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processes and path expressions are dual approaches
to specifying the traces created in a computation; the
processes generate sequences of actions which are con-
strained by path expressions to achieve particular syn-
chronization constraints associated with the operations
on abstract data types.

Summary
In practice, synchronization of parallel processes
remains a di�cult problem that becomes ever more
complex with increased concurrency in architecture.
Path expressions provide a separate speci
cation of syn-
chronization from the code of processes that, under
some circumstances, can simplify parallel program-
ming. Although not widely adopted, their declarative
approach to specifying synchronization has been found
useful in various parallel applications. Path expressions
have been used to synchronize parallel operations on
objects in parallel languages, real-time languages, event
systems, VSLI, work�ow, and debugging.

Bibliographic Notes and Further
Reading
�e semantics of parallel programs may be described
using trace-based semantics. Path expression imple-
mentations restrict or recognize the permitted traces
of parallel programs as described by Lauer and Camp-
bell []. A semantics for path expressions is given by
Dinning and Mishra using partially ordered multisets
[] and the authors provide a fully parallel imple-
mentation for a path expression language on MIMD
shared memory architectures. Path Pascal and open
path expressions were used as pedagogical tools for
teaching parallel programs [, ].
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Definition
PaToH is a sequential, multilevel, hypergraph partition-
ing tool that can be used to solve various combinatorial
scienti
c computing problems that could be modeled
as hypergraph partitioning problem, including sparse
matrix partitioning, ordering, and load balancing for
parallel processing.

Discussion

Introduction
Hypergraph partitioning has been an important prob-
lem widely encountered in VLSI layout design [].
Recent works since the late s have introduced new
application areas, including one-dimensional and two-
dimensional partitioning of sparse matrices for paral-
lel sparse-matrix vector multiplication [–, ], sparse
matrix reordering [, ], permuting sparse rectangu-
lar matrices into singly bordered block-diagonal form
for parallel solution of LP problems [], and static
and dynamic load balancing for parallel processing [].
PaToH [] has been developed to provide fast and high-
quality solutions for these motivating applications.

In simple terms, the hypergraph partitioning prob-
lem can be de
ned as the task of dividing a hyper-
graph into two or more roughly equal sized parts such
that a cost function on the hyperedges connecting ver-
tices in di	erent parts is minimized. �e hypergraph
partitioning problem is known to be NP-hard [],
therefore a wide variety of heuristic algorithms have
been developed in the literature to solve this complex
problem [, , , , ]. Following the success of
multilevel partitioning schemes in ordering and graph
partitioning [, , ], PaToH [] has been developed as
one of the 
rst multilevel hypergraph partitioning tools.

Preliminaries
A hypergraphH=(V ,N) is de
ned as a set of vertices
(also called cells) V and a set of nets (hyperedges) N
among those vertices. Every net n ∈ N is a subset of
vertices, that is, n⊆V . �e vertices in a net n are called
its pins in PaToH. �e size of a net, s[n], is equal to the
number of its pins. �e degree of a vertex is equal to
the number of nets it is connected to. Graph is a special
instance of hypergraph such that each net has exactly
two pins. Vertices and nets of a hypergraph can be asso-
ciated with weights. For simplicity in the presentation,

net weights are refered as cost here and denoted with
c[. ], whereas w[. ] will be used for vertex weights.

Π={V,V , . . . ,VK} is a K-way partition ofH if the
following conditions hold:

● Each part Vk is a nonempty subset of V , that is,
Vk ⊆V and Vk ≠ / for  ≤ k ≤ K.

● Parts are pairwise disjoint, that is, Vk ∩Vℓ = / for all
 ≤ k < ℓ ≤ K.

● Union of K parts is equal to V , that is, ⋃K
k= Vk =V .

In a partition Π ofH, a net that has at least one pin
(vertex) in a part is said to connect that part. Connectiv-
ity λn of a net n denotes the number of parts connected
by n. A net n is said to be cut (external) if it connects
more than one part (i.e., λn > ), and uncut (internal)
otherwise (i.e., λn = ). In a partition Π ofH, a vertex is
said to be a boundary vertex if it is incident to a cut net.
A K-way partition is also called a multiway partition if
K >  and a bipartition if K = . A partition is said to be
balanced if each part Vk satis
es the balance criterion:

Wk ≤Wavg( + ε), for k = , , . . . ,K. ()

In (), weight Wk of a part Vk is de
ned as the sum
of the weights of the vertices in that part (i.e., Wk =
∑v∈Vk

w[v]), Wavg denotes the weight of each part
under the perfect load balance condition (i.e., Wavg =
(∑v∈V w[v])/K), and ε represents the predetermined
maximum imbalance ratio allowed.

