
2: Input: labels, dataset, testset
3: repeat
4: eProb = calculate the probability of happens one of the

two classes to each one of the dataset instances
5:
6: for i = 1 to size(testset) do
7: subset = getsubset(dataset, testset(i)).
8: diffset = dataset− subset
9:

10: eProb(subset) = calculate the probabilities
according with testset

11: eProb(diffset) = calculate the probabilities for
different data of the testset

12:
13: AUC = colAUC(trueProbability, labels)
14:
15: AUCvector(i) = AUC
16: if AUC < AUCbest then
17: AUCbest = AUC
18: end if
19: end for
20: path = selected attribute according with AUCbest

21: dataset = dataset according with the selected attribute
22: dataset diff = dataset without instances according

selected attributes
23: eProbpath = calculate the prediction probability of one

label belong to positive or negative class
24: predictedLabel = max(eProblabel)
25: until dataset to be empty, dataset belongs only an

unique class or the number of attributes of the dataset
to be empty

26: Output: eProblabel, predictedLabel and path

IV. EXPERIMENTAL RESULTS

In this section, we present the computational experiments
performed to validate the proposed methods, as well as the
employed datasets, the performance measures and algorithm
parameter settings used for evaluation.

The proposed patient-specific decision path algorithms
were implemented in [19] and all computational experiments
were performed on a Intel Core i5 personal computer, with
frequency of 2.5GHz, 8GB of RAM and running the the Mac
OS X 64-bit Yosemite.

A. Datasets

Concerning the datasets, there are UCI clinical datasets,
including two on heart disease, two on diabetes and one cancer
patients. Brief descriptions of the datasets are given in Table
I.

In addition to UCI datasets, two others about heart failure
are also used. These datasets were provided by the University
of Pittsburgh. A brief description of them is given below.

Heart failure is a problem that affects approximately 5
million people in the United States. This disease has taken
about one million people to hospital each year due to a
primary discharge diagnosis of heart failure and approximately
two million with a secondary discharge diagnosis of same
condition. All data about heart failure was collected by
192 general acute care hospitals in Pennsylvania in 1999,
consisting of heart failure patients who were hospitalized
from the Emergency Departments. Both datasets sum up
11, 178 cases and 21 variables, including electrocardiograph,
radiographic, clinical and other data collected.

The outcome of heart failure, datasets are binary and
express two results: first, the occurrence of death during the
hospitalization and second, the development of one or another
serious medical complications during the hospitalization,
including death.

When pre-processing the data, continuous variables were
discretized using the entropy-based method developed by
Fayyad and Irani [20]. Missing values were imputed using
an iterative non-parametric imputation algorithm described
by Caruana [21] which has previously been applied to fill
in missing predictor values for medical datasets with good
results.

B. Test Settings

The algorithms were evaluated using 20-fold
cross-validation, i.e, each dataset were randomly divided into
20 approximately equal sets, such that each set has a similar
proportion of individuals who developed the positive outcome.
For each algorithm, 19 sets were combined and evaluated on
the remaining test set. This procedure was repeated for each
possible test set. A prediction for the outcome variable was
obtained for every instance in a dataset. The final result of
the algorithms are presented in terms of AUC, processing
time and path length. The AUC algorithms were compared
with the PSDP-Entropy algorithm proposed in [13].

C. Results

Table II shows the AUCs obtained by the four algorithms.
For each dataset, we present the mean AUC based on the
20-fold cross-validation and the respective confidence intervals
at the 0.05 level. Overall, the two AUC based split algorithms
perform comparably to the PSDP-Entropy and CART methods.
Except for the Tic-tac-toe dataset, there is no statistically
significant difference between the four methods.

