
PaToH (Partitioning Tool for Hypergraphs) P 

P

processes and path expressions are dual approaches
to specifying the traces created in a computation; the
processes generate sequences of actions which are con-
strained by path expressions to achieve particular syn-
chronization constraints associated with the operations
on abstract data types.

Summary
In practice, synchronization of parallel processes
remains a di�cult problem that becomes ever more
complex with increased concurrency in architecture.
Path expressions provide a separate speci
cation of syn-
chronization from the code of processes that, under
some circumstances, can simplify parallel program-
ming. Although not widely adopted, their declarative
approach to specifying synchronization has been found
useful in various parallel applications. Path expressions
have been used to synchronize parallel operations on
objects in parallel languages, real-time languages, event
systems, VSLI, work�ow, and debugging.

Bibliographic Notes and Further
Reading
�e semantics of parallel programs may be described
using trace-based semantics. Path expression imple-
mentations restrict or recognize the permitted traces
of parallel programs as described by Lauer and Camp-
bell []. A semantics for path expressions is given by
Dinning and Mishra using partially ordered multisets
[] and the authors provide a fully parallel imple-
mentation for a path expression language on MIMD
shared memory architectures. Path Pascal and open
path expressions were used as pedagogical tools for
teaching parallel programs [, ].

Bibliography
. Anantharaman TS, Clarke EM, Mishra B () Compiling path

expressions into VLSI circuits. Distrib Comput :–

. Andler S () Predicate path expressions. In: POPL’ pro-

ceedings of the th ACM SIGACT-SIGPLAN symposium on

principles of programming languages. ACM Press, New York,

pp –

. Bruegge B, Hibbard P () Generalized path expressions:

a high-level debugging mechanism. J Syst So�w :–

(Elsevier Science Publishing)

. Campbell RH () Path expressions: a technique for speci-

fying process synchronization. PhD. �esis, �e University of

Newcastle Upon Tyne

. Campbell RH, Habermann AN () �e speci
cation of pro-

cess synchronization by path expressions. In: Gelenbe E, Kaiser

C (eds) Operating systems. Lecture notes in computer science,

vol . Springer, Berlin, pp –

. Lauer PE, Campbell RH () Formal semantics of a class of

high-level primitives for coordinating concurrent processes, Acta

Informatica, ():–

. Comte D, Durrieu G, Gelly O, Plas A, Syre JC () Parallelism,

control and synchronization expression in a single assignment

language. ACM SIGPLAN Not (): –

. Dinning A, Mishra B () A fully parallel algorithm for imple-

menting path expressions. J Parallel Distrib Comput :–

. Dowsing RD, Elliott R () Programming a bounded bu	er

using the object and path expression constructs of path pascal.

Comput J ():–

. Heinlein C () Work�ow and process synchronization with

interaction expressions and graphs. Ph. D. �esis (in German),

Fakultät für Informatik, Universität Ulm

. Hoepner P () Synchronizing the presentation of multimedia

objects. Comput Commun ():–

. Kidd M-EC () Ensuring critical event sequences in high

integrity so�ware by applying path expressions. Sandia Labs,

Albuquerque

. Kolstad RB, Campbell RH () Path Pascal user manual.

SIGPLAN Not ():–

. Laure E () ParBlocks – a new methodology for specifying

concurrent method executions in opus. In: Amestoy P, Berger P,

Dayde M, Ruiz D, Du	 I, Fraysse V, Giraud L (eds) Euro-Par’.

Lecture notes in computer science, vol . Springer, Berlin,

pp –

. Preiss O, Shah AP, Wegmann A () Generating synchroniza-

tion contracts for web services. In: Khosrow-Pour M (ed) Infor-

mation technology and organizations: trends, issues, challenges

& solutions, vol . Idea Group Publishing, Hershey, pp –

. Rees O () Using path expressions as concurrency guards.

Technical report, ANSA

. Schoute AL, Luursema JJ () Realtime system control by

means of path expressions. In: Proceedings Euromicro ’Work-

shop on Real Time, Horsholm, Denmark, pp –

. ShawAC () So�ware description with �ow expressions. IEEE

Trans So�w Eng SE-():–

PaToH (Partitioning Tool for
Hypergraphs)

Ümit Çatalyürek, Cevdet Aykanat
�e Ohio State University, Columbus, OH, USA
Bilkent University, Ankara, Turkey

Synonyms
Partitioning tool for hypergraphs (PaToH)

http://dx.doi.org/10.1007/978-0-387-09766-4_2197

 P PaToH (Partitioning Tool for Hypergraphs)

Definition
PaToH is a sequential, multilevel, hypergraph partition-
ing tool that can be used to solve various combinatorial
scienti
c computing problems that could be modeled
as hypergraph partitioning problem, including sparse
matrix partitioning, ordering, and load balancing for
parallel processing.

