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Abstract

SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until

effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective

therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs

of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance

between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of

inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we

discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which

NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the

treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential

approaches that may benefit patients with severe COVID-19.

Facts

● Patients with COVID-19 show signs of dysregulated

innate and adaptive immune responses.
● SARS-CoV-2-induces the formation of NETs through

ACE2 and requires active TMPRSS2 and virus

replication.
● Immunothrombosis triggered by NETs mediates damage

of distant organs.

Open questions

● Would inhibition of neutrophil proteases ameliorate

tissue injury in patients with COVID-19?
● How are neutrophils and NETs influenced by a network

of antibodies, complement proteins, clotting factors,

CRP, nucleases, proteases, and anti-proteases?
● Does the modulation of NET formation and its clearance

complement current therapies?
● Can the synergism of DNases and heparin in NET

degradation be exploited as co-adjuvant therapy?

Basic aspects of neutrophil biology and their
relevance for COVID-19

Neutrophils normally differentiate in the bone marrow and

throughout this process start to express effector molecules

that are stored in granules allowing them to mount
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inflammation and kill microbes [1, 2]. A distinctive feature

of mature neutrophils is that they cannot proliferate and,

thus stay for only short periods in the circulation [3]. Mature

neutrophils transit from the bone marrow into the circula-

tion and from the circulation into the tissues even under

steady-state conditions. The trafficking and reactivity of

neutrophils to pathogens follow circadian patterns [4–6].

The influx of neutrophils from the circulation into tissues

happens in most organs, but in particular in highly vascu-

larized ones such as lungs and kidneys, representing the

prime targets in coronavirus disease 19 (COVID-19) [7].

Notably, although neutrophils homing into tissues have

partially lost their prestored molecules [5], they remain

active and can damage vessels and parenchyma. The neu-

trophil to lymphocyte ratio has been identified as the most

important independent risk factor for severe COVID-19 [8].

Mechanisms underlying neutrophil development have

received increasing attention [9–13]. There is still no unified

nomenclature for neutrophil developmental stages, which

would be particularly useful to understand emerging obser-

vations in the context of COVID-19 and other disorders. For

simplicity, we adopt here a naming system recently proposed

[14], in which neutrophil development transits from proNeu1

via proNeu2, preNeu, and immature to mature neutrophils in

the bone marrow. Immunophenotyping of COVID-19 blood

samples revealed that the emergence of immature subsets of

neutrophils (preNeu and immature) in the blood correlates

with severe COVID-19, suggesting that precise delineation of

neutrophil subsets could be used as a predictive marker for

COVID-19 severity [15–17].

Mechanisms of neutrophil extracellular trap
formation

Neutrophils are prompted to release neutrophil extracellular

traps (NETs) upon encounter of danger signals (Supple-

mentary Fig. 1), which in essence are structures composed

of DNA decorated with histones and granule proteins such

as lactoferrin, cathepsins, neutrophil elastase (NE), and

myeloperoxidase (MPO) (Supplementary Fig. 2), as well as

cytoplasmic and cytoskeletal proteins [18, 19]. Mitochon-

drial DNA is also found in NETs [20, 21]. NETs immobi-

lize pathogens, limit their dissemination, and enable their

killing by antimicrobial proteins. Beyond antimicrobial

defense, there is growing evidence that NETs contribute to

the pathogenesis of numerous diseases due to either

excessive formation and/or impaired removal, which turns

out to be toxic for the host [22].

Activation of neutrophils through Toll-like receptors, G

protein-coupled receptors, Fc-, chemokine- and cytokine-

receptors can stimulate NET formation (Fig. 1). Neutrophil

activation by engagement of these receptors induces NET

formation by various mechanisms, many of which are linked

to the activation of the NADPH oxidase (NOX) complex.

However, NOX-independent processes have also been

described to lead to the NET formation [23]. Reactive oxygen

species (ROS) produced in the context of NOX activation and

mitochondrial dysfunction [21] are important in the rearran-

gement of the cytoskeleton [24] and glycolytic ATP pro-

duction [25], which are required for NET formation. Early

during NET formation, granular NE and MPO translocate to

the nucleus and drive nuclear and chromatin decondensation

[26]. Peptidylarginine deiminase 4 (PADI4) contributes to

chromatin decondensation by histone hypercitrullination [27].

Citrullination licenses calpain to further decondensed nuclei

before extracellular trap release [28]. However, like for NOX,

PADI4- and NE-independent pathways have also been

reported [29, 30]. In addition, necroptotic and pyroptotic

pathways can be activated [31]. Cathepsin C (CatC) also

plays an important role since it is required for the activation of

NE and other serine proteases [32].

During NET formation, NE also cleaves gasdermin D

(GSDMD), a molecule centrally involved in pyroptosis, and

constituting a feed-forward loop to facilitate granule and

plasma membrane permeabilization (Fig. 2) [33]. Con-

versely, NET formation is facilitated after cytosolic LPS

sensing and caspase-11-dependent activation of GSDMD

[34]. Disulfiram interferes with the papain-like proteases of

the SARS-COVID-19 infection cycle [35] and was shown

to modify Cys191–Cys192 in GSDMD to reduce pore [36]

and possibly NET release.

Pro- and anti-inflammatory functions of NET

In general, NETs can exert both pro- and anti-inflammatory

effects, which are context-dependent [37]. Proinflammatory

Fig. 1 Potential mediators for the induction of NET-formation in

the infected and inflamed tissues. Viruses (SARS-CoV-2), ROS,

calcium oxalate, co-infecting microorganisms, cytokines and chemo-

kines, cationic antimicrobial peptides, nanodiamonds, monosodium

urate (MSU), and platelets reportedly induce NET formation. See main

text for references. Original illustration from the authors.
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effects include the induction of type I Interferons (IFNs)

[38] and proinflammatory cytokines [21], induction of the

NLRP3 inflammasome [39], promotion of adaptive immune

responses [40], damage to the endothelium [41], and

immunothrombosis [42]. In addition, NET aggregation can

occlude ducts in various organs and promote organ damage

[43, 44]. Indeed, pre-clinical strategies to interfere with the

release of NETs or to promote the clearance of formed

NETs can prevent organ injury in numerous models of

inflammatory diseases [45, 46]. On the flip side of the coin,

aggregation of NETs can promote the trapping and cleavage

of proinflammatory mediators by NET-bound proteases

(Fig. 3) [47–49], eventually leading to downregulation of

inflammatory responses and resolution of inflammation.

NETs activation

Viral infections induce the formation of NET

A wide array of pathogens triggers NET formation [18].

These include viruses such as a respiratory syncytial virus

(RSV) [50] and influenza [51]. Initial studies showed that

sera from COVID-19 patients triggered NET release by

healthy control neutrophils in vitro [52] and more recent

evidence suggests that viable SARS-CoV-2 can directly

stimulate human neutrophils to release NETs in a

dose-dependent manner (Fig. 4) [53]. SARS-CoV-2-

mediated NET-induction requires the angiotensin convert-

ing enzyme 2 receptor (ACE2), expressed by neutrophils,

the activity of the serine protease TMPRSS2, and virus

replication. Similar to what was observed for RSV, the pan-

PAD inhibitor Cl-Amidine abrogated SARS-CoV-2 induced

NET formation, implying that inhibition of NET formation

may represent a potential therapeutic option for COVID-19.

The role of citrullination in NETs

The physiological NET formation is typically associated with

PADI4 activation (Fig. 2) [54]. PADI4 converts positively

charged arginines to neutral citrullines in protein substrates,

including core histones [55]. Citrullination unleashes the

energy of coiled DNA, leading to the catapult-like ejection of

NETs [56]. PADI4 retains enzymatic activity in the extra-

cellular environment and modifies proteins, including those of

the extracellular matrix [57] and coagulation factors [58].

Accumulation of citrullinated histones was found in COVID-

19 and in influenza-infected mice [52, 59, 60]. Since pan-

PADI and PADI4 inhibitors such as Cl-amidine, BB-CL-

amidine, YW-56, or GSK484 have shown efficacy in the

treatment of NET-mediated pathologies, such as lethal lung

endotoxemia [61] and cellular damage due to hypoxia [62],

the administration of such inhibitors may prove beneficial for

the treatment of COVID-19.