In the tic-tac-toe dataset, the PSDP-STD-AUC performed
better, with a mean AUC of 0.98. ANOVA analysis [22] reveal
that there is not statistical significant different between the four
methods (p >> 0.05).
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TABLE I
BRIEF DESCRIPTION OF USED UCI DATASETS

Dataset Instances Attributes Positive Cases (%)

Australian 690 14 44%
Breast 699 9 34%
Cleveland 296 13 45%
Corral 128 6 44%
Crx 653 15 45%
Diabetes 768 8 35%
Flare 1066 10 17%
Glass 2 163 9 47%
Heart 270 13 44%
Pima 768 8 35%
Sonar 208 60 53%
Tic-tac-toe 958 9 65%
Vote 435 16 61%

TABLE II
THE AUC RESULTS FOR THE UCI datasets. FOR EACH ALGORITHM THE TABLE GIVES THE MEAN AUC OBTAINED FROM 20-FOLD CROSS-VALIDATION

ALONG WITH 95% CONFIDENCE INTERVALS. STATISTICALLY SIGNIFICANT MEAN AUC ARE IN BOLD

Datasets CART PSDP-Entropy PSDP-STD-AUC PSDP-AUC-Split

Australian 0.880 [0.852,0.908] 0.919 [0.910,0.928] 0.896 [0.877,0.916] 0.889 [0.869,0.909]
Breast 0.952 [0.931.0.974] 0.984 [0.980,0.988] 0.985 [0.978,0.992] 0.983 [0.975,0.991]
Cleveland 0.835 [0.769,0.901] 0.862 [0.837,0.888] 0.845 [0.779,0.911] 0.834 [0.773,0.895]
Corral 0.985 [0.971,1.000] 1.000 [1.000,1.000] 1.000 [1.000,1.000] 1.000 [1.000,1.000]
Crx 0.887 [0.853,0.921] 0.920 [0.911,0.929] 0.879 [0.855,0.903] 0.885 [0.861,0.909]
Diabetes 0.818 [0.780,0.856] 0.827 [0.812,0.842] 0.815 [0.781,0.850] 0.820 [0.785,0.855]
Flare 0.692 [0.646,0.739] 0.730 [0.717,0.745] 0.718 [0.680,0.757] 0.715 [0.681,0.749]
Glass 2 0.848 [0.764,0.931] 0.831 [0.795,0.867] 0.870 [0.794,0.946] 0.865 [0.785,0.945]
Heart 0.840 [0.783,0.897] 0.879 [0.862,0.898] 0.877 [0.832,0.921] 0.877 [0.831,0.923]
Pima 0.825 [0.794,0.855] 0.825 [0.810,0.840] 0.813 [0.769,0.858] 0.811 [0.781,0.841]
Sonar 0.844 [0.784,0.903] 0.889 [0.867,0.911] 0.862 [0.818,0.907] 0.887 [0.835,0.939]
Tic-tac-toe 0.920 [0.899,0.942] 0.960 [0.952,0.969] 0.989 [0.978,1.000] 0.977 [0.968,0.986]
Vote 0.966 [0.934,0.999] 0.986 [0.982,0.990] 0.985 [0.970,1.000] 0.985 [0.975,0.995]

Table III shows the results obtained by four algorithms
to heart failure datasets. The two AUC algorithms perform
comparably to the entropy and CART methods. In this case,
it was make the ANOVA analysis and we verify that there is
not statistical significant difference between the four methods
too (p >> 0.05).

Table IV shows the running time of the proposed algorithms
(means pm standard deviation). Each approach was run 30
times for each dataset. Since the entropy based and CART
algorithms require less operations, they presented better mean
running time when compared to the other two methods.
The PSDP-STD-AUC requires an estimation of the class
probabilities, which demands several extra computational
operations. Even though the PSDP-AUC-Split does not require
class probability estimation, however it needs to sort leaves for
obtaining the convex hull, for each split, also demanding extra
CPU time. As per an ANOVA analysis, we verified that there is
significant difference on running time, since the entropy-based
model runs faster (p << 0).

The same experiment was made for heart failure datasets.
The results are quite similar to UCI datasets ones: there is
meaningful running time difference between PSDP-Entropy
and CART algorithms compared to PSDP-STD-AUC and
PSDP-AUC-Split algorithms, evidencing differences in
algorithm complexities. For these datasets, the ANOVA
analysis shows that there is statistical significant difference

between the four methods too (p << 0). Another result
obtained by the algorithms that can be analyzed is the
complexity of the generated models, considering the path
length to reach a label or diagnosis. Table V shows the path
length of the generated models for UCI datasets.

PSDP-based algorithms generate specific paths for each
instance and an only one average can be calculated for each
approach. However, CART algorithm generate decision trees
and we fairly introduce two columns taking in account the
worst and the best way for reaching labels in the decision
trees.

CART B algorithm has obtained, on average, smaller paths
than the other algorithms, for all UCI datasets, except for
datasets Breast and Corral, in which PSDP-STD-AUC has
reached the best averages, 2.193 and 3.000 respectively.

Table VI shows the results of complexity of the models
generated for the two heart failure datasets. Once again, path
length averages of CART algorithm take in account the worst
and the best cases for obtaining a label in the decision tree.

The results presented by Table VI show that the
PSDP-STD-AUC algorithm has obtained, on average, smaller
paths than the other algorithms for heart failure datasets. The
difference was evident when compared with another approach
instance-based (PSDP-Entropy) and when compared with the
population-based approach, even in the best case. One can see
that there are evidences that the PSDP-STD-AUC algorithm
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TABLE III
THE AUC RESULTS FOR THE HEART FAILURE DATASETS. FOR EACH ALGORITHM THE TABLE GIVES THE AUC MEAN, OBTAINED FROM 20-FOLD

CROSS-VALIDATION ALONG WITH 95% CONFIDENCE INTERVALS. STATISTICALLY SIGNIFICANT MEAN AUC ARE IN BOLD

Algorithms HEART D HEART DC

CART 0.682[0.651,0.712] 0.652[0.635,0.670]
PSDP-Entropy 0.697[0.672,0.722] 0.664[0.651,0.678]
PSDP-AUC-Split 0.702[0.671,0.732] 0.636[0.620,0.651]
PSDP-STD-AUC 0.709[0.684,0.735] 0.652[0.635,0.670]

TABLE IV
RESULTS OF EXECUTION TIME FOR PROPOSED ALGORITHMS, COMPARED TO CART AND PSDP-ENTROPY ALGORITHMS

Datasets CART PSDP-Entropy PSDP-STD-AUC PSDP-AUC-Split

Australian 0.443±0,019 3.346±0.046 35.821±1.464 7.388±0.138
Breast 0.376±0,006 1.140±0.010 10.102±0.048 2.115±0.025
Cleveland 0.361±0,006 1.091±0.011 10.827±0.052 2.466±0.026
Corral 0.327±0,004 0.170±0.005 1.651±0.019 0.341±0.009
Crx 0.433±0,012 3.342±0.032 34.111±0.094 7.620±0.229
Diabetes 0.384±0,005 1.974±0.013 17.305±0.094 4.002±0.040
Flare 0.447±0,008 4.348±0.021 36.206±1.179 8.019±0.322
Glass 2 0.330±0,005 0.427±0.007 3.298±0.038 0.920±0.014
Heart 0.351±0,005 1.042±0.011 10.301±0.057 2.220±0.019
Pima 0.383±0,006 1.973±0.012 19.175±0.093 3.781±0.137
Sonar 0.372±0,004 3.730±0.029 34.608±0.134 8.040±0.038
Tic-tac-toe 0.430±0,006 2.527±0.013 26.731±0.124 4.647±0.029
Vote 0.358±0,005 1.366±0.017 14.300±0.089 2.686±0.018

TABLE V
RESULTS OF PATH LENGTH FOR ALL ALGORITHMS TESTED AT THIS WORK, FOR UCI DATASETS. THE CART W IS THE TRADITIONAL CART,

CONSIDERING THE WORST CASE, I.E. HIGHER LEVEL OF THE DECISION TREE. CART B IS ALSO THE TRADITIONAL CART, HOWEVER CONSIDERING
THE BEST CASE, I.E., LOWER LEVEL OF THE DECISION TREE (FIRST LEAF FOUND). FOR EACH CASE (BEST AND WORST ONES), THE PATH LENGTH

AVERAGES WAS CALCULATED

Datasets CART W CART B PSDP-Entropy PSDP-STD-AUC PSDP-AUC-Split

Australian 12.050[9,17] 2.000[2,2] 6.162[2,13] 4.801[3,9] 7.007[2,14]
Breast 6.450[5,10] 2.850[2,3] 2.331[1,6] 2.193[1,4] 2.381[1,6]
Cleveland 7.700[6,9] 2.750[2,3] 5.804[3,12] 2.895[2,8] 5.959[3,13]
Corral 4.000[4,4] 3.000[3,3] 3.890 [3,5] 3.000[3,3] 3.890[3,15]
Crx 11.400[10,14] 2.000[2,2] 6.058[2,14] 4.578[3,7] 6.934[3,15]
Diabetes 7.200[7,8] 2.950[2,3] 5.967[2,7] 3.804[2,6] 6.656[3,8]
Flare 12.200[10,15] 2.000[2,2] 7.429[2,9] 3.257[2,6] 8.134[3,10]
Glass 2 5.000[5,5] 2.000[2,2] 7.429[2,9] 3.061[2,4] 8.134[3,10]
Heart 5.650[5,7] 2.800[2,3] 6.607[3,12] 3.555[2,6] 6.618[3,13]
Pima 7.450[7,8] 2.950[2,3] 5.998[2,7] 3.786[2,6] 6.690[3,8]
Sonar 6.500[6,8] 2.050[2,3] 6.442[2,59] 3.125[2,5] 5.831[3,56]
Tic-tac-toe 9.750[9,10] 3.000[3,3] 4.696[3,7] 3.037[2,6] 4.750[3,7]
Vote 5.500[4,6] 1.950[1,2] 3.112[2,11] 2.845[2,6] 3.087[2,13]

TABLE VI
RESULTS OF PATH LENGTH FOR ALL ALGORITHMS TESTED AT THIS WORK, FOR PITTSBURGH DATASETS. THE CART W IS THE TRADITIONAL CART,
CONSIDERING THE WORST CASE, I.E. HIGHER LEVEL OF THE DECISION TREE. CART B IS ALSO THE TRADITIONAL CART, HOWEVER CONSIDERING
THE BEST CASE, I.E., LOWER LEVEL OF THE DECISION TREE (FIRST LEAF FOUND). FOR EACH CASE (BEST AND WORST ONES), THE PATH LENGTH

AVERAGES WAS CALCULATED

Algorithms HEART D HEART DC

CART W 16.250[14,19] 20.800[18,24]
CART B 3.950[3,4] 4.400[4,5]
PSDP-Entropy 11.002[3,19] 9.592[3,16]
PSDP-AUC-Split 11.139[5,20] 9.291[4,17]
PSDP-STD-AUC 3.412[2,10] 2.875[2,6]

may generate less complex models or, at least, shorter paths
than its counterparts.

V. CONCLUSION

We have introduced PSDP, a new patient-specific approach
for predicting outcomes, based on the AUC metric to select
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patient attributes. We evaluated this method on several
datasets, including medical data. Computational experiments
have shown that the PSDP-AUC based methods perform
equivalently to the state-of-art-based methods concerning
AUC mean, in 20-fold cross-validation with 95% confidence
interval. However, regarding the path lengths obtained for each
instance, the PSDP-STD-AUC has presented very competitive
results, specially in larger datasets.

Patient-specific models may have better predictive
performance for taking advantage of any particular
characteristic of the case at hand, providing a more
succinct explanation of its decision, once they construct a
distinct model for each patient case of interest..

In future work, we plan to deal with some of limitations
of the proposed method and to evaluate the effect of different
discretization methods. Besides, we also intent to extend the
performance evaluation of both proposed approaches for large
datasets.

REFERENCES

[1] Abu-Hanna, A. and P. J.:Lucas, Prognostic models in medicine. AI and
statistical approaches. Methods of Information in Medicine, 2001. 40(1):
p. 1-5.

[2] Visweswaran, S. and G.F. Cooper.: Patient-specific models for predicting
the outcomes of patients with community acquired pneumonia. In AMIA
Annu Symp Proc. 2005.

[3] T. M. Mitchell.: Machine Learning. 1st. ed, McGraw-Hill, Inc., New York,
NY, USA, 1997.

[4] J. H. Friedman.: Lazy decision trees. In Proceedings of the thirteenth
national conference on Artificial intelligence, v.1 (AAAI’96), v.1 AAAI
pp. 717-724, 1996.

[5] Foster J. Provost, Tom Fawcett, and Ron Kohavi.: The Case
against Accuracy Estimation for Comparing Induction Algorithms. In
Proceedings of the Fifteenth International Conference on Machine
Learning (ICML ’98), San Francisco, CA, USA, 445-453, 1998.

[6] Cover, T. and P. Hart.: Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 1967. 13(1): p. 21-27.

[7] Gagliardi, F.: Instance-based classifiers applied to medical databases:
diagnosis and knowledge extraction. Artif Intell Med, 2011. 52(3): p.
123-39.

[8] L. Breiman and J. Friedman and R. Olshen and C. Stone: Classification
and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[9] Zheng, Z.J. and G.I. Webb.: Lazy learning of Bayesian rules. Machine
Learning, 200. 41(1): p. 53-84.

[10] Visweswaran, S. and G.F. Cooper.: Instance-specific Bayesian model
averaging for classification. In Proceedings of the Eighteenth Annual
Conference on Neural Information Processing Systems. Vancouver,
Canada, 2004.

[11] Visweswaran, S., et al.: Learning patient-specific predictive models from
clinical data. J Biomed Inform, 2010. 43(5): p. 669-685.

[12] Visweswaran, S. and G.F. Cooper.: Learning instance-specific predictive
models. Journal of Machine Learning Research, 2010. 11(Dec): p.
3333-3369

[13] Ferreira A, Cooper GF and Visweswaran S.: Decision path models for
patient-specific modeling of patient outcomes. Proceedings of the Annual
Symposium of the American Medical Informatics Association (2013)
413-21. PMID: 24551347. PMCID: PMC3900188

[14] David J. Hand and Robert J. Till.: A Simple Generalisation of the Area
Under the ROC Curve for Multiple Class Classification Problems. Mach.
Learn. 45, 171-186, 2, October, 2001.

[15] Csar Ferri and Peter Flach and Jos Hernndez-Orallo.: Learning Decision
Trees Using the Area Under the ROC Curve. Proceedings of the 19th
International Conference on Machine Learning, Pages 139-146, Sydney,
NSW, Australia, July 8-12, 2002.

[16] Csar Ferri and Peter Flach and Jos Hernndez-Orallo.: Rocking the ROC
Analysis within Decision Trees. Technical Report, December, 20, 2001.

[17] Tom Fawcett.: An Introduction to ROC Analysis. Elsevier Science Inc.
New York, USA, June, 2006.

[18] Bianca Zadrozny and Charles Elkan.: Obtaining calibrated probability
estimates from decision trees and naive Bayesian classifiers. In
Proceedings of the Eighteenth International Conference on Machine
Learning (ICML ’01). San Francisco, CA, USA, 609-616, 2001.

[19] MATLAB: Version 8.4.0 (R2014b) The Mathworks Inc., 2014.
Accessed: 02-17-2015

[20] Fayyad, U. M. and Irani, K. B.: Multi-Interval Discretization of
Continuous-Valued Attributes for Classification Learning. ’IJCAI’ , pp.
1022-1029, 1993.

[21] Caruana, R.: A non-parametric EM-style algorithm for imputing missing
values. in Proceedings of Artificial Intelligence and Statistics. 2001.
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