�e set of external nets of a partition Π is denoted as
NE.�ere are various [, ] cutsize de
nitions for rep-
resenting the cost χ(Π) of a partition Π. Two relevant
de
nitions are:

(a) χ(Π) = ∑
n∈NE

c[n] and

(b) χ(Π) = ∑
n∈NE

c[n](λn − ). ()

In (a), the cutsize is equal to the sum of the costs of the
cut nets. In (b), each cut net n contributes c[n](λn − )
to the cutsize.�e cutsize metrics given in (a) and (b)
will be referred to here as cut-net and connectivitymet-
rics, respectively. �e hypergraph partitioning problem
can be de
ned as the task of dividing a hypergraph into
two or more parts such that the cutsize is minimized,
while a given balance criterion () among part weights
is maintained.

A recent variant of the above problem is the multi-

constraint hypergraph partitioning [, , , , ] in
which each vertex has a vector of weights associated
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with it. �e partitioning objective is the same as above,
and the partitioning constraint is to satisfy a balanc-
ing constraint associated with each weight. Let w[v, i]
denote the C weights of a vertex v for i = , . . . ,C. �en
balance criterion () can be rewritten as:

Wk,i ≤Wavg,i ( + ε) for k = , . . . ,K and i = , . . . ,C ,
()

where the ith weight Wk,i of a part Vk is de
ned
as the sum of the ith weights of the vertices in that
part (i.e., Wk,i = ∑v∈Vk

w[v, i]), and Wavg,i is the
average part weight for the ith weight (i.e., Wavg,i =
(∑v∈V w[v, i])/K), and ε again represents allowed
imbalance ratio.

Another variant is the hypergraph partitioning with

�xed vertices, in which some of the vertices are 
xed in
some parts before partitioning. In other words, in this
problem, a �xed-part function is provided as an input
to the problem. A vertex is said to be free if it is allowed
to be in any part in the 
nal partition, and it is said to
be 
xed in part k if it is required to be in Vk in the 
nal
partition Π.

Using PaToH
PaToH provides a set of functions to read, write, and
partition a given hypergraph, and evaluate the quality
of a given partition. In terms of partitioning, PaToH
provides a user customizable hypergraph partitioning
via multilevel partitioning scheme. In addition, PaToH
provides hypergraph partitioning with 
xed cells and
multi-constraint hypergraph partitioning.

Application developers who would like to use
PaToH can either directly use PaToH through a simple,
easy-to-use C library interface in their applications, or
they can use stand-alone executable.

PaToH Library Interface

PaToH library interface consists of two 
les: a header

le patoh.h which contains constants, structure def-
initions, and functions proto-types, and a library 
le
libpatoh.a.

Before starting to discuss the details, it is instruc-
tive to have a look at a simple C program that par-
titions an input hypergraph using PaToH functions.
�e program is displayed in Fig. . �e 
rst state-
ment is a function call to read the input hyper-
graph 
le which is given by the 
rst command line

argument. PaToH partition functions are customiz-
able through a set of parameters. Although the appli-
cation user can set each of these parameters one
by one, it is a good habit to call PaToH func-
tion PaToH_Initialize_Parameters to set all
parameters to one of the three preset default val-
ues by specifying PATOH_SUGPARAM_<preset>,
where<preset> is DEFAULT,SPEED, or QUALITY.
A�er this call, the user may prefer to modify the
parameters according to his/her need before calling
PaToH_Alloc. All memory that will be used by
PaToH partitioning functions is allocated by PaToH_
Alloc function, that is, there will be no more
dynamic memory allocation inside the partitioning
functions. Now, everything is set to partition the hyper-
graph using PaToH’s multilevel hypergraph partition-
ing functions. A call to PaToH_Partition (or
PaToH_MultiConst_Partition) will partition
the hypergraph, and the resulting partition vector, part
weights, and cutsize will be returned in the parameters.
Here, variablecutwill hold the cutsize of the computed
partition according to cutsize de
nition (b) since, this
metric is speci
ed by initializing the parameters with
constant PATOH_CONPART. �e user may call parti-
tioning functions as many times as he/she wants before
calling function PaToH_Free. �ere is no need to
reallocate the memory before each partitioning call,
unless either the hypergraph or the desired customiza-
tion (like changing coarsening algorithm, or number of
parts) is changed.

A hypergraph and its representation can be seen in
Fig. . In the 
gure, large circles are cells (vertices) of
the hypergraph, and small circles are nets. xpins and
pins arrays store the beginning index of pins (cells)
connected to each net, and IDs of the pins, respectively.
Hence, xpins is an array of size equal to the num-
ber of nets plus one ( in this example), and pins

is an array of size equal to the number of pins in
the hypergraph ( in this example). Cells connected
to net nj are stored in pins[xpins[j]] through
pins[xpins[j+1]-1].

Stand-Alone Program

Distribution includes a stand-alone program, called
patoh, for single constraint partitioning (this exe-
cutable will not work with multiple vertex weights; for
multi-constraint partitioning there is an interface and
some sample source codes). �e program patoh gets
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its parameters from command line arguments. PaToH
can be run from command line as follows:

> patoh <hypergraph-file>

<number-of-parts> [[parameter1]

[parameter2] ....].

Partitioning can be customized by using the optional
[parameter] arguments. �e syntax of these
optional parameters is as follows: two-letter abbrevia-
tion of a parameter is followed by an equal sign and a
value. For example, if the user wishes to change re
ne-
ment algorithm (abbreviated as “RA”) to “Kernighan–
Lin with dynamic locking” (sixth algorithm out of
 implemented in PaToH), the user should specify
“RA=.” For a complete example, consider the sample
hypergraph displayed in Fig. . In order to partition this
hypegraph into three parts by using the Kernighan–Lin
re
nement algorithm with cut-net metric (the default is
connectivity metric (Equation (b)), one has to issue the
following command whose output is shown next:

�is output shows that the cutsize (cut cost) according
to cut-net metric is . Final imbalance ratios (in paren-
theses) for the least loaded and the most loaded parts
are % (perfect balance with four vertices in each part),
and partitioning only took about ms.�e input hyper-
graph and resulting partition is displayed in Fig. . A
quick summary of the input 
le format (the details are
provided in the PaToHmanual []) is as follows: the 
rst
non-comment line of the 
le is a header containing the
index base ( or ) and the size of the hypergraph, and
information for eachnet (only pins in this case) and cells
(none in this example) follows.

All of the PaToH customization parameters that are
available through library interface are also available
as command line options. PaToH manual [] contains
details of each of those customization parameters.

Customizing PaToH’s Hypergraph
Partitioning
PaToHachievesK-way hypergraphpartitioning through
recursive bisection (two-way partition), and at each
bisection step it uses a multilevel hypergraph bisection

> patoh sample.u 3 RA=6 UM=U

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++ PaToH v3 (c) Nov 1999-, by Umit V. Catalyurek

+++ Build # 872 Date: Fri, 09 Oct 2009

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

********************************************************************************

Hypergraph : sample.u #Cells : 12 #Nets : 11 #Pins : 31

********************************************************************************

3-way partitioning results of PaToH:

Cut Cost: 2

Part Weights : Min= 4 (0.000) Max= 4 (0.000)

--------------------------------------------------------------------------------

I/O : 0.000 sec

I.Perm/Cons.H: 0.000 sec ( 2.9%)

Coarsening : 0.000 sec ( 1.1%)

Partitioning : 0.000 sec (75.8%)

Uncoarsening : 0.000 sec ( 3.7%)

Total : 0.001 sec

Total (w I/O): 0.001 sec

--------------------------------------------------------------------------------
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#include <stdio.h>

#include "patoh.h"

int main(int argc,char *argv[])

{
PaToH_Parameters args;

int c, n, nconst, *cwghts, *nwghts,

*xpins, *pins, *partvec, cut, *partweights;

PaToH_Read_Hypergraph(argv[1], &_c, &n, &_nconst, &cwghts, &nwghts,

&xpins, &pins);

printf("Hypergraph %10s -- #Cells=%6d #Nets=%6d #Pins=%8d #Const=%2d\n",
argv[1], _c, _n, xpins[_n], _nconst);

PaToH_Initialize_Parameters(&args, PATOH_CONPART, PATOH_SUGPARAM_DEFAULT);

args._k = atoi(argv[2]);

partvec = (int *) malloc(_c*sizeof(int));

partweights = (int *) malloc(args._k*sizeof(int));

PaToH_Alloc(&args, _c, _n, _nconst, cwghts, nwghts, xpins, pins);

if (_nconst==1)

PaToH_Partition(&args, _c, _n, cwghts, nwghts,

xpins, pins, partvec, partweights, &cut);

else

PaToH_MultiConst_Partition(&args, _c, _n, _nconst, cwghts,

xpins, pins, partvec, partweights, &cut);

printf("%d-way cutsize is: %d\n", args._k, cut);

free(cwghts); free(nwghts);

free(xpins); free(pins);

free(partweights); free(partvec);

PaToH_Free();

return 0;

}

PaToH (Partitioning Tool for Hypergraphs). Fig.  A simple C program that partitions an input hypergraph using PaToH

functions

algorithm. In the recursive bisection, 
rst a bisection of
H is obtained, and then each part of this bipartition is
further partitioned recursively. A�er lg K steps, hyper-
graphH is partitioned into K parts. Please note that, K
is not restricted to be a power of . For anyK > , one can
achieve K-way hypergraph partitioning through recur-
sive bisection by 
rst partitioningH into two parts with
a load ratio of ⌊K/⌋ to (K−⌊K/⌋), and then recursively
partitioning those parts into ⌊K/⌋ and (K − ⌊K/⌋)
parts, respectively, using the same approach.

A pseudo-code of the multilevel hypergraph bisec-
tion algorithm used in PaToH is displayed in Algo-
rithm . Mainly, the algorithm has three phases: coars-
ening, initial partitioning, and uncoarsening. In the

rst phase, a bottom-up multilevel clustering is suc-
cessively applied starting from the original hypergraph
until either the number of vertices in the coarsened
hypergraph reduces below a predetermined threshold
value or clustering fails to reduce the size of the hyper-
graph signi
cantly. In the second phase, the coarsest



 P PaToH (Partitioning Tool for Hypergraphs)

n9

n8

n6

n5

n7

n0
n2

n1 n10 n4

n3

v11 v12

v8v9v3

v7

v6
v5

v4v2v1v0

0xpins:

2

0

3

1

5

2

6

3 5

0 1

6 7

0 1

8

2

9

3

10 11

1 3

12 13

4 5

14 15

4 5

16

6

17

7

18

6

19

7

20

8

21

9

22

10

23

11

24

8

25

9

26

9

27

11

28

2

29

5

30

0

5

1

7

2

11

3

13

4

15

5

19

6

21

7

25

8

27

9

29

10

31

11

pins:

6

4

PaToH (Partitioning Tool for Hypergraphs). Fig.  A sample hypergraph and its representation

% base:(0/1) #cells #nets #pins

0 12 11 31

% pins of each net in the hypergraph

2 3 5 6 9

0 1

0 1 2 3

1 3

4 5

4 5 6 7

6 7

8 9 10 11

8 10

8 11

2 5

V0

V2

n1
n2n3

v3

v2

v0

v1

n10

n6

n5

n4

v4

v7v6

v5

n0

n9

n7

n8

v9v9

V1v11

v12

a b

PaToH (Partitioning Tool for Hypergraphs). Fig.  Text file representation of the sample hypergraph in Fig.  and

illustration of a partition found by PaToH

hypergraph is bipartitioned using one of the  initial
partitioning techniques. In the third phase, the parti-
tion found in the second phase is successively projected
back towards the original hypergraph while it is being
improved by one of the iterative re
nement heuristics.
�ese three phases are summarized below.

. CoarseningPhase: In this phase, the given hyper-
graphH=H =(V ,N) is coarsened into a sequence of
smaller hypergraphs H = (V,N), H = (V,N), . . .,
Hℓ =(Vℓ ,Nℓ) satisfying ∣V∣> ∣V ∣> ∣V ∣> . . . >∣Vℓ ∣. �is

coarsening is achieved by coalescing disjoint subsets of
vertices of hypergraph Hi into clusters such that each
cluster in Hi forms a single vertex of Hi+ . �e weight
of each vertex of Hi+ becomes equal to the sum of its
constituent vertices of the respective cluster inHi . �e
net set of each vertex ofHi+ becomes equal to the union
of the net sets of the constituent vertices of the respec-
tive cluster inHi . Here, multiple pins of a net n∈Ni in a
cluster ofHi are contracted to a single pin of the respec-
tive net n′ ∈ Ni+ of Hi+ . Furthermore, the single-pin
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Algorithm Multilevel Bisection.

function PaToHMLevelPartition(H = (V ,N))

H ←H

ℓ ← 

/* Coarsening Phase: */

while ∣Vℓ ∣ > CoarseTo do


nd a clustering, Cℓ , using one of the coarsening

algorithms

constructHℓ+ using Cℓ

if (∣Vℓ+ ∣ − ∣Vℓ ∣)/∣Vℓ ∣ < CoarsePercent then

break

else

ℓ ← ℓ + 

end if

end while

/* Initial Partitioning Phase: */


nd an initial partitioning Πℓ ofHℓ

/* Uncoarsening Phase: */

while ℓ >  do

re
ne Πℓ using one of the re
nement algorithms

if ℓ >  then

project Πℓ to Πℓ−

end if

ℓ ← ℓ − 

end while

return Π

end function

nets obtained during this contraction are discarded.�e
coarsening phase terminates when the number of ver-
tices in the coarsened hypergraph reduces below the
predetermined number or clustering fails to reduce the
size of the hypergraph signi
cantly.

In PaToH, two types of clusterings are implemented,
matching-based, where each cluster contains at most of
two vertices; and agglomerative-based, where clusters
can have more than two vertices. �e former is sim-
ply called matching in PaToH, and the latter is called
clustering.

�e matching-based clustering works as follows.
Vertices ofHi are visited in a user-speci
ed order (could
be random, degree sorted, etc.). If a vertex u ∈ Vi has
not been matched yet, one of its unmatched adjacent

vertices is selected according to a criterion. If such a ver-
tex v exists, the matched pair u and v are merged into
a cluster. If there is no unmatched adjacent vertex of

u, then vertex u remains unmatched, that is, u remains
as a singleton cluster. Here, two vertices u and v are
said to be adjacent if they share at least one net, that is,
nets[u] ∩ nets[v] ≠ /.

In the agglomerative clustering schemes, each vertex
u is assumed to constitute a singleton cluster Cu = {u}
at the beginning of each coarsening level.�en, vertices
are again visited in a user speci
ed order. If a vertex u

has already been clustered (i.e., ∣Cu ∣>) it is not consid-
ered for being the source of a new clustering. However,
an unclustered vertex u can choose to join a multi-
vertex cluster as well as a singleton cluster. �at is, all
adjacent vertices of an unclustered vertex u are consid-
ered for selection according to a criterion. �e selection
of a vertex v adjacent to u corresponds to including ver-
tex u to cluster Cv to grow a new multi-vertex cluster
Cu=Cv =Cv ∪ {u}.

PaToH includes a total of  coarsening algorithms:
eight matchings and nine clustering algorithms, and
the default method is a clustering algorithm that uses
absorption metric. In this method, when selecting the
adjacent vertex v to cluster with vertex u, vertex v

is selected to maximize ∑n∈nets[u]∩nets[Cv]
∣Cv∩n∣
s[n]− , where

nets[Cv] = ∪w∈Cvnets[w].
. Initial Partitioning Phase:�e goal in this phase

is to 
nd a bipartition on the coarsest hypergraph Hℓ .
PaToH includes various random partitioning methods
as well as variations of Greedy Hypergraph Growing

(GHG) algorithm for bisecting Hℓ . In GHG, a cluster
is grown around a randomly selected vertex. During the
coarse of the algorithm, the selected and unselected ver-
tices induce a bipartition onHℓ .�e unselected vertices
connected to the growing cluster are inserted into a pri-
ority queue according to theirmove-gain [], where the
gain of an unselected vertex corresponds to the decrease
in the cutsize of the current bipartition if the vertex
moves to the growing cluster. �en, a vertex with the
highest gain is selected from the priority queue. A�er
a vertex moves to the growing cluster, the gains of its
unselected adjacent vertices that are currently in the
priority queue are updated and those not in the prior-
ity queue are inserted. �is cluster growing operation
continues until a predetermined bipartition balance cri-
terion is reached. �e quality of this algorithm is sen-
sitive to the choice of the initial random vertex. Since
the coarsest hypergraph Hℓ is small, initial partition-
ing heuristics can be run multiple times and select the
best bipartition for re
nement during the uncoarsening



 P PaToH (Partitioning Tool for Hypergraphs)

phase. By default, PaToH runs  di	erent initial par-
titioning algorithms and selects the bipartition with
lowest cost.

. Uncoarsening Phase: At each level i (for i =
ℓ, ℓ− , . . . , ), bipartition Πi found on Hi is projected
back to a bipartition Πi− onHi− . �e constituent ver-
tices of each cluster in Hi− is assigned to the part of
the respective vertex inHi. Obviously, Πi− ofHi− has
the same cutsize with Πi ofHi . �en, this bipartition is
re
ned by running a KL/FM-based iterative improve-
ment heuristics onHi− starting from initial bipartition
Πi−. PaToH provides  re
nement algorithms that are
based on the well-known Kernighan–Lin (KL) [] and
Fiduccia–Mattheyses (FM) [] algorithms. �ese iter-
ative algorithms try to improve the given partition by
either swapping vertices between parts or moving ver-
tices from one part to other, while not violating the bal-
ance criteria.�ey also provide heuristicmechanisms to
avoid localminima.�ese algorithms operate on passes.
In each pass, a sequence of unmoved/unswapped ver-
tices with the highest gains are selected for move/swap,
one by one. At the end of a pass, the maximum pre-

x subsequence of moves/swaps with the maximum
pre
x sum that incurs the maximum decrease in the
cutsize is constructed, allowing the method to jump
over local minima. �e permanent realization of the
moves/swaps in this maximum pre
x subsequence is
e�ciently achieved by rolling back the remainingmoves
at the end of the overall sequence. �e overall re
ne-
ment process in a level terminates if the maximum
pre
x sum of a pass is not positive.

PaToH includes original KL and FM implementa-
tions, hybrid versions, like one pass FM followed by
one pass KL, as well as improvements like multilevel-

gain concept of Krishnamurthy [] that adds a look-
ahead ability, or dynamic locking of Ho	man [], and
Dasdan and Aykanat [] that relaxes vertex moves
allowing a vertex to be moved multiple times in the
same pass. PaToH also provides heuristic trade-o	s, like
early-termination in a pass of KL/FM algorithms, or
boundary KL/FM, which only considers vertices that are
in the boundary, to speed up the re
nement.�e default
re
nement scheme is boundary FM+KL.

Related Entries
⊲Chaco
⊲Data Distribution

⊲Graph Algorithms
⊲Graph Partitioning
⊲Hypergraph Partitioning
⊲Linear Algebra, Numerical
⊲Preconditioners for Sparse Iterative Methods

Bibliographic Notes and Further
Reading
Latest PaToH binary distributions, including recently
developed MATLAB interface [], and related papers
can be found on the Web site listed in []. �e “Hyper-
graph Partitioning” entry contains some use cases of
hypergraph partitioning.
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PCI Express
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Synonyms
GIO; PCI-Express; PCIe; PCI-E

Definition
PCI (Peripheral Component Interconnect) Express is a
highly scalable interconnect technology that is the most
widely adopted IO interface standard used in the com-
puter and communication industry []. By providing
scalable speed/width, extendable protocol capabilities,
a common con
guration/so�ware model, and various
mechanical form-factors, PCI Express supports a broad
range of applications. It allows implementation of �exi-
ble connectivity between a processor/memory complex
and an IO subsystems, including peripheral controllers,
such as graphics, networking, storage, etc. PCI Express
technology development is managed by PCI-SIG (PCI
Special Interest Group), an industry association com-
prising of over  member companies.

Discussion

Introduction – A Brief History of PCIe
PCI Express has his roots in Peripheral Component
Interconnect (PCI), an open standard speci
cation that
was developed by the computing industry in . PCI
was a replacement for the ISA bus which was a main-
stream PC architecture IO expansion standard at the
time. Although there were several alternative solutions,
such as MicroChannel, EISA, and VL-bus, that were
aiming to replace/supplement ISA, none of them fully
addressed the needs of an evolving PC industry.�ePCI
speci
cation covered both the hardware and so�ware
interfaces between PC’s CPU/memory complex and
add-in cards, such as graphics, network, and disk con-
trollers. One of the most important aspects of PCI was
support for the so called “plug-and-play” mechanisms
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