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Abstract

Long computation times of non-linear (i.e. accounting for geometric and material non-linearity)

biomechanical models have been regarded as one of the key factors preventing application of such

models in predicting organ deformation for image-guided surgery. This contribution presents real-

time patient-specific computation of the deformation field within the brain for six cases of brain

shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite

element procedures implemented on a graphics processing unit (GPU). In contrast to commercial

finite element codes that rely on an updated Lagrangian formulation and implicit integration in

time domain for steady state solutions, our procedures utilise the total Lagrangian formulation

with explicit time stepping and dynamic relaxation. We used patient-specific finite element

meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic

material properties for the brain tissue and appropriate contact conditions at the boundaries. The

loading was defined by prescribing deformations on the brain surface under the craniotomy.

Application of the computed deformation fields to register (i.e. align) the preoperative and

intraoperative images indicated that the models very accurately predict the intraoperative

deformations within the brain. For each case, computing the brain deformation field took less than

4 s using a NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation

time in comparison to our previous study in which the brain deformation was predicted using a

commercial finite element solver executed on a personal computer.
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1. Introduction

Surgery planning is typically conducted using high quality preoperative radiographic

images. Craniotomy (i.e. surgical opening of the skull) and other surgical procedures result

in brain deformations that lead to misalignment between the actual position of pathology and

critical healthy tissues and their positions determined from the preoperative images

(Warfield et al., 2002). Therefore, predicting the intraoperative brain tissue deformations to

align the high-quality preoperative images to the intraoperative geometry (in a process

known as non-rigid registration) is recognised as a critical tool in image-guided

neurosurgery (Fedorov et al., 2008).

In the past non-rigid registration relied solely on image processing methods that predict the

deformation field within the brain without taking into account the brain tissue mechanics

(Beauchemin and Barron, 1995; Viola and Wells III, 1997; Warfield et al., 2001). As such

methods do not ensure plausibility of the predicted deformations, biomechanical models, in

which predicting the brain deformations is treated as a computational problem of solid

mechanics, have been introduced (Archip et al., 2007; Edwards et al., 1998; Hu et al., 2007;

Kyriacou and Davatzikos, 1998; Kyriacou et al., 1999; Miga et al., 1998; Miga et al., 2000;

Miga et al., 2001; Skrinjar et al., 1998; Skrinjar et al., 2001; Warfield et al., 2002). In most

practical cases, such models utilise the finite element method (Bathe, 1996) to solve sets of

partial differential equations of solid mechanics governing the behaviour of the analysed

continuum. The finite element method has been verified in numerous applications in

computer-aided engineering and biomechanics. However, its application in neurosurgery

poses new challenges as the deformation field within the brain must be computed within the

real-time constraints of image-guided neurosurgery. A precise definition of such constraints

is still lacking, and values varying from tens of seconds (Grimson et al., 1998; Platenik et

al., 2002; Warfield et al., 2002) to tens of minutes, for slowly occurring brain deformations,

(Miga et al., 1999; Skrinjar et al., 2002) have been suggested. In this study, we follow a

definition of real-time constraints of image-guided neurosurgery suggested by Chrisochoides

et al. (2006) who stated that the computation time of the registration application should not

exceed the time of acquisition of the intraoperative magnetic resonance images and less time

the computation takes the better. Similar opinion has been expressed by Jalote-Parmar and

Badke-Schaub (2008) who listed timely providing the surgeons with the intraoperative organ

position among the key factors influencing intraoperative surgical decision making. Thus,

the studies by Chrisochoides et al. (2006) and Jalote-Parmar and Badke-Schaub (2008) place

the real-time constraints of image-guided neurosurgery within an order of seconds or tens of

seconds rather than tens of minutes and highlight the importance of reducing the

computation time of the registration algorithms.

So far, real-time prediction of the brain deformation has relied on linear finite element

procedures in which the deformation is assumed to be infinitesimally small (i.e. the

equations of solid mechanics are integrated over the undeformed preoperative brain

geometry) and the brain tissue is treated as a continuum exhibiting linear stress–strain

relationship (Archip et al., 2007; Clatz et al., 2005; Ferrant et al., 2001; Skrinjar et al., 2002;

Warfield et al., 2002). However, the brain surface deformations due to craniotomy can

exceed 20 millimeters (Roberts et al., 1998) and tend to be above 10 millimeters for around

30% of patients (Hill et al., 1998). These values are inconsistent with the infinitesimally

small deformation assumption that implies that geometry changes of the analysed continuum

are negligible and equations of continuum mechanics can be solved over the initial

(undeformed) geometry. Therefore, in several studies (Hu et al., 2007; Wittek et al., 2007;

Wittek et al., 2009; Xu and Nowinski, 2001) finite element models utilising geometrically

non-linear (i.e. finite deformations) formulation of solid mechanics have been applied to

compute deformation field within the brain for neuroimage registration. Despite facilitating

Wittek et al. Page 2

Prog Biophys Mol Biol. Author manuscript; available in PMC 2011 December 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



accurate predictions of the brain deformations, the non-linear biomechanical models have

been, so far, of little practical importance as the algorithms used in such models led to

computation times greatly exceeding the real-time constraints of neurosurgery. For instance,

Wittek et al. (2009) reported the computation time of over 1700 s on a standard personal

computer when predicting the brain deformations using a model with around 50 000 degrees

of freedom implemented in the commercial non-linear finite element solver LS-DYNA™.

Recently our group developed and implemented specialised non-linear finite element

algorithms and solvers for real-time computation of soft tissue deformation. Verification of

the numerical accuracy and numerical performance of these algorithms have been previously

reported in the literature (Miller et al., 2007; Joldes et al., 2009a; Joldes et al., 2009b; Joldes

et al., 2010a). In this study, following our recent work (Joldes et al., 2009c), we evaluate

their accuracy and performance in a practical context through application in predicting

deformation fields within the brain for six cases of craniotomy-induced brain shift. In the

accuracy evaluation, the preoperative image data warped using the deformations predicted

by means of our models and algorithms are compared with the intraoperative images. The

results demonstrate that biomechanical models using specialised non-linear finite element

algorithms facilitate accurate prediction of deformation field within the brain for

computation times below 40 s on a standard personal computer and below 4 s on a graphics

processing unit (GPU).

2. Material and Methods

2.1 Medical context

We analysed six cases of craniotomy-induced brain shift that represent different situations

that may occur during neurosurgery as characterised by tumours located in different parts of

the brain: anteriorly (for Cases 1, 2 and 6), laterally (for Case 3) and posteriorly (for Cases 4

and 5) (Fig. 1). Case 6 was investigated in our previous studies (Joldes et al., 2009a; Joldes

et al., 2009b; Wittek et al., 2007; Wittek et al., 2009). In this paper, the previously obtained

results for Case 6 are presented in a format consistent with a new analysis we conduct here

for Cases 1 to 5.

2.2 Biomechanical models for computing brain deformation

2.2.1 Brain tissue constitutive modelling for biomechanical models—Despite

continuous efforts (Sinkus et al., 2005; Turgay et al., 2006), commonly accepted non-

invasive methods for determining patient-specific constitutive properties of the brain and

other soft organs’ tissues have not been developed yet. Constitutive models of the brain

tissue applied for computing the brain deformation for non-rigid registration vary from

simple linear-elastic model (Warfield et al., 2000) to Ogden-type hyperviscoelasticity

(Wittek et al., 2007) and bi-phasic models relying on consolidation theory (Miga et al.,

2000; Miga et al., 2001). However, as explained in more detail in section Loading and

Boundary Conditions, the strength of the modelling approach used in this study is that the

calculated brain deformations depend very weakly on the constitutive model and mechanical

properties of the brain tissues. Therefore, following Joldes et al. (2009a), we used the

simplest hyperelastic model, the neo-Hookean (Yeoh, 1993). The rationale for selecting the

hyperelastic constitutive model was that it has been indicated in the literature (Miller and

Chinzei, 1997) that such models very well represent the behaviour of the brain tissues

undergoing large deformations.

Based on the experimental data by Miller et al. (2000) and Miller and Chinzei (2002), the

Young’s modulus of 3000 Pa was assigned for the brain parenchyma tissue. For tumour, we

used the Young’s modulus two times larger than for the parenchyma, which is consistent
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with the experimental data of Sinkus et al. (2005). There is strong experimental evidence

that the brain tissue is (almost) incompressible (Pamidi and Advani, 1978; Sahay et al.,

1992; Walsh and Schettini, 1984) so that we used the Poisson’s ratio of 0.49 for the

parenchyma and tumour. Following Wittek et al. (2007), the ventricles were assigned the

properties of a very soft compressible elastic solid with Young’s modulus of 10 Pa and

Poisson’s ratio of 0.1 to account for possibility of leakage of the cerebrospinal fluid from the

ventricles during surgery.

2.2.2 Loading and boundary conditions—As explained in the previous section, there

are always uncertainties regarding the patient-specific properties of the living tissues. To

reduce the effects of such uncertainties, we loaded the models by prescribing displacements

on the exposed (due to craniotomy) part of the brain surface (Fig. 2). It has been suggested

by Skrinjar et al. (2002) and shown by Wittek et al., (2009) that for this type of loading, the

unknown deformation field within the brain depends very weakly on the mechanical

properties of the brain tissues. The displacements for loading the models were determined

from distances between the preoperative and intraoperative cortical surfaces segmented in

the T1 MRIs. The correspondences between the preoperative and intraoperative surfaces

were determined by applying the vector-spline regularisation algorithm to the surface

curvature maps (Arganda-Carreras et al., 2006; Joldes et al., 2009d).

To define the boundary conditions for the remaining nodes on the brain model surface, a

contact interface was defined between the rigid skull model and areas of the brain surface

where the nodal displacements were not prescribed. The contact formulation described in

Joldes et al. (2009a) was used. This formulation prevents the brain surface from penetrating

the skull while allowing for frictionless sliding and separation between the brain and skull.

Although modelling of the brain-skull interactions through a sliding contact with separation

may be viewed as oversimplification since the anatomical structures forming the interface

between the brain and skull are not directly represented, such modelling has been widely

used in the literature when computing the brain deformations during brain shift (Hu et al.,

2007; Skrinjar et al., 2002; Wittek et al., 2007).

2.2.3 Computational grids; Construction of patient-specific finite element
meshes—Three-dimensional patient-specific brain meshes were constructed from the

segmented preoperative magnetic resonance images (MRIs) obtained from the anonymised

retrospective database of Computational Radiology Laboratory (Children’s Hospital,

Boston, MA). The parenchyma, ventricles and tumour were distinguished in the

segmentation process.

Because of the stringent computation time requirements, the meshes had to be constructed

using low order elements that are not computationally expensive. The under-integrated

hexahedron with linear shape functions is the preferred choice due to its superior

convergence and accuracy characteristics (Shepherd and Johnson, 2009). Many algorithms

are now available for fast and accurate automatic mesh generation using tetrahedral

elements, but not for automatic generation of hexahedral meshes (Viceconti and Taddei,

2003). Template based meshing algorithms could not be used here because of the presence

of irregularly placed and shaped tumours. Our previous experience (Wittek et al., 2007)

indicated that it can take several weeks of work of an experienced analyst to manually build

a patient-specific hexahedral mesh of the brain with a tumour. Therefore, to partly automate

the meshing, we used mixed meshes consisting of both hexahedral and tetrahedral elements

with linear shape functions (Fig. 3, Table 1). The meshes were built using IA-FEMesh (a

freely available software toolkit for hexahedral mesh generation developed at the University

of Iowa) (Grosland et al. 2009) and HyperMesh™ (a high-performance commercial finite

element mesh generator by Altair, Ltd. of Troy, MI, USA). Following the literature (Ito et
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al., 2009; Shepherd et al., 2007), hexahedral elements with Jacobian of below 0.2 were

regarded as of unacceptably poor quality and replaced with the tetrahedral elements.

Because of irregular geometry of ventricles and tumour, vast majority of tetrahedral

elements were located in the ventricles and tumour as well as in the adjacent parenchyma

areas. It took between one and two working days for a graduate student (assisted by an

experienced finite element analyst) to generate the brain mesh for each of the craniotomy

cases analysed in this study.

As the parenchyma was modelled as an incompressible continuum, average nodal pressure

(ANP) formulation by Joldes et al. (2009a) was applied to prevent volumetric locking (i.e.

artificial stiffening due to incompressibility) in the tetrahedral elements. We refer to these

elements as non-locking ones.

To eliminate instabilities (known as zero-energy modes or hourglassing) that arise from one-

point integration, the stiffness-based hourglass control method by Joldes et al. (2009a) was

used for underintegrated hexahedral elements.

2.3 Algorithms for integration of equations of solid mechanics for computing soft tissue
deformation

The details (including verification and validation) of the applied algorithms have been

previously described in the literature (Joldes et al., 2009a; Joldes et al., 2009b; Joldes et al.,

2010a; Miller et al., 2007, Miller et al., 2010). Therefore, only a brief summary is given

here. Computational efficiency of the algorithms for integrating the equations of solid

mechanics used in this study has been achieved through the following two means:

1. Total Lagrangian (TL) formulation for updating the calculated variables (Miller et

al., 2007);

2. Explicit integration in the time domain combined with the algorithm employing

transient terms that optimise convergence to steady state (Joldes et al., 2009b;

Joldes et al., 2010a).

2.3.1 Total Lagrangian formulation—In the total Lagrangian formulation, all the

calculated variables (such as displacements and strains) are referred to the original

configuration of the analysed continuum. The decisive advantage of this formulation is that

all derivatives with respect to spatial coordinates can be pre-computed. As indicated in

Miller et al. (2007), this greatly reduces the computation time in comparison to the updated

Lagrangian formulation used in vast majority of commercial finite element solvers (such as

e.g. LS-DYNA™, ABAQUS™). An additional advantage is that application of the total

Lagrangian formulation simplifies the material law implementation since the hyperelastic

material models, such as the neo-Hookean model we used here, can be easily described

using the deformation gradient.

2.3.2 Explicit integration in time domain with mass proportional damping—In

explicit time integration, such as the central difference method applied in this study, the

treatment of non-linearities is very straightforward as even for non-linear problems, no

iterations are required for a solution during a time step. The displacement and velocity at a

given time step n+1 are calculated by incrementing the solution at the previous step n:

Eq. (1)
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Eq. (2)

where u is the nodal displacement, u ̇ is the nodal velocity, ü is the nodal acceleration, and Δt

is the time step. Using Eq. (1) and Eq. (2), time stepping scheme for solving the equations of

motion of the analysed continuum can be expressed as

Eq. (3)

where R is the vector of externally applied nodal forces, F is the vector of internal nodal

forces, and F=K(u) u (where K is the stiffness matrix). For nonlinear problems, such as the

one analysed in this study, the stiffness matrix K depends on deformation u, which is

indicated by notation K(u).

For the lumped (diagonal) mass matrix M we used in this study, the time stepping scheme

given in Eq. (3) can be decoupled and solution is done at the nodal level (Belytschko, 1976).

Therefore, no system of equations must be solved and the global stiffness matrix of the

entire model does not have to be built.

In consequence, application of explicit integration alone can reduce by an order of

magnitude the time required to compute the brain deformations in comparison to implicit

integration typically used in commercial finite element codes (such as e.g. LS-DYNA™,

ABAQUS™) for steady state solutions (Wittek et al., 2007).

In dynamic relaxation, a mass proportional damping component is added to the equations of

motion (Joldes et al., 2009b) and Eq. (3) becomes

Eq. (4)

where

Eq. (5)

Eq. (6)

In Eqs. (4) – (6), c is the damping coefficient. We use the lumped (i.e. diagonal) mass matrix

for which the algorithm defined in Eq. (4) is explicit. The mass matrix M does not affect the

steady state solution. Therefore, the damping coefficient c, integration time step Δt and mass

matrix M are computed to maximise the convergence rate to steady state and improve the

computational efficiency without compromising the solution accuracy (Joldes et al., 2009b;

Joldes et al., 2010a).

2.4 Implementation of algorithms for computing soft tissue deformation on Graphics
Processing Unit (GPU)

Recent examples of implementation of non-linear finite element algorithms for computing

soft tissue deformation for non-rigid registration on Graphics Processing Unit (GPU) include

Noe and Sørensen (2010) and Joldes et al. (2010b). The first implementation of our basic
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total Lagrangian explicit dynamics algorithm on GPU has been presented by Taylor et al.

(2008). The implementation by Taylor et al. (2008) proved that the algorithm is very well

suited to execution on GPUs and other parallel hardware and shown 16 times computational

speed gain compared with the corresponding implementation on a Central Processing Unit

(CPU) from a typical personal computer. However, it exhibits several key limitations: it can

handle only linear locking tetrahedral elements and a single material type, contains no

features for modelling contact interaction, has no integration step control, and cannot

compute steady state solution. In this study, we use the GPU implementation of our finite

element algorithms summarised in Joldes et al. (2010b) who utilised the NVIDIA Compute

Unified Device Architecture (CUDA), see reference NVIDIA (2008). This implementation

does not suffer from the limitations of the study by Taylor et al. (2008) as it includes

dynamic relaxation that facilitates fast convergence to steady state solution, brain – skull

contact model, several non-linear materials, and supports hexahedral and non-locking

tetrahedral elements that are very efficient and robust in modelling of incompressible

continua such as the brain and other soft tissues. As the details have been given in Joldes et

al. (2010b), only a brief summary is presented here.

As explained in Section 2.3.1, we employ total Lagrangian formulation that allows

precomputation of all derivatives with respect to spatial coordinates in our finite element

algorithms. Therefore, we focused on applying GPU to increase computation speed of the

algorithms’ iterative component (see Eq. 4) that cannot be pre-computed and has to be

performed intraoperatively. As GPUs offer high computation efficiency through their

parallel architecture, at first we identified data-parallel parts of this component. Since each

element and/or node can be seen as a data structure on which computations are made, we

identified the following iterative parts of our algorithms for implementation as GPU kernels

(i.e. separated codes executed on GPU):

1. Computation of the element pressure for non-locking tetrahedral elements;

2. Computation of the nodal pressure for non-locking tetrahedral elements;

3. Computation of nodal forces for hexahedral and non-locking tetrahedral elements

(considered separately in GPU implementation as different integration formulae are

used for hexahedral and tetrahedral elements);

4. Computation of new displacements (Eq. 4) for all nodes in the brain mesh;

5. Enforcing contact conditions with the rigid skull for the nodes located on the brain

surface.

In order to obtain high computation performance, strict guidelines must be followed when

programming a GPU using CUDA (NVIDIA, 2008). One of the most critical guidelines

refers to data transfers between the CPU (that runs a program from which a GPU kernel is

launched) and GPU. Such transfers are relatively slow and in order to minimise them, in the

GPU implementation of our finite element algorithms, all the information needed for the

computations is transferred to the GPU in the initialisation stage (i.e. the transfer occurs only

once).

Complete GPU implementation of the finite element algorithm used in this study for

computing the steady state deformations can be summarised as follows:

1. Initialisation:

• Compute the damping coefficient c, the time step Δt and mass matrix M

that facilitate the fastest convergence to the steady state.
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• Precompute all other needed quantities/variables such as the element

shape functions, hourglass shape vectors for underintegrated hexahedral

elements, initial volumes of the elements etc.

• Transfer all the needed data to the GPU memory.

2. For every iteration step:

a. Apply current loading (in this study the loading is defined by prescribing

the displacements).

b. Compute the nodal forces F corresponding to the current displacement un.

○ Run the GPU kernel that computes the element pressure.

○ Run the GPU kernel that computes the nodal pressure.

○ For each element type:

- Run the GPU kernel that computes the

nodal forces and saves them in the GPU

memory.

c. c) Compute the next displacement vector.

○ Run the GPU kernel that computes the next displacements

using Eq. (4). This kernel also assembles the force vector

and mass matrix.

e) Run the kernel that enforces the contacts.

f) Check for convergence. If the convergence criteria are satisfied, finish the

analysis.

3. Read final displacements from the GPU.

4. Clean up the GPU memory.

2.5 Evaluation of the modelling results accuracy

In image-guided surgery, accuracy of tissue motion prediction is typically assessed by

evaluating the accuracy of alignment between the registered position of the preoperative

image predicted by the non-rigid registration algorithm and the actual patient position

established by an intraoperative image or navigation system. Universally accepted “gold

standards” for such evaluation have not been developed yet (Chakravarty et al., 2008).

Objective metrics of the images alignment can be provided by automated methods using

image similarity metrics, such as e.g. Mutual Information (Viola and Wells III, 1997; Wells

III et al., 1996), Normalised Cross-Correlation (Rexilius et al., 2001) and Dice similarity

coefficient (Dice, 1945; Zou et al., 2004). From the perspective of validation of

biomechanical models for computing the deformation field within the brain, one of the key

deficiencies of such metrics is that they quantify the alignment error in terms that do not

have straightforward geometrical interpretation in terms of Euclidean distance. Therefore,

validation of predictions obtained using biomechanical models has been often done using

landmarks manually selected by experts in the MRIs (Ferrant et al., 2002; Hu et al., 2007).

Although interpretation of the results of landmarks-based validation is very straightforward,

the method provides accuracy estimation only at the landmark locations. Furthermore,

determining these locations is typically very time consuming and its accuracy relies on the

experience of an expert (Miga et al., 1999).
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When evaluating the accuracy of the predicted brain deformation, we followed the studies

by Archip et al. (2007) and Oguro et al. (2010) who used 95-percentile Hausdorff distance

as the registration error measure. The Hausdorff distance H(A, B) (Hausdorff, 1957; Fedorov

et al., 2008) between set A (in this study: non-rigidly registered preoperative surface of the

ventricles) and set B (in this study: surface of the ventricles obtained from the intraoperative

image segmentation) is denoted as:

Eq. (7)

where h(A,B) is the maximum distance from any of the points in set A to set B, and h(B,A) is

the maximum distance from any of the points in set B to set A. h(A,B), and analogically

h(B,A), is calculated using the following formulae (Fedorov et al., 2008):

Eq. (8)

where a is a point in set A, and d is the Euclidean distance from point a to the nearest point b

in set B:

Eq. (9)

Predicting the tumour’s intraoperative position is one of the key motivations of image-

guided neurosurgery. However, as it is very difficult to reliably determine tumour

boundaries in intraoperative images, we do not provide Hausdorff distances for tumour

surfaces. From our experience, the segmentation uncertainty dominates this measure and

consequently its utility in assessing tumour registration accuracy would be doubtful. Instead

we provide qualitative evidence of the appropriateness of our methods by showing detailed

intraoperative images with overlaid contours of tumours and ventricles predicted by our

models.

3. Results

For Cases 1 to 5, it took between 30 s (Case 1) and 38 s (Case 5) of computation on a

standard personal computer (Intel E6850 dual core 3.00 GHz processor, 4 GB of internal

memory, Windows XP operating system) to predict the brain deformations using our

specialised finite element algorithms. The computations using the NVIDIA CUDA

implementation of our algorithms were performed on a NVIDIA Tesla C870 graphics

processing unit, which resulted in computation times of less than 4 s for all the analysed

craniotomy cases.

The 95-percentile Hausdorff distance (used here as the registration error measure) between

surface of the ventricles obtained by registration (i.e. warping using the predicted

deformation field) of the preoperative segmentation and intraoperative surface of the

ventricles determined from the intraoperative image segmentation was between 0.9 mm (for

Case 4) and 2.8 mm (for Case 2), see Table 2. This compares well with the voxel size

(0.86×0.86×2.5 mm3) of the intraoperative MRIs. Furthermore, the 75-percentile Hausdorff

distance was at most 1.2 mm which is well within the intraoperative MRI voxel size. Some

of the registration errors reported in Table 2 could be related to the differences in

segmentation of the preoperative and intraoperative images. As segmentation is a difficult

and subjective process and quality of the intraoperative images in terms of the resolution and

contrast is inferior to that of the preoperative images, some uncertainties are unavoidable.

For instance, in Case 2 for which the largest (2.8 mm) 95-percentile Hausdorff distance
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between the registered and intraoperative surfaces of ventricles was observed, the

differences between the registered and intraoperative surfaces are localised in the third

ventricle area (Fig. 4B). Comparison of Fig. 4A and Fig. 4B clearly suggests that this

localisation is due to the differences in ventricles’ segmentation in the preoperative and

intraoperative images rather than actual non-rigid registration error caused by inaccuracies

in predicting the intraoperative deformations.

The conclusions derived using the 95-percentile Hausdorff distance as the registration error

measure are consistent with those obtained through detailed comparison of the contours of

ventricles in the intraoperative images and the ones predicted by the finite element brain

models developed in this study. The comparison indicates good overall agreement between

the predicted and actual intraoperative contours (Figs. 5 and 6). However, some local

misalignment between these contours is clearly visible. Examples of such misalignment

include the third ventricle area in Case 2 (Fig. 4 and Fig. 5B), discussed in the previous

paragraph, and the posterior horn of the left lateral ventricle in the area adjacent to the

tumour in Case 5 (Fig. 8) discussed in detail in the next paragraph.

Six cases of craniotomy-induced brain shift analysed here are characterised by tumours

located in different parts of the brain (for details see Medical Context section). The results

presented in Table 2 exhibit no correlation between the tumour location and registration

errors measured by 95-percentile Hausdorff distance that tends to estimate the maximum

misalignment between the intraoperative and registered preoperative images. However,

comparison of the preoperative, intraoperative and registered images indicates that detailed

information about anatomical structures required for building accurate biomechanical

models may be difficult to obtain for tumours that affect geometry of such structures. For

instance, in Case 5, the posterior horn of the left lateral ventricle was compressed by the

tumour. Consequently, large part of the horn could not be seen in the preoperative images

(Fig. 8). This, in turn, limited the accuracy when simulating the posterior horn of the left

lateral ventricle in the biomechanical model for predicting the brain deformations in Case 5,

which led to local misregistration (Fig. 8).

4. Discussion

In this study, we used finite element meshes consisting of hexahedral and tetrahedral

elements combined with the specialised non-linear (i.e. including both geometric and

material non-linearities) finite element algorithms to predict the deformation field within the

brain for six cases of craniotomy-induced brain shift. Despite abandoning unrealistic

linearisation (i.e. assumptions about infinitesimally small brain deformations during

craniotomy and linear stress–strain relationship of the brain tissues) typically applied in

biomechanical models to satisfy real-time constraints of neurosurgery we were able to

predict deformation field within the brain in less than 40 s using a standard personal

computer (with a single 3 GHz dual-core processor) and less that than 4 s using a graphics

processing unit (NVIDIA Tesla C870) for finite element meshes of the order of 18 000

nodes and 30 000 elements (~50 000 degrees of freedom). This computation times compare

well with the times reported in the studies using linear finite element procedures and

advanced computation hardware. For instance, Warfield et al. (2002) reported the time of 27

s when computing the linear finite element brain model consisting of 43584 nodes using the

Sun Microsystems Sun Fire 6800 workstation with twelve 750 MHz UltraSPARC-III

processors. Similarly, the computation times reported here for the NVIDIA CUDA

implementation of our finite element algorithms, indicate dramatic improvement in

computation speed in comparison to our previous results obtained using commercial non-

linear finite element solvers: Wittek et al. (2009) reported computation time of over 1700 s
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when predicting the brain deformations using a model with around 50 000 degrees of

freedom implemented in non-linear finite element solver LS-DYNA™.

Despite that we used only very limited intraoperative information (deformation on the brain

surface exposed during the craniotomy) when prescribing loading for the models and did not

have patient-specific data about the tissues mechanical properties, our application of the

specialised non-linear finite element algorithms made it possible to obtain a very good

agreement between the observed in the intraoperative MRIs and predicted positions and

deformations of the anatomical structures within the brain (Figs. 5 and 6, Table 2). This is

confirmed by the fact that 95-percentile Hausdorff distance between surface of the ventricles

obtained by registration and intraoperative surface of the ventricles determined from the

intraoperative images was at most 2.8 mm which compares well with the voxel size

(0.86×0.86×2.5 mm3) of the intraoperative images. As explained in Results section, the

alignment errors (as measured by 95-percentile Hausdorff distance) reported in Table 2

could be related to the differences in segmentation of the preoperative and intraoperative

images.

In this study, we demonstrated the utility of specialised non-linear finite element algorithms

for soft tissue modelling in real-time predicting of the deformation field within the brain for

six cases of craniotomy-induced brain shift. Before non-linear biomechanical models using

state-of-the-art finite element algorithms, such as those applied in this study, can become a

part of clinical systems for image-guided neurosurgery, reliability and accuracy of such

models must be confirmed against much larger data sample than six cases of craniotomy-

induced brain shift analysed here.
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Fig. 1.

Preoperative T1 magnetic resonance images showing tumour location in the craniotomy

cases analysed in this study. White lines indicate the tumour segmentations. (A) Case 1; (B)

Case 2; (C) Case 3; (D) Case 4; (E) Case 5; and (F) Case 6. Case 6 was used in our previous

studies (Joldes et al. 2009a; Joldes et al. 2009b; Wittek et al., 2007; Wittek et al., 2009).
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Fig. 2.

Model (Case 1) loading through prescribed nodal displacements on the part of the brain

surface exposed during the craniotomy. White circles indicate the nodes where the

displacements were applied.
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Fig. 3.

Patient-specific brain meshes built in this study. (A) Case 1; (B) Case 2; (C) Case 3; (D)

Case 4; (E) Case 5. Because of the complex geometry of ventricles and tumours, tetrahedral

elements were mainly used for discretisation of the ventricles and tumours as well as the

adjacent parenchyma areas.
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Fig. 4.