Discussion

Introduction
Hypergraph partitioning has been an important prob-
lem widely encountered in VLSI layout design [].
Recent works since the late s have introduced new
application areas, including one-dimensional and two-
dimensional partitioning of sparse matrices for paral-
lel sparse-matrix vector multiplication [–, ], sparse
matrix reordering [, ], permuting sparse rectangu-
lar matrices into singly bordered block-diagonal form
for parallel solution of LP problems [], and static
and dynamic load balancing for parallel processing [].
PaToH [] has been developed to provide fast and high-
quality solutions for these motivating applications.

In simple terms, the hypergraph partitioning prob-
lem can be de
ned as the task of dividing a hyper-
graph into two or more roughly equal sized parts such
that a cost function on the hyperedges connecting ver-
tices in di	erent parts is minimized. �e hypergraph
partitioning problem is known to be NP-hard [],
therefore a wide variety of heuristic algorithms have
been developed in the literature to solve this complex
problem [, , , , ]. Following the success of
multilevel partitioning schemes in ordering and graph
partitioning [, , ], PaToH [] has been developed as
one of the
rst multilevel hypergraph partitioning tools.

Preliminaries
A hypergraphH=(V ,N) is de
ned as a set of vertices
(also called cells) V and a set of nets (hyperedges) N
among those vertices. Every net n ∈ N is a subset of
vertices, that is, n⊆V . �e vertices in a net n are called
its pins in PaToH. �e size of a net, s[n], is equal to the
number of its pins. �e degree of a vertex is equal to
the number of nets it is connected to. Graph is a special
instance of hypergraph such that each net has exactly
two pins. Vertices and nets of a hypergraph can be asso-
ciated with weights. For simplicity in the presentation,

net weights are refered as cost here and denoted with
c[.], whereas w[.] will be used for vertex weights.

Π={V,V , . . . ,VK} is a K-way partition ofH if the
following conditions hold:

● Each part Vk is a nonempty subset of V , that is,
Vk ⊆V and Vk ≠ / for  ≤ k ≤ K.

● Parts are pairwise disjoint, that is, Vk ∩Vℓ = / for all
 ≤ k < ℓ ≤ K.

● Union of K parts is equal to V , that is, ⋃K
k= Vk =V .

In a partition Π ofH, a net that has at least one pin
(vertex) in a part is said to connect that part. Connectiv-
ity λn of a net n denotes the number of parts connected
by n. A net n is said to be cut (external) if it connects
more than one part (i.e., λn > ), and uncut (internal)
otherwise (i.e., λn = ). In a partition Π ofH, a vertex is
said to be a boundary vertex if it is incident to a cut net.
A K-way partition is also called a multiway partition if
K >  and a bipartition if K = . A partition is said to be
balanced if each part Vk satis
es the balance criterion:

Wk ≤Wavg( + ε), for k = , , . . . ,K. ()

In (), weight Wk of a part Vk is de
ned as the sum
of the weights of the vertices in that part (i.e., Wk =
∑v∈Vk

w[v]), Wavg denotes the weight of each part
under the perfect load balance condition (i.e., Wavg =
(∑v∈V w[v])/K), and ε represents the predetermined
maximum imbalance ratio allowed.

�e set of external nets of a partition Π is denoted as
NE.�ere are various [, ] cutsize de
nitions for rep-
resenting the cost χ(Π) of a partition Π. Two relevant
de
nitions are:

(a) χ(Π) = ∑
n∈NE

c[n] and

(b) χ(Π) = ∑
n∈NE

c[n](λn − ). ()

In (a), the cutsize is equal to the sum of the costs of the
cut nets. In (b), each cut net n contributes c[n](λn − )
to the cutsize.�e cutsize metrics given in (a) and (b)
will be referred to here as cut-net and connectivitymet-
rics, respectively. �e hypergraph partitioning problem
can be de
ned as the task of dividing a hypergraph into
two or more parts such that the cutsize is minimized,
while a given balance criterion () among part weights
is maintained.

A recent variant of the above problem is the multi-

constraint hypergraph partitioning [, , , , ] in
which each vertex has a vector of weights associated

PaToH (Partitioning Tool for Hypergraphs) P 

P

with it. �e partitioning objective is the same as above,
and the partitioning constraint is to satisfy a balanc-
ing constraint associated with each weight. Let w[v, i]
denote the C weights of a vertex v for i = , . . . ,C. �en
balance criterion () can be rewritten as:

Wk,i ≤Wavg,i ( + ε) for k = , . . . ,K and i = , . . . ,C ,
()

where the ith weight Wk,i of a part Vk is de
ned
as the sum of the ith weights of the vertices in that
part (i.e., Wk,i = ∑v∈Vk

w[v, i]), and Wavg,i is the
average part weight for the ith weight (i.e., Wavg,i =
(∑v∈V w[v, i])/K), and ε again represents allowed
imbalance ratio.

Another variant is the hypergraph partitioning with

�xed vertices, in which some of the vertices are
xed in
some parts before partitioning. In other words, in this
problem, a �xed-part function is provided as an input
to the problem. A vertex is said to be free if it is allowed
to be in any part in the
nal partition, and it is said to
be
xed in part k if it is required to be in Vk in the
nal
partition Π.

Using PaToH
PaToH provides a set of functions to read, write, and
partition a given hypergraph, and evaluate the quality
of a given partition. In terms of partitioning, PaToH
provides a user customizable hypergraph partitioning
via multilevel partitioning scheme. In addition, PaToH
provides hypergraph partitioning with
xed cells and
multi-constraint hypergraph partitioning.

Application developers who would like to use
PaToH can either directly use PaToH through a simple,
easy-to-use C library interface in their applications, or
they can use stand-alone executable.

PaToH Library Interface

PaToH library interface consists of two
les: a header

le patoh.h which contains constants, structure def-
initions, and functions proto-types, and a library
le
libpatoh.a.

Before starting to discuss the details, it is instruc-
tive to have a look at a simple C program that par-
titions an input hypergraph using PaToH functions.
�e program is displayed in Fig. . �e
rst state-
ment is a function call to read the input hyper-
graph
le which is given by the
rst command line

argument. PaToH partition functions are customiz-
able through a set of parameters. Although the appli-
cation user can set each of these parameters one
by one, it is a good habit to call PaToH func-
tion PaToH_Initialize_Parameters to set all
parameters to one of the three preset default val-
ues by specifying PATOH_SUGPARAM_<preset>,
where<preset> is DEFAULT,SPEED, or QUALITY.
A�er this call, the user may prefer to modify the
parameters according to his/her need before calling
PaToH_Alloc. All memory that will be used by
PaToH partitioning functions is allocated by PaToH_
Alloc function, that is, there will be no more
dynamic memory allocation inside the partitioning
functions. Now, everything is set to partition the hyper-
graph using PaToH’s multilevel hypergraph partition-
ing functions. A call to PaToH_Partition (or
PaToH_MultiConst_Partition) will partition
the hypergraph, and the resulting partition vector, part
weights, and cutsize will be returned in the parameters.
Here, variablecutwill hold the cutsize of the computed
partition according to cutsize de
nition (b) since, this
metric is speci
ed by initializing the parameters with
constant PATOH_CONPART. �e user may call parti-
tioning functions as many times as he/she wants before
calling function PaToH_Free. �ere is no need to
reallocate the memory before each partitioning call,
unless either the hypergraph or the desired customiza-
tion (like changing coarsening algorithm, or number of
parts) is changed.

A hypergraph and its representation can be seen in
Fig. . In the
gure, large circles are cells (vertices) of
the hypergraph, and small circles are nets. xpins and
pins arrays store the beginning index of pins (cells)
connected to each net, and IDs of the pins, respectively.
Hence, xpins is an array of size equal to the num-
ber of nets plus one ( in this example), and pins

is an array of size equal to the number of pins in
the hypergraph ( in this example). Cells connected
to net nj are stored in pins[xpins[j]] through
pins[xpins[j+1]-1].

Stand-Alone Program

Distribution includes a stand-alone program, called
patoh, for single constraint partitioning (this exe-
cutable will not work with multiple vertex weights; for
multi-constraint partitioning there is an interface and
some sample source codes). �e program patoh gets

 P PaToH (Partitioning Tool for Hypergraphs)

its parameters from command line arguments. PaToH
can be run from command line as follows:

> patoh <hypergraph-file>

<number-of-parts> [[parameter1]

[parameter2]].

Partitioning can be customized by using the optional
[parameter] arguments. �e syntax of these
optional parameters is as follows: two-letter abbrevia-
tion of a parameter is followed by an equal sign and a
value. For example, if the user wishes to change re
ne-
ment algorithm (abbreviated as “RA”) to “Kernighan–
Lin with dynamic locking” (sixth algorithm out of
 implemented in PaToH), the user should specify
“RA=.” For a complete example, consider the sample
hypergraph displayed in Fig. . In order to partition this
hypegraph into three parts by using the Kernighan–Lin
re
nement algorithm with cut-net metric (the default is
connectivity metric (Equation (b)), one has to issue the
following command whose output is shown next:

�is output shows that the cutsize (cut cost) according
to cut-net metric is . Final imbalance ratios (in paren-
theses) for the least loaded and the most loaded parts
are % (perfect balance with four vertices in each part),
and partitioning only took about ms.�e input hyper-
graph and resulting partition is displayed in Fig. . A
quick summary of the input
le format (the details are
provided in the PaToHmanual []) is as follows: the
rst
non-comment line of the
le is a header containing the
index base ( or ) and the size of the hypergraph, and
information for eachnet (only pins in this case) and cells
(none in this example) follows.

All of the PaToH customization parameters that are
available through library interface are also available
as command line options. PaToH manual [] contains
details of each of those customization parameters.

Customizing PaToH’s Hypergraph
Partitioning
PaToHachievesK-way hypergraphpartitioning through
recursive bisection (two-way partition), and at each
bisection step it uses a multilevel hypergraph bisection

> patoh sample.u 3 RA=6 UM=U

+++

+++ PaToH v3 (c) Nov 1999-, by Umit V. Catalyurek

+++ Build # 872 Date: Fri, 09 Oct 2009

+++

**

Hypergraph : sample.u #Cells : 12 #Nets : 11 #Pins : 31

**

3-way partitioning results of PaToH:

Cut Cost: 2

Part Weights : Min= 4 (0.000) Max= 4 (0.000)

--

I/O : 0.000 sec

I.Perm/Cons.H: 0.000 sec (2.9%)

Coarsening : 0.000 sec (1.1%)

Partitioning : 0.000 sec (75.8%)

Uncoarsening : 0.000 sec (3.7%)

Total : 0.001 sec

Total (w I/O): 0.001 sec

--

PaToH (Partitioning Tool for Hypergraphs) P 

P

#include <stdio.h>

#include "patoh.h"

int main(int argc,char *argv[])

{
PaToH_Parameters args;

int c, n, nconst, *cwghts, *nwghts,

*xpins, *pins, *partvec, cut, *partweights;

PaToH_Read_Hypergraph(argv[1], &_c, &n, &_nconst, &cwghts, &nwghts,

&xpins, &pins);

printf("Hypergraph %10s -- #Cells=%6d #Nets=%6d #Pins=%8d #Const=%2d\n",
argv[1], _c, _n, xpins[_n], _nconst);

PaToH_Initialize_Parameters(&args, PATOH_CONPART, PATOH_SUGPARAM_DEFAULT);

args._k = atoi(argv[2]);

partvec = (int *) malloc(_c*sizeof(int));

partweights = (int *) malloc(args._k*sizeof(int));

PaToH_Alloc(&args, _c, _n, _nconst, cwghts, nwghts, xpins, pins);

if (_nconst==1)

PaToH_Partition(&args, _c, _n, cwghts, nwghts,

xpins, pins, partvec, partweights, &cut);

else

PaToH_MultiConst_Partition(&args, _c, _n, _nconst, cwghts,

xpins, pins, partvec, partweights, &cut);

printf("%d-way cutsize is: %d\n", args._k, cut);

free(cwghts); free(nwghts);

free(xpins); free(pins);

free(partweights); free(partvec);

PaToH_Free();

return 0;

}

PaToH (Partitioning Tool for Hypergraphs). Fig.  A simple C program that partitions an input hypergraph using PaToH

functions

algorithm. In the recursive bisection,
rst a bisection of
H is obtained, and then each part of this bipartition is
further partitioned recursively. A�er lg K steps, hyper-
graphH is partitioned into K parts. Please note that, K
is not restricted to be a power of . For anyK > , one can
achieve K-way hypergraph partitioning through recur-
sive bisection by
rst partitioningH into two parts with
a load ratio of ⌊K/⌋ to (K−⌊K/⌋), and then recursively
partitioning those parts into ⌊K/⌋ and (K − ⌊K/⌋)
parts, respectively, using the same approach.

A pseudo-code of the multilevel hypergraph bisec-
tion algorithm used in PaToH is displayed in Algo-
rithm . Mainly, the algorithm has three phases: coars-
ening, initial partitioning, and uncoarsening. In the

rst phase, a bottom-up multilevel clustering is suc-
cessively applied starting from the original hypergraph
until either the number of vertices in the coarsened
hypergraph reduces below a predetermined threshold
value or clustering fails to reduce the size of the hyper-
graph signi
cantly. In the second phase, the coarsest

 P PaToH (Partitioning Tool for Hypergraphs)

n9

n8

n6

n5

n7

n0
n2

n1 n10 n4

n3

v11 v12

v8v9v3

v7

v6
v5

v4v2v1v0

0xpins:

2

0

3

1

5

2

6

3 5

0 1

6 7

0 1

8

2

9

3

10 11

1 3

12 13

4 5

14 15

4 5

16

6

17

7

18

6

19

7

20

8

21

9

22

10

23

11

24

8

25

9

26

9

27

11

28

2

29

5

30

0

5

1

7

2

11

3

13

4

15

5

19

6

21

7

25

8

27

9

29

10

31

11

pins:

6

4

PaToH (Partitioning Tool for Hypergraphs). Fig.  A sample hypergraph and its representation

% base:(0/1) #cells #nets #pins

0 12 11 31

% pins of each net in the hypergraph

2 3 5 6 9

0 1

0 1 2 3

1 3

4 5

4 5 6 7

6 7

8 9 10 11

8 10

8 11

2 5

V0

V2

n1
n2n3

v3

v2

v0

v1

n10

n6

n5

n4

v4

v7v6

v5

n0

n9

n7

n8

v9v9

V1v11

v12

a b

PaToH (Partitioning Tool for Hypergraphs). Fig.  Text file representation of the sample hypergraph in Fig.  and

illustration of a partition found by PaToH

hypergraph is bipartitioned using one of the  initial
partitioning techniques. In the third phase, the parti-
tion found in the second phase is successively projected
back towards the original hypergraph while it is being
improved by one of the iterative re
nement heuristics.
�ese three phases are summarized below.

. CoarseningPhase: In this phase, the given hyper-
graphH=H =(V ,N) is coarsened into a sequence of
smaller hypergraphs H = (V,N), H = (V,N), . . .,
Hℓ =(Vℓ ,Nℓ) satisfying ∣V∣> ∣V ∣> ∣V ∣> . . . >∣Vℓ ∣. �is

coarsening is achieved by coalescing disjoint subsets of
vertices of hypergraph Hi into clusters such that each
cluster in Hi forms a single vertex of Hi+ . �e weight
of each vertex of Hi+ becomes equal to the sum of its
constituent vertices of the respective cluster inHi . �e
net set of each vertex ofHi+ becomes equal to the union
of the net sets of the constituent vertices of the respec-
tive cluster inHi . Here, multiple pins of a net n∈Ni in a
cluster ofHi are contracted to a single pin of the respec-
tive net n′ ∈ Ni+ of Hi+ . Furthermore, the single-pin

PaToH (Partitioning Tool for Hypergraphs) P 

P

Algorithm Multilevel Bisection.

function PaToHMLevelPartition(H = (V ,N))

H ←H

ℓ ← 

/* Coarsening Phase: */

while ∣Vℓ ∣ > CoarseTo do

nd a clustering, Cℓ , using one of the coarsening

algorithms

constructHℓ+ using Cℓ

if (∣Vℓ+ ∣ − ∣Vℓ ∣)/∣Vℓ ∣ < CoarsePercent then

break

else

ℓ ← ℓ + 

end if

end while

/* Initial Partitioning Phase: */

nd an initial partitioning Πℓ ofHℓ

/* Uncoarsening Phase: */

while ℓ >  do

re
ne Πℓ using one of the re
nement algorithms

if ℓ >  then

project Πℓ to Πℓ−

end if

ℓ ← ℓ − 

end while

return Π

end function

nets obtained during this contraction are discarded.�e
coarsening phase terminates when the number of ver-
tices in the coarsened hypergraph reduces below the
predetermined number or clustering fails to reduce the
size of the hypergraph signi
cantly.

In PaToH, two types of clusterings are implemented,
matching-based, where each cluster contains at most of
two vertices; and agglomerative-based, where clusters
can have more than two vertices. �e former is sim-
ply called matching in PaToH, and the latter is called
clustering.

�e matching-based clustering works as follows.
Vertices ofHi are visited in a user-speci
ed order (could
be random, degree sorted, etc.). If a vertex u ∈ Vi has
not been matched yet, one of its unmatched adjacent

vertices is selected according to a criterion. If such a ver-
tex v exists, the matched pair u and v are merged into
a cluster. If there is no unmatched adjacent vertex of

u, then vertex u remains unmatched, that is, u remains
as a singleton cluster. Here, two vertices u and v are
said to be adjacent if they share at least one net, that is,
nets[u] ∩ nets[v] ≠ /.

In the agglomerative clustering schemes, each vertex
u is assumed to constitute a singleton cluster Cu = {u}
at the beginning of each coarsening level.�en, vertices
are again visited in a user speci
ed order. If a vertex u

has already been clustered (i.e., ∣Cu ∣>) it is not consid-
ered for being the source of a new clustering. However,
an unclustered vertex u can choose to join a multi-
vertex cluster as well as a singleton cluster. �at is, all
adjacent vertices of an unclustered vertex u are consid-
ered for selection according to a criterion. �e selection
of a vertex v adjacent to u corresponds to including ver-
tex u to cluster Cv to grow a new multi-vertex cluster
Cu=Cv =Cv ∪ {u}.

PaToH includes a total of  coarsening algorithms:
eight matchings and nine clustering algorithms, and
the default method is a clustering algorithm that uses
absorption metric. In this method, when selecting the
adjacent vertex v to cluster with vertex u, vertex v

is selected to maximize ∑n∈nets[u]∩nets[Cv]
∣Cv∩n∣
s[n]− , where

nets[Cv] = ∪w∈Cvnets[w].
. Initial Partitioning Phase:�e goal in this phase

is to
nd a bipartition on the coarsest hypergraph Hℓ .
PaToH includes various random partitioning methods
as well as variations of Greedy Hypergraph Growing

(GHG) algorithm for bisecting Hℓ . In GHG, a cluster
is grown around a randomly selected vertex. During the
coarse of the algorithm, the selected and unselected ver-
tices induce a bipartition onHℓ .�e unselected vertices
connected to the growing cluster are inserted into a pri-
ority queue according to theirmove-gain [], where the
gain of an unselected vertex corresponds to the decrease
in the cutsize of the current bipartition if the vertex
moves to the growing cluster. �en, a vertex with the
highest gain is selected from the priority queue. A�er
a vertex moves to the growing cluster, the gains of its
unselected adjacent vertices that are currently in the
priority queue are updated and those not in the prior-
ity queue are inserted. �is cluster growing operation
continues until a predetermined bipartition balance cri-
terion is reached. �e quality of this algorithm is sen-
sitive to the choice of the initial random vertex. Since
the coarsest hypergraph Hℓ is small, initial partition-
ing heuristics can be run multiple times and select the
best bipartition for re
nement during the uncoarsening

 P PaToH (Partitioning Tool for Hypergraphs)

phase. By default, PaToH runs  di	erent initial par-
titioning algorithms and selects the bipartition with
lowest cost.

. Uncoarsening Phase: At each level i (for i =
ℓ, ℓ− , . . . , ), bipartition Πi found on Hi is projected
back to a bipartition Πi− onHi− . �e constituent ver-
tices of each cluster in Hi− is assigned to the part of
the respective vertex inHi. Obviously, Πi− ofHi− has
the same cutsize with Πi ofHi . �en, this bipartition is
re
ned by running a KL/FM-based iterative improve-
ment heuristics onHi− starting from initial bipartition
Πi−. PaToH provides  re
nement algorithms that are
based on the well-known Kernighan–Lin (KL) [] and
Fiduccia–Mattheyses (FM) [] algorithms. �ese iter-
ative algorithms try to improve the given partition by
either swapping vertices between parts or moving ver-
tices from one part to other, while not violating the bal-
ance criteria.�ey also provide heuristicmechanisms to
avoid localminima.�ese algorithms operate on passes.
In each pass, a sequence of unmoved/unswapped ver-
tices with the highest gains are selected for move/swap,
one by one. At the end of a pass, the maximum pre-

x subsequence of moves/swaps with the maximum
pre
x sum that incurs the maximum decrease in the
cutsize is constructed, allowing the method to jump
over local minima. �e permanent realization of the
moves/swaps in this maximum pre
x subsequence is
e�ciently achieved by rolling back the remainingmoves
at the end of the overall sequence. �e overall re
ne-
ment process in a level terminates if the maximum
pre
x sum of a pass is not positive.

PaToH includes original KