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Abstract In the present study, two semi-implicit schemes, based on the exponential maps method, are derived
for integrating the pressure-sensitive constitutive equations. In spite of the fact that the consistent tangent
operator is necessary to preserve the quadratic rate for the asymptotic convergence of the Newton-Raphson
solution in the finite element analyses, there exists no derivation of this operator for the exponential-based
integrations of the pressure-sensitive plasticity in the literature. To fulfill this need, the algorithmic tangent
operators are extracted for the new semi-implicit as well as the former exponential-based integrations. More-
over, for the accurate integration presented by Rezaiee-Pajand et al. (Eur J Mech A Solids 30:345–361, 2011),
the consistent tangent operator is obtained. Eventually, all the investigations are assessed by a broad range of
numerical tests.

1 Introduction

In the nonlinear elastoplastic finite element analysis, updating stress is an important and delicate problem which
is carried out by integrating the constitutive equations at each Gauss point. It is worth pointing out that the
accuracy and efficiency of the aforementioned integration directly affect the final results of the finite element
solution. Due to the importance of the issue, study and research in this area have been initiated a long time
ago and will be continued in the future. The first investigation was performed by Wilkins [1] presenting the
well-known radial return algorithm. Succeeding that, Krieg and Krieg [2], first of all, derived an exact solution
for the perfect plasticity defining an angle between the stress and strain rate in the deviatoric plane. In their
comprehensive study, iso-error maps were originally proposed as a strong tool to meticulously examine the
accuracy of the numerical integrations. On the other hand, an algorithmic tangent operator is required to obtain
the structure stiffness matrix for use in the implicit finite element codes. Consistency between the integration
scheme and the tangent operator preserves the quadratic convergence rate in the solution of the nonlinear finite
element algebraic equations based on Newton’s iterative procedure. This issue was first identified by Nagtegaal
[3] and followed by Simo and Taylor [4] and Dodds [5]. It should be noted that investigation on the stability of
the integration methods in plasticity was initially performed by Ortiz and Popov [6]. In the case of the plane
stress problem, the integration method will not be a minor modification of three-dimensional integration the
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way the plane strain problem is. Simo and Taylor [7] are perceived as the pioneers to suggest a return mapping
technique for the plane stress conditions.

The numerical techniques in computational plasticity are being developed along with extending the con-
stitutive equations to more realistically simulate the material behavior. In the following lines, some of the
advances are briefly reviewed. It is convenient that the integration methods be classified into two general
groups of explicit and implicit techniques.

In the explicit methods, the stress state and internal variables are updated based on the known quantities
at the beginning of the load step, and there is no iterative process in the main part of the solution. The
explicit integration procedures could be divided into three categories. One group comprises the methods that
directly integrate the constitutive equations via an explicit Runge–Kutta (RK) technique, such as Forward
Euler, modified Euler, Heun’s RK method, fourth-order RK methods. In this case, the final stress must be
corrected by placing it on the yield surface because the consistency condition is not automatically held during
the stress updating process. Of the many efforts in this area, for example, the researches of Sloan and Booker
[8], Potts and Ganendra [9], Sloan et al. [10], Solowski and Gallipoli [11] could be mentioned. In another
category, the constitutive equations are reduced to fewer ordinary differential equations (ODEs) by defining
angles between plasticity variables. These techniques are usually consistent and use the explicit Runge-Kutta
method for solving the ODEs. Studies carried out by Krieg and Krieg [2], Loret and Prevost [12], Ristinmaa
and Tryding [13], Wie et al. [14], Wallin and Ristinmaa [15,16], Szabó [17], Kossa and Szabó [18], Rezaiee-
Pajand and Sharifian [19] are in the aforementioned category. The third type is exponential-based integrations,
which were first introduced by Auricchio and Beirão da Veiga [20] motivated by the researches of Hong and
Liu [21,22]. In the latter form, the constitutive equations are converted to the equivalent system of differential
equations in the augmented stress space as Ẋ = AX. This equation has a closed-form exponential solution
when the matrix A is constant. Regarding the exponential-based integrations, many investigations could be
addressed, such as the works by Liu [23], Artioli et al. [24–26], Rezaiee-Pajand and Nasirai [27,28], Rezaiee-
Pajand et al. [29–31]. It is worth mentioning that, although there are some semi-implicit exponential schemes
such as works of Rezaiee-Pajand and Nasirai [27,28], the process of the solution, in effect, is explicit and for
that reason they need to be classified in the group of explicit integrations.

On the other side, there are implicit integrations where the variables are updated using the unknown states of
stress, and as a result, the integration process usually involves an iterative solution. Moreover, the consistency
condition is automatically fulfilled. In this area, lots of researches have been carried out thus far, of which the
most noticeable are the studies presented by Ortiz and Simo [32], Genna and Pandolfi [33], Hopperstad and
Remseth [34], Kobayashi and Ohno [35], Kobayashi et al. [36], Kang [37], Clausen et al. [38], Kan et al. [39]
and Coombs et al. [40].

Up to this date, two fully explicit exponential-based integrations have been presented for the mixed hard-
ening Drucker–Prager’s constitutive equations, which are a widely used plasticity model to predict the elasto-
plastic behavior of a broad range of geotechnical materials such as rock, soil, concrete as well as iron-based
substances, including aluminum and porous metals. In the present study, it is desired to improve the integra-
tion schemes by converting them into semi-implicit strategies, in Sects. 3.3 and 4.3. Moreover, to preserve
the quadratic convergence rate in implicit finite element codes, it is necessary that the algorithmic tangent
operators of the integrating tactics be derived due to their absence in computational plasticity references, see
Sects. 3.2, 3.4, 4.2 and 4.4. The consistent tangent operator for the accurate integration method presented by
Rezaiee-Pajand et al. [30] is formulated as well, Sect. 5.2. Finally, to assess the proposed semi-implicit inte-
grations and the consistent tangent operators, a wide range of numerical tests is carried out consisting of strain
load histories, iso-error maps and boundary value problems. The numerical investigations clearly demonstrate
the merits of the authors’ formulations.

2 Basic equations

In what follows, an associative Drucker–Prager’s elastoplasticity along with linear isotropic and kinematic
hardenings is considered as the constitutive equations. Pursuing standard methodology in plasticity for pre-
senting the basic equations, one can write the following relationships:

ε = ε
e + ε

p, (1)

σ = D
e
ε

e, (2)

F = 1

2
s′Ts′ − (τy − βp′)2 = 0, τy − βp′ > 0, (3)
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ε̇
p = γ̇

∂ F

∂σ
′ , (4)

τy = τy0 + Hisoγ, (5)

ȧ = Hkinε̇
p, (6)

γ̇ ≥ 0, F ≤ 0, γ̇ F = 0. (7)

Equation (1) determines the additive decomposition of the strain vector, as ε, ε
e, and ε

p denote the total strain
and its elastic and plastic parts, respectively. The elastic law is represented by Eq. (2), which is the relation
between the total stress, σ, and the elastic strain, ε

e. In this equation, D
e specifies the standard isotropy elastic

stiffness matrix of the material. Equation (3) represents the Drucker–Prager’s yield surface [41], in which the
yielding of the material is pressure sensitive. Note that this yield criterion is a smooth approximate function of
the Mohr-Coulomb plasticity model. The parameters τy and β are the yield stress in pure shear and a constant
of the material. Furthermore, s′ and p′ denote the deviatoric and volumetric parts of the shifted stress, σ

′,
defined as σ

′ := s′ + p′i with p′ = 1/3 tr(σ ′), where i and tr(·) are the vector associated with the second-order
identity tensor and the trace operator, respectively. The evolution of the plastic part of the strain is defined
by an associative flow rule in Eq. (4), where γ̇ specifies the plastic multiplier. Adopting the linear isotropic
hardening law in Eq. (5), the evolution of the yield stress is taken into account during the plastic phase. In
this equation, τy0 and Hiso are the initial yield stress and the isotropic hardening modulus. To include the
Bauschinger effect, a linear kinematic hardening is given in Eq. (6), where a and Hkin designate the back stress
and kinematic hardening modulus. It should be noted that the shifted stress, σ

′, is defined as σ
′ := σ − a.

Finally, the elastoplastic constitutive model is completed having employed the Kuhn-Tucker complimentary
conditions in Eq. (7). To present the formulations of the integration algorithms, the following decompositions
are introduced:

σ = s + pi, p = 1

3
tr(σ ),

a = α + p̄i, p̄ = 1

3
tr(a),

ε = e + 1

3
εi

v, εv = tr(ε).

(8)

In order to determine the plastic multiplier, the consistency condition is utilized during the plastic behavior of
the material, i.e. Ḟ = 0. As a result, one can reach the following equation:

γ̇ = 2Gs′Tė +
√

2βK Rε̇v

2(Ḡ + K̄β2)R2 +
√

2Hiso R
. (9)

In this expression, the term R is defined as the radius of the yield surface in the deviatoric plane, and it has the
form:

R :=
√

2(τy − βp′). (10)

The constants Ḡ and K̄ have the following definitions:

Ḡ = G + 1/2Hkin,

K̄ = K + 1/3Hkin, (11)

where G and K are, respectively, the shear and bulk modulus. Finally, the continuum elastoplastic tangent
matrix, which characterizes the relation between the rates of the stress and strain in the elastoplastic phase,
can be represented by:

D
ep = D

e − (De∂ F/∂σ
′)(De∂ F/∂σ

′)T

(∂ F/∂σ)T(De∂ F/∂σ
′) − Hkin(∂ F/∂a)T(De∂ F/∂σ

′) + Hiso(∂ F/∂τy)
. (12)

Having obtained the derivatives appearing in the last equation and after some manipulations, the following
equation can be expressed as the applicable closed-form continuum elastoplastic tangent matrix:

D
ep = D

e − (2Gs′ +
√

2Kβ Ri)(2Gs′ +
√

2Kβ Ri)T

2(Ḡ + K̄β2)R2 +
√

2HisoR
. (13)
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In the following sections, the algorithms of the exponential-based integrations are briefly presented; more
details on the formulations can be found in Reference [30]. After presenting the integration algorithms, the
corresponding consistent tangent matrixes are derived. Then, two semi-implicit exponential-based integrations
are proposed together with their algorithmic tangent operators. Finally, the consistent tangent operator of the
accurate integration presented by Rezaiee-Pajand et al. [30] is derived.

3 Exponential-based method with one integrating factor

The original constitutive equations in the exponential-based method using one integrating factor are converted
into the following equivalent system of differential equations:

Ẋ = AX, (14)

where X and A denote the augmented stress vector and the control matrix, respectively, which are defined as

X =

⎧

⎨

⎩

Xs

XR

X0

⎫

⎬

⎭

=

⎧

⎨

⎩

X0s′

X0 R

X0

⎫

⎬

⎭

; A =

⎡

⎢

⎣

O9×9
2G
R

ė 09×1
2G
R

ėT 0 0
2G
Q

ėT
√

2βK
Q

ε̇v 0

⎤

⎥

⎦

11×11

. (15)

In the above expressions, 09×1 and O9×9 specify the null vector and matrix, respectively. The parameter X0

denotes the integrating factor. Furthermore, the scalar parameter Q and the integrating factor X0, appearing
in the matrix A, have the following form:

Q =
√

2(Ḡ + K̄β2)R2 + Hiso R√
2Ḡ

, (16)

X0 = exp(2Ḡγ ). (17)

In the rest of this section, in order to derive the consistent tangent operator of the fully explicit exponential-
based integration with one integrating factor, firstly, the integration algorithm is concisely reviewed. Then, a
semi-implicit integration and its consistent tangent operator are developed.

3.1 Explicit integration algorithm with one factor (explicit-I)

The fully explicit integration with one factor was previously developed in [30]. Here, it is briefly presented
for deriving its consistent tangent operator in the next section. Following the standard methodology, a generic
time step (pseudo time step) from tn to tn+1 is considered as the material state {an, σ n, γn, ε

p
n} at time tn , and

the strain path is known. The algorithm should characterize the stress and interval variables at time tn+1. Like
with all explicit integrations, first, the next tentative solution is used:

s′TR
n+1 = s′

n + 2G�e and p
′TR
n+1 = p′

n + K�εv,

α
TR
n+1 = αn and p̄TR

n+1 = p̄n,

τTR
y,n+1 = τy,n . (18)

Afterward, one must check the trial elastic solution through the following condition:

∥

∥

∥s′TR
n+1

∥

∥

∥

2
≤ 2

(

τTR
y,n+1 − βp

′TR
n+1

)2
. (19)

If the condition is met, the trial solution is the final one. Otherwise, the time step is partly elastic and partly
elastoplastic. These portions can be separated by introducing a scalar parameter 0 ≤ α < 1 as α�t and
(1−α)�t to specify the elastic and elastoplastic parts. How to compute the parameter α is shown in Appendix
A. Having the scalar parameter α in hand, the stress state at the contact point with the yield surface is readily
found using the elastic law:

s′
n+α = s′

n + 2Gα�e,

p′
n+α = p′

n + Kα�εv. (20)
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The computations are followed by integrating the set of the differential equations (14) in the elastoplastic
phase. There is a closed-form solution to the differential system as long as the multiplier matrix A has constant
coefficients. However, the matrix A is not constant owing to the parameter R varying in it. Therefore, it is
approximately assumed that the value of the yield surface radius is equal to its value at the end of the elastic
part of the time step, i.e., at the contact point. Based on this explanation, the dynamical system can exactly be
solved as follows:

Xn+1 = exp[An+α(1 − α)�t]Xn+α = Gn+αXn+α, (21)

Gn+α =

⎡

⎣

I9×9 + (an+α − 1)�ê�êT bn+α�ê 09×1

bn+α�êT an+α 0

[cn+αbn+α + (an+α − 1)dn+α]�êT dn+αbn+α + (an+α − 1)cn+α 1

⎤

⎦

11×11

. (22)

For computing the matrix exponential, one could find the reference [42] useful. In the last relationship, I and
�ê represent, respectively, the identity matrix and the unit vector of the deviatoric strain increment. Besides,
the scalar parameters in matrix Gn+α are given as follows:

an+α = cosh

[

(1 − α)
2G

Rn+α

‖�e‖
]

, bn+α = sinh

[

(1 − α)
2G

Rn+α

‖�e‖
]

,

cn+α = Rn+α

Qn+α

, dn = βK Rn+α√
2G Qn+α

�εv

‖�e‖ .

(23)

Now, having the vector Xn+1 computed by Eq. (21), the deviatoric shifted stress and the radius of the yield
surface at time tn+1 are immediately acquired using the following equations:

s′
n+1 =

Xs
n+1

X0
n+1

, (24)

Rn+1 =
XR

n+1

X0
n+1

. (25)

To update the yield stress, τy, it is required that the discrete plastic multiplier (λ = γn+1 − γn) be determined
by directly utilizing Eq. (17), in this manner:

λ = 1

2Ḡ
ln

(

X0
n+1

X0
n

)

. (26)

Therefore, the yield stress can easily be expressed as:

τy,n+1 = τy,n + λHiso. (27)

Then, based on Eq. (6), the back stress can be updated in the following form:

αn+1 = αn + Hkin�ep. (28)

The increment of the deviatoric plastic strain is achieved as �ep = 1/2Ḡ(s′TR
n+1−s′

n+1). Finally, the hydrostatic
pressure can be determined by:

pn+1 = pn + K�εv −
√

2βK
∥

∥�ep
∥

∥ . (29)

It should be mentioned that as soon as the volumetric part of the shifted stress at time tn+1 computed by the
definition of the yield surface radius, the volumetric part of the back stress, p̄n+1, is easily attained subtracting
p′

n+1 from pn+1. In addition, the integrating factor X0 is a local auxiliary variable which may be equal to 1 at
the beginning of each time step. Treatment of the apex, also, has been completely presented in Reference [30].
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Fig. 1 Different strategies for determining strain path [5]

3.2 Consistent tangent operator for explicit-I scheme

Using an implicit manner in the elastoplastic finite element analysis, an iterative Newton-Raphson solution
is commonly used for solving the nonlinear algebraic equations in each generic load increment from tn to
tn+1. In this kind of analysis, the path-independent strategy has been utilized if the constitutive equations are
integrated over the total strain increment, i.e., �ε

k
PI = ε

k
n+1 − εn , using the initial conditions on the basis

of the converged results at time t = tn in each Newton’s iteration (denoted by k). In other words, at every
iteration of a load increment, the initial conditions for computing the material states are the same and equal to
the values at the beginning of the load increment. As a result, the obtained strain path will be a linear portion as
illustrated in Fig. 1. On the other hand, the path-dependent strategy will be applied in finding the strain path for
updating stress and internal variables if the constitutive equations are integrated over the iterative increment of

strain, i.e. �ε
k
PD = ε

k
n+1 − ε

k−1
n+1, using the initial conditions based on the non-converged results at time tk−1

n+1 .
Consequently, the strain path of each load increment comprises several linear segments.

Using the path-dependent strategy can yield some disadvantages [5]. The direction of the plastic flow
may be noticeably different in successive iterations, because of the direction of the strain iterative increments
diverting from the real strain path. In fact, the overall effect of these deviations may not properly match with
the actual direction of the plastic flow that differs smoothly over the total load increment. Moreover, changing
severely the direction of the successive strain increments could result in locating the tentative elastic stress
point in the elastic domain, i.e. inside the yield surface, and as a consequence, false elastic unloading would
occur. Therefore, it can be seen that the residual norm may be increased during some subsequent iterations,
and even the solution may diverge after a few iterations.

Based on the aforementioned explanation, using a path-independent strategy in the elastoplastic finite
element analysis is necessary. Additionally, in implicit codes, if the continuum tangent operator is used, the
result will be the loss of the quadratic rate of the asymptotic convergence of the Newton method for the
global solution. In fact, the predicted stress increment in the kth iteration by the continuum tangent operator
will merely match the stress increment achieved by the integration algorithm to first order when the load
steps are in the infinitesimal realm. Therefore, for preserving the rapid convergence of the Newton method,
it is imperative that the stress updating algorithm be linearized. The linearization of the integration algorithm
contributes to a consistent (or algorithmic) elastoplastic tangent operator.

In order to use the exponential-based algorithm, presented in the previous section, in the implicit finite
element codes, the following algorithmic tangent operator is required:

∂σn+1

∂εn+1
= ∂sn+1

∂εn+1
+
(

∂pn+1

∂εn+1

)T

i. (30)

Since the deviatoric stress, s, is a function of s′ and α, the last equation is extended to the next one:

∂σn+1

∂εn+1
=
(

∂s′
n+1

∂en+1
+ ∂αn+1

∂en+1

)

Idev +
(

∂pn+1

∂εn+1

)T

i, (31)
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where Idev = I − 1/3iiT and the derivatives appeared in the last equation need to be derived. To calculate the
term (∂s′/∂e)n+1, one should refer to Eq. (24) and take its derivative with respect to en+1, as follows:

∂s′
n+1

∂en+1
= 1

X0
n+1

∂Xs
n+1

∂en+1
−

Xs
n+1

(X0
n+1)

2

(

∂ X0
n+1

∂en+1

)T

. (32)

The above equation indicates the expressions for Xs
n+1 and X0

n+1 that must be drawn by expanding Eq. (21),
and after that, taking the derivatives of the results bestows the following relations:

∂Xs
n+1

∂en+1
=

∂Xs
n+α

∂e
+
(

�êT Xs
n+α

)

�ê

(

∂a

∂e

)T

+ (a − 1)
(

�êTXs
n+α

) ∂�ê

∂e
+ (a − 1)�ê

(

∂�ê

∂e
Xs

n+α

)T

,

+ (a − 1)�ê

(

∂Xs
n+α

∂e
�ê

)T

+ XR
n+α�ê

(

∂b

∂e

)

+ bXR
n+α

∂�ê

∂e
+ b�ê

(

∂ XR
n+α

∂e

)

, (33)

∂ X0
n+1

∂en+1
=
[

b
∂c

∂e
+ c

∂b

∂e
+ (a − 1)

∂d

∂e
+ d

∂a

∂e

]

�êTXs
n+α + [c · b + (a − 1)d]

∂�ê

∂e
Xs

n+α

+ [c · b + (a − 1)d]
∂Xs

n+α

∂e
�ê +

[

d
∂b

∂e
+ b

∂d

∂e
+ (a − 1)

∂c

∂e
+ c

∂a

∂e

]

XR
n+α

+ [d · b + (a − 1)c]
∂ XR

n+α

∂e
. (34)

In these equations, all parameters a, b, c and d have subscript n + α. The derivatives appearing in Eqs. (33)
and (34) will be presented in Appendix B since they require many steps. In order to determine (∂α/∂e)n+1,
the derivative of Eq. (28) is also needed:

∂αn+1

∂en+1
= Hkin

∂�ep

∂en+1
. (35)

The term (∂�ep/∂e)n+1 can be found by differentiating the expression 1/2Ḡ(s′TR
n+1 − s′

n+1) with respect to
en+1 in the form:

∂�ep

∂en+1
= G

Ḡ
I − 1

2Ḡ

∂s′
n+1

∂en+1
. (36)

Finally, having calculated (∂p/∂ε)n+1, all the derivatives needed for computing the algorithmic tangent operator
will be at hand. This derivative can be specified using Eq. (29) as follows:

∂pn+1

∂εn+1
= K i −

√
2βK Idev

∂�ep

∂en+1
�êp, (37)

where �êp denotes the unit vector of �ep, i.e. �êp = �ep/‖�ep‖.

3.3 Semi-implicit integration algorithm with one factor (semi-implicit-I)

In the present section, it is desired to develop a semi-implicit integration. In fact, the fully explicit scheme,
explained in the previous section, could be improved by implementing the semi-implicit technique. This was
first proposed by Rezaiee-Pajand and Nasirai [27,28] for the augmented constitutive laws. The main idea of
this methodology is to find the variables of the control matrix A at the middle of the elasoplastic part of the load
step rather than considering their values at the beginning. This way, the accuracy increases due to estimating
better values for R. To reach the purpose, the value of the yield surface radius is computed at the general
specific time t = tn+r(1−α) with 0 < r ≤ 1, where Rn+r(1−α) utilizes the result of the following equation:

Xn+r(1−α) = exp[An+αr(1 − α)�t]Xn+α. (38)
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At this stage, one could obtain R at the time t = tn+r(1−α) by the last equation as:

Rn+r(1−α) = b̄n+α�êTs′
n+α+ān+α Rn+α

[cn+α b̄n+α+(ān+α − 1)dn+α]�êTs′
n+α+[dn+α b̄n+α+(ān+α − 1)cn+α]Rn+α + 1

, (39)

ān+α = cosh

[

2G

Rn+α

‖r(1 − α)�e‖
]

,

b̄n+α = sinh

[

2G

Rn+α

‖r(1 − α)�e‖
]

.

(40)

Having Rn+r(1−α), the augmented vector Xn+1 could be calculated by Eq. (21) just with the difference that
Rn+r(1−α) should be substituted for Rn+α as

Xn+1 = exp
[

An+r(1−α)(1 − α)�t
]

Xn+α = Gn+r(1−α)Xn+α, (41)

where the matrix Gn+r(1−α) is defined by:

Gn+r(1−α) =

⎡

⎣

I9×9 + (an+r(1−α) − 1)�ê�êT bn+r(1−α)�ê 09×1

bn+r(1−α)�êT an+r(1−α) 0

[c.b + (a − 1)d]n+r(1−α) �êT [d.b + (a − 1)c]n+r(1−α) 1

⎤

⎦

11×11

. (42)

The parameters a, b, c and d with the subscript of n + r(1 − α) are determined from the below relationships:

an+r(1−α) = cosh

(

2G

Rn+r(1−α)

‖�e‖
)

,

bn+r(1−α) = sinh

(

2G

Rn+r(1−α)

‖�e‖
)

,

cn+r(1−α) = Rn+r(1−α)

Qn+r(1−α)

,

dn+r(1−α) = Rn+r(1−α)

Qn+r(1−α)

V .

(43)

Once Xn+1 is known, the other constitutive parameters are easily computed through Eqs. (24)–(29).

3.4 Consistent tangent operator for semi-implicit-I scheme

Finding the consistent tangent operator is equivalent to determining the derivative terms in Eq. (31), which is
the goal of this section. In the case of (∂s′/∂e)n+1, the expressions given in Eqs. (32)–(34) could be employed,
but since the vector Xs

n+1 and scalar X0
n+1 have different relations here with respect to the explicit scheme,

the scalar parameters a, b, c and d have the subscript n + r(1 − α). The derivatives of these parameters
will be provided in Appendix C. The other terms appearing in Eq. (31), i.e. (∂α/∂e)n+1 and (∂p/∂ε)n+1, are
achievable via Eqs. (35)–(37).

4 Exponential-based method with two integrating factors

In this section, it is intended to concisely introduce the exponential-based integration with two factors, formerly
presented in [30] followed by introducing a new semi-implicit integration. Moreover, the corresponding con-
sistent tangent operators are derived. Using two integrating factors, the constitutive equations are transformed
into two equivalent systems of differential equations as follows:

Ẋa = AaXa,

Ẋb = AbXb,
(44)
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Xa =
{

Xs
a

X0
a

}

=
{

X0s′

X0 R

}

, Xb =
{

X1
b

X0
b

}

=
{

x0(τy − βp′)
x0 R

}

, (45)

where the scalar parameters X0 and x0 are the integrating factors. Furthermore, the control matrixes Aa and
Aa have the following forms:

Aa = 2G

R

[

O9×9 ė

ėT 0

]

10×10

,

Ab = 1

R

[(

1√
2

Q̄ − 1

)

βK ε̇v + Q̄GnTė

] [

0 1
2 0

]

,

(46)

Q̄ =
√

2Hiso√
2(Ḡ + K̄β2)R + Hiso

. (47)

In the last matrix, the vector n is normal to the yield surface, which is defined by n = s′/R. Furthermore, the
factor x0 has the form:

x0 = exp(−2K̄β2γ ). (48)

Moreover, X0 and x0 are connected to each other by:

x0 = (X0)
− K̄β2

Ḡ . (49)

4.1 Explicit integration algorithm with two factors (explicit-II)

Integrating the constitutive equations is started the same as the method presented in previous section. In fact,
after computing the tentative solution, Eq. (18), the condition (19) needs to be verified checking whether or not
the trial elastic solution is acceptable. If the condition is violated, the solution is not admissible and material
undergoes the plastic behavior. As a result, one must determine the elastic and elastoplastic parts by means of
the scalar parameter α. Having computed the stress contact point via Eq. (20) and adopting an explicit manner,
the systems of differential equations (44) can be solved as:

Xa,n+1 = exp
[

Aa,n+α(1 − α)�t
]

Xa,n+α = Ga,n+αXa,n+α,

Xb,n+1 = exp
[

Ab,n+α(1 − α)�t
]

Xb,n+α = Gb,n+αXb,n+α,
(50)

where the matrixes Ga,n+α and Gb,n+α have the following forms:

Ga,n+α =
[

I9×9 + (an+α − 1)�ê�êT bn+α�ê,

bn+α�êT an+α

]

10×10

,

Gb, n + α =
[

un+α
1√
2
vn+α√

2vn+α un+α

]

.

(51)

While the scalars an+α and bn+α have been provided by Eq. (23), un+α and vn+α are described by the relations

un+α = cosh(gn+α), vn+α = sinh(gn+α),

gn+α = 1

Rn+α

[(

1√
2

Q̄n+α − 1

)

βK�εv + G Q̄n+αnT
n+α�e

]

.
(52)

Subsequently, the integrating factor X0 must be obtained. To reach this goal, Eq. (49) and the definitions of
X0

a and X0
b are employed, yielding:

X0
n+1 =

(

X0
a,n+1

X0
b,n+1

) Ḡ

K̄β2+Ḡ

. (53)
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Having X0 at time tn+1, it is possible to determine the deviatoric shifted stress and the radius of the yield
surface through the following relations:

s′
n+1 =

Xs
a,n+1

X0
n+1

, (54)

Rn+1 =
X0

a,n+1

X0
n+1

. (55)

Finally, Eqs. (27) and (28) are exploited to update the yield stress and the center of the yield surface. Moreover,
the hydrostatic pressure can be computed using Eq. (29).

4.2 Consistent tangent operator for explicit-II scheme

As mentioned before, the algorithmic (consistent) elastoplastic tangent operator is found by linearizing the
stress updating algorithm. To meet this purpose, one needs to compute the expression (∂σ/∂ε)n+1 which
results in calculating the derivative terms appearing in Eq. (31). In the aforementioned relation, the equation
of the derivative (∂s′/∂e)n+1 would be practically the same as given by Eq. (32) replacing Xs

a,n+1 with Xs
n+1,

as:

∂s′
n+1

∂en+1
= 1

X0
n+1

∂Xs
a,n+1

∂en+1
−

Xs
a,n+1

(

X0
n+1

)2

(

∂ X0
n+1

∂en+1

)T

. (56)

The relation associated with X0 in Eq. (53) is considered where taking its derivative with respect to en+1

yields:

∂ X0
n+1

∂en+1
= Ḡ

K̄β2 + Ḡ

1

X0
b,n+1

(

∂ X0
a,n+1

∂en+1
−

X0
a,n+1

X0
b,n+1

∂ X0
b,n+1

∂en+1

)(

X0
a,n+1

X0
b,n+1

) Ḡ

K̄β2+Ḡ
−1

. (57)

Having expanded Eqs. (50) and (51), one can reach (∂ X0
a/∂e)n+1 and (∂ X0

b/∂e)n+1 as follows:

∂ X0
a,n+1

∂en+1
=
(

�êTXs
a,n+α

) ∂bn+α

∂en+1
+ bn+α

∂�ê

∂en+1
Xs

a,n+α + bn+α

∂Xs
a,n+α

∂en+1
�ê

+X0
a,n+α

∂an+α

∂en+1
+ an+α

∂ X0
a,n+α

∂en+1
, (58)

∂ X0
b,n+1

∂en+1
=

√
2X1

b,n+α

∂vn+α

∂en+1
+

√
2vn+α

∂ X1
b,n+α

∂en+1
+ X0

b,n+α

∂un+α

∂en+1
+ un+α

∂ X0
b,n+α

∂en+1
. (59)

For avoiding any confusion in tracking the main path, all derivatives in the above equations are provided in
Appendix D. The only term left in Eq. (56) is (∂Xs

a/∂e)n+1. Taking the derivative of the relation related to Xs
a

extracted from Eq. (50) brings about the following formula:

∂Xs
a,n+1

∂en+1
=

∂Xs
a,n+α

∂e
+
(

�êTXs
a,n+α

)

�ê

(

∂an+α

∂e

)T

+ (an+α − 1)
(

�êTXs
a,n+α

) ∂�ê

∂e

+ (an+α − 1)�ê

(

∂�ê

∂e
Xs

a,n+α

)T

+ (an+α − 1)�ê

(

∂Xs
a,n+α

∂e
�ê

)T

+ (an+α − 1)�ê

(

∂Xs
a,n+α

∂e
�ê

)T

+ X0
a,n+α�ê

(

∂bn+α

∂e

)

+ bn+α X0
a,n+α

∂�ê

∂e

+ bn+α�ê

(

∂ X0
a,n+α

∂e

)

. (60)

The derivative terms in the former equation are presented in Appendix D. It should be noted that the terms
(∂α/∂e)n+1 and (∂p/∂ε)n+1 were previously mentioned in Sect. 3.2.
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4.3 Semi-implicit integration algorithm with two factors (semi-implicit-II)

It is desired to develop a semi-implicit scheme for exponential-based integration with two factors. To meet
this purpose, the matrixes Ga and Gb must be computed at time t = tn+r(1−α) within the elastoplastic interval
of the time step rather than at the beginning point, which is normally performed in the fully explicit scheme.
Essentially, the variables R and n have to be found at time t = tn+r(1−α). In view of that, one could employ
Eq. (50) at time t = tn+r(1−α) as:

Xa,n+r(1−α) = exp
[

Aa,n+αr(1 − α)�t
]

Xa,n+α = Ḡa,n+αXa,n+α,

Xb,n+r(1−α) = exp
[

Ab,n+αr(1 − α)�t
]

Xb,n+α = Ḡb,n+αXb,n+α.
(61)

By utilizing the results of the last solutions, one obtains the following relations:

nn+r(1−α) =
Xs

a,n+r(1−α)

X0
a,n+r(1−α)

,

Rn+r(1−α) =
X0

a,n+r(1−α)

X0
n+r(1−α)

,

X0
n+r(1−α) =

(

X0
a,n+r(1−α)

X0
b,n+r(1−α)

) Ḡ

K̄β2+Ḡ

.

(62)

In these equations, Xs
a,n+r(1−α)

, X0
a,n+r(1−α)

and X0
b,n+r(1−α)

are given by:

Xs
a,n+r(1−α) = Xs

a,n+α +
[

(ān+α − 1)�êTXs
a,n+α

]

�ê + b̄n+α X0
n+α�ê,

X0
a,n+r(1−α) = b̄n+α�êTXs

a,n+α + ān+α X0
n+α,

X0
b,n+r(1−α) =

√
2v̄n+α X1

b,n+α + ūn+α X0
b,n+α.

(63)

In addition, the scalar parameters ūn+α and v̄n+α are defined as

ūn+α = cosh(rgn+α),

v̄n+α = sinh(rgn+α).
(64)

Once the parameters Rn+r(1−α) and nn+r(1−α) are clear, the matrixes Ga and Gb can be calculated as follows:

Xa,n+1 = exp
[

Aa,n+r(1−α)(1 − α)�t
]

Xa,n+α = Ga,n+r(1−α)Xa,n+α,

Xb,n+1 = exp
[

Ab,n+r(1−α)(1 − α)�t
]

Xb,n+α = Gb,n+r(1−α)Xb,n+α,
(65)

Ga,n+r(1−α) =
[

I9×9 + (an+r(1−α) − 1)�ê�êT bn+r(1−α)�ê

bn+r(1−α)�êT an+r(1−α)

]

10×10

,

Gb,n+r(1−α) =
[

un+r(1−α)
1√
2
vn+r(1−α)√

2vn+r(1−α) un+r(1−α)

]

.

(66)

The scalars an+r(1−α) and bn+r(1−α) were introduced in Eq. (43). Also, the scalars un+r(1−α) and vn+r(1−α)

are given through the following relations:

un+r(1−α) = cosh
(

gn+r(1−α)

)

,

vn+r(1−α) = sinh
(

gn+r(1−α)

)

,

gn+r(1−α) = 1

Rn+r(1−α)

[(

1√
2

Q̄n+r(1−α) − 1

)

βK�εv + G Q̄n+r(1−α)n
T
n+r(1−α)�e

]

.

(67)

Note that the rest of the stress updating process is the same as given in Sect. 4.1.
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Fig. 2 Definition of angle ψ

4.4 Consistent tangent operator for semi-implicit-II scheme

In order to derive the consistent tangent operator, the stress updating algorithm has to be linearized. Therefore,
the derivative (∂σ/∂ε)n+1 as given in Eq. (30) or (31) must be computed, which means calculating the terms
(∂s′/∂e)n+1, (∂α/∂e)n+1 and (∂p/∂ε)n+1. The main relation for (∂s′/∂e)n+1 and the associated derivatives
were presented in Eqs. (58)–(60). However, these relations need a little modification, which is replacing the
subscript n+α with n+r(1−α) for the scalars a, b, u and v. Furthermore, the derivatives of the aforementioned
scalars are provided in Appendix E. In addition, the derivatives of the back stress and hydrostatic pressure with
respect to strain were given in the previous sections.

5 Accurate integration

An accurate integration method was presented for the prescribed constitutive equations in Reference [30].
Considering the elastoplastic phase, this method uses the definition of the angle between the stress state and
the strain rate in the deviatoric plane as:

s′Tė = R||ė|| cos ψ. (68)

The angle ψ is shown in Fig. 2. Taking into account the constant strain rate assumption and using Eq. (68), the
original constitutive equations can be transformed into the following ordinary differential equations (ODEs):

Ẏ = F(t, Y), (69)

Y : =
{

y1

y2

}

=
{

R

ψ

}

,

F : =
{

f1

f2

}

=
{

2G||ė|| cos y2 − 2Ḡ y1

Hiso+
√

2(Ḡ+K̄β2)y1
(
√

2G||ė|| cos y2 + βK ε̇v)

− 2G||ė|| sin y2

y1

}

.

(70)

Basically, the heart of the accurate integration is solving the last ODEs. Having no closed-form solution for
the aforementioned differential equations, it is necessary to utilize an accurate numerical technique namely
the fifth-order Runge–Kutta method. Since in this part, the main goal is to derive the algorithmic consistent
tangent operator for the accurate integration, it would be suitable to concisely review and have the integration
algorithm presented in the next section.
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5.1 Integration algorithm

Since the accurate integration is, in effect, an explicit method, it can be started in each load step with an elastic
trial solution, Eq. (18), and followed by checking the condition (19). Subsequently, if the load step has entered
the elastoplastic phase, the parameter α is used to find the contact point by means of Eq. (20). Once the stress
has reached the elastic boundary, one needs to compute the following initial values to solve Eq. (69):

Rn+α =
√

2(τy,n − βp′
n+α),

ψn+α = cos−1

(

s′T
n+α�e

Rn+α ‖�e‖

)

.
(71)

At this stage, using the fifth-order Dormand-Prince technique [43] contributes to finding the scalars R and ψ

at the end of the load step, at time tn+1. Afterward, the deviatoric shifted stress at time tn+1 can be determined
by linearly combining the deviatoric shifted stress at time tn+α and the increment of the trial stress as

s′
n+1 = ξs′

n+α + ζ�s′TR
, (72)

where �s′TR = 2G(1 − α)�e, and the scalars ξ and ζ are given by

ξ = Rn+1 sin ψn+1

Rn+α sin ψn+α

,

ζ = Rn+1 sin(ψn+α − ψn+1)

||�s′TR|| sin ψn+α

.

(73)

It should be mentioned the other variables may be updated as in the previous sections.

5.2 Consistent tangent operator for accurate integration

Bearing Eqs. (31), (72) and (73) in mind, it is obvious that the derivatives Rn+1 and ψn+1 with respect to en+1,
i.e. (∂Y/∂e)n+1, must be computed. Therefore, to obtain the aforementioned derivative vector, it is necessary
to derive its governing differential equations as:

d

dt

(

∂Y

∂e

)

= ∂F

∂Y

∂Y

∂e
. (74)

Therefore, it is convenient to define the vectors

G :=
{

g1

g2

}

=
{

∂y1/∂e
∂y2/∂e

}

= ∂Y

∂e
(75)

and

Q : =
{

q1

q2

}

=
{

(∂ f1/∂y1) (∂y1/∂e) + (∂ f1/∂y2) (∂y2/∂e)
(∂ f2/∂y1) (∂y1/∂e) + (∂ f2/∂y2) (∂y2/∂e)

}

= ∂F

∂Y

∂Y

∂e
. (76)

Now, the differential equations (74) may be rewritten as

Ġ = Q. (77)

Consequently, the constitutive variables and their derivatives can simultaneously be found solving the former
ODEs along with the system of ODEs given in Eq. (69). In fact, for preserving the quadratic rate of the
asymptotic convergence of the Newton iterations in the global solution of the finite element analysis, it is
necessary that the following system of ODEs be solved in each load step and the corrective iterations at each
Gauss point:

{

Ẏ

Ġ

}

=
{

F
Q

}

. (78)
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The derivatives (∂α/∂e)n+1 and (∂p/∂ε)n+1 have been addressed in the previous sections. For calculating
(∂s′/∂e)n+1, Eq. (72) must be used:

∂s′
n+1

∂en+1
= s′

n+α

(

∂ξ

∂en+1

)T

+ ξ
∂s′

n+α

∂en+1
+ �s′TR

(

∂ζ

∂en+1

)T

+ ζ
∂�s′TR

∂en+1
. (79)

The derivatives left unknown in this section are given in Appendix F.

6 Numerical tests

In the previous sections, two improved exponential-based integrations were presented. In addition, the consis-
tent tangent operators were obtained for the aforementioned schemes and also two fully explicit exponential
tactics. Finally, the derivation approach and the formulations for the consistent tangent operator of the accurate
integration were discussed. Hence, numerical tests should be comprised of the assessments of the accuracy and
precision order for the new techniques, and the examination of the derived consistent tangent operators. The
former appraisal could be achieved by updating the stress and the internal variables for known strain paths in
the Gauss point scale. Moreover, using the iso-error maps, which are strong tools for evaluating the accuracy in
detail, could be appropriate. On the other hand, solving the boundary value problems may be needed for testing
the consistent tangent operators. In fact, achieving the quadratic convergence rate in the implicit finite element
codes, which commonly use the Newton-Raphson approach, is the proof of the correctness of the consistent
tangent operator. In what follows, all mentioned tests are provided to acquire a comprehensive evaluation.

For convenience, the following abbreviations are used for the numerical integrations in question throughout
the numerical studies:

I- FEX-I: Fully EXplicit exponential-based integration with ONE integrating factor.
II- FEX-II: Fully EXplicit exponential-based integration with TWO integrating factors.

III- SIM-I: Semi-IMplicit exponential-based integration with ONE integrating factor.
IV- SIM-II: Semi-IMplicit exponential-based integration with TWO integrating factors.
V- AC: ACcurate integration.

Furthermore, in all numerical tests, the integration parameter ‘r ’ of SIM-I and SIM-II schemes, which
characterizes the specific time in the middle of the elastoplastic part of the load step, is chosen equal to 1/2.
It is clear that choosing other values for the aforementioned parameter yields other results with different
accuracies, but it is obvious that r = 1/2 is a rational choice for all conditions.

6.1 Strain load histories

Two strain-controlled histories are considered, which are non-proportional. In these histories, two components

ε11 and ε12 are varied proportionally to εy0 =
√

3(τy0/E) as shown in Figs. 3 and 4, whereas the other
components of the strain are kept equal to zero. It should be mentioned that in order to eliminate the error of
the discretization of the load path, the strain load histories have been considered in a linear manner. Moreover,
the mechanical properties of the material are taken into account as:

E = 1.125 s.u. (stress unit), ν = 0.125, τy0 = 0.633 s.u. , β = 0.366,

Hkin = 1 s.u. , Hiso = 0.134 s.u.2

The stresses updated by the accurate integration presented in Sect. 5 are chosen as exact results, σ
E
n , and are

utilized to compute the error of the other integrations under discussion. The fifth-order Dormand-Prince method
together with �t = 0.01 sec is adopted to solve the system of ODEs (69). On the other hand, the stresses, σ

N
n ,

are updated via the exponential-based integration schemes for the practical step size of �t = 0.1 sec. Finally,
the stress relative errors are computed by means of the following relation:

Eσ

n =
∥

∥

σ
E
n − σ

N
n

∥

∥

∥

∥σ
E
n

∥

∥

. (80)

The stress relative errors of the schemes are plotted for two strain load histories 1 and 2, respectively, in Figs.
5 and 6. According to these figures, the errors of the new semi-implicit schemes are very low in comparison
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Fig. 3 Strain load history 1

Fig. 4 Strain load history 2

to the fully explicit ones. In other words, the results indicate that the accuracy of the explicit schemes has
noticeably been improved by implementing the semi-implicit technique. In fact, evaluating the variables of the
control matrixes, Eqs. (14) and (44), at the specific time in the middle of the elastoplastic part of the time step
leads to far more accurate answers. Besides, the SIM-II scheme turns out to be the most accurate integration
in both diagrams of the results.

In the rest of the section, the convergence rates of the schemes are examined by computing the errors for
different time-step sizes. To reach this goal, the average error is computed using the following relationship:

Eσ
A = 1

N

N
∑

n=1

∥

∥σ
E
n − σ

N
n

∥

∥

∥

∥σ
E
n

∥

∥

. (81)

In the above equation, the total number of the time steps is denoted by N . Figures 7 and 8 display, respectively,
the average errors for strain load histories 1 and 2 for different time steps by the schemes under consideration.
For convenience, the logarithmic space is used to show the results. Evidently, the slope of each line indicates the
convergence rate of the integrations. From these diagrams, it can be observed that both semi-implicit schemes
have second-order accuracy, while the accuracy rates of both fully explicit techniques are linear. It should be
noted that having second-order accuracy is not a basic requirement for a stress updating scheme, nevertheless
it is a desirable characteristic.
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Fig. 5 Stress relative error of different schemes for strain load history 1 with �t = 0.1 s

Fig. 6 Stress relative error of different schemes for strain load history 2 with �t = 0.1 s

Fig. 7 Average stress error of different schemes for strain load history 1
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Fig. 8 Average stress error of different schemes for strain load history 2

6.2 Iso-error maps

In the previous subsection, the accuracies of the schemes were generally studied. Here, it is intended to assess
the accuracy in depth by testing the radial accuracy and angular accuracy separately. For that reason, the
iso-error maps are utilized as powerful means. To compute the error contours, as a standard methodology, it is
firstly considered that the stress point is located on the yield surface at the generic time t = tn . It follows that
a strain increment in the deviatoric plane, �e, is arbitrarily selected while it has the principal directions the
same as the shifted stress at time t = tn , i.e. s′

n . On the other hand, for having a specific strain vector, i.e. �ε,
the volumetric part of the strain, �εv, should be characterized as well as the deviatoric part. To do that, one
could choose a value for the parameter V , which is in effect a relation between the magnitude of the increments
of the deviatoric strain and the volumetric strain part. By a numerical method and also an exact solution, the
final stress, at time t = tn+1, should be determined to compute the errors of the numerical techniques. These
computations are carried out for a wide range of strain increments. In fact, a range of the deviatoric strain
vectors having the principle deviatoric plane, likewise, the deviatoric plane of s′

n are selected and determined
through the normal and tangent projections as:

N = ρ cos ψn,

T = ρ sin ψn,
(82)

where the scale parameter ρ is defined by

ρ = G ‖�e‖
5Rn

. (83)

At this stage, it is appropriate to illustrate the definitions of N and T in Fig. 9 for the sake of clarity. Therefore,
a strain vector, �ε, could be uniquely characterized by selecting the values of the parameters N , T and V .
In order to present the results of the analyses, the radial and angular errors are defined and computed via the
following relationships:

�θ = cos−1

⎛

⎜

⎝

(

s′E
n+1

)T
s′N

n+1

RE
n+1 RN

n+1

⎞

⎟

⎠
,

�R =
(

RE
n+1 − RN

n+1

RE
n+1

)

× 100 %.

(84)

In these equalities, �θ and �R represent the angular error and the radial error, respectively. As was addressed
before, the stresses and radiuses of the yield surface denoted by the superscripts ‘E’ and ‘N’ are computed
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Fig. 9 Definition of the parameters N and T

Fig. 10 The status of the trial stress in the principle stresses space for V = 0

through the accurate integration (AC) and the numerical integrations based on exponential maps, respectively.
In order to plot the iso-error maps, two different values of V = 0 and V = 1 are adopted. Furthermore, the
following domains for N and T are selected:

0 ≤ N ≤ 5, 0 ≤ T ≤ 5 for V = 0,

−5 ≤ N ≤ 5, 0 ≤ T ≤ 5 for V = 1.

It is worth mentioning that in the case of V = 0 the increment of the trial stress, i.e. 2G�e, occurs in the
deviatoric plane (Fig. 10). Therefore, staying in the plastic phase requires that N not have negative values,
and as is shown in Fig. 11, the angle ψn change from 0 to π /2. For V = 1, the increment of the trial stress is
located on the tangent plane to the yield surface as presented in Fig. 12. As a result, N could take the negative
value as well as the positive ones and ψn could take the angles from 0 to π (Fig. 13). Moreover, the material
properties are assumed the same as in the previous section.

Finally, the contours of the errors are plotted in Figs. 14–29. In all diagrams, the error areas with the
absolute value of errors larger than 0.5 % and 0.5◦ have been shadowed for convenience. Considering the case
of V = 0 and the angular errors in Figs. 14, 15, 16, 17, it is obvious that the SIM-I and SIM-II schemes
present a very small angular error compared to the FEX-I and FEX-II schemes, as the maximum errors 0.82◦

and 0.90◦of the FEX-I and FEX-II schemes have been reduced to 0.08◦ and 0.16◦ with the SIM-I and SIM-II
schemes. Furthermore, the minimum angular error in this case is related to the SIM-I. For V = 0, the radial
error contours presented in Figs. 18, 19, 20, 21 illustrate the distinct accuracy of the improved schemes, i.e.
SIM-I and SIM-II. From these diagrams, it can be observed that the maximum errors for the aforementioned
schemes are limited to 0.26 and 0.14 % for the SIM-I and SIM-II, respectively.
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Fig. 11 The status of the trial stress in the deviatoric plane for V = 0

Fig. 12 The status of the trial stress in the principle stresses space for V = 1

Fig. 13 The status of the trial stress in the deviatoric plane for V = 1

Figures 22, 23, 24, 25 are corresponding to V = 1 and the angular errors. The figures show that the
maximum angular errors of SIM-I and SIM-II are about 5.5◦ and significantly smaller than the maximum
errors of about 15.5◦ related to FEX-I and FEX-II. In addition, the hatched areas have been reduced for SIM-I
and SIM-II compared to FEX-I and FEX-II. Finally, Figs. 26, 27, 28, 29 disclose the radial errors for the
case of V = 1. As can be seen from the diagrams, the maximum errors along with the hatched areas for the
improved schemes (SIM-I and SIM-II) have noticeably been moderated with respect to FEX-I and FEX-II. The
enhancement for the hatched area of the SIM-II method is more evident. In fact, considering the same accuracy
of the analysis, the domain of the increment loads for the SIM-II has been really extended with respect to the
domain corresponding to FEX-II. In general, from all diagrams, it can be concluded that the scheme SIM-II
has the best precision.
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Fig. 14 The angular error for FEX-I, V = 0

Fig. 15 The angular error for FEX-II, V = 0

Fig. 16 The angular error for SIM-I, V = 0
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Fig. 17 The angular error for SIM-II, V = 0

Fig. 18 The radial error for FEX-I, V = 0

Fig. 19 The radial error for FEX-II, V = 0
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Fig. 20 The radial error for SIM-I, V = 0

Fig. 21 The radial error for SIM-II, V = 0

Fig. 22 The angular error for FEX-I, V = 1
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Fig. 23 The angular error for FEX-II, V = 1

Fig. 24 The angular error for SIM-I, V = 1

Fig. 25 The angular error for SIM-II, V = 1
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Fig. 26 The radial error for FEX-I, V = 1

Fig. 27 The radial error for FEX-II, V = 1

Fig. 28 The radial error for SIM-I, V = 1
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Fig. 29 The radial error for SIM-II, V = 1

Fig. 30 One-quarter of the strip with circular hole

6.3 Boundary value problems

In this section, two boundary value problems are solved. The goal here is to verify the derived consistent tangent
operators and investigate the efficiency of the two presented semi-implicit schemes through comparing their
efficiency against the efficiency of the two fully explicit exponential-based integrations when used in a finite
element analysis. To meet this purpose, an implicit finite element code is provided, which uses the path-
independent strategy and Newton-Raphson solution. The general properties of a kind of high-strength steel
are used in these analyses (see [44]):

E = 203,000 MPa, ν = 0.27, τy0 = 953 MPa, β = 0.0693.

The hardening properties are given by

Hkin = 150,000 MPa, Hiso = 500.

The boundary value problems consist of two rectangular strips with circular and elliptical holes in their centers
under the plane strain conditions. The thickness of the strips is assumed to be equal to 1, and the analyses
are carried out by applying uniform load control on the direction perpendicular to the sides of the strips
symmetrically. As a result, it is obvious that only one quarter of the strips must be analyzed. The geometries
of the strips along with the applied loads are shown in Figs. 30 and 31.
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Fig. 31 One-quarter of the strip with elliptical hole

Fig. 32 The finite elements mesh for one-quarter of the strip with circular hole

Fig. 33 The finite elements mesh for one-quarter of the strip with elliptical hole

The one quarter of the strips is discretized via 192 4-node isoparametric bilinear quadrilaterals as shown
in Figs. 32 and 33. The non-proportional load history is illustrated in Fig. 34. The calculations are carried
out by applying the loads in 4 steps per second. Also, the analyses are performed using each stress updating
algorithm in question.

First of all, the displacement history of the point A of the strip with elliptical hole is displayed in Fig.
35 using the AC algorithm. To compare the accuracy of the new algorithms (SIM-I and SIM-II) with the
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Fig. 34 The history of the biaxial non-proportional loads

Fig. 35 The history of the displacements for the point A of the strip with elliptical hole

previous ones (FEX-I and FEX-II), the displacement relative error is calculated in each loading increment by
the following equation:

E
Disp
j =

∥

∥

∥uE
j − uN

j

∥

∥

∥

∥

∥

∥uE
j

∥

∥

∥

, uT =
{

u1, u2, . . . , uNnode

}

, ui =
√

u2
x,i + u2

y,i , (85)

where the vector uE
j denotes the global displacements of the nodes in the j th increment computed by 100

sub-increments using the accurate integration (AC) for stress updating, which is assumed as “reference result”.
Moreover, uN

j is the global displacement vector in the j th increment when one of the aforementioned numerical

integrations is used. Considering the strip with elliptical hole, the errors of each fully explicit algorithm with the
corresponding semi-implicit one are shown separately in Figs. 36 and 37. The figures illustrate the robustness
of the new algorithms, as the accuracies of the SIM-I and SIM-II are much better than the FEX-I and FEX-II
schemes.

The deformations of the strips and the elements involved in the plasticity computations in the 4th and
28th loading increments are presented in Figs. 38 and 39. For verifying the consistent tangent operators, the
Euclidian norm of the residual forces of the Newton iterations for the 4th and 28th loading increments are
presented in Tables 1 and 2, respectively, for the circular and elliptical perforated strips. The results shown in
the tables obviously exhibit the quadratic rate of the asymptotic convergence for all schemes.

To test the efficiency of the global solution in a finite element analysis associated with the different stress
updating algorithms, the efficiency is defined as the accuracy per computation time and presented by the
following relation:
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Fig. 36 The displacement relative errors for strip with elliptical hole using the SIM-I and FEX-I algorithms

Fig. 37 The displacement relative errors for strip with elliptical hole using the SIM-II and FEX-II algorithms

Fig. 38 The deformations and the elements involved in the plasticity computations in the 4th and 28th increments for the strip
with circular hole
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Fig. 39 The deformations and the elements involved in the plasticity computations in 4th and 28th increments for the strip with
elliptical hole

Table 1 Residual norms for analysis of strip with circular hole at 4th increment

Iteration FEX-I FEX-II SIM-I SIM-II AC

1 8.5582 × 10+3 8.5582 × 10+3 8.5582 × 10+3 8.5582 × 10+3 8.5582 × 10+3

2 1.7269 × 10+3 1.7261 × 10+3 1.7364 × 10+3 1.7269 × 10+3 1.7264 × 10+3

3 1.0709 × 10+2 1.1236 × 10+2 1.1102 × 10+2 1.1259 × 10+2 1.3528 × 10+2

4 2.4567 × 10+0 1.7388 × 10+0 1.3620 × 10+0 1.7459 × 10+0 4.6159 × 10+0

5 2.5234 × 10−2 3.4805 × 10−2 1.9720 × 10−2 3.5040 × 10−2 1.4178 × 10−1

6 3.9581 × 10−4 7.9937 × 10−4 3.5849 × 10−4 8.0588 × 10−4 5.5595 × 10−3

Table 2 Residual norms for analysis of strip with elliptical hole at 28th increment

Iteration FEX-I FEX-II SIM-I SIM-II AC

1 8.5582 × 10+3 8.5582 × 10+3 8.5582 × 10+3 8.5582 × 10+3 8.5582 × 10+3

2 1.7566 × 10+3 1.6955 × 10+3 1.7097 × 10+3 1.7058 × 10+3 1.9843 × 10+3

3 8.5621 × 10+1 5.2268 × 10+1 6.3067 × 10+1 5.5454 × 10+1 3.1007 × 10+2

4 1.0203 × 10+0 7.7905 × 10−1 8.5586 × 10−1 6.8710 × 10−1 1.6403 × 10+1

5 1.8349 × 10−2 1.3390 × 10−2 1.4684 × 10−2 1.2905 × 10−2 3.0196 × 10+0

6 – – – – 1.5874 × 10−1

7 – – – – 4.3879 × 10−2

η = 1

TCPU × ET
, (86)

where TCPU denotes the total CPU time recorded in the analysis, and the accuracy has been defined as 1/ET,
in which ET is the total error of the nodes’ displacements computed by:

ET =
Nincr
∑

j=1

∥

∥

∥uE
j − uN

j

∥

∥

∥

∥

∥

∥uE
j

∥

∥

∥

. (87)

In the above equation, Nincr represents the total number of loading increments, and the vectors uE
j and uN

j were

defined previously. Having a comprehensive test, the classical Forward Euler (FE) and Backward Euler (BE)
schemes are employed. The results are presented in Tables 3 and 4, respectively, for the strips with circular
and elliptical holes. Based upon the findings of these tables, it is deduced that the SIM-II scheme presents a
superior efficiency compared to others. Furthermore, the FE scheme has the worst effectiveness. Moreover,
the FEX-I shows the lowest efficiency among the exponential-based schemes as it is placed lower than BE.
However, the improved form of FEX-I, i.e. SIM-I is upgraded very well since its efficiency is about 5 times
higher than the efficiency of FEX-I. In addition, it is worth mentioning that although the efficiency of SIM-I is
less than the efficiency of FEX-II, SIM-I has second-order accuracy, which is a benefit over the explicit FEX-II
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Table 3 Efficiency for the analysis of strip with circular hole when different updating stress schemes are used

Scheme TCPU(s) ET η ηn = η/ηFE

FE 92.34 0.0914 0.1185 1
BE 82.55 0.0296 0.4094 3.46
FEX-I 104.54 0.0317 0.3017 2.55
FEX-II 101.17 0.0042 2.3520 19.85
SIM-I 109.74 0.0052 1.7420 14.71
SIM-II 109.17 0.0005 19.1729 161.84

Table 4 Efficiency for the analysis of strip with elliptical hole when different updating stress schemes are used

Scheme TCPU(s) ET η ηn = η/ηFE

FE 67.02 0.0160 0.9328 1
BE 59.66 0.0094 1.7909 1.92
FEX-I 71.58 0.0127 1.1036 1.18
FEX-II 73.45 0.0019 7.1915 7.71
SIM-I 73.19 0.0024 5.7433 6.16
SIM-II 78.98 0.0003 43.8239 46.98

scheme. Therefore, it is evident that where the results become more accurate, the efficiency of the analysis
grows more when SIM-I is used instead of FEX-II.

7 Conclusions

The Drucker-Prager yield condition was considered along with the kinematic and isotropic hardenings. Pre-
viously, two fully explicit exponential-based integrations were proposed (FEX-I and FEX-II) in Reference
[30]. In order to improve the aforementioned schemes, they were converted to two semi-implicit integration
algorithms (SIM-I and SIM-II) in Sects. 3.3 and 4.3. In addition, the consistent tangent operators, which are
necessary for the implicit finite element codes, were derived for all the fully explicit and semi-implicit schemes
in Sects. 3.2, 3.4, 4.2 and 4.4. Subsequently, the consistent tangent operator for an accurate integration was
obtained in Sect. 5.2.

In order to evaluate the accuracy, precision order and efficiency of the new semi-implicit tactics, the
numerical investigations consisting of the strain load histories, iso-error maps and boundary value problems
were taken into account. The findings illustrated the superior accuracy of the new semi-implicit schemes
over the fully explicit ones. Furthermore, it was shown that the semi-implicit methods have second-order
accuracy compared to the first-order precision of the fully explicit schemes. The results of the boundary value
problems demonstrated that the efficiency of the finite element analyses, when the semi-implicit stress updating
algorithms (SIM-I and SIM-II) are used, is much higher than that of those with the fully explicit algorithms
(FEX-I and FEX-II). Finally, the correctness of the derived consistent tangent operators was proven, as well.

Appendix A: Computing the scalar parameter α

The scalar parameter α could be easily computed solving the algebraic equation F(s′
n + 2G(α�e), p′

n +
Kα�εv) = 0:

α =
√

B2 − 4AC − B

2A
, (A1)

where A, B and C are given by:

A = ‖2G�e‖2 − 2(βK�εv)
2,

B = 4G�eTs′
n + 4βK (τy,n − βp′

n)�εv,

C =
∥

∥s′
n

∥

∥

2 − 2(τy,n − βp′
n)2.

(A2)
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Appendix B: Derivatives addressed in the consistent tangent operator of the fully explicit exponential-
based integration with one integrating factor

The derivatives appearing in Eqs. (33) and (34) are presented in the following. First, taking the derivative of
Xs

n+α and XR
n+α with respect to en+1 determines the following equations:

∂Xs
n+α

∂en+1
= 2GαX0

n+αI + 2G X0
n+α�e

(

∂α

∂en+1

)T

,

∂ XR
n+α

∂en+1
= −

√
2βK X0

n+α�εv
∂α

∂en+1
,

(B1)

where ∂α/∂en+1 is given as

∂α

∂en+1
= 4G2

A2

(

− 2AC√
B2 − 4AC

−
√

B2 − 4AC + B

)

�e + 2G

A

(

B√
B2 − 4AC

− 1

)

s′
n . (B2)

In addition, the derivatives of the parameters a, b, c and d can be expressed by:

∂an+α

∂en+1
= 2G

Rn+α

[

− ‖�e‖ ∂α

∂e
+ (1 − α)

∂ ‖�e‖
∂e

− (1 − α) ‖�e‖
Rn+α

∂ Rn+α

∂e

]

bn+α,

∂bn+α

∂en+1
= an+α

bn+α

∂an+α

∂en+1
,

∂cn+α

∂en+1
= 1

Qn+α

∂ Rn+α

∂e
− Rn+α

Qn+α

∂ Qn+α

∂e
,

∂dn+α

∂en+1
= Rn+α

Qn+α

∂Vn+α

∂e
+ Vn+α

Qn+α

∂ Rn+α

∂e
− Vn+α Rn+α

Q2
n+α

∂ Qn+α

∂e
,

(B3)

introducing

∂ Qn+α

∂en+1
= 2(Ḡ + Kβ2)Rn+α

Ḡ

∂ Rn+α

∂e
+ Hiso√

2Ḡ

∂ Rn+α

∂e
,

∂ Rn+α

∂en+1
= −

√
2βK�εv

∂α

∂en+1
,

∂Vn+α

∂en+1
= − βK�εv√

2G ‖�e‖2
�ê.

(B4)

Appendix C: Derivatives addressed in the consistent tangent operator of the semi-implicit exponential-
based integration with one integrating factor

As was mentioned in Sect. 3.4, the derivatives of a, b, c and d , which have subscript n + r(1 − α), are
needed. To meet this objective, one could use the relations presented in Eqs. (B3) and (B4) with the subscript
of n + r(1 − α) instead of n + α and with

∂ Rn+r(1−α)

∂e
= 1

A2

∂ A1

∂e
− A1

A2
2

∂ A2

∂e
, (C1)

where

A1 = b̄n+α�êTs′
n+α + ān+α Rn+α,

A2 = [cn+α b̄n+α + (ān+α − 1)dn+α]�êTs′
n+α + [dn+α b̄n+α + (ān+α − 1)cn+α]Rn+α + 1

(C2)
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and,

∂ A1

∂en+1
=
(

�êTs′) ∂ b̄

∂e
+ b̄

∂�ê

∂e
s′ + b̄

∂s′

∂e
�ê + R

∂ ā

∂e
+ a

∂ R

∂e
,

∂ A2

∂en+1
=
[

b̄
∂c

∂e
+ c

∂ b̄

∂e
+ (ā − 1)

∂d

∂e
+ d

∂ ā

∂e

]

�êTs′ +
[

c · b̄ + (ā − 1)d
]

(

∂�ê

∂e
s′ + ∂s′

∂e
�ê

)

+
[

d
∂ b̄

∂e
+ b̄

∂d

∂e
+ (ā − 1)

∂c

∂e
+ c

∂ ā

∂e

]

R + [d · b + (a − 1)c]
∂ R

∂e
.

(C3)

In these equations all the parameters ā, b̄, c, d and R get the subscript of n + α; the derivatives of c, d and
R with respect to en+1 were presented in the former sections, and for ∂ ān+α/∂en+1 and ∂ b̄n+α/∂en+1, one
obtains the following relations:

∂ ān+α

∂en+1
= 2Gr

Rn+α

[

− ‖�e‖ ∂α

∂e
+ (1 − α)

∂ ‖�e‖
∂e

− 1

Rn+α

(1 − α) ‖�e‖ ∂ Rn+α

∂e

]

b̄n+α,

∂ b̄n+α

∂en+1
= ān+α

b̄n+α

∂ ān+α

∂en+1
.

(C4)

Appendix D: Derivatives addressed in the consistent tangent operator of the fully explicit exponential-
based integration with two integrating factors

To compute the consistent tangent operator corresponding to the fully explicit exponential-based integration
with two integrating factors, one should take the derivatives of Xs

a,n+α, X0
a,n+α, X1

b,n+α and X0
b,n+α in the

following way:

∂Xs
a,n+α

∂en+1
= X0

n+α

∂s′
n+α

∂en+1
,

∂ X0
a,n+α

∂en+1
= X0

n+α

∂ Rn+α

∂en+1
,

∂ X1
b,n+α

∂en+1
= −βK�εvx0

n+α

∂α

∂e
,

∂ X0
b,n+α

∂en+1
= x0

n+α

∂ Rn+α

∂e
,

(D1)

where

∂s′
n+α

∂en+1
= 2GαI + 2G�e

(

∂α

∂e

)T

. (D2)

Moreover, ∂un+α/∂en+1 and ∂vn+α/∂en+1 could be derived as

∂un+α

∂en+1
= sinh (gn+α)

∂gn+α

∂e
,

∂vn+α

∂en+1
= cosh (gn+α)

∂gn+α

∂e
,

(D3)

where ∂gn+α/∂e appearing in the above equations can be expressed by:

∂gn+α

∂en+1
= −

√
2g

R

∂ R

∂e
+ βK (1 − α)�εv

R

∂ Q̄

∂e
− βK�εv(Q̄ − 1)

R

∂α

∂e
+

√
2G(1 − α)(nT�e)

R

∂ Q̄

∂e

−
√

2G Q̄(nT�e)

R

∂α

∂e
+

√
2G Q̄(1 − α)

R

∂n

∂e
�e +

√
2G Q̄(1 − α)

R
n. (D4)
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In the last equation, all variables R, Q̄ and n get a subscript of n + α, and the derivatives ∂ Q̄n+α/∂e and
∂nn+α/∂e hold as:

∂ Q̄n+α

∂en+1
= −

√
2Hiso

[
√

2(Ḡ + K̄β2)R + Hiso]2

[√
2(Ḡ + K̄β2)

∂ R

∂e

]

,

∂nn+α

∂en+1
= 1

X0

∂Xs
a

∂e
− Xs

a

(X0)2

(

∂ X0

∂e

)T

,

(D5)

where R, X0 and Xs
a get a subscript of n + α.

Appendix E: Derivatives addressed in the consistent tangent operator of the semi-implicit exponential-
based integration with two integrating factors

How to determine the derivatives ∂an+r(1−α)/∂en+1 and ∂bn+r(1−α)/∂en+1, which appear in the consis-
tent tangent operator of the semi-implicit integration with two factors, was addressed in Appendix C. Also,
∂un+r(1−α)/∂en+1, ∂vn+r(1−α)/∂en+1 and ∂gn+r(1−α)/∂e could be straightforwardly obtained by replacing
the subscript n +α with n +r(1−α) for all variables of Eqs. (D3)–(D5). In addition, the following derivatives
are needed:

∂ Rn+r(1−α)

∂en+1
= 1

X0
n+r(1−α)

∂ X0
a,n+r(1−α)

∂e
−

X0
a,n+r(1−α)

(

X0
n+r(1−α)

)2

∂ X0
n+r(1−α)

∂e
, (E1)

∂ X0
n+r(1−α)

∂en+1
= Ḡ

K̄β2+Ḡ
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)
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⎡

⎢

⎣

1

X0
b,n+r(1−α)

∂ X0
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∂e
−

X0
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(

X0
b,n+r(1−α)

)2

∂ X0
b,n+r(1−α)

∂e

⎤

⎥

⎦
,

(E2)

where the derivative ∂ X0
a,n+r(1−α)

/∂en+1 has the same relationship as Eq. (58), but ∂ X0
b,n+r(1−α)

/∂en+1 could

be given as:

∂ X0
b,n+1

∂en+1
=

√
2X1
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in which

∂ ūn+α

∂en+1
= r sinh (rgn+α)

∂gn+α

∂e
,

∂v̄n+α

∂en+1
= r cosh (rgn+α)

∂gn+α

∂e
.

(E4)

Appendix F: Derivatives addressed in the consistent tangent operator of the accurate integration

In what follows, all the derivatives mentioned in Sect. 5.2 are given as:

∂ f1

∂y1
= 2Ḡ(

√
2G||ė|| cos y2 + βK ε̇v)

Hiso +
√

2(Ḡ + K̄β2)y1

( √
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2(Ḡ + K̄β2)y1

− 1

)

,

∂ f1
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= −2G||ė|| sin y2 + 2

√
2GḠ||ė||y1 sin y2

Hiso +
√

2(Ḡ + K̄β2)y1

,

∂ f2

∂y1
= 2G||ė|| sin y2

y2
1

,

∂ f2

∂y2
= −2G||ė|| cos y2

y1
,

(F1)
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and

∂ξ

∂en+1
= sin ψn+1

Rn+α sin2 ψn+α

∂ Rn+1

∂en+1
+ Rn+1 cos ψn+1

Rn+α sin ψn+α

∂ψn+1

∂en+1
− Rn+1 sin ψn+1

R2
n+α sin ψn+α

∂ Rn+α

∂en+1

− Rn+1 sin ψn+1 cos ψn+α

Rn+α sin2 ψn+α

∂ψn+α

∂en+1
,

∂ζ

∂en+1
= sin(ψn+α − ψn+1)
∥

∥�s′TR
∥

∥ sin ψn+α

∂ Rn+1

∂en+1
+ Rn+1 cos(ψn+α − ψn+1)

∥

∥�s′TR
∥

∥ sin ψn+α

(

∂ψn+α

∂en+1
− ∂ψn+1

∂en+1

)

− Rn+1 sin(ψn+α−ψn+1)
∥

∥�s′TR
∥

∥

2
sin ψn+α

∂

∥

∥

∥�s′TR
∥

∥

∥

∂en+1
− Rn+1 sin(ψn+α − ψn+1) cos ψn+α

∥

∥�s′TR
∥

∥ sin2 ψn+α

∂ψn+α

∂en+1
,

(F2)

∂

∥

∥

∥�s′TR
∥

∥

∥

∂en+1
= ∂�s′TR

∂en+1

�s′TR

∥

∥�s′TR
∥

∥

,

∂�s′TR

∂en+1
= 2G(1 − α)I − 2G�e

(

∂α

∂e

)T

.

(F3)
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