Registration results for Case 2. (A) Surface of the ventricles obtained by registration (i.e.

warping using the predicted deformation field) of the preoperative segmentation with

distance distribution (magnitude in millimetres in a colour code) to surface of the ventricles

determined by segmentation of the intraoperative images. This is the distance h(A,B) as

defined by Eq. (8). (B) Surface of the ventricles determined by segmentation of the

intraoperative images with distance distribution (magnitude, up to 95-percentile distance, in

millimetres in a colour code) to surface of the ventricles obtained by registration. This is the

distance h(B,A) in Eq. (7). In this case, the Hausdorff distance H(A,B) equals the distance

h(B,A), see Eqs. (7), (8) and (9). Note the concentration of misaligment between the

registered and intraoperative surfaces in the third ventricle area (indicated by a circle) due to

the differences between preoperative (A) and intraoperative (B) segmentations.

Wittek et al. Page 19

Prog Biophys Mol Biol. Author manuscript; available in PMC 2011 December 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 5.

The registered (i.e. deformed using the calculated deformation field) preoperative contours

of ventricles (white lines) and tumour (black lines) overlaid on the intraoperative magnetic

resonance images. Three transverse image sections are presented for each case, selected so

that the tumour and ventricles are clearly visible. The images were cropped and enlarged.

(A) Case 1; (B) Case 2; (C) Case 3; (D) Case 4; and (E) Case 5. The sections’ location is

explained in Fig. 7. For Case 2 (row B – left-hand-side figure), note the differences between

registered contours and intraoperative image in the third ventricle area.
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Fig. 6.

The registered (i.e. deformed using the calculated deformation field) preoperative contours

of ventricles (white lines) and tumour (black lines) overlaid on the intraoperative magnetic

resonance images. Three sagittal image sections are presented for each case, selected so that

the tumour and ventricles are clearly visible. The images were cropped and enlarged. (A)

Case 1; (B) Case 2; (C) Case 3; (D) Case 4; and (E) Case 5. The sections’ location is

explained in Fig. 7.
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Fig. 7.

Location of the planes for sections shown in Figs. 5 and 6. (A) Case 1; (B) Case 2; (C) Case

3; (D) Case 4; and (E) Case 5. H1: section shown in the left-hand-side column of Fig. 5; H2:

section shown in the central column of Fig. 5; H3: section shown in the right-hand-side

column of Fig. 5; S1: section shown in the left-hand-side column of Fig. 6; S2: section

shown in the central column of Fig. 6; and S3: section shown in the right-hand-side column

of Fig. 6. The axes’ coordinates are in millimetres.
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Fig. 8.

Case 5, section H3 (for section H3 definition see Figure 7E): (A) The registered (i.e.

deformed using the calculated deformation field) preoperative contours of ventricles (white

lines) and tumour (black lines) overlaid on the intraoperative magnetic resonance images.

Note local misregistration in the posterior left horn area. This figure highlights also the

difficulties with reliable tumour segmentation in the intraoperative images (the tumour

boundaries are very difficult to distinguish). (B) The segmented preoperative image.

Segmentation of the ventricles is indicated by white lines, and segmentation of the tumour

— by black lines. Note appreciable differences in shape and size of the posterior horn of left

lateral ventricle between the intraoperative and preoperative images in the area adjacent to

the tumour. The horn is appreciably larger in the intraoperative than preoperative image,

which indicates that it was compressed by the tumour.
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Table 2

95-, 75-, 50- and 25-percentile Hausdorff distance between surface of the ventricles obtained by registration

(i.e. warping using the predicted deformation field) of the preoperative segmentation and intraoperative

surface of the ventricles determined from the intraoperative image segmentation. The 95-percentile Hausdorff

distance (numbers in bold font) was used as the registration error measure. Case 6 was analysed in our

previous studies (Joldes et al. 2009a; Joldes et al. 2009b; Wittek et al., 2007; Wittek et al., 2009). The results

are presented to one decimal place as we previously determined (Wittek et al., 2007) that this is approximately

the accuracy of computations using finite element algorithms of the type applied in this study (i.e. explicit

integration in the time domain and elements with linear shape functions).

95-percentile
distance [mm]

75-percentile
distance [mm]

50-percentile
distance [mm]

25-percentile
distance [mm]

Case 1 1.3 0.6 0.4 0.3

Case 2 2.8 1.2 0.8 0.4

Case 3 1.9 1.1 0.6 0.4

Case 4 0.9 0.5 0.4 0.2

Case 5 1.5 0.8 0.5 0.3

Case 6 2.0 1.2 0.8 0.6
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