The relation of platelet activation with NETs

Platelets are activated during COVID-19, forming aggre-

gates with leukocytes, in particular in patients with severe

Fig. 2 Mechanisms of NET formation. Pathways that regulate NET

formation (see body text for references). Pattern recognizing receptors

(PRR) initiate NADPH oxidase activation and a spike of cytosolic cal-

cium activating neutrophil peptidylarginine deiminase 4 (PADI4) causing

histone citrullination (yellow circle) and DNA decondensation. Chromatin

and/or mitochondrial DNA is expelled and form NETs. Several necrotic

cell death pathways may contribute to NETosis. Necroptosis involves

RIPK1/RIPK3-mediated activation of MLKL and plasma membrane

permeabilization contributing to the release of NETs. Pyroptosis involves

canonical or non-canonical inflammasome activation by the caspases-1 or

4, respectively. Caspase-1 and 4 as well as NE cleave GSDMD and

generates the N-GSDMD fragment with a pore-forming activity that

enables the release of NETs. In addition, autophagic processes contribute

to the release of NETs. Original illustration from the authors.

Fig. 3 The role of aggregation and degradation of NETs in vas-

cular occlusions. Increased numbers of patrolling neutrophils in

inflamed tissues form aggregated neutrophil extracellular traps (agg-

NETs). These are prone to occlude the ducts and glands of the pancreas,

gall bladder, and ocular surface. The occlusions precipitate organ

pathogeneses like pancreatitis and cholelithiasis. AggNETs also occlude

blood vessels in particular the microvasculature of lungs, liver, kidney,

heart, and thus cause pathogenesis. Original illustration from the authors.
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disease [59, 63–67]. Platelets are well known to adhere to

injured blood vessels, become activated, and express

adhesion molecules, including P-selectin and ICAM-1,

leading to neutrophil recruitment. Platelets—due to their

number and privileged position in the blood—may repre-

sent major instigators of neutrophil activation [68] through

direct contact [69]. The physiological importance of this

interaction may be to trigger neutrophil-mediated repair

[70, 71]. Circulating platelets do not spontaneously bind

neutrophils, but do so in the context of bacterial [72] or viral

infection [73]. This interaction relies on integrins [74] and

may result in NET formation. Indeed, platelets can trigger

NET formation (Fig. 2), but the platelet-derived molecules

that induce NET release remain poorly characterized. While

a consensus is lacking, HMGB1 [75] and inorganic poly-

phosphate (polyP) [76] are candidates to underlie this

phenomenon. However, this mechanism is debated [77].

Thus, platelet activation may trigger the formation of

intravascular NET aggregates in the pulmonary and renal

microcirculation [59, 65], thereby contributing to the man-

ifestations of COVID-19 [78].

Complement activation as a trigger for NETs

Complement activation fosters the cytokine storm and

coagulopathy, both critical events in COVID-19 [79]. A

history of macula degeneration, associated with comple-

ment-activation, predisposes to poor outcomes during

COVID-19, while complement deficiencies appear to be

protective [79]. SARS-CoV-2 activates compliment and

complement regulators [79] and consistently C5a and C5b-9

accumulate in the blood of COVID-19 patients, indicating

complement activation [80, 81]. Complement deposition is

detected in the microvasculature, occasionally in proximity

to SARS-CoV-2 glycoproteins [82]. Complement activation

may thus represent an additional trigger for NETs also in

COVID-19 [81].

NETs’ impact at the cellular level

The role of NET-bound enzymes

Neutrophil granules contain various serine proteases

including NE, cathepsin G, and proteinase-3, lactoferrin,

MPO, and lysozyme that can promote tissue damage [45].

These enzymes, which also appear in NETs, can modulate

viral immune responses through modification of autoanti-

gens and immune complexes [83]. NE can further cleave the

spike protein and thus activate the fusogenic peptide of

SARS-CoV-2 spike protein S2 [84]. These findings suggest

that the proteolytic activity of neutrophil-derived enzymes

may modulate membrane fusion of the virus [85]. The

effects of NE may be modulated by protease inhibitors such

as serum alpha-1-antitrypsin (serpinA1) to prevent tissue

injury and virus activation. Increased serum NE activity was

detected during severe COVID-19, despite the functional

inhibitory activity of serpinA1 against exogenous soluble

NE [59], thereby revealing a mechanism of resistance of

NET-derived NE to serpinA1 that may be relevant during

COVID-19 [86].

NET-induced thromboinflammation in COVID-19

Thrombotic complications contribute to morbidity and

mortality in severe COVID-19 [87, 88]. Thrombosis in

patients with COVID-19 affects both the arterial and venous

circulation, leading to acute coronary syndrome, stroke,

deep vein thrombosis, pulmonary embolism, and micro-

vascular thrombosis (Fig. 3) [89–92]. The NET-remnants,

Fig. 4 NETs induced by SARS-CoV-2. NET formation of

human blood-derived neutrophils after treatment with SARS-CoV-2.

Immunofluorescence staining of NETs was done using antibodies

against elastase (red) and DNA-histone1-complexes (green), with a

counterstain of DNA (blue). Yellow staining indicates colocalization

of NETs (histone-DNA fibers) with elastase. The Bars represent 25 µm

(left) and 50 µm (middle and right). Original illustration from the

authors.
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including circulating cell-free DNA, citrullinated H3, or

MPO-DNA complexes, are abundantly found in the circu-

lation of patients with severe COVID-19 [52, 93]. Fur-

thermore, neutrophil-platelet aggregates and neutrophil

activation markers are also increased in patients with severe

disease [65, 94]. Importantly, NETs from patients with

COVID-19 are loaded with tissue factor (TF). Complement

activation has been linked to the release of thrombogenic

NETs decorated with TF [81]. The excessive NET forma-

tion may also cause direct vascular injury [41, 95] and

indirectly support the formation of autoantibodies that

determine the appearance of various forms of autoimmune

vasculitis [96, 97]. Along this line, histopathology studies

have shown that NET-based immunothrombosis is linked to

organ damage in severe COVID-19 [98]. Lung autopsies

from patients with COVID-19-related acute respiratory

distress syndrome (ARDS) revealed widespread occlusion

of small pulmonary vessels by aggregated NETs [93].

Neutrophils also infiltrate alveolar and interstitial areas of

K18-hACE2 transgenic mice infected with SARS-CoV-2

leading to a comparable pulmonary pathology [32, 99].

NET-rich thrombi, platelets, and fibrin were also present in

the lung, heart, and kidney [59, 65]. This clogging of

microvessels by aggregated NETs (aggNETs) may con-

tribute to fatal outcomes in COVID-19. Notably, in steady-

state conditions, DNAses prevent vascular occlusions by

non-canonical NET-driven thrombosis [100]. This obser-

vation indicates that NET-dissolving mediators can also be

impaired or overwhelmed in the patients [101].

NET-induced endothelial activation and damage in
COVID-19

Endothelial injury is considered an essential pathogenic

process in COVID-19, leading to lung and kidney damage

[102–104]. Organ- and microenvironment-associated

endothelial heterogeneity likely contributes to different

COVID-19 outcomes [105]. Similar to other SARS viruses,

SARS-CoV-2 enters cells through ACE2, expressed on

renal and pulmonary endothelial cells [106, 107]. In

accordance, SARS-CoV-2 has been detected intracellularly

in renal and pulmonary endothelial cells [107, 108]. Para-

crine factors released from infected endothelial cells [109]

may impact disease outcome by altering functions of epi-

thelial or other neighboring cells, including neutrophils and

pneumocytes. Furthermore, endothelial damage fosters

perivascular T-cell recruitment and disrupts the alveolar-

capillary barrier in the lungs [91]. Acute endothelial damage

in COVID-19 is associated with structurally deformed

capillaries and signs of compensatory neovascularization

[91]. This compromised endothelial barrier triggers lung

edema and proteinuria, which are common observations in

severe lung and kidney diseases [91, 110, 111].

NETs directly activate endothelial cells, induce endothelial

to mesenchymal transition, and apoptotic endothelial cell death.

Thus, NETs compromise endothelial integrity and barrier

function and promote endothelial dysfunction (Supplementary

Fig. 3) [41, 112, 113]. Since NETs are abundant in the circu-

lation and in lung and kidney tissues of patients with COVID-

19 [65], their accumulation represents a key trigger to induce

pulmonary and renal microvascular thrombosis, which triggers

disease-related organ failure [59, 81, 93, 114]. The effect of

classical anti-thrombotic treatments may be hampered as NETs

have shown to be central components of vascular occlusion in

COVID-19 [100].

NETs’ impact at the organ level

NETs in COVID-19-associated acute lung disease

Histopathological studies revealed that respiratory symptoms

and shortness of breath in COVID-19 occur secondary to

alveolar-capillary damage, hemorrhage, immune cell infil-

tration, fibrin deposition, and fluid-filled alveoli [115–118].

Detailed analysis of lungs revealed abnormal extracellular

matrix remodeling, denuded alveolar epithelia, and pro-

liferation of epithelial cells and fibroblasts. Importantly,

neutrophilia directly correlates with disease severity in

COVID-19 [102]. Increased serum levels of neutrophil-

derived MPO-DNA and citrullinated histone H3, both NET

degradation products, closely parallel lung distress and pre-

dict COVID-19 severity [52]. Furthermore, circulating

nucleosomes were identified as potential markers to monitor

COVID-19 disease progression [119]. Immature and low-

density neutrophils predominate in severe COVID-19

[15, 16, 120]. Neutrophils that recently emigrate from the

bone marrow have higher granule contents and enhanced

NET release, which aggravates pulmonary injury in murine

models [5]. It is therefore conceivable that immature neu-

trophils in the circulation of COVID-19 patients actively

promote susceptibility to ARDS [5]. Likewise, hypogranular

neutrophils produced during emergency myelopoiesis have a

higher propensity to release NETs and may be causally

related to COVID-19 severity [93]. NETs released by SARS-

CoV-2–activated neutrophils promote lung epithelial cell

death in vitro [53, 121]. In this line, COVID-19 goes along

with massive infiltration of neutrophils into the lungs,

including the formation of NETs as potential drivers of

ARDS [122] and the associated immunothrombosis of

patients with COVID-19 (Fig. 5) [59, 93].

NETs in kidneys and liver

NET formation contributes to numerous forms of acute

and subacute kidney injury with proteinuria [123].

Patients with COVID-19: in the dark-NETs of neutrophils 3129



NOX-independent NETs directly induce kidney endothelial

dysfunction, thereby offering a potential explanation for the

proteinuria observed in most patients with COVID-19

[112]. NET-rich microvascular thrombi were also detected

in the autopsy material of the kidneys in severe COVID-19

with renal failure [65]. It is still elusive whether involve-

ment relates to the renal tropism of SARS-CoV-2 or to a

systemic tendency for immunothrombosis and cytokine

storm (Supplementary Fig. 4) [124, 125].

Liver injury emerges as a co-existing symptom in

COVID-19 [126] and it might result from direct viral

toxicity, but also from an overproduction of cytokines and/

or NETs [127]. In patients with COVID-19 injured liver

displays patchy necrosis alike in experimental models of the

net-damaged liver [128, 129].

Targeting NETs in COVID-19 treatment

Glucocorticoids, hydroxychloroquine, and heparin in
NET formation

COVID-19 patients frequently receive dexamethasone

[130], heparin [131], and until recently also hydroxy-

chloroquine, the latter emerged as highly controversial and

not beneficial for the course of the disease [132–134].

The anti-inflammatory action of hydroxychloroquine relies

on the inhibition of lysosomal activity and cytokine

production. In vitro, neutrophils are more prone to release

NETs when exposed to chloroquine [135]. The effect of

hydroxychloroquine administered in vivo regarding

NET formation has not been systematically studied yet

[136–138]. In contrast, glucocorticoids including dex-

amethasone have been reported to reduce NET formation

[139] most likely by suppressing the expression of inflam-

matory mediators that activate neutrophils. As mentioned

above, activated neutrophils and platelets play key roles in

thrombosis associated with severe COVID-19 [65]. Exces-

sive NET formation harbors the risk of vascular occlusion

[59], while heparin reduced NET formation in an experi-

mental in vivo model of lung injury [140]. Heparin and low

molecular weight heparins neutralize extracellular cytotoxic

histones [141, 142], accelerate DNaseI-mediated degrada-

tion of NET mediated clots [59], and prevent NET aggre-

gation by nano- and microparticles [143] in COVID-19. The

therapeutic value of heparin in COVID-19 has been

demonstrated recently [144], though some patients may

develop heparin resistance [145].

Cytokine inhibitors and NET formation

Given the reduced incidence of COVID-19 in individuals

treated with cytokine inhibitors [146] and the promising

results with IL-6 and IL-1-blockade and immunosuppressants

[130], inflammatory cytokines are likely important players in

mediating inflammatory tissue damage in response to SARS-

CoV-2. Stimulating results have been obtained with tocili-

zumab in a randomized clinical, double-blind, placebo-con-

trolled, phase III study (preprint) [147] dampening the late

IL-6-driven hyper-inflammatory phase [148] and reducing

the need for mechanical and non-invasive ventilation. How-

ever, mortality after 28 days was not affected in another

randomized fully peer-reviewed clinical trial [149]. The IL-1

receptor antagonist Anakinra is also currently under evalua-

tion in RCTs, following early encouraging results in obser-

vational studies [150, 151]. Clinical studies with JAK-STAT

inhibitors, also inhibiting IL-6, in addition, also IFNs, are still

ongoing (NCT04320277). JAK inhibitors and direct block-

ade of IL-6 inhibit NET formation [152]. Previous studies in

murine models have shown that the JAK inhibitor tofacitinib

impairs NET formation in vitro and in vivo [153].

Complement-based therapies

Thrombogenic NETs elicited by the activated complement

present in the blood of patients with COVID-19 [81] are

candidates to amplify inflammation and thrombosis

[154, 155]. Anti-complement strategies based on eculizu-

mab or AMY-101 have successfully been used in small

numbers of severe and critical/intubated patients [156–160].

Eculizumab is an anti-C5 humanized monoclonal antibody

Fig. 5 Occlusion of pulmonary vessels by aggNETs in COVID-19.

Occlusion of small and intermediate-sized pulmonary vessels in

COVID-19 published by Leppkes et al 2020 [59]. The former is

marked by asterisks and the latter by a white frame. Note, that large

fields of the (micro)-vasculature are occluded by NETs identified by

extracellular neutrophil elastase (green). The nuclei of the cells were

stained with propidium iodide (red). The bar represents 1000 µm.

Original illustration from the authors.
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clinically approved for selected rare complement-mediated

disorders. AMY-101 is clinically developed for various

complement-mediated disorders and belongs to compstatin,

a group of small-sized peptides that bind C3 and prevent its

activation [160]. Early clinical data indicates that both

inhibitors resulted in the resolution of SARS-CoV-2-

associated ARDS; however, AMY-101 was associated

with a more robust reduction in circulating neutrophils and

NETs, highlighting the role of C3 in NET-driven throm-

boinflammation [160]. Several compassionate use programs

or Phase II RCTs with complement inhibitors are in pro-

gress (NCT04346797, NCT04355494, NCT04288713,

NCT04395456, EudraCT2020-004408-32).

Together with the complement components C1q-C4, C-

reactive protein (CRP) functions in the disposal of bacteria

and apoptotic or necrotic host cells [161, 162]. As COVID-

19 is characterized by high CRP levels, it was proposed that

reduction of the CRP levels by therapeutic apheresis, might

reduce the pathological process in early disease [163].

Agarose bead-based CRP adsorption from the blood addi-

tionally depleted cell-free chromatin co-aggregates with C3

fragments [164]. The role of this approach in COVID-19

remains to be determined. In addition to CRP, calprotectin

was identified as another acute-phase protein in severe

pulmonary disease in COVID-19 [165].

Modulation of purinergic signaling

Injured cells release ATP that signals “danger” to neigh-

boring tissues [166]. As a counterpoint, ectonucleotidases

hydrolyze ATP to generate adenosine that supports local

homeostasis. Activation of specific surface adenosine

receptors suppresses NET formation via cyclic AMP-

dependent signaling [167, 168]. Dipyridamole is an inex-

pensive, FDA-approved drug with a favorable safety pro-

file. Dipyridamole potentiates adenosine receptor signaling

by (i) inhibition of ectonucleoside reuptake, and (ii) stabi-

lization of intracellular cyclic AMP. Dipyridamole tempers

NET release in vitro while preventing NET-dependent

thrombosis in mice [168]. In a small study, dipyridamole

suppressed D-dimer levels in patients with COVID-19

[169]. Larger studies are required to evaluate clinical out-

comes (NCT04391179) [170].

Treatment with DNases

Recombinant DNAse1 efficiently breaks down the chro-

matin of NETs that contributes to immunothrombosis and

luminal obstructions of airways and vessels [59, 171]. NET-

driven mucus accumulation, rigidity, and airway occlusion

in severe COVID-19 may benefit from the same treatment

[172, 173]. A small single-center case series (preprint)

suggested that nebulized endotracheal DNAse1 (Dornase)

reduced supplemental oxygen requirements in the patients

[174]. COVIDornase (NCT04355364) and COVASE

(NCT04359654) are two current initiatives that evaluated

nebulized dornase α in prospective randomized controlled

multicentre trials [175]. Since DNase1L3, which degrades

extracellular DNA, works in a tandem with DNase1 to

prevent immunothrombosis in an animal model of leuko-

philia [100], they are both candidates for the treatment of

vascular occlusions in COVID-19. However, it is important

to highlight that digestion of extracellular DNA with

DNase1 and/or DNase1L3, while potentially reducing the

occlusive capacity of aggregated NETs, may not success-

fully remove remnants that retain pro-inflammatory activ-

ities (Fig. 2) [176].

Other interventions to inhibit the NET formation

Treatment options targeting the pro-inflammatory action of

NETs such as PADI4 inhibitors, or antibodies that block

extrusion of NETs [46], or R406, a potent SYK inhibitor

and the metabolically active component of fostamatinib

[177], are potential new classes of drugs to tackle NET

formation and to alleviate NET toxicity and in patients with

severe COVID-19 [178]. In addition, the pharmacological

inhibition of CatC to counterbalance the unwanted effects of

neutrophil serine proteases in severe COVID-19 is con-

sidered a potential therapeutic target [179]. Some of these

mediators are already in the development pipelines of

pharmaceutical companies awaiting clinical trials. After the

successful implementation of glucocorticoids [130], and the

positive data on routine heparin use [180], future therapies

will have to show how they perform compared to this

standard of care. The studies of tocilizumab in severe

COVID had heterogeneous outcomes [181, 182]. The

patient cohort that had the most benefits from tocilizumab

was mostly cotreated with glucocorticoids. This points to

possible combination therapy as a future strategy. Combi-

nation therapy may also be useful for NET-targeted thera-

pies: blocking new NET formation and improving

degradation of preformed NETs. Given that NET degrada-

tion is negatively affected in severe COVID, the synergistic

effect of DNase1 and heparin in NET degradation [59] may

have identified these agents as suitable combination partners

to effectively improve NET degradation in severe COVID.

This needs to be proven by future clinical studies.

Conclusion

Here, we have highlighted the multifaceted functions that

NETs play in the pathogenesis of COVID-19. The role of

NETs in COVID-19 is increasingly supported by multiple

lines of evidence and in fact, explains the wide range of
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manifestations seen in the most severe and critical cases. In

the pathophysiology of COVID-19, there appears to be an

important role for neutrophil dysregulation, oxidative stress,

and aberrant NET formation as well as clearance. Neu-

trophils and NETs are at the crossroads of innate immune

responses like pathogen killing, thrombosis, and activation

of the adaptive immune system. This cardinal position helps

to understand why a dysregulated neutrophil response upon

SARS-COV-2 infection leads to such severe and uncon-

trolled disease manifestations. The pleiotropic complica-

tions caused by deposition of NETs in vessels and tissues in

fact match disease manifestations in patients with COVID-

19, and demand urgent actions to set trials with NET

inhibitors. Identifying subgroups of individuals at risk for

neutrophil dysregulation following SARS-CoV-2 exposure

may help further refine individualized therapies. This

strategy aims to prevent devastating complications includ-

ing lung injury, kidney damage, endotheliitis, and immu-

nothrombosis in severe COVID-19.

Search strategy and selection criteria

The data for this review were identified through searches of

MEDLINE, PubMed, and references from relevant articles

using the search terms “neutrophils” and “COVID-19” or

“immunothrombosis” and “neutrophils”. Abstracts and

reports from meetings were excluded. It uses 683 articles

published in English from 2014 to April 2020. The pub-

lication date of additional articles was unlimited.
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