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Crisis-level overcrowding conditions in emergency departments (EDs) have led hospitals to seek out new patient-flow
designs to improve both responsiveness and safety. One approach that has attracted attention and experimentation in the
emergency medicine community is a system in which ED beds and care teams are segregated and patients are “streamed”
based on predictions of whether they will be discharged or admitted to the hospital. In this paper, we use a combination
of analytic and simulation models to determine whether such a streaming policy can improve ED performance, where it
is most likely to be effective, and how it should be implemented for maximum performance. Our results suggest that the
concept of streaming can indeed improve patient flow, but only in some situations. First, ED resources must be shared
across streams rather than physically separated. This leads us to propose a new “virtual-streaming” patient flow design for
EDs. Second, this type of streaming is most effective in EDs with (1) a high percentage of admitted patients, (2) longer
care times for admitted patients than discharged patients, (3) a high day-to-day variation in the percentage of admitted
patients, (4) long patient boarding times (e.g., caused by hospital “bed-block”), and (5) high average physician utilization.
Finally, to take full advantage of streaming, physicians assigned to admit patients should prioritize upstream (new) patients,
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1. Introduction

Between 1996 and 2006, annual visits to emergency depart-
ments (EDs) in the United States increased by 32% (from
90.3 million to 119.2 million), whereas the number of hos-
pital EDs decreased from 4,019 to 3,833 (Pitts et al. 2008).
This trend has elevated ED overcrowding to crisis levels in
many U.S. hospitals. Similar trends have intensified pres-
sure on EDs around the world.

The consequences of ED overcrowding can be tragic. For
example, in 2006, 49-year-old Beatrice Vance arrived at the
busy ED of Vista Medical Center East in Waukegan, Illinois,
complaining of nausea, shortness of breath, and chest pain.
Triaged and sent to the ED waiting room, Mrs. Vance waited
there for two hours without further attention. When she was
finally called, she failed to respond and was found dead of
an acute myocardial infarction (SoRelle 2006).

Other less tragic but still important consequences of
ED overcrowding include patient “elopement” (i.e., leaving
without being seen), ambulance diversions, and treatment
delays (Hoot and Aronsky 2008). The ED overcrowding

situation has become so dire that the American College of

Emergency Physicians (ACEP) in its 2006 report gave a

failing mark to emergency care in 41 of 50 states in the

United States, and a D− nationally for access to care (see

American College of Emergency Physicians 2006). Some

experts believe that the recent healthcare bill will exacer-

bate the already serious overcrowding problem in U.S. EDs

(SoRelle 2010).

This situation has prompted researchers to investigate a

variety of methods for alleviating ED overcrowding, includ-

ing (1) personnel staffing, (2) hospital bed access control,

(3) nonurgent and low acuity patient referrals, (4) ambu-

lance diversion, (5) destination control, and (6) improved

resource utilization (Hoot and Aronsky 2008).

The most direct way to alleviate crowding and improve

responsiveness is by adding resources. However, because

this is also the most expensive approach, it is generally not

the preferred option. Recognizing this, Richardson (2003,

p. 517) concluded, “the debate is no longer about the

level of resources our EDs deserve, but rather about how
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to ensure that ED resources are directed to those who
need them—the patients in the waiting room.” To achieve
this, some practitioners have recently suggested stream-
ing patients based on their likelihood of being admitted
to the hospital. In one pioneering effort, Flinders Medical
Center in Australia implemented a system in which ED
patients and resources are divided into two streams: one for
those likely to be discharged (hereafter “Discharge” or “D”
patients) and one for those likely to be admitted to the
hospital (hereafter “Admit” or “A” patients) (King et al.
2006, Ben-Tovim et al. 2008). They reported a 48-minute
reduction in average time spent by the patients in the ED.
Although Flinders is an Australian hospital, basic ED prac-
tices are very similar to those in the United States and
other developed countries. However, because Flinders rep-
resented a single uncontrolled experiment in a specific envi-
ronment in which other changes (e.g., lean initiatives) were
implemented along with the streaming system, it is impos-
sible to infer that their results are purely due to streaming
and/or that they will translate to other EDs. Nevertheless,
motivated by positive reports from Flinders, other hospitals
such as Bendigo Health (Kinsman et al. 2008) have begun
implementing similar strategies.

Although streaming patients based on the likelihood of
being admitted to the hospital is new, patient streaming
is not. By the 1980s most EDs (although not Flinders)
had adopted separate “fast tracks” for patients with minor
injuries (Welch 2009). In the 1990s, many EDs also estab-
lished “observation units” for patients requiring lengthy
diagnosis. However, as Welch (2009, p. 1) noted, “these
innovations were the tip of the iceberg, and performance-
driven emergency departments have been experimenting
with models that segment patients into streams for more
efficient health care delivery.”

For clarity, we will use the term “streaming” to refer
specifically to the newly proposed policy that separates
patients (and resources) into different streams according
to anticipated disposition (A or D). We label the con-
ventional policy that treats both types of patients together
(with pooled resources) as “pooling.” It is well known
from the operations management literature that pooling
offers efficiency benefits resulting from improved resource
utilization. This means that in order for streaming to be
effective, it must offer advantages that offset its inherent
“anti-pooling” disadvantage. The Flinders results suggest
that this may be possible. However, because their results
could be due to (a) specific conditions (e.g., high percent-
age of admits, the fact that they did not yet have a separate
stream (fast track) for low acuity patients, etc.), (b) other
changes (e.g., lean), or (c) a Hawthorne effect halo, we
cannot say without a careful analysis.

In this paper, we use a combination of analytical and
simulation models to perform a systematic study of the
attractiveness of streaming. Specifically, we address the fol-
lowing questions:

1. Whether streaming (or a variation on it) can improve

ED performance?

2. Where (i.e., in what hospital environments) is stream-

ing (or an effective variation on it) most attractive?

3. How should Admit/Discharge information be imple-

mented for maximum effectiveness?

The remainder of the paper is organized as follows. Sec-

tion 2 summarizes previous research relevant to the above

questions. Section 3 describes ED flows and performance

metrics in order to construct models with which to under-

stand them. Section 4 considers a simple clearing model

with a single-stage service process, in which patients can

be classified (A or D) without error. This analysis provides

insight into the relative effectiveness of streaming and pool-

ing with respect to sequencing patients into the examina-

tion rooms. Although this suggests that sequencing alone

is not enough to overcome the antipooling disadvantage of

streaming, it also indicates that streaming is more robust to

patient mix variation and classification errors than is pool-

ing, which can lead to streaming outperforming pooling

in real-world settings. In §5, we consider another analytic

clearing model, with perfect patient classification but with

multistage service processes, in order to understand the

impact of patient sequencing within the exam rooms (i.e.,

the order in which physicians visit the patients assigned

to them) on the streaming versus pooling comparison. We

find that prioritizing downstream (i.e., near service comple-

tion) D patients and upstream (i.e., recent arrivals) A type

patients enhances the advantage of streaming over pool-

ing. In §6, we use a simulation model of a realistic ED

environment that includes dynamic patient arrivals, multi-

stage service processes, and patient misclassification error

to test the conjectures made from our analytic models.

Taken together, our results suggest that, implemented prop-

erly in the right environment, streaming can significantly

improve overall ED performance by substantially reducing

wait times for D patients at the expense of only a mod-

est increase in wait times for A patients. We conclude in

§7 with a summary of our overall insights about whether,

where, and how streaming can be a potentially attractive

strategy for improving ED responsiveness. An electronic

companion to this paper is available as part of the online

version at http://dx.doi.org/10.1287/opre.1120.1096.

2. Literature Survey

There are two main streams of research related to the work

of this paper: (1) empirical studies of the ED overcrowd-

ing problem (published in medical journals), and (2) gen-

eral queueing systems research (published in operations

research journals) that deal with pooling and/or customer

sequencing. We highlight key contributions from each of

these below.

For an excellent survey of empirical studies of ED over-

crowding, see Hoot and Aronsky (2008). Some of these

studies have examined the nature and extent of the prob-

lem. For example, Liew et al. (2003) showed that there is a

strong correlation between ED length of stay and inpatient
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length of stay and concluded that “strategies to reduce the

length of stay in the ED may significantly reduce health-

care expenditures and patient morbidity” (Liew et al. 2003,

p. 524). The Centers for Disease Control and Prevention

(CDC) estimated that 379,000 deaths occurred in U.S. EDs

in 2000 (McCaig and Ly 2002). Other studies have found

that long waiting times are linked to patient mortality as

well as elevated risks of errors and adverse events (e.g.,

Thomas et al. 2000, Gordon et al. 2001, and Trzeciak and

Rivers 2003). One such study estimated that long wait-

ing times and high occupancies caused 13 deaths per year

in one Australian ED (Richardson 2006). Thus, reducing

waiting times is a means for promoting higher levels of

patient safety. Because admit patients typically include the

most critical cases that need more rapid attention, some

researchers have focused specifically on studying mortality

among admit patients. For instance, Sprivulis et al. (2006)

associated a combined measure of hospital and ED crowd-

ing (which causes long waiting times) with an increased

risk of mortality among admitted patients.

Other studies have evaluated the factors that influence
overcrowding. Miro et al. (2003) evaluated different inter-

nal factors that affect patient flow and concluded that ED

overcrowding is driven by both external pressure and inter-

nal factors such as how flow across the ED is measured.

Schull et al. (2007) studied the effect of low complex-

ity ED patients on the waiting times of other patients and

concluded that the impact is negligible. Still other papers

have examined the impact of various reorganizations. The

papers on the Flinders experiment with streaming (King

et al. 2006, Ben-Tovim et al. 2008) fall into this category.

Another example is Howell et al. (2004), which consid-

ered a new ED admission process in which ED physicians

admit patients directly to the general medical unit after a

telephone consultation with a hospitalist.
A subcategory of empirical research on the ED deals

with developing metrics with which to address the issues of

ED crowding. Solberg et al. (2003) provided an overview

of the various metrics that have been proposed. We focus

on two important measures in our study: length of stay

(LOS), which measures total time in the ED from arrival to

discharge/admit, and time to first treatment (TTFT), which

measures the time from arrival to the first meaningful inter-

action with the physician.

Finally, a stream of empirical ED research involves time
studies that characterize how caregivers spend their time in

the ED, as well as the nature and duration of treatments.

Examples of this type of research include Hollingsworth

et al. (1998) and Graff et al. (1993). We will make use of

these results to calibrate our models.

A number of researchers (e.g., Cochran and Roche

2009, Green et al. 2006, and Allon et al. 2012) have

used queueing models to study various aspects of the ED.

Within the large literature on queueing, studies that con-

sider resource pooling, customer partitioning, or customer

sequencing/prioritizing are most relevant to our work.

The standard insight from studies of pooling in queueing

systems is that when two classes of customers in a queue-

ing system become sufficiently different, pooling becomes

ineffective and may even be harmful (see Mandelbaum and

Reiman 1997, Tekin et al. 2009, Van Dijk and Van Der

Sluis 2008). This suggests that a significant difference in

treatment times between A- and D-type patients may be

one way for streaming to overcome the antipooling disad-

vantage. However, verifying this requires an extension of

known results because in the ED patient misclassification

is inevitable, service is a complex process involving several

physician-patient interactions, different streams of patients

have different performance metrics, and the system has lim-

ited buffers (i.e., examination rooms/beds).

A related stream of queueing systems research consid-

ers effective ways of partitioning resources (e.g., Rothkopf

and Rech 1987, Whitt 1999, Hu and Benjaafar 2009). An

important observation from these studies is that separat-

ing fast and slow customers can protect customers with

short processing times from waiting behind customers with

long processing times. Note, however, that the same effect

can be achieved by assigning priorities to customers with

shorter processing times (Hu and Benjaafar 2009). How-

ever, for either partitioning or prioritizing to work effec-

tively, we must be able to classify customers with a high

level of accuracy. Analyses of priority queueing systems

under misclassification errors (which are inevitable in EDs)

suggest that these insights may not hold when classification

is imperfect (e.g., Argon and Ziya 2009).

One last line of queueing research relevant to our work is

the one that studies sequencing. In queueing systems where

multiple customers are in the system at the same time (e.g.,

serial production lines with jobs at different stages of com-

pletion or an ED with multiple patients in the exam rooms

awaiting physician attention), the server (physician) faces

a customer sequencing problem. Related studies of serial

systems can be found in Duenyas et al. (1998), Hopp et al.

(2005), and Van Oyen et al. (2001), whereas related studies

of parallel queueing systems can be found, for instance, in

Andradóttir et al. (2003), Saghafian et al. (2011), and the

references therein. In particular, Van Oyen et al. (2001) pro-

posed a “pick-and-run” policy for servers in a serial system

that favors working on the most downstream (old) jobs. We

find that a similar policy can help physicians assigned to

the D stream to choose their next patient in a manner that

reduces average LOS.

3. Modeling Flows and
Performance in the ED

To develop a modeling framework with which to address

the whether, where, and how questions stated above, we

must first describe the key characteristics of ED operations.

We start by representing the general flow of patients in Fig-

ure 1. Patients arrive to the ED in a nonstationary, stochas-

tic manner. Upon arrival, patients first go to the triage stage
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Figure 1. The general flow of patients in an ED.

Arrival Triage Treatment

Tests/
preparations

DispositionWaiting

where each patient is assigned an emergency severity index

(ESI), usually by a nurse, but sometimes by a doctor. ESI is

an integer between 1 to 5, where clinical urgency decreases

in ESI level. ESI 1 patients (who constitute a small per-

centage of total patient volume) are subject to high mortal-

ity risk if not treated immediately. Hence, they are always

given high priority. As such, they are generally tracked sep-

arately from the rest of the patients through an “acute care”

or “resuscitation” track. In American hospitals, ESI 4 and 5

patients are also often tracked separately through a “fast

track” because their treatment needs are relatively simple

and straightforward. Hence, in this paper, we focus on the

ESI 2 and 3 patients who make up the bulk (about 80% at

the University of Michigan) of the patients in the main ED.

In addition to assigning ESI levels, Flinders Medical

Center has reported that, at the time of triage, nurses can

predict whether a patient is A or D with roughly 80% accu-

racy (King et al. 2006). Empirical studies in other medical

centers have reported similar results (e.g., Holdgate et al.

2007, Kronick and Desmond 2009).

After a patient has been triaged, he/she waits in a wait-

ing area and is eventually called to an examination room.

There he/she goes through one or more phases of inter-

action (treatment) with the same physician, as shown in

Figure 1. (While caregivers may be nonphysicians—e.g.,

physician assistants—we use the term “physician” for sim-

plicity.) Each physician-patient interaction (treatment stage)

lasts a stochastic amount of time and is followed by testing

(MRI, CT scan, etc.) or processing activities (e.g., wound

cleaning) by a nurse that do not involve the physician. Dur-

ing testing or processing stages, which are also stochastic

in duration, the patient is unavailable to the physician. The

final processing stage after the last physician interaction is

“disposition,” in which the patient is either discharged or

admitted to the hospital by staff based on the physician’s

final instructions.

Note that a patient is usually assigned to a single physi-

cian and so must wait for his/her physician to return for

each treatment phase. Also, in most EDs, a patient is

assigned to an exam room and holds that room, even when

he/she is sent to a test facility, until he/she is disposed (dis-

charged or admitted). Because physicians and exam rooms

are limited, both of these resources can be bottlenecks.

The flow of patients in the ED is impacted by two
phases of sequencing decisions. Phase 1 sequencing deci-
sions determine the order/priority in which patients are ini-
tially taken from the waiting area to an examination room.
Phase 1 decisions are usually made by a nurse in consid-
eration of ESI levels and patient arrival orders. In theory,
it could also make use of A/D predictions. Once patients
are in examination rooms, Phase 2 sequencing is done to
determine the order in which patients are seen. Individ-
ual physicians make the Phase 2 sequencing decisions by
choosing the patients assigned to them in consideration of
ESI levels, patient comfort, time in system, experience, etc.
We have observed wide variance in the Phase 2 sequenc-
ing logic of individual physicians working within the same
ED. Furthermore, physicians tend to limit the number of
patients they have at any given time—seven seems to be a
typical upper limit.
It is impossible to capture all of the abovementioned

complexities of the ED in a single tractable analytic model.
Of course, we can use simulation, but it is difficult to draw
clear insights from purely numerical studies. Therefore, to
probe the whether, where, and how questions, we will first
examine a series of analytic models that represent simpli-
fied versions of the ED flow and then test the resulting
conclusions under realistic conditions with a high-fidelity
simulation calibrated with hospital data.
To compare streaming and pooling strategies, we must

model the flows under each protocol. In a typical ED,
which uses a pooling protocol, patients are not classified
into A/D categories and all (ESI 2 and 3) patients are
served by a set of pooled/shared resources (exam rooms,
physicians, etc.), with priority given to ESI 2 patients.
Under the streaming protocol, resources are divided into
two groups: one for the A stream and one for the D stream,
and A/D predictions are used to direct patients to the
appropriate stream.
To compare the pooling and streaming protocols, we also

need a performance criterion. Two commonly used met-
rics in the ED are length of stay (LOS) and time to first
treatment (TTFT). For D patients, LOS is the key met-
ric because it correlates with both convenience and safety
(because a low LOS also guarantees a low TTFT). How-
ever, for A patients, LOS in the ED is usually a small frac-
tion of their total LOS in the hospital, which on average
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extends for days beyond their time in the ED. For these
patients, safety is of much greater importance than amount
of time they spend in the ED rather than in a hospital bed.
Because safety is enhanced by starting treatment as soon as
possible, TTFT is the most important metric for A patients.

We let � denote the percentage of A patients and
define T �

A 4�5 and L�
D4�5 to be the (average) TTFT of A

patients and (average) LOS of D patients under policy � ∈
ç, respectively, where ç = 8PA(Pooling with priority to
As), PD(Pooling with priority to Ds), S(Streaming)} rep-
resents the set of admissible policies. More specifically,
letting N denote the total number of patients who visit
the ED during a sufficiently long period (e.g., a year),
we define T �

A 4�5 = Ɛ
�641/4�N55

∑�N
i=1 TA1 i7 and L�

D4�5 =

Ɛ
�641/441−�5N55

∑41−�5N
i=1 LD1 i7, where �N (41 − �5N )

is the number of As (Ds) during the period, Ɛ� denotes
expectation with respect to the probability measure defined
by policy � ∈ç, and TA1 i and LD1 i are random variables
denoting the TTFT and LOS of the ith A and the ith D
patient, respectively. Note that we are restricting attention
only to pooling and streaming policies in keeping with the
whether question raised in the Introduction. We acknowl-
edge that a more complex state-dependent policy might
outperform the policies in set ç. However, how much
improvement is possible and whether such policies can be
made practical in actual ED settings are open questions.
In this paper, we restrict our attention to the potential for
improvement through demonstrably implementable stream-
ing policies.

To construct a single objective function, we let � repre-
sent the relative weight placed on the TTFT of A patients
and define f �4�1�5= �T �

A 4�5+ 41−�5L�
D4�5 as the per-

formance metric under policy � ∈ ç. We note that this
performance metric can also be derived from a cost per-
spective. To see this, suppose cA and cD represent the per-
patient cost of increasing the TTFT of A patients and LOS
of D patients by one unit of time, respectively. If � =
4cA�5/4cA� + cD41 − �55, then f �4�1�5 represents the
average cost per patient under policy �. For instance, set-
ting �= � implies an objective in which increasing TTFT
of A patients and LOS of D patients by one minute is
equally costly. We also note that although other metrics are
used to evaluate the performance of an ED, most of these
are highly correlated with our objective function. For exam-
ple, the percentage of patients who leave without being
seen (LWBS) is commonly tracked in EDs, but studies such
as Fernandes et al. (1994) have indicated that the majority
of such patients leave the ED because of prolonged waiting
times. Hence, improvements in our objective function can
be expected to result in reduced LWBS as well. We will
examine the impact of streaming on LWBS in §6.

A closer look at the empirical results reported by Flinders
(King et al. 2006) indicates that streaming reduced the LOS
of D patients but increased TTFT of A patients. Hence, if
streaming is attractive, it is because it strikes a better bal-
ance between these potentially conflicting objectives. Our
combined objective enables us to examine this trade-off.

4. Phase 1 Implications of
Streaming and Pooling

Realistic models of ED flow described in the previous sec-
tion would be too complex for anything other than simu-
lation. So, to get some clear insights into whether, where,
and how streaming can outperform pooling, we start with
a stylized patient flow model in which (1) all patients are
available at the beginning of each day (i.e., static arrivals),
(2) there are only two physicians, who work in parallel
under the pooling protocol and are assigned to the A and
D streams in the streaming protocol, (3) patient diagno-
sis/treatment occurs in a merged single service stage, where
XA (XD) is a random variable with mean �A (�D) rep-
resenting the service time of an A (D) patient, (4) A/D
classification is perfect (i.e., error free), and (5) to avoid
inefficient underutilization, the A4D5 physician switches to
serve D4A5 patients when there is no other A4D5 patient
available. Because we model service as a single stage, we
eliminate the Phase 2 sequencing decisions. Hence, this
model only offers insights into the performance of pooling
and streaming via their impact on Phase 1 sequencing.
The above assumptions (most of which will be relaxed

in subsequent sections) allow us to represent the ED with
a clearing queueing model, in which a fixed number (n) of
patients is available at the beginning of the day. Because
the overall performance of the ED is heavily influenced by
performance during periods of overload (which occur dur-
ing predictably in the mid afternoon), the clearing model
approximates ED behavior better than the more convention-
ally used steady-state queueing model.
We start by examining the relative effectiveness of the

three policies in the admissible space ç for extreme cases
where �= 1 or 0 (i.e., when the objective function is either
merely TTFT for As or LOS for Ds).

Proposition 1 (Extreme Cases). With ç= 8PA1PD1S9,
the following hold for the clearing model (with arbitrary

distributions of XA and XD):

(i) For every � ∈ 60117 and every sample path �,
argmin�∈ç T �

A 4�1�5 = PA. That is, if only TTFT of As
matters (i.e., when �= 1), then pooling with priority to As
is the best policy in ç (in the almost sure sense).

(ii) For every � ∈ 60117 and every sample path �,
argmin�∈çL�

D4�1�5= PD. That is, if only LOS of Ds mat-

ters (i.e., when �= 0), then pooling with priority to Ds is

the best policy in ç (in the almost sure sense).

This intuitive proposition suggests that streaming is not
attractive unless we care about both TTFT for As and LOS
for Ds. Therefore, we now analyze the optimal strategy
when the objective function is a convex combination of
these two metrics. To do this, we first formally define a
strategy for our problem.

Definition 1 (Strategy). A strategy is a map �2 60117×
60117→ç that defines the policy �4�1�5 for each �1�.
An optimal strategy is the one that defines an optimal pol-
icy �∗4�1�5 for every 4�1�5.
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A useful property that allows us to establish the structure

of the optimal strategy is �-convexity, which we define in

two steps as follows.

Definition 2 (� Region). For policy � ∈ç, the � region,

denoted by A
� , is the collection of 4�1�5 for which pol-

icy � is optimal. That is, the � region is A
� = 84�1�5 ∈

60117× 601172 �∗4�1�5=�9.

Definition 3 (�-Convexity). The optimal strategy

�∗2 60117× 60117→ç is said to be �-convex if all the �

regions (i.e., sets A� (∀� ∈ç)) are convex in � for every

� ∈ 60117.

Lemma 1 (�-Convexity). The optimal strategy �∗4�1�5

is �-convex.

Using the above lemma, we can establish the structure

of the optimal strategy.

Proposition 2 (Double Threshold Policy). For every

fixed � ∈ 60117, there exist double thresholds �4�51 �̄4�5

such that streaming is the best policy in ç if, and only if,

� ∈ 6�4�51 �̄4�57. If � < �4�5, then pooling with priority

to Ds is the best policy in ç. If � > �̄4�5, then pooling

with priority to As is the best policy in ç.

Because EDs vary in their percentage of As (�) and

relative weight of TTFT of Ds (�), the appeal of stream-

ing depends on the width of the gap between � and �̄.

Unfortunately, our numerical experiments suggest that this

gap is very narrow for the stylized model of this section.

Indeed, Figure 2 illustrates an example with deterministic

Figure 2. An example of the optimal strategy with

three admissible policies (PA1PD1S) and
deterministic service times for which stream-

ing is almost never optimal.
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service times in which there is no region of optimality for

streaming (it can, however, appear with stochastic service

times). Although the optimality region for streaming can

appear when service times are stochastic, it is generally

small when � is constant and known. Knowing the exact

proportion of As enables a fixed priority policy to strike an

effective balance between the waiting costs of As and Ds.
This is no longer the case under the (highly realistic)

assumption that � is uncertain. If the percentage of A

patients varies from day to day, then a pooling policy that

prioritizes either A or D patients can be quite ineffective.

The reason is that we must pick which patient type to pri-

oritize before the mix of A and D patients is known for the

day. If we choose the wrong policy for the mix that actually

occurs, performance could be very poor. We illustrate this

in Figure 3, which plots the optimality gap (i.e., difference

between the objective function of a given policy and that of

the optimal policy) for the S, PA, and PD policies. These

results show that whereas PA is optimal for small �, it is

very poor for large �. Conversely, PD is optimal for large

� and very poor for small �. In contrast, the streaming
policy, S, is almost never optimal but is also never poor.

Hence, we can make the following observation.

Observation 1. Streaming is much more robust to
changes in patient mix (�) than is pooling.

The reason is that streaming mimics a dynamic policy

with the simplicity of a static rule. By allocating some

capacity to both patient types, it never results in a few

patients of one type waiting for many patients of the

other type.

To examine the impact of uncertainty in �, we assume

� is chosen from a family of Beta distributions given

by Beta4f 4x512f 4x55, where f 4x5 = 42− 9x5/427x5, x ∈

4012/95. This results in �� = 1/3, which approximates the
fraction of As in the University of Michigan Emergency

Department (UMED), and �2
� = x, so we can generate a

range of uncertainty of � by varying x. We choose the Beta
distribution because (1) it is the most common distribution

for a random variable that takes values between 0 and 1,

and it includes the other well-known distribution, the uni-

form, as a special case, and (2) it seems to well represent

our data from UMED. Figure 4 uses our analytical model

of the ED along with the Beta distribution to illustrate the

impact of varying �2
� on the optimal strategy. This figure

offers two insights: (1) As noted before, when there is no

uncertainty (�2
� = 0), streaming is not optimal for any value

of �. (2) As the level of uncertainty (measured by �2
�)

increases, streaming becomes optimal for an increasingly

broad range of � values.

From Figures 3 and 4, we can make an important con-

jecture (which we will test in §6): streaming is more

robust than pooling to variation in patient mix. The intu-

ition behind this robustness result is that a pooling sys-

tem that completely prioritizes one type of patients can

sequence them far from the optimal order (e.g., putting
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Figure 3. Sensitivity of policies to changes in �.
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Note. Streaming is more robust to changes in patient mix than are the pooling policies.

D patients at the end of the line on a day in which they
should have been at the beginning of the line). In contrast, a
streaming system always gives some priority to both types
of patients by “reserving” some capacity for each type.
Although the proportion of capacity assigned to A and D
patients may not be optimal on any given day (depend-
ing on the mix of patients), the fact that the two streams

Figure 4. When the level of uncertainty in the percent-

age of A patients (measured by �2
�) increases,

streaming becomes the optimal policy for an

increasingly wide range of � values.
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“back each other up” makes such suboptimalities much less

disruptive than the “reverse prioritization” that can occur

under pooling. Hence, altering the mix of patient types has

a much more modest impact on performance in the stream-

ing system. We relegate discussion of the model behind

Figure 4 to Online Appendix B, in the electronic compan-

ion, for the sake of brevity. We will test another important

conjecture that streaming is more robust than pooling to

misclassification errors in §6.

5. Phase 2 Implications of
Streaming and Pooling

By modeling patient care as a single-stage service process,

the above model focused attention exclusively on Phase 1

sequencing. However, as we noted earlier, ED patients typ-

ically receive multiple visits from physician (designated as

“treatment” states), interspersed with tests, waiting for test

results and intermediate processing (designated as “wait”

states), during which the patient is not available for interac-

tion with the physician. To examine the Phase 2 sequencing

decisions of which patient to see next whenever a physician

completes a treatment stage, we now relax the single-stage

service assumption and consider a multistage treatment pro-

cess. Note that we still face the Phase 1 sequencing deci-

sion concerning the order in which to bring the patients

back into the examination rooms. In both Phase 1 and

Phase 2 sequencing, we can make use of ESI information

and, if available, A/D information. In Phase 2 sequencing,

a physician can also potentially consider the number of past

interactions with the patient. For instance, he/she could pri-

oritize patients that have completed more treatment stages

because they may be closer to completion.
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Figure 5. Multistage ED service: 4W415: (initial) wait;

T 415: (initial) treatment; FW : final wait; E:

exit).

W1 T1

W T

FW E

To explore the Phase 2 sequencing problem and its
impact on the streaming versus pooling comparison, we
consider a static arrival (clearing) model with two physi-
cians, where one physician is assigned to each stream under
the streaming protocol. However, we represent the service
process by the multistage model in Figure 5. In this model,
after an initial wait state labeled as W1, patients go through
an initial treatment (direct or indirect interaction with the
physician) labeled as state T 1 (so TTFT is the time between
the start of T 1 and the arrival of the patient). After T 1,
the patient oscillates between a stochastic number of “wait”
(labeled as W ) and “treatment” (labeled as T ) states. We
note that the treatment states start only if both the physi-
cian and the patient are available and the physician elects
to work on that patient. After the final treatment by the
physician, the patient experiences a final wait state (labeled
as FW ) that involves final processing by a nurse and a
delay specific to admission (e.g., assignment to a bed) or
discharge (e.g., final paper work and follow-up instruc-
tions), and then the patient exits the ED (to state E). To
allow the distribution of physician interactions per patient
to match observed data, we let the probability of a tran-
sition to the final stage 4F W5 depend on the number of
previous interactions.

Because our focus here is on Phase 2 sequencing, we
simplify some other aspects of the system to construct a
tractable model. First, without loss of generality, we con-
sider a single ESI level for patients. We do this because,
in a clearing system, all ESI 2 patients will be served
before ESI 3 patients (due to their Phase 1 sequencing pri-
ority). Hence, distinguishing between these patient classes
will have little effect on system performance. Second, to
permit maximum opportunity for Phase 2 sequencing, we
assume there are enough examination rooms to hold all of
the patients. Third, we assume that times in “wait” states
(i.e., times spent for tests, waiting for test results, and
intermediate processing) are i.i.d. (independent and identi-
cally distributed) and exponentially distributed. For conve-
nience, we also assume that times in the treatment states
are i.i.d. and exponentially distributed and are independent
of the duration of wait states. The i.i.d. assumption glosses
over any queueing for test equipment or nurses that could
serve to correlate the times in the wait states. However,
because these states account for many different activities,
we would not expect such correlation to be large. The expo-
nential assumption reflects the unpredictability of the activ-
ities between physician interactions. Finally, to avoid the
minor complications injected if preemption is disallowed,

we allow preemption. For instance, when a patient returns

from a test, the physician has the option of preempting the

current patient and switching to the returning patient. We

will relax these assumptions in the next section.

Because A and D patients have different performance

metrics, it makes sense to treat them differently in Phase 2

sequencing. For D patients, LOS matters most. The work

of Van Oyen et al. (2001) (which considers a manufactur-

ing system with multiple phases of worker/product interac-

tion) suggests that a “pick-and-run” policy can be effective

when the performance criterion is average time spent in

the system. Under this policy, the goal is to serve the most

downstream job. In the ED, the equivalent policy would

be for physicians to work on the patient closest to com-

pletion and try to complete this “old” patient’s service (to

the extent possible) before initiating a service for a “new”

patient. We refer to this policy as Prioritize Old (PO). In

contrast, for A patients, TTFT is the key performance met-

ric. Hence, for them, physicians should give preference to

patients that have not yet been seen, unless constrained by

the availability of exam rooms or the patient per physician

limit. (Thus, in our simulation framework of the next sec-

tion, where such additional constraints are also considered,

a physician at his/her capacity should be directed to clear

out in-process patients as quickly as possible by following

the PO policy.) We refer to the policy that favors unseen

patients as the Prioritize New (PN) policy.

We can show that these policies are optimal in the con-

text of our simplified model. (See Online Appendix A for

a proof, where a Markov decision process is developed to

analyze the underlying multiarmed restless bandit model.)

We also refer interested readers to Dobson et al. (2012) for

some other related results regarding Phase 2 sequencing.

Proposition 3 (Who to See Next?). In the clearing

model of a streaming ED flow with one physician assigned

to each stream and multistage exponential treatment and

wait stages modeled as in Figure 5:

(i) If the probability of completion increases in the num-

ber of previous physician-patient interactions, the Prioritize

Old (PO) rule is optimal (in the expected sense) for the D

stream.

(ii) The Prioritize New (PN) rule is optimal (in the

almost sure sense) for the A stream.

The implication of the above result is that instructing D

physicians to work on the most downstream (old) patient
and A physicians to work on the most upstream (new)
patient should further improve the effectiveness of stream-

ing. This addresses the how question we posed in §1 by

suggesting a policy simple enough to be implemented in
EDs. It also partially corresponds to what was done at
Flinders (see King et al. 2006), where physicians assigned
to the D stream were instructed that, in the absence of

a threat to life/limb, need for time-critical intervention,
or severe pain, they were to see patients in the order of
arrival (i.e., a FCFS (first-come-first-served) mechanism).
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Moreover, “the staff were further encouraged to attempt
as far as possible to complete one patient’s journey before
bringing the next patient out of the waiting room into
a cubicle” (King et al. 2006, p. 393). However, physi-
cians assigned to the A stream were instructed to continue
to prioritize patients according to ESI categories and to
use FCFS within each category. Our results suggest that
Flinders sequencing policies within the ED are reasonable
but not optimal.

We will confirm the conjecture that implementing the
PO and PN rules for Phase 2 sequencing in the ED can
enhance the effectiveness of streaming in the next section.

6. A Simulation-Based Comparison of
Streaming and Pooling

We now test the conjectures suggested by our simple ana-
lytic models by means of a detailed simulation model of
the ED. This simulation incorporates many realistic features
discussed earlier, including dynamic nonstationary arrivals,
multistage service, multiple physicians and exam rooms,
inaccuracy in disposition prediction, and bed-block by the
hospital, among others. Our base-case model was calibrated
using a year of data from UMED plus time study data
from the literature. Below, we highlight key features of
the model. A more detailed description of our modeling
assumptions is presented in Online Appendix C.

Patient Classes. As discussed earlier, patients are classi-
fied according to both ESI level (2 or 3) and ultimate dispo-
sition (A or D). This is done at the triage stage and results
in patient classes 2A12D13A, and 3D. However, A/D pre-
diction at triage is imperfect, resulting in misclassification
errors. The true type of a patient is not revealed until the
admit/discharge decision is made. Misclassification errors
may vary from hospital to hospital, but achievable levels
seem to be in the range of 20%–25% (King et al. 2006,
Holdgate et al. 2007, Kronick and Desmond 2009).

Arrival Process. Arrivals for patient classes are mod-
eled using nonstationary Poisson processes (which closely
approximate the data) with arrival rates by class (obtained
from a year of UMED data), depicted in Figure 6. The
general pattern is similar to those reported in other studies
(e.g., Green et al. 2006).

Figure 6. Class-dependent arrival rates to the ED for an average day (obtained from a year of data in UMED).
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Service Process. The ED service process is depicted
in Figure 5. Each patient goes through several phases of
patient-physician interactions/treatment followed by tests
and preparations. The duration of each interaction is ran-
dom, and its average may depend on the class of the patient
and the number of previous interactions. For instance, the
first and last interactions are usually longer than interme-
diate ones. The number of interactions with a physician
ranges from 1 to 7 and depends on the class of the patient,
as well as several other factors. Based on the class of the
patient, we draw the number of such interactions from a
distribution constructed from a detailed time study (see
Table 3 of Graff et al. 1993) after modifying the data to
represent our four patient classes (see Online Appendix C
for details). The simulated service process is noncollab-
orative (an ED physician rarely transfers his/her patients
to another physician) and nonpreemptive (an ED physician
rarely moves to another patient in the middle of his/her cur-
rent interaction). The nonpreemptive framework rules out
impractical policies that, for instance, instruct physicians
to visit each patient for a short time and then move to the
other patient before finishing the interaction with the cur-
rent patient. Such preemptive policies are generally avoided
by physicians because they are inefficient for the physician
(who will need to re-review patient history and condition
upon the next return), as well as irritating to patients.
Physician-Patient Assignments. As noted earlier, the

process of connecting patients with physicians involves
two phases. In Phase 1, patients are assigned to avail-
able exam rooms, usually by the charge nurse, based on a
Phase 1 sequencing rule. In Phase 2, whenever a physician
becomes available, he/she chooses the next patient (among
those available/ready in the exam rooms) to see based on
a Phase 2 sequencing rule. Under all patient flow designs,
prioritizing ESI 2 patients over ESI 3 patients in Phase 1
is a constraint for safety reasons. For Phase 1 sequenc-
ing under streaming, patients are first streamed according
to A/D information and then prioritized within streams
with ESI 2 patients before ESI 3 patients (ties are bro-
ken with a FCFS rule). Under pooling, Phase 1 sequencing
may or may not make use of A/D information, depending
on the scenario under consideration. If A/D information
is not available, then Phase 1 sequencing only considers



Saghafian et al.: Patient Streaming for Improving Responsiveness

Operations Research 60(5), pp. 1080–1097, © 2012 INFORMS 1089

ESI levels by prioritizing ESI 2 over ESI 3 with an FCFS

rule to break ties. If A/D information is available under

pooling, then Phase 1 sequencing prioritizes patients in the

following order: 2A12D13A13D, with FCFS to break ties

within a class.

In keeping with practice in UMED and elsewhere, we

assume physicians do not take on more than seven patients

at any time. We consider the following Phase 2 sequenc-

ing rules: (1) Service-In-Random-Order (SIRO), in which

when a physician becomes available, s/he selects a patient

at random from the pool of available (i.e., those not under

a preparation or test) patients assigned to him and the new

patients in the examination rooms waiting for a physician,

provided that his/her total patient load does not exceed

seven. This SIRO policy approximates current practice in

many EDs in which physicians are not specifically encour-

aged to follow any specific rule, and hence, exogenous

factors (changes in patient urgency level, patient discom-

fort, physician preference and experience, anticipation of

interactions with testing facilities, access to newly avail-

able information, etc.) override systematic sequencing of

patients. (We note, however, that although exogenous fac-

tors may make it appear that patients are sequenced accord-

ing to SIRO, the decisions of physicians are not actually

random. They are just based on criteria other than flow

efficiency.) (2) First-Come-First-Served (FCFS), in which a

physician selects his/her next patient in order of their arrival

to the ED. This is an implementable policy to which many

EDs aspire. (3) Prioritize-New-Prioritize-Old (PNPO), in

which the prioritize new (PN) policy is used by physicians

assigned to the A stream, and the prioritize old (PO) pol-

icy is used by physicians assigned to the D stream. That

is, physicians in the A stream take an unassigned new

patient whenever one is available in an exam room and the

physician’s patient load does not exceed seven. In contrast,

physicians assigned to the D stream are instructed to prior-

itize the most downstream patient assigned to them, to free

up rooms and minimize LOS by completing patient jour-

neys as quickly as possible. If a physician is handling seven

patients s/he is asked to serve the most downstream patient

assigned to him regardless of the stream s/he is working in

(in an effort to free up a room and lower his/her workload).

Ties are always broken using a FCFS rule. Although new

to EDs, PNPO is an implementable policy that our previous

analytic results suggest should be effective.
Naming Convention. To distinguish between patient

flow designs, we adopt a naming convention that labels

each design as Protocol/Phase 1/Phase 2. “Protocol” des-

ignates the type of system: pooling (P ), streaming (S),

and virtual streaming (VS). The difference between the

S and VS protocols is that S represents an implementa-

tion of streaming in which resources (rooms and physi-

cians) are physically segregated and hence, idle resources

assigned to one stream cannot be used by the patients of

the other stream. In contrast, in VS, resources are only

logically segregated and thus can be shared across streams.

The “Phase 1” and “Phase 2” parts in the naming conven-
tion designate the Phase 1 and 2 sequencing rules described
earlier. Phase 1 sequencing under streaming is done by sep-
arating patients based on their ultimate disposition (A or
D) and prioritizing each stream by ESI level (2 before 3).
Hence, we label all S and VS cases with “AD + ESI” to
indicate the Phase 1 rule. Similarly, for “Phase 1” under
pooling, we use “ESI” to denote the case where Phase 1
sequencing is based only on ESI information, and we use
“AD+EDI” to denote the case where, in addition to ESI
levels, A/D information is used to sequence patients in
the order: 2A12D13A13D. For phase 2 sequencing rules,
we use SIRO, FCFS, and PNPO. SIRO and FCFS can be
used under either pooling or streaming, but PNPO can only
be implemented in S and VS systems where physicians
and patient classes are segregated into A and D streams.
Table 1 summarizes this notation and the possible patient
flow designs.
In the following subsections, we present our main find-

ings from the simulation experiments. For each patient
flow design described above, the objective function
(�TTF T 4A5+ 41− �5LOS4D5) is computed as an aver-
age over 5,000 replications of a week of operation, where
the result for each replication is obtained after a warm-up
period of one week. Further details about our simulation
framework can be found in Online Appendix C.

6.1. ED Flow Design: Pooling, Physical

Streaming, or Virtual Streaming?

We start with a comparison between the current practice of
pooling in the EDs and physical streaming (where, unlike
virtual streaming and our analytical clearing model, capac-
ity sharing is not possible).

Observation 2. Comparing simulations of the S/AD +

ESI/SIRO and P/ESI/SIRO systems shows that pooling
is more effective than physical streaming, with a 77% lower
objective value.

The inefficiency of physical streaming results from the
imbalanced and low utilization of resources (which leads
to intervals in which physicians are starved for lack of a
patient or bed, even though a patient and/or bed is available
in the opposite stream). In other words, physical stream-
ing exhibits an “antipooling effect,” which occurs because
physical separation in either physicians or beds prevents
capacity sharing. To place the observed magnitude of the
antipooling effect of physical streaming (77%) in context,
we make use of Kingman’s formula for a G/G/s queue-
ing system with s = 8 physicians and two parallel G/G/s
queueing systems with s = 4 physicians each, with a server
utilization matching our base case. The pooling benefit of
having a G/G/8 queue versus two parallel G/G/4 queues
on the average waiting time and the average system time
is 79% and 7%, respectively. Because our objective func-
tion is a weighted average of TTFT (queue time) and LOS
(system time), we would expect the antipooling penalty to
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Table 1. Different patient flow designs under consideration and the notation implemented.

Protocol Phase 1 Phase 2 Notation

Streaming (S) ESI only (ESI) Service in Random Order (SIRO) S/ESI/SIRO
First Come First Served (FCFS) S/ESI/FCFS
Prioritize New Prioritize Old (PNPO) S/ESI/PNPO

A/D Info and ESI (AD+ESI) Service in Random Order (SIRO) S/AD+ESI/SIRO
First Come First Served (FCFS) S/AD+ESI/FCFS
Prioritize New Prioritize Old (PNPO) S/AD+ESI/PNPO

Pooling (P ) ESI only (ESI) Service in Random Order (SIRO) P/ESI/SIRO
First Come First Served (FCFS) P/ESI/FCFS

A/D Info and ESI (AD+ESI) Service in Random Order (SIRO) P/AD+ESI/SIRO
First Come First Served (FCFS) P/AD+ESI/FCFS

Virtual streaming 4VS5 ESI only (ESI) Service in Random Order (SIRO) VS/ESI/SIRO
First Come First Served (FCFS) VS/ESI/FCFS
Prioritize New Prioritize Old (PNPO) VS/ESI/PNPO

A/D Info and ESI (AD+ESI) Service in Random Order (SIRO) VS/AD+ESI/SIRO
First Come First Served (FCFS) VS/AD+ESI/FCFS
Prioritize New Prioritize Old (PNPO) VS/AD+ESI/PNPO

fall between these values, as it does. This simple example

illustrates that even when capacity is perfectly balanced,

the inability to share capacity between streams can be very

damaging to performance. In the ED, this effect is partic-

ularly pronounced (i.e., toward the higher end of the range

indicated by the G/G/s model) because (1) it is not pos-

sible to balance utilization in the two streams exactly due

to the discreteness of physicians and beds, and the fact that

the average mix of A and D patients fluctuates according to

the time of day (see Figure 7), and (2) the limited number

of beds in the ED means that patients can be held in the

waiting room even when physicians are idle, an effect that

becomes more pronounced when beds are separated into

two smaller systems under physical streaming. (The magni-

tude of this effect becomes apparent when we observe that

the antipooling penalty falls to 17% in the simulation model

when the number of beds is made infinite.) As a result,

physical streaming is decidedly worse for performance than

is a conventional pooling protocol. This leads us to suspect

that Flinders does not rigidly adhere to a complete physi-

cal separation of streams, even though they described their

system as such.

Because physical streaming is so unattractive, we do

not consider it further, and instead we investigate whether

virtual streaming (VS) can improve ED performance. We

start by considering the SIRO Phase 2 sequencing rule

(as an approximation of the status quo in most EDs)

and compare VS/AD + ESI/SIRO (basic virtual stream-

ing) and P/AD + ESI/SIRO (improved pooling) with

P/ESI/SIRO (current pooling practice in most EDs). Fig-

ure 7 depicts the simulation results. The graph on the left

depicts the percentage improvement in the combined objec-

tive function (with �= 005). The graph on the right illus-

trates the improvement (in hours) achieved for each class

of patients separately. The significant improvement shown

in Figure 7 (left) is achieved because VS dramatically

decreases LOS of 3Ds while only slightly increasing TTFT
of 2As (see Figure 7 (right)).

Observation 3. Virtual streaming significantly outper-
forms both pooling and improved pooling by striking a
better balance between TTFT of As and LOS of Ds.

Because VS does not require any physical reconfigura-
tion of the ED, this finding provides strong evidence that
virtual streaming can be an attractive and practical option
for improving ED responsiveness. Because there is only
a minor drop in performance for 2A patients (Figure 7
(right)), this attractiveness is also very robust to the weights
assigned to our two main metrics, TTFT for As and LOS
for Ds.
To further confirm this insight, we also compare the

performance of the proposed virtual streaming 4VS/AD+

ESI/PNPO5 with the current practice 4P/ESI/SIRO5
using all four metrics (i.e., TTFT and LOS for both As and
Ds). Table 2 presents these four metrics in hours for our
base-case scenario under pooling and streaming. To exam-
ine the robustness of streaming, we consider a weighted
average of all these four metrics defined as TTF T 4A5+
�1TTF T 4D5+�2LOS4A5+�3LOS4D5, where the weight
for TTF T 4A5 is assumed to be 1 and other weights rep-
resent the relative priorities of the remaining metrics to
that of TTF T 4A5. Our analysis reveals that pooling is only
preferred in unrealistic cases where (a) almost no weight
is placed on LOS4D5 (i.e., �3 is small), (b) LOS4A5 is
weighted more heavily than TTF T 4A5 (i.e., �2 > 1), and
(c) LOS4A5 is more heavily weighted than TTF T 4D5 (i.e.,
�2 >�1). Condition (a) is problematic, because (as we dis-
cussed previously) LOS4D5 is of great concern for EDs.
Conditions (b) and (c) are particularly unrealistic because
As remain in the hospital well beyond their stay in the
ED, and hence, LOS in the ED is not that important for
them. These provide further evidence that (1) the benefit
of the proposed streaming policy (over the current pooling
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Figure 7. Virtual streaming significantly outperforms pooling and improved pooling.

Improvement (hrs) over current practice
Policy TTFT(2A) TTFT(3A) LOS(2D) LOS(3D)

0.05 0.79 –0.09 –0.26

–0.11 1.01 0.02 1.46

Improvement (%) over current practice

1.32%

24.96%

Policy

–0.40

–0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

TTFT(2A) TTFT(3A) LOS(2D) LOS(3D)

0.05

0.79

–0.09 –0.26–0.11

1.01

0.02

1.46

Im
p
ro

v
e
m

e
n
t 
(h

rs
)

Class-based improvements (hrs)
over current practice (P/ESI /SIRO)

0

5

10

15

20

25

30

35

1.32%

24.96%

Im
p
ro

v
e
m

e
n
t 
(%

)

Objective function improvement (%)
over current practice (P /ESI /SIRO)

P /AD +ESI /SIRO

P /AD +ESI /SIRO

P /AD +ESI /SIRO

VS /AD +ESI/SIRO (physicians = (3,5), beds = (22,38))

VS /AD +ESI/SIRO (physician = (3,5), beds = (22,38))
P /AD +ESI /SIRO

VS /AD +ESI/SIRO (physician = (3,5), beds = (22,38))

VS /AD +ESI/SIRO (physicians = (3,5), beds = (22,38))

Notes. The reason is that VS dramatically decreases LOS for 3D patients with only a minor increase in TTFT of 2A patients (results for an ED with eight

physicians and 60 beds, a 20% misclassification error rate, and a weight for TTFT of A patients of �= 0050).

policy) is robust with respect to weights assigned, and (2)
considering an objective function made up of the two most
important metrics, TTF T 4A5 and LOS4D5, is a reasonable
approximation of the full multiobjective optimization prob-
lem. Hence, for the reminder of of our analyses, we will
make use of the two-dimensional objective function involv-
ing only TTF T 4A5 and LOS4D5. However, it is worth
noting that, based on the results presented in Table 2, we
also expect the percentage of the left-without-being-seen
(LWBS) metric to be improved by the proposed streaming
design, because it improves the TTFT of both As and Ds.
Because patients who abandon the ED are not tracked

in detail, we do not have enough data (e.g., how long they
waited before leaving) to characterize the exact effect of
streaming on LWBS. However, we can get an estimate
using the following method. First, we assume that patients
may leave after an exponentially distributed amount of
time if they have not yet been seen. This is a reasonable

Table 2. Performance (in hours) of the proposed

streaming design 4VS/AD + ESI/PNPO5

and current pooling practice 4P/ESI/SIRO5

under four metrics as well as the associated

LWBS (%).

TTFT TTFT LOS LOS LWBS
Policy 4A5 4D5 4A5 4D5 4%5

P/ESI/SIRO 0088532 1007893 704458 3051401 3
VS/AD+ESI/PNPO 0067253 0095437 707389 2060942 3
(exogenous LWBS)
VS/AD+ESI/PNPO 0074601 1001349 708134 2067707 104

(endogenous LWBS)

Note. For the streaming design the physician and bed split have

been optimized at physicians= 43155 and beds= 4221385 for the A

and D sides, respectively.

approximation of reality if there are multiple factors lead-

ing to a patient abandonment, each occurring according to

a Poisson process. Under these conditions, the patient aban-

donment process is a superposition of Poisson processes

that is itself Poisson. To estimate the rate of this process,

we note that the current LWBS percentage in the UMED

is 3%. Moreover, based on Table 2, the TTFT for an aver-

age patient (A or D) is about one hour. Thus, we need to

find the exponential distribution that has a cdf equal to 0.03

at TTF T = 1. This leads to an exponential distribution with

rate 0.031. Next, augmenting the arrival rates in the sim-

ulation by the current percentage of LWBS, 3%, and hav-

ing patients leave after this exponential time, we observe

that the LWBS (when made endogenous) under the stream-

ing scenario is 1.04% compared to that of 3% in the cur-

rent pooling system. Because the LWBS is reduced, the

arrival rate to the ED is increased, which in turn slightly

increases the TTFT relative to what it would be without the

LWBS improvement. Nevertheless, streaming still signifi-

cantly improves TTFT compared to current pooling prac-

tice in addition to achieving a significant reduction in the

percentage LWBS. The bottom line is that streaming can

reduce overall TTFT, LOS, and LWBS relative to pooling.

However, as illustrated in Table 2, it does this by allowing

a slight increase in LOS for A patients in order to achieve

substantial improvements in all other metrics.

Having answered the whether question, we now seek to

answer how VS should be implemented for maximum ben-

efit. Proposition 3 suggests that following the PNPO rule

for Phase 2 sequencing may further improve performance.

Using our simulation test bed we observe that this con-

jecture is true. However, we also observe that improved

Phase 2 sequencing does not make as large an improvement

as that achieved by virtual streaming.
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Observation 4. Using the PNPO rule for Phase 2
sequencing improves the performance, but performance
of VS is relatively insensitive to the Phase 2 sequencing
rule, indicating that most of the benefit of streaming is
attributable to Phase 1.

The insensitivity of performance to Phase 2 sequencing
is due to the fact that ED physicians frequently do not
have many patients to choose among, because patients are
often unavailable while waiting for test results. In EDs with
shorter test times, higher physician utilization, and larger
case loads (patients per physician), there would be more
choice among in-process patients, and hence more benefit
from an improved Phase 2 sequencing policy.

To get a sense of the maximum achievable value of the
PNPO policy, we considered an ED with 50% shorter test
times than UMED, as well as higher maximum case loads
(12 versus 7) and very high dedicated utilization (up to
88% compared to 44% in the base case). “Dedicated uti-
lization” refers to the fraction of the time that a physician
is involved in activities that will not be interrupted to see
another patient. These include direct care of patients and
some indirect activities (e.g., reading patient test results).
However, physicians also engage in many indirect activities
(e.g., staff management, paper work, discussions with col-
leagues) that are preemptible and hence do not contribute
to patient queueing. Studies report that direct care activities
occupy 32% of ED physician time (Hollingsworth et al.
1998), so the 44% value for dedicated utilization in our
base model is plausible. Of course, total ED physician uti-
lization, which includes all direct and indirect activities, is
much higher; ED physicians are busy. However, here we
are only concerned with dedicated utilization, because this
is what drives congestion.

The percentage improvement due to implementing the
PNPO policy is shown in Figure 8 for a range of dedicated

Figure 8. The benefit of implementing PNPO sequencing rule.
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utilization values. This figure confirms that implement-

ing PNPO becomes more effective when (1) the dedi-

cated utilization of physicians is high, (2) the number of

patients allowed per physician is large, and (3) patient test

times are short. This suggests a practical limit of 4% on

the amount of improvement possible via better Phase 2

sequencing. When combined with the benefit of virtual

streaming, this results in a 29% improvement in the overall

objective function compared to the current pooling practice

4P/ESI/SIRO5.

6.2. Sensitivity Analyses: Where to

Implement Virtual Streaming?

Having addressed the whether and how questions we raised

in §1, we now turn to the question of where virtual
streaming is likely to be most attractive. We address this

by performing sensitivity analyses on environmental char-

acteristics to identify key factors that amplify the advantage
of implementing virtual streaming over pooling.

To this end, in addition to using V /AD+ESI/PNPO as

a good candidate for virtual streaming, we select P/AD+

ESI/FCFS as a good candidate for pooling because (a) it
makes use of A/D information in Phase 1 sequencing,

and (b) FCFS is an implementable policy that was used at
Flinders, and showed a small improvement over SIRO for
Phase 2 sequencing in our simulation experiments. How-
ever, as we observed previously, the effect of a Phase 2
sequencing rule is small compared to the benefit obtained
from virtual streaming, so we do not expect the results to

be sensitive to the Phase 2 sequencing rule.

We start by examining the role of misclassification errors
and � (the relative weight given to TTFT of A patients

compared to LOS of D patients) on the relative benefit of

virtual streaming over pooling. Based on our earlier clear-

ing model, we conjectured that a higher � should favor
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Figure 9. Sensitivity of virtual streaming and pooling

designs.
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ability favors virtual streaming over pooling.

pooling. Common sense suggests that A/D information is
less valuable if it is inaccurate, so we also expect a higher
misclassification probability to also favor pooling. Figure 9
confirms these conjectures and shows that unless an ED
gives an extremely heavy weight to the TTFT of A patients
(high �) or has a very high misclassification error rate, vir-
tual streaming is preferred to pooling.

Next we consider the effect of the percentage of A
patients (�). Our analytical model in §4 led us to conjec-
ture that a higher mean or a higher day-to-day variance
in the percentage of A patients increases the attractive-
ness of virtual streaming. Figure 10 (left) shows simula-
tion results indicating that virtual streaming is indeed more
attractive in EDs with a higher percentage of A patients.
Figure 10 (right) shows the effect of increasing day-to-day

Figure 10. Sensitivity of virtual streaming 4VS5 and pooling (P ) designs with respect to mean �� (left) and variance

�2
� (right) of the percentage of A patients.
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variation in the mix of patients by drawing � from a fam-
ily of beta distributions, Beta4f 4x512f 4x55 where f 4x5=
42− 9x5/427x5, x ∈ 4012/95. Recall that doing this holds
the mean at �� = 1/3 (which approximates UMED data),
but allows the variance, �2

� = x, to range from 0 to 2/9.
Figure 10 (right) indicates that higher variability in � also
makes virtual streaming more attractive, as our analytic
models predicted.

Observation 5. A higher fraction of A patients and a
higher variance in the day-to-day fraction of A patients both
favor (virtual) streaming relative to pooling.

It is worth nothing that the percentage of A patients at
Flinders is relatively high (�= 43%) compared to the aver-
age rate of admission in the U.S. EDs, which was � =
1208% in 2006 (Pitts et al. 2008). This may be one reason
that streaming was considered a success at Flinders.
Another environmental factor that affects the (virtual)

streaming versus pooling comparison is the relative test
and treatment times of As versus Ds. In Figure 11, we
examine the sensitivity of the VS/AD + ESI/PNPO and
P/AD+ESI/FCFS configurations to increases in the test
times of A (left) and D (right) patients. In Figure 12, we
similarly consider the sensitivity of these two configura-
tions to increases in the treatment times of A (left) and D
(right) patients.

Observation 6. Increasing the difference between the test
and/or treatment times of A and D patients increases the
attractiveness of virtual streaming relative to pooling.

This observation has potentially important consequences
for where virtual streaming is likely to be effective. First,
EDs with congested or slow test facilities (which are used
more frequently by As than by Ds) are likely to benefit
more from virtual streaming than EDs with fast or ample
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Figure 11. The effect of average patient test time (MRI, CT scan, etc.) on the relative performance of two virtual

streaming and pooling configurations.
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test facilities. Second, EDs that handle serious/complex
patients among their As (e.g., Level 1 trauma centers and
teaching hospitals) are more likely to benefit from virtual
streaming than EDs with less extreme As (e.g., community
hospitals), because the former is likely to have a larger gap
between treatment times of As and Ds.

To further answer the where question, we consider the
impact of a common phenomenon in EDs, the so-called
“bed-block” process, which occurs when A patients are
boarded in the ED while they wait for a hospital bed.
Decreasing bed-block times has been shown to be one
of the most significant factors (even more significant than
increasing the number of beds) in reducing LOS (Khare
et al. 2008). However, its impact on streaming has not
been studied. Figure 13 compares the performance of the
VS/AD + ESI/PNPO and P/AD + ESI/FCFS configu-
rations for various values of the average boarding time of
an A patient.

Observation 7. The relative attractiveness of virtual
streaming over pooling increases with the average boarding
time of A patients.

The implication is that EDs with higher frequency of
bed-block or longer waits for hospital beds can benefit
more from virtual streaming.

Figure 12. The effect of treatment times on the relative performance of two virtual streaming and pooling configurations.
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Finally, we consider the effect of the average dedi-
cated utilization of physicians on the attractiveness of
virtual streaming. Figure 14 (left) depicts the objec-
tive function for policies VS/AD + ESI/PNPO and
P/AD+ESI/FCFS, whereas Figure 14 (right) shows the
improvement in the objective function from implementing
VS/AD+ESI/PNPO instead of P/AD+ESI/FCFS.

Observation 8. The relative attractiveness of virtual
streaming over pooling increases with average dedicated
utilization of physicians.

The implication is that congested EDs with high arrival
rates or a low number of physicians can benefit more
from virtual streaming. Furthermore, we did not explicitly
account for physician interruptions, such as treating ESI-1
patients or dealing with other nonpatient issues, which
would add to physician’s nonpreemptible activities (and
hence dedicated utilization). Thus, our estimates of the ben-
efits of virtual streaming are probably conservative.

7. Conclusion

This paper describes our investigation of a new approach
to managing patient flows in EDs: streaming, which sepa-
rates patients based on an up-front prediction on their final
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Figure 13. The effect of the average boarding time on the performance of two virtual streaming and pooling

configurations.

2.0

2.5

3.0

3.5

4.0

4.5

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

0
.5

 ×
 T

T
F

T
(A

) 
+

 0
.5

 ×
 L

O
S

(D
)

Rate (1/hrs) for boarding time of admitted patients

The effect of boarding time of admits (bed-block effect)

P/AD + ESI /FCFS

VS/AD + ESI /PNPO

Note. EDs with longer boarding of As benefit more from virtual streaming.

Figure 14. The effect of average physician utilization on the attractiveness of virtual streaming.
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disposition (admission or discharge). Streaming has been
popularized by Flinders Medical Center, where it has been
credited with dramatically reducing patient length of stay
(LOS). While the empirical results reported by Flinders
have stimulated substantial interest among ED profession-
als, they are not conclusive because (1) the Flinders exper-
iment was not a controlled study, so a Hawthorne effect
cannot be ruled out, (2) other changes (e.g., lean) were
implemented along with streaming, and (3) the environ-
ment at Flinders may not reflect other EDs (e.g., the frac-
tion of A patients at Flinders is substantially above the
norm). Indeed, our results suggest that the physical stream-
ing approach as described by the Flinders may actually
degrade ED performance because of an “antipooling” effect
caused by separating resources into segments. Hence, we
suspect that the Flinders success is partly due to informal
capacity sharing to overcome the antipooling effect and
partly due to other process improvements.

To avoid the antipooling effect of physical streaming, we
proposed virtual streaming, in which physicians and rooms
are only logically separated and, hence, excess capacities
can be shared. Using simple analytical models, we found

that virtual streaming can strike a better balance between
the TTFT of A patients and the LOS of D patients by
devoting some capacity to each patient type, rather than
giving full priority to one. These analytic models also led
to several conjectures about the environmental factors that
should make virtual streaming more attractive.
We tested these conjectures with a realistic simulation

and found that virtual streaming can indeed significantly
improve ED performance (by 25% in a case designed to
represent the ED of a busy academic hospital). Because
implementing virtual streaming does not require a physical
layout redesign in the ED, it provides a practical option to
improve ED responsiveness.
We also found that the information used to stream

patients (i.e., A or D classification) can be used by
physicians to sequence patients within exam rooms and
achieve additional performance improvements (up to 4%
beyond the improvement due to virtual streaming alone).
To achieve this, physicians assigned to the A stream should
use (to the extent possible) a “prioritize new” rule that
favors seeing new patients before finishing patients already
in progress, while physicians assigned to the D stream
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Figure 15. ED patient flow design strategy based on key environmental characteristics of the ED.
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should use (to the extent possible) a “prioritize old” rule
that favors completing patient journeys before initializing
new ones.

Our results also indicate that while virtual streaming
can be effective, it is not uniformly attractive to all EDs.
Figure 15 summarizes the results of our sensitivity analy-
ses, which suggest that virtual streaming is best suited for
EDs with (1) a high percentage of A patients, (2) longer ser-
vice times for As than Ds, (3) long patient boarding times
due to bed-block, (4) high day-to-day variations in patient
mix, and (5) high average physician utilization. Using a
PNPO Phase 2 sequencing rule is more effective in EDs
with (1) high average physician utilization, (2) large patient
case load, and (3) short waits for test results.

In broad terms, our results indicate that better triage
information about patients (e.g., A/D classification) can be
leveraged to improve ED performance. One question to be
answered in future research is whether other types of pre-
treatment information (e.g., case complexity, type of testing
required, etc.) are possible to obtain and yield additional
benefit. Given the crisis levels of ED congestion, it is crit-
ical to find out.
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Online Appendix A: Proofs.

Proof of Proposition 1. We use a sample path argument. Consider the probability space

(Ω,F ,P). Let CAπ
k(ω) and CD

π
k (ω) denote the completion time of kth Admit and kth Discharge

type patient (under policy π and along sample path ω ∈ Ω), respectively. Also, assume T π
A(α,ω)

and LD(α,ω) denote the (average) TTFT of Admits and the (average) LOS of Discharges for a

given α∈ [0,1] and sample path ω ∈Ω, respectively.

Proof of Part (i). To prove part (i), it is sufficient to show that for every α and every sam-

ple path ω: (a) T PA
A (α,ω) ≤ T S

A (α,ω), and (b) T PA
A (α,ω) ≤ T PD

A (α,ω). To prove (a), fix α and

let t(ω) = min{CAS
nA

(ω),CDS
nD

(ω)} denote the time that system moves to a pooling scenario

under Streaming policy and over sample path ω. If t(ω) = CAS
nA

(ω) (i.e., if Streaming becomes

Pooling when Admits are all served) then notice that under π = S, the kth Admit patient starts

its treatment at CAS
k−1(ω) but under π = PA, the kth Admit patient starts its treatment at

min{CAPA
k−1(ω),CA

PA
k−2(ω)} ≤ min{CAS

k−1(ω),CA
S
k−2(ω)} ≤ CAS

k−1(ω), where the first inequality

can be easily shown using induction on k, and the second inequality trivially holds. Hence, under

π= PA each patient is seen no later than when s/he is seen under π= S, and therefore (a) holds.

Now if t(ω) =CDS
nD

(ω) (i.e., if Streaming becomes Pooling when some Admits still have not been

seen), assume the last Admit type patient that has been seen before or at time t(ω) under π= S is

the nt(ω)th patients of this type. Using the previous argument, none of first nt(ω) patients under

π = S are seen before the time they would have been seen under π = PA. Moreover, under π = S

every remaining Admit patient is seen with a constant delay of at least t(ω)−CAPA
nt(ω)−1(ω) ≥ 0

compared to what it would have been seen under π = PA. Therefore, for every ω and every α,

every Admit type patient is seen under π= S no sooner than what it would have been seen under

π = PA. Thus (a) holds. To show (b), fix α and notice that under π = PD every Admit patient

is seen with a constant delay of at least CDPD
nD−1(ω) compared to what it would have been seen

under π= PA. Thus, (b) holds and the proof of (i) is complete.

Proof of Part (ii). To prove part (ii), it is sufficient to show that for every α and every sample

path ω: (1) LPD
D (α,ω)≤LS

D(α,ω), and (2) LPD
D (α,ω)≤LPA

D (α,ω). To show (1), fixing α, we show
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that CDPD
k (ω)≤CDS

k (ω) (∀k ∈ 1,2, · · · , nD). To show this notice that using the same argument as

part (i) (and after swapping labels D and A) it is easy to show that TTFT of each Discharge patient

under π= PD is no more than its TTFT under π= S. That is, if TDπ
k (ω) denotes the TTFT of the

kth Discharge patient under sample path ω, then TDPD
k (ω)≤ TDS

k (ω) (∀k ∈ 1,2, · · · , nD). Next, if

SDk(ω) is the service time of kth Discharge patient under sample path ω, CDπ
k (ω) = TDπ

k (ω) +

SDk(ω). Thus, since TD
PD
k (ω) ≤ TDS

k (ω), we have CDPD
k (ω) ≤ CDS

k (ω) (∀k ∈ 1,2, · · · , nD), and

hence (1) holds. To show (2), fix α and notice that the completion time of every Discharge patient

under PA is delayed at least for CDPA
nA−1 units of time compared to PD, and hence, the proof is

complete. �

Proof of Lemma 1. To prove this lemma, using the definition of β-convexity, we need to show

that sets Aπ (∀π ∈ Π) are convex in β for every α. Fix α and consider β1 and β2 such that

(α,β1) ∈ Aπ and (α,β2) ∈ Aπ. We then need to show that (α,γβ1 + (1 − γ)β2) ∈ Aπ for every

γ ∈ [0,1]. Notice that as (α,β1)∈Aπ, for every other policy π′ ∈Π we have:

β1 T
π
A(α)+ (1−β1)L

π
D(α)≤ β1 T

π′

A (α)+ (1−β1)L
π′

D (α). (EC.1)

Similarly, as (α,β2)∈Aπ, for every other policy π′ ∈Π we have:

β2 T
π
A(α)+ (1−β2)L

π
D(α)≤ β2 T

π′

A (α)+ (1−β2)L
π′

D (α). (EC.2)

Now multiplying both sides of (EC.1) by γ and both sides of (EC.2) by (1− γ) and adding up the

resulting inequalities we get:

(γβ1 +(1− γ)β2)T
π
A(α)+ (1− [γβ1 +(1− γ)β2])L

π
D(α)

≤ (γβ1 +(1− γ)β2)T
π′

A (α)+ (1− [γβ1 +(1− γ)β2])L
π′

D (α).

Hence, since the above inequality holds for every π′ ∈Π and every γ ∈ [0,1], (α,γβ1+(1− γ)β2)∈

Aπ for every γ ∈ [0,1]. Thus, the optimal strategy π∗(α,β) is convex in β. �

Proof of Proposition 2. Define functions β1(α) and β2(α) as follows:

β1(α) = inf{β : fS(α,β)≤ fPD(α,β)},

β2(α) = sup{β : fS(α,β)≤ fPA(α,β)}.
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We show that by setting β(α) = min{β1(α), β2(α)} and β̄(α) = max{β1(α), β2(α)}, Streaming is

optimal for a given α if, and only if, β(α) ∈ [β(α), β̄(α)]. To see the “if” part, fix α, suppose

β(α) ∈ [β(α), β̄(α)], and write β(α) as a convex combination of extreme points β(α) and β̄(α).

Then notice that by definition of β(α) and β̄(α), Streaming is optimal at both extreme points β(α)

and β̄(α). Hence, by Lemma 1 Streaming is also optimal at β(α). To see the “only if” part, fix α

and suppose β(α) /∈ [β(α), β̄(α)]. That is, suppose for some ǫ > 0 either (a) 0≤ β(α)≤ β(α)− ǫ, or

(b) β̄(α)+ ǫ≤ β(α)≤ 1 . If (a) holds, write β(α) as a convex combination of β̃(α) = 0 and β(α)− ǫ.

Then notice that, from Proposition 1, π= PD is optimal at β̃(α) = 0. Also, β(α)−ǫ < β(α)≤ β1(α).

Therefore, from the definition of β1(α), π= PD is better than π= S at β(α)−ǫ. Moreover, π= PA

cannot be optimal at β(α)− ǫ, since otherwise, choosing a β in [β(α), β̄(α)] and writing that as a

convex combination of
˜̃
β(α) = 1 (for which π= PA is optimal by Proposition 1) and β(α)− ǫ will

result in a contradiction. Thus, π = PD is optimal at both extreme points β̃(α) = 0 and β(α)− ǫ.

Hence, π = PD is also optimal at their convex combination, β(α), by Lemma 1. If, on the other

hand, (b) holds, write β(α) as a convex combination of β(α)+ ǫ and
˜̃
β(α) = 1. Then, similar to the

discussion of part (a), notice that by definition of β2(α), π= PA is optimal at β(α)+ ǫ. Moreover,

by Proposition 1, π = PA is also optimal at
˜̃
β(α) = 1. Thus, from Lemma 1 we see that π = PA

should be also optimal at β(α). This completes the proof. �

Proof of Proposition 3 - Part (i). We develop a Markov Decision Process (MDP) model to

show the optimality in the expected sense. It should be noted that the underlying problem is in

the class of multi-armed restless bandit problems, which are usually hard to analyze. Since beds

are not limited (e.g., larger than the number of patients in the clearing model), suppose, without

loss of generality, that at the beginning all patients are in state W1, i.e., in the initial waiting state

depicted in Figure 5. The ith waiting stage, Wi, is followed by a treatment stage, Ti. The duration

of waiting stages and treatment stages are independent of each other and exponentially distributed

with rates denoted by γ and µ, respectively. Suppose the maximum number of interactions with the

physician is denoted by k̄, and Wk̄+1 denotes the final nurse visit before disposition (i.e., stage FW

in Figure 5). For the ease of notation, we also assume stage Tk̄+1 represents the disposition stage.

That is, we assume every patients who leaves the ED goes to (absorbing) stage Tk̄+1. The LOS of
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a patient in our clearing model is then equal to the time that s/he leaves stage Wk̄+1 to enter Tk̄+1.

Let pk denote the probability that a patient who is in treatment stage k, Tk, is having its final

treatment by the physician and will go to the final treatment by nurse, Wk̄+1, afterwards. Assume

pk is increasing in k (that is being in a higher treatment stage is associated with a higher chance of

being in the final treatment stage) and pk̄ = 1. The state of the system then can be represented by

(X,Y) with X= (x1, x2, · · · , xk̄+1) and Y= (y1, y2, · · · , yk̄+1), where xi and yi denote the number of

patients in ith stage of treatment and wait (Ti andWi), respectively. Let N denote the total number

of patients at time 0. The goal is to dynamically control the location of the physician, denoted

by l, to go from state (N,0, · · · ,0) to state (0,0, · · · ,N) with the minimum expected average LOS

or equivalently with the minimum sum of patient completion times. Now, using uniformization

with rate ψ =Nγ + µ <∞, we can consider the discrete time version of the problem (where the

times between consecutive events are i.i.d and exponentially distributed with rate ψ). Doing so and

denoting the optimal remaining cost when the system is at state (X,Y) with J(X,Y), we have

the following optimality equation (with the terminal condition J(0,0, · · · ,N) = 0):

J(X,Y) =
1

ψ

[

k̄
∑

i=1

xi +
k̄+1
∑

i=1

yi

+µ min
l∈L(x)

{

k̄
∑

k=1

11{l= k}
[

pk J(X− ek,Y+ ek̄+1)+ (1− pk)J(X− ek,Y+ ek+1)
]

}

+ γ
k̄+1
∑

i=1

yi J(X+ ei,Y− ei)

+
(

ψ− γ
k̄+1
∑

i=1

yi −µ11
{

k̄
∑

ki=1

xi ≥ 1
})

J(X,Y)
]

, (EC.3)

where ek is a row vector of size k̄ + 1 with a one in kth element and zero everywhere else, and

L(X) = {i≤ k̄ : xi ≥ 1} is the set of possible locations to allocate the physician when X is the first

part of the state. The first line in the above optimality equation represents the current cost (every

patient’s completion time who is still in the ED is delayed for one unit of uniformized time). The

second line is the event related to treating a patient by the physician. The third line represents the

event that a patient moves from a waiting stage to a treatment stage, and the fourth line represents

the self-loop event. (Notice that since preemption is allowed, using a sample path argument, it can

be easily shown that forced idling is suboptimal. Therefore, without loss of generality the term
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in the self-loop with coefficient µ is independent of the control action, l.) Also, a finite horizon

version of the above MDP can be considered using the following optimality equation with terminal

condition J0(X,Y) = 0 for every state (X,Y) and n∈N:

Jn+1(X,Y) =
1

ψ

[

k̄
∑

i=1

xi +
k̄+1
∑

i=1

yi

+µ min
l∈L(x)

{

k̄
∑

k=1

11{l= k}
[

pk Jn(X− ek,Y+ ek̄+1)+ (1− pk)Jn(X− ek,Y+ ek+1)
]

}

+ γ
k̄+1
∑

i=1

yi Jn(X+ ei,Y− ei)

+
(

ψ− γ
k̄+1
∑

i=1

yi −µ11
{

k̄
∑

i=1

xi ≥ 1
})

Jn(X,Y)
]

, (EC.4)

where Jn(X,Y) denotes the optimal remaining cost when the state is (X,Y) and there are n

periods to go. (Notice that Jn(X,Y)→ J(X,Y) as n→∞ since there is an absorbing state.) To

show that the PO policy which prescribes serving the “old” patient in the most downstream stage

is optimal, we use induction on n. First notice that for n= 1 all policies are the same considering

the minimization in (EC.4), since J0(X,Y) = 0 for every state (X,Y). Now, suppose it is optimal

to follow PO policy at any state when in period n. We show that it is optimal to follow PO at

any state in period n+1 as well. To this end, consider period n+1 and an arbitrary state (X,Y).

Suppose in state (X,Y) treatment stage k∗ is the the most downstream stage with an available

patient. To show that allocating the physician to stage 1 ≤ k∗ ≤ k̄ is optimal in n+ 1, suppose

there is also another stage k < k∗ with an available patient at state (X,Y) (i.e., with xk ≥ 1 and

xk∗ ≥ 1). Then considering the minimization in (EC.4), to show that serving stage k∗ in period

n+1 is optimal, it is sufficient to show that for any such k, we have:

Property i: pk∗ Jn(X− ek∗ ,Y+ ek̄+1)+ (1− pk∗)Jn(X− ek∗ ,Y+ ek∗+1)

≤ pk Jn(X− ek,Y+ ek̄+1)+ (1− pk)Jn(X− ek,Y+ ek+1). (EC.5)

We show the above property of the optimal cost function along with the following property:

Property ii: p∗k Jn(X+ ek̄+1 − ek∗ ,Y)+ (1− p∗k)Jn(X+ ek∗+1 − ek∗,Y)

pk Jn(X+ ek̄+1 − ek,Y)+ (1− pk)Jn(X+ ek+1 − ek,Y). (EC.6)
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In other words, we assume Properties i and ii hold for n− 1, and show that they both hold for n

as well. First, we show Property i. To do so, we build an upper bound for the LHS of (EC.5) using

suboptimal actions and show that this upper bound is less than the RHS of this inequality. The

upper bound for the LHS can be obtained by suboptimally allocating the physician to treatment

stage k in period n and then following the optimal policy (i.e., PO) in the remaining periods. To

this end, consider state (X− ek∗ ,Y+ ek̄+1) in period n and use the suboptimal but feasible (since

xk ≥ 1) action l= k to obtain an upper bound for Jn(X− ek∗ ,Y+ ek̄+1). Doing so we have:

Jn(X− ek∗ ,Y+ ek̄+1)≤
1

ψ

[

(

k̄
∑

i=1

xi − 1
)

+
(

k̄+1
∑

i=1

yi +1
)

+µ
[

pk Jn−1(X− ek − ek∗ ,Y+ ek̄+1 + ek̄+1)

+ (1− pk)Jn−1(X− ek − ek∗ ,Y+ ek+1 + ek̄+1)
]

+ γ
k̄+1
∑

i=1

yi Jn−1(X+ ei − ek∗ ,Y− ei + ek̄+1)

+ γJn−1(X+ ek̄+1 − ek∗ ,Y)

+
(

ψ− γ(
k̄+1
∑

i=1

yi +1)−µ11
{

k̄
∑

i=1

xi ≥ 1
})

Jn−1(X− ek∗ ,Y+ ek̄+1)
]

.

(EC.7)

Similarly, using the suboptimal but feasible action l = k at state (X− ek∗ ,Y+ ek∗+1), we obtain

an upper bound for Jn(X− ek∗ ,Y+ ek∗+1):

Jn(X− ek∗ ,Y+ ek∗+1)≤
1

ψ

[

(

k̄
∑

i=1

xi − 1
)

+
(

k̄+1
∑

i=1

yi +1
)

+µ
[

pk Jn−1(X− ek − ek∗ ,Y+ ek̄+1 + ek∗+1)

+ (1− pk)Jn−1(X− ek − ek∗ ,Y+ ek+1 + ek∗+1)
]

+ γ
k̄+1
∑

i=1

yi Jn−1(X+ ei − ek∗ ,Y− ei + ek∗+1)

+ γJn−1(X+ ek∗+1 − ek∗ ,Y)

+
(

ψ− γ(
k̄+1
∑

i=1

yi +1)−µ11
{

k̄
∑

i=1

xi ≥ 1
})

Jn−1(X− ek∗ ,Y+ ek∗+1)
]

.

(EC.8)

Now multiplying both sides of (EC.7) by pk∗ , both sides of (EC.8) by (1− pk∗), and summing up

the results we have:

pk∗ Jn(X− ek∗ ,Y+ ek̄+1)+ (1− pk∗)Jn(X− ek∗ ,Y+ ek∗+1)≤
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1

ψ

[

(

k̄
∑

i=1

xi − 1
)

+
(

k̄+1
∑

i=1

yi +1
)

+µ
[

pk∗ pk Jn−1(X− ek − ek∗ ,Y+ ek̄+1 + ek̄+1)

+ pk∗ (1− pk)Jn−1(X− ek − ek∗ ,Y+ ek+1 + ek̄+1)

+ (1− pk∗)pk Jn−1(X− ek − ek∗ ,Y+ ek∗+1 + ek̄+1)

+ (1− pk∗) (1− pk)Jn−1(X− ek − ek∗ ,Y+ ek∗+1 + ek+1)
]

+ γ
k̄+1
∑

i=1

yi
[

pk∗ Jn−1(X+ ei − ek∗ ,Y− ei + ek̄+1)+ (1− pk∗)Jn−1(X+ ei − ek∗ ,Y− ei + ek∗+1)
]

+ γ [pk∗ Jn−1(X+ ek̄+1 − ek∗ ,Y)+ (1− pk∗)Jn−1(X+ ek∗+1 − ek∗ ,Y)]

+ ψ̄
(

pk∗ Jn−1(X− ek∗ ,Y+ ek̄+1)+ (1− pk∗)Jn−1(X− ek∗ ,Y+ ek∗+1)
)

]

, (EC.9)

where, for the ease of notation, we let ψ̄ denote the self-loop rate, i.e., ψ̄ =
(

ψ− γ(
∑k̄+1

i=1 yi +1)−

µ11
{
∑k̄

i=1 xi ≥ 1
})

. Now in the above upper bound, using the induction hypothesis, we can replace

the terms with coefficient γ to obtain another upper bound. Using Property i and ii for the first

and second terms with coefficient γ, we have:

pk∗ Jn(X− ek∗ ,Y+ ek̄+1)+ (1− pk∗)Jn(X− ek∗ ,Y+ ek∗+1)≤

1

ψ

[

(

k̄
∑

i=1

xi − 1
)

+
(

k̄+1
∑

i=1

yi +1
)

+µ
[

pk∗ pk Jn−1(X− ek − ek∗ ,Y+ ek̄+1 + ek̄+1)

+ pk∗ (1− pk)Jn−1(X− ek − ek∗ ,Y+ ek+1 + ek̄+1)

+ (1− pk∗)pk Jn−1(X− ek − ek∗ ,Y+ ek∗+1 + ek̄+1)

+ (1− pk∗) (1− pk)Jn−1(X− ek − ek∗ ,Y+ ek∗+1 + ek+1)
]

+ γ
k̄+1
∑

i=1

yi
[

pk Jn−1(X+ ei − ek,Y− ei + ek̄+1)+ (1− pk)Jn−1(X+ ei − ek,Y− ei + ek+1)
]

+ γ [pk Jn−1(X+ ek̄+1 − ek,Y)+ (1− pk)Jn−1(X+ ek+1 − ek,Y)]

+ ψ̄
(

pk Jn−1(X− ek,Y+ ek̄+1)+ (1− pk)Jn−1(X− ek,Y+ ek+1)
)

]

. (EC.10)

Thus, we have obtained an upper bound for the LHS of (EC.5). Now consider the RHS of (EC.5)

and first for state (X− ek,Y + ek̄+1) use (EC.4) to obtain Jn(X− ek,Y + ek̄+1). Note that, by

the induction hypothesis, PO is optimal in period n. Hence, it is optimal to assign the physician

to treatment stage k∗ in period n at state (X− ek,Y + ek̄+1), since k
∗ is the most down-stream

treatment stage with an available patient when state is (X,Y) (and hence when state is (X −

ek,Y+ ek̄+1)). Thus, using (EC.4) we have:
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Jn(X− ek,Y+ ek̄+1) =
1

ψ

[

(

k̄
∑

i=1

xi − 1
)

+
(

k̄+1
∑

i=1

yi +1
)

+µ
[

pk∗ Jn−1(X− ek∗ − ek,Y+ ek̄+1 + ek̄+1)

+ (1− pk∗)Jn−1(X− ek∗ − ek,Y+ ek∗+1 + ek̄+1)
]

+ γ
k̄+1
∑

i=1

yi Jn−1(X+ ei − ek,Y− ei + ek̄+1)

+ γJn−1(X+ ek̄+1 − ek,Y)

+
(

ψ− γ(
k̄+1
∑

i=1

yi +1)−µ11
{

k̄
∑

i=1

xi ≥ 1
})

Jn−1(X− ek,Y+ ek̄+1)
]

.

(EC.11)

Similarly, using (EC.4) to obtain Jn(X− ek,Y+ ek+1) we have:

Jn(X− ek,Y+ ek+1) =
1

ψ

[

(

k̄
∑

i=1

xi − 1
)

+
(

k̄+1
∑

i=1

yi +1
)

+µ
[

pk∗ Jn−1(X− ek∗ − ek,Y+ ek+1 + ek̄+1)

+ (1− pk∗)Jn−1(X− ek∗ − ek,Y+ ek∗+1 + ek+1)
]

+ γ
k̄+1
∑

i=1

yi Jn−1(X+ ei − ek,Y− ei + ek+1)

+ γJn−1(X+ ek+1 − ek,Y)

+
(

ψ− γ(
k̄+1
∑

i=1

yi +1)−µ11
{

k̄
∑

i=1

xi ≥ 1
})

Jn−1(X− ek,Y+ ek+1)
]

.

(EC.12)

Now multiplying both sides of (EC.11) by pk, both sides of (EC.12) by (1− pk), and summing up

the results we have:

pk Jn(X− ek,Y+ ek̄+1)+ (1− pk)Jn(X− ek,Y+ ek+1) =

1

ψ

[

(

k̄
∑

i=1

xi − 1
)

+
(

k̄+1
∑

i=1

yi +1
)

+µ
[

pk∗ pk Jn−1(X− ek − ek∗ ,Y+ ek̄+1 + ek̄+1)

+ pk∗ (1− pk)Jn−1(X− ek − ek∗ ,Y+ ek+1 + ek̄+1)

+ (1− pk∗)pk Jn−1(X− ek − ek∗ ,Y+ ek∗+1 + ek̄+1)

+ (1− pk∗) (1− pk)Jn−1(X− ek − ek∗ ,Y+ ek∗+1 + ek+1)
]

+ γ
k̄+1
∑

i=1

yi
[

pk Jn−1(X+ ei − ek,Y− ei + ek̄+1)+ (1− pk)Jn−1(X+ ei − ek,Y− ei + ek+1)
]

+ γ [pk Jn−1(X+ ek̄+1 − ek,Y)+ (1− pk)Jn−1(X+ ek+1 − ek,Y)]

+ ψ̄
(

pk Jn−1(X− ek,Y+ ek̄+1)+ (1− pk)Jn−1(X− ek,Y+ ek+1)
)

]

, (EC.13)
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where, for the ease of notation, we again let ψ̄ =
(

ψ− γ(
∑k̄+1

i=1 yi +1)−µ11
{
∑k̄

i=1 xi ≥ 1
})

. Notice

that RHS of (EC.13) is equal to the upper bound of the LHS of (EC.5) derived in (EC.10). Thus,

Property i holds for every n by induction, and hence the PO is optimal in every period.

To complete the proof, it remains to show Property ii. To do so, we use the same technique used

to show Property i. First, notice that for n = 0 (or n = 1) this property is trivial. Next suppose

it holds for n − 1. To show that it would also hold for n, we use suboptimal actions to obtain

an upper bound for the LHS of (EC.6) and show that this upper bound is equal to its RHS. To

do so, consider states (X+ ek̄+1 − ek,Y) and (X+ ek∗+1 − ek,Y), and for each one, to obtain an

upper bound, use the optimality equation (EC.4) but with suboptimal actions l= k. Then multiply

the upper bound obtained for J(X+ ek̄+1 − ek∗,Y) and J(X+ ek∗+1 − e∗k,Y) by pk∗ and 1− pk∗ ,

respectively. Summing up the results, we gain the following upper bound for the LHS of (EC.5):

pk∗ Jn(X+ ek̄+1 − ek∗ ,Y)+ (1− pk∗)Jn(X+ ek∗+1 − ek∗,Y)≤

1

ψ

[

− pk∗ +
(

k̄
∑

i=1

xi

)

+
(

k̄+1
∑

i=1

yi
)

+µ
[

pk∗ pk Jn−1(X+ ek̄+1 − ek − ek∗ ,Y+ ek̄+1)

+ pk∗ (1− pk)Jn−1(X+ ek̄+1 − ek − ek∗ ,Y+ ek+1)

+ (1− pk∗)pk Jn−1(X+ ek∗+1 − ek − ek∗ ,Y+ ek̄+1)

+ (1− pk∗) (1− pk)Jn−1(X+ ek∗+1 − ek − ek∗ ,Y+ ek+1)
]

+ γ
k̄+1
∑

i=1

yi
[

pk∗ Jn−1(X+ ek̄+1 + ei − ek∗ ,Y− ei)+ (1− pk∗)Jn−1(X+ ek∗+1 + ei − ek∗ ,Y− ei)
]

+ψ
(

pk Jn−1(X+ ek̄+1 − ek∗ ,Y)+ (1− pk)Jn−1(X+ ek∗+1 − ek∗,Y)
)

]

. (EC.14)

Now, using the optimality equation (EC.4) to derive Jn(X+ek̄+1−ek,Y) and Jn(X+ek+1−ek,Y),

and then multiplying them by pk and 1−pk, respectively, and finally summing up the results we get

the following equality for the RHS of (EC.5). (Notice that by the induction hypothesis assigning

the physician to k∗ is optimal when computing Jn(X+ ek̄+1 − ek,Y) and Jn(X+ ek+1 − ek,Y).)

pk Jn(X+ ek̄+1 − ek,Y)+ (1− pk)Jn(X+ ek+1 − ek,Y) =

1

ψ

[

− pk +
(

k̄
∑

i=1

xi

)

+
(

k̄+1
∑

i=1

yi
)
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+µ
[

pk∗ pk Jn−1(X+ ek̄+1 − ek − ek∗ ,Y+ ek̄+1)

+ pk∗ (1− pk)Jn−1(X+ ek+1 − ek − ek∗ ,Y+ ek̄+1)

+ (1− pk∗)pk Jn−1(X+ ek̄+1 − ek − ek∗ ,Y+ ek∗+1)

+ (1− pk∗) (1− pk)Jn−1(X+ ek+1 − ek − ek∗ ,Y+ ek∗+1)
]

+ γ
k̄+1
∑

i=1

yi
[

pk Jn−1(X+ ek̄+1 + ei − ek,Y− ei)+ (1− pk)Jn−1(X+ ek+1 + ei − ek,Y− ei)
]

+ψ
(

pk Jn−1(X+ ek̄+1 − ek,Y)+ (1− pk)Jn−1(X+ ek+1 − ek,Y)
)

]

. (EC.15)

Now, notice that since k∗ > k, by assumption we have pk∗ ≥ pk. Next, using the induction hypothesis

and since pk∗ ≥ pk, it is easy to show that the upper bound obtained in (EC.14) is less than or

equal to (EC.15), which establishes Property ii for n and completes the proof. �

Proof of Proposition 3 - Part (ii). We use a sample path argument to show the result in the

almost sure sense. Consider the probability space (Ω,F ,P), and similar to the proof of part (i),

without loss of generality, suppose at time 0, all of the N patients in the clearing model are in state

W1, i.e., in the initial waiting state depicted in Figure 5. Let wn
1 (ω) be the realized duration of the

initial waiting stage, W1, for patient n ∈ {1, · · · ,N} under sample path ω ∈ Ω. Let G be the set

of all admissible (Markovovian or non-Markovian) policies and TTFT g,n(ω) be the Time To First

Treatment of patient n under policy g ∈ G and sample path ω ∈ Ω. Notice that TTFT g,n(ω) ≥

wn
1 (ω) for every g ∈ G, every ω ∈ Ω, and every n ∈ {1, · · · ,N}, since a patient cannot been seen

before s/he finishes stage W1. Therefore, infg∈G TTFT
g,n(ω) ≥ wn

1 (ω). Now notice that for the

underlying Prioritize New (PN) policy, which instructs the physician to initialize a new patient

journey whenever possible (perhaps by preempting other tasks), TTFT PN,n(ω) =wn
1 (ω) (for every

ω ∈Ω, and every n∈ {1, · · · ,N}). Thus, the PN obtains the minimum TTFT of every patient along

every sample path. Therefore, PN also minimizes the average TTFT of patients with probability

one (i.e., in the almost sure sense). �
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Online Appendix B: Computations Under Imperfect
Classification

Assume I ∈ {A,D} represents the true identity of the patient (Admit or Discharge) and ω ∈

{A,D} is the signaled/identified class. Let γA = Pr(ω=D|I =A) and γD = Pr(ω=A|I =D). Next,

if γ̃A = Pr(I =A|ω =D) and γ̃D = Pr(I =D|ω =A) represent the misclassification probabilities,

with α= Pr(I =A), using Bayes rule we have:

γ̃A = Pr(I =A|ω=D) =
αγA

αγA +(1−α)(1− γD)
,

γ̃D = Pr(I =D|ω=A) =
(1−α)γD

α(1− γA)+ (1−α)γD
.

To isolate the effect of misclassification errors, we eliminate variability in the treatment times, XA

and XD so that Pr(XA = µA) = 1 and Pr(XD = µD) = 1. Moreover, for the ease of computations,

we consider a collaborative service environment whenever the system is working in the pooling

mode (i.e., under pooling or under streaming after one stream runs out of patients). Collaborative

assumption means that the two servers work together on one patient at a time with service times

of µA/2 for admits and µD/2 for discharges.

Let n be the total number of patients in the clearing system. Suppose NA and ND = n−NA

denote the random variable representing the number of patients that are identified as A and D,

respectively. Let ÑA and ÑD be the random variables representing last patients of type A and D

that are seen before the system moves to a pooling scenario, reactively. Next notice that given

NA (and hence ND = n−NA), ÑA and ÑD, expected TTFT of Admits under Streaming can be

computed by:

E
[

TTFT S
A |NA = nA, ÑA = ñA, ÑD = ñD

]

=
1

(1− γ̃D)nA + γ̃A(n−nA)
×

[

(1− γ̃D)
[

ñA
∑

j=1

j−1
∑

k=0

(

j− 1

k

)

γ̃k
D

(

1− γ̃D)
j−k−1

(

kµD +(j− k− 1)µA

)

+

nA
∑

j=ñA+1

[

ñA
∑

k=0

(

ñA

k

)

γ̃k
D

(

1− γ̃D)
ñA−k

(

kµD +(ñA − k)µA

)

+

j−ñA−1
∑

k=0

(

j− ñA − 1

k

)

γ̃k
D

(

1− γ̃D)
j−ñA−1−k

(

k
µD

2
+ (j− ñA − 1− k)

µA

2

)]

]
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+γ̃A

[

ñD
∑

j=1

j−1
∑

k=0

(

j− 1

k

)

γ̃k
A

(

1− γ̃A)
j−k−1

(

kµA +(j− k− 1)µD

)

+

n−nA
∑

j=ñD+1

[

ñD
∑

k=0

(

ñD

k

)

γ̃k
A

(

1− γ̃A)
ñD−k

(

kµA +(ñD − k)µD

)

+

j−ñD−1
∑

k=0

(

j− ñD − 1

k

)

γ̃k
A

(

1− γ̃A)
j−ñD−1−k

(

k
µA

2
+ (j− ñD − 1− k)

µD

2

)]

]]

.

(EC.16)

The first line in the above equation is the reciprocal of the number of A patients (either classified

as A or D). The second line considers the jth patient in the stream of the patients classified as A

and seen before the system moves to a pooling scenario (i.e., up to ñA) and computes its TTFT by

conditioning on the number of D patients in front him. Similarly, the third and fourth line consider

the jth patient in the stream of the patients classified/signaled as A and seen after the system

moves to a pooling scenario (i.e., after ñA). The second, third, and fourth lines are multiplied by

(1− γ̃D) (i.e., the probability that a patient classified as A is truly A type) to give the total sum

of TTFT of A patients who are also classified as A. Similarly, the fifth, sixth, and seventh lines

compute the sum of TTFT of A patients who are classified as D.

Now if g(nA, ñA, ñD) represents the joint pdf of random variables NA, ÑA, ÑD then we have:

TTFT
S

A =E
[

E[TTFT S
A |NA, ÑA, ÑD]

]

=
n
∑

nA=0

n
∑

ñA=0

n
∑

ñD=0

E[TTFT S
A |NA, ÑA, ÑD]g(nA, ñA, ñD),

(EC.17)

where E[TTFT S
A |NA, ÑA, ÑD] is computed in (EC.16). To compute TTFT

S

A using the above equa-

tion, it remains to derive g(nA, ñA, ñD). To derive g(nA, ñA, ñD) notice that:

g(nA, ñA, ñD) =

Pr(NA = nA, ÑA = ñA, ÑD = ñD) =

Pr(ÑA = ñA, ÑD = ñD|NA = nA)×Pr(NA = nA) =

Pr(NA = nA)
[

Pr(ÑA = ñA =NA = nA, ÑD = ñD)11{ñD <n−nA = nD} (EC.18)

+Pr(ÑA = ñA, ÑD = ñD = n−NA = n−nA)11{ñA <nA} (EC.19)

+Pr(ÑA = ñA =NA = nA, ÑD = ñD = n−NA = n−nA = nD)11{ñA = nA, ñD = n−nA}
]

(EC.20)
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In above, Eq’s (EC.18), (EC.19), and (EC.20) correspond to the cases where the D stream is

finished first, the A stream is finished first, and the case where one stream is done when the

system is working on the last patient of the other stream, respectively. Next notice that with

p= (1− γA)α+ γD(1−α) denoting the probability that a patient is identified as A:

Pr(NA = nA) =

(

n

nA

)

pnA(1− p)n−nA . (EC.21)

Let KA
j and KD

j be the random variables denoting the number of D type patients up to (and

including) the jth patient in A and D streams, respectively. Then to compute (EC.18), we need to

compute the probability that the time required to see nA patients in the A stream is between the

time required to see ñD and ñD +1 patients in the D stream (so that ñD is the last patient seen in

the D stream before the system moves to the pooling scenario). we have:

Pr(ÑA = ñA =NA = nA, ÑD = ñD)

= Pr
(

(ñD −KD
ñD

)µA +KD
ñD
µD ≤ (nA −KA

nA
)µA +KA

nA
µD

)

− Pr
(

(nA −KA
nA

)µA +KA
nA
µD ≥ (ñD +1−KD

ñD+1)µA +KD
ñD+1µD

)

= Pr
(

KA
nA

−KD
ñD

≤ µA

nA − ñD

µA −µD

)

− Pr
(

KA
nA

−KD
ñD+1 ≤ µA

nA − (ñD +1)

µA −µD

)

= F1

(

µA

nA − ñD

µA −µD

)

−F2

(

µA

nA − (ñD +1)

µA −µD

)

(EC.22)

where F1(·) and F2(·) are the CDF of the random variables Z1 =KA
nA

−KD
ñD

and Z2 =KA
nA

−

KD
ñD+1, respectively. Similarly, to compute (EC.19), we have:

Pr(ÑA = ñA, ÑD = ñD = n−NA = n−nA = nD)

= Pr
(

(ñA −KA
ñA

)µA +KA
ñA
µD ≤ (nD −KD

nD
)µA +KD

nD
µD

)

− Pr
(

(nD −KD
nD

)µA +KD
nD
µD ≥ (ñA +1−KA

ñA+1)µA +KA
ñA+1µD

)

= Pr
(

KD
nD

−KA
ñA

≤ µA

nD − ñA

µA −µD

)

− Pr
(

KD
nD

−KD
ñA+1 ≤ µA

nD − (ñA +1)

µA −µD

)

= F3

(

µA

nD − ñA

µA −µD

)

−F4

(

µA

nD − (ñA +1)

µA −µD

)

(EC.23)
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where F3(·) and F4(·) are the CDF of the random variables Z3 =KD
nD

−KA
ñA

and Z4 =KD
nD

−KD
ñA+1,

respectively.

Next, to compute (EC.20), we need to compute the probability that one stream finishes when

the system is working on the last patient of the other stream:

Pr(ÑA = ñA =NA = nA, ÑD = ñD = n−NA = n−nA = nD)

= Pr(TA
nA−1 <T

D
nD

≤ TA
nA

)+Pr(TD
nD−1 <T

A
nA
<TD

nD
) (EC.24)

= Pr(((nA − 1)−KA
nA−1)µA +KA

nA−1µD < (nD −KD
nD

)µA +KD
nD
µD ≤ (nA −KA

nA
)µA +KA

nA
µD)

+ Pr(((nD − 1)−KD
nD−1)µA +KD

nD−1µD < (nA −KA
nA

)µA +KA
nA
µD < (nD −KD

nD
)µA +KD

nD
µD)

= Pr(KD
nD

−KA
nA−1 <µA

nD − (nA − 1)

µA −µD

)+Pr
(

KA
nA

−KD
nD−1 <µA

nA − (nD − 1)

µA −µD

)

− Pr((nD −KD
nD

)µA +KD
nD
µD > (nA −KA

nA
)µA +KA

nA
µD)

− Pr((nD −KD
nD

)µA +KD
nD
µD ≤ (nA −KA

nA
)µA +KA

nA
µD)

= Pr(KD
nD

−KA
nA−1 <µA

nD − (nA − 1)

µA −µD

)+Pr
(

KA
nA

−KD
nD−1 <µA

nA − (nD − 1)

µA −µD

)

− 1

= F5(µA

nD − (nA − 1)

µA −µD

)+F6(µA

nA − (nD − 1)

µA −µD

)− 1

− Pr(KD
nD

−KA
nA−1 = µA

nD − (nA − 1)

µA −µD

)−Pr(KA
nA

−KD
nD−1 = µA

nA − (nD − 1)

µA −µD

)

where T in (EC.24) is used to show the finish times of corresponding jobs, and F5(·) and F5(·) are

CDFs of random variables Z5 =KD
nD

−KA
nA−1 and Z6 =KA

nA
−KD

nD−1. Now notice that random

variables Z1,...,Z6 are each the difference between two independent binomial random variables with

known parameters. Thus, CDFs F1,...,F6 are known. Therefore, g(nA, ñA, ñD) can be computed.

As a result, the metric TTFT
S

A is completely computed.

Next, in a similar way, we compute the metric LOS
S

D (i.e., Expected Length of Stay of D patients

under Streaming):

LOS
S

D =E
[

E[LOSS
D|NA, ÑA, ÑD]

]

=
n
∑

nA=0

N
∑

ñA=0

N
∑

ñD=0

E[LOSS
D|NA, ÑA, ÑD]g(nA, ñA, ñD) (EC.25)

where:

[

LOSS
D|NA = nA, ÑA = ñA, ÑD = ñD

]

=
1

γ̃DnA +(1− γ̃A)(n−nA)
×
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Figure EC.1 Expected performance of policies for a clearing system with n= 20, µA = 80(mins), µD = 45(mins),
and symmetric misclassification error between A and D patients. Streaming is more robust to
misclassification errors than pooling.

[

γ̃D

[

ñA
∑

j=1

j−1
∑

k=0

(

j− 1

k

)

γ̃k
D

(

1− γ̃D)
j−k−1

(

(k+1)µD +(j− k− 1)µA

)

+

nA
∑

j=ñA+1

[

ñA
∑

k=0

(

ñA

k

)

γ̃k
D

(

1− γ̃D)
ñA−k

(

(k+1)µD +(ñA − k)µA

)

+

j−ñA−1
∑

k=0

(

j− ñA − 1

k

)

γ̃k
D

(

1− γ̃D)
j−ñA−k−1

(

(k+1)
µD

2
+ (j− ñA − k− 1)

µA

2

)]

]

+(1− γ̃A)
[

ñD
∑

j=1

j−1
∑

k=0

(

j− 1

k

)

γ̃k
A

(

1− γ̃A)
j−k−1

(

kµA +(j− k)µD

)

+

nD
∑

j=ñD+1

[

ñD
∑

k=0

(

ñD

k

)

γ̃k
A

(

1− γ̃A)
ñD−k

(

kµA +(ñD − k)µD

)

+

j−ñD−1
∑

k=0

(

j− ñD − 1

k

)

γ̃k
A

(

1− γ̃A)
j−ñD−k−1

(

k
µA

2
+ (j− ñD − k)

µD

2

)]

]]

.

(EC.26)

Next we need to compute same metrics but under π= PA and π= PD:

E
[

TTFT PA
A |NA = nA

]

=

1

(1− γ̃D)nA + γ̃A(n−nA)
×
[

(1− γ̃D)

nA
∑

j=1

j−1
∑

k=0

(

j− 1

k

)

γ̃k
D

(

1− γ̃D)
j−k−1

(

k
µD

2
+ (j− k− 1)

µA

2

)

+γ̃A

n−nA
∑

j=1

[

j−1
∑

k=0

(

j− 1

k

)

γ̃k
A

(

1− γ̃A)
j−k−1

(

k
µA

2
+ (j− k− 1)

µD

2

)

+

nA
∑

k=0

(

nA

k

)

γ̃k
D(1− γ̃D)

nA−k
(

k
µD

2
+ (nA − k)

µA

2

)

]]

.

Moreover, we have:

TTFT
PA

A =
n
∑

nA=0

E
[

TTFT PA
A |NA = nA

]

×Pr(NA = nA),
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where Pr(NA = nA) is given in (EC.21).

Similarly we can compute LOS
PA

D :

E
[

LOS
PA

D |NA = nA

]

=
1

γ̃DnA +(1− γ̃A)(n−nA)
×

[

γ̃D

nA
∑

j=1

j−1
∑

k=0

(

j− 1

k

)

γ̃k
D(1− γ̃D)

j−k−1
(

(k+1)
µD

2
+ (j− k− 1)

µA

2

)

+(1− γ̃A)

n−nA
∑

j=1

[

j−1
∑

k=0

(

j− 1

k

)

γ̃k
A

(

1− γ̃A)
j−k−1

(

k
µA

2
+ (j− k)

µD

2

)

+

nA
∑

k=0

(

nA

k

)

γ̃k
D(1− γ̃D)

nA−k
(

k
µD

2
+ (nA − k)

µA

2

)

]]

,

(EC.27)

and:

LOS
PA

D =
n
∑

nA=0

E
[

LOSPA
D |NA = nA

]

×Pr(NA = nA).

It remains to compute the metrics under π= PD:

E
[

TTFT PD
A |NA = nA

]

=
1

(1− γ̃D)nA + γ̃A(n−nA)
×

[

γ̃A

n−nA
∑

j=1

j−1
∑

k=0

(

j− 1

k

)

(1− γ̃A)
kγ̃j−k−1

A

(

k
µD

2
+ (j− k− 1)

µA

2

)

+(1− γ̃D)

nA
∑

j=1

[

j−1
∑

k=0

(

j− 1

k

)

(1− γD)
kγj−k−1

D

(

k
µA

2
+ (j− k− 1)

µD

2

)

+

n−nA
∑

k=0

(

n−nA

k

)

(1− γ̃A)
kγ̃n−nA−k

A

(

k
µD

2
+ (n−nA − k)

µA

2

)

]]

,

and:

TTFT
PD

A =
n
∑

nA=0

E
[

TTFT PD
A |NA = nA

]

×Pr(NA = nA).

Similarly, we have:

E
[

LOSPD
D |NA = nA

]

=
1

γ̃DnA +(1− γ̃A)(n−nA)
×

[

(1− γ̃A)

n−nA
∑

j=1

j−1
∑

k=0

(

j− 1

k

)

(1− γ̃A)
kγ̃j−k−1

A

(

(k+1)
µD

2
+ (j− k− 1)

µA

2

)
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+γ̃D

nA
∑

j=1

[

j−1
∑

k=0

(

j− 1

k

)

(̃1− γ̃D)
kγj−k−1

D

(

k
µA

2
+ (j− k)

µD

2

)

+

n−nA
∑

k=0

(

n−nA

k

)

(1− γ̃A)
kγ̃n−nA−k

A

(

k
µD

2
+ (n−nA − k)

µA

2

)

]]

,

and:

LOS
PD

D =
n
∑

nA=0

E
[

LOSPD
D |NA = nA

]

×Pr(NA = nA).

Therefore, we have computed expected values of all metrics under different possible policies.

Using these computation, Figure EC.1 depicts the performances for a typical numerical example.

An important observation is that streaming is much more robust to misclassification errors than

the pooling policies.
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Online Appendix C: Further Descriptions of the Simulation
Framework and Assumptions.

In this section we describe the patient flow and assumptions of our simulation framework in

more details. Many assumptions are made to be as close as possible to the practice observed in

University of Michigan Emergency Department (UMED). A year of data from UMED is gathered

to calibrate the simulation. The simulation was developed in a C++ framework. Our model can

be described as a cycle-stationary model with a period of one week. Each data point is obtained

for 5000 replications of simulating a week, where each replication is preceded by a warm up period

of one week (which was observed to be a sufficient warm up period because correlations in the ED

flow are small for spans of two or more days). The number of replications (5000) is chosen so that

the confidence intervals are tight enough that (1) the sample averages are reliable, and (2) our data

presentation need not to visualize these very tight intervals.

Arrival Process. Arrivals for patient classes are modeled using non-stationary Poisson processes.

The arrival rates for different classes (obtained from a year of UMED data) are depicted in Figure

6. The general pattern is similar to those found in other studies (e.g., Green et al. (2006)). A

“thinning” mechanism (see Lewis and Shedler (1979a) and Lewis and Shedler (1979b)) is used to

simulate the non-stationary Poisson process arrivals for each class of patients (with rates depicted

in Figure 6).

Service Process. The service process in the ED is depicted in Figure 5. Each patient goes through

several phases of patient-physician interactions/treatment followed by tests and preparations. The

duration of each interaction is stochastic and depends on the class of the patient and the number of

previous interactions. For instance, the first and last interactions are usually longer than interme-

diate ones. Also, the duration of “wait” states is stochastic and depend on the class of the patient,

based on the information at the UMED. For instance, the last “wait” state, i.e., where the patient

is given final directions and is waiting to be disposed is much longer for admits since they have to

be boarded until a bed becomes available in the hospital (the so-called hospital bed-block effect).

The number of interactions with a physician per patient ranges from 1 to 7 and depends on the
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Figure EC.2 Cumulative number of class based physician-patient interactions

class of the patient, as well as several other factors. Based on the class of the patient, we draw the

number of such interactions from a distribution constructed from a detailed time study published

in Graff et al. (1993) (see Table 3 there) after modifying the data to represent our four patient

classes. These class based distributions are depicted in Figure EC.2. The simulated service process

is non-collaborative (an ED physician rarely transfers his/her patients to another physician) and

non-preemptive (an ED physician rarely moves to another patient in the middle of his/her current

interaction).

Phase 1: Assigning Patients to Rooms and Physicians. Whenever a room/bed becomes

available, the nurse who is in charge of bed assignment transfers a triaged patient from the waiting

area to that room. S/he uses a Phase 1 sequencing rule to decide which patient to bring in to

an exam room from the main waiting area (see the body of the paper for different Phase 1 rules

implemented). In the VS designs, if an A(D) bed becomes available, the nurse in charge brings an

A(D) patient (with priority to patients of ESI 2) from the waiting area in to one of the rooms. If

however, an A(D) patient is not waiting in the waiting area, the nurse brings in a D(A) patient

(with priority to patients of ESI 2). Also, after an A(D) patient is triaged, s/he is directly guided

to one of the A(D) beds if one such bed is available, and if not, to one of the D(A) beds (i.e., bed

sharing is allowed, since beds are only virtually separated). If, however, no bed is available, the

patient has to wait in the waiting area. Once a room/bed is assigned to a patient, the bed cannot

be occupied by another patient until s/he leaves the ED; the bed assigned to a patient cannot be
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assigned to any other one, even if the patient is sent to another facility for a test. After the patient

is brought into the room, s/he goes through the first “waiting” state (i.e., initial preparation by a

nurses) which takes some stochastic amount of time. The average duration of this stage depends

on the class of the patient. After this stage the patient is assigned to a physician (if a physician is

available) where his/her first treatment starts. The rule to choose a physician is generally to assign

the patient to the physician who is handling the lowest number of patients (among those available

at that time). However, the rules to choose a physician is different between the virtual streaming

(VS) and the pooling patient flow designs, since in a VS design the physicians are divided to two

groups one for A patients and one for D patients. Under a VS design, if the patient is assessed to be

of A(D) type, the priority is given to physicians devoted to A(D). In other words, an available A(D)

type physician is allowed to cross to the other stream only if a physician of D(A) type is needed

but is not available (due to being busy with a patient or being currently assigned to the maximum

number of patients that a physician is willing to handle). Under pooling designs, physicians do

not have labels and therefore a physician who is handling the lowest number of patients (among

those available at that time) becomes responsible for the newly arrived patient. Once a physician

is assigned to a patient s/he is the only physician who can work on that patient. If no physician

is available at the time the patient is ready for his/her first interaction with the physician, the

patient has to wait in the exam room.

Phase 2: Which patient to choose next? Whenever a physician finishes a treatment stage

(including direct and indirect interactions), s/he is available to visit another patient. The physician

chooses the next patient based on the instructions s/he is given according to the Phase 2 sequencing

rule. If the physician has less than the upper bound on the number of patients that a physician is

willing to handle (7 was used based on the UMED data), s/he can also choose to initialize a new

journey by taking a new patient: visiting a patient who has been taken to a room but has been

waiting for a physician to become available. Under the VS designs, physicians with A(D) label first

use the Phase 2 priority rule on the patients of A(D) type and are allowed to handle D(A) patients

only to avoid starvation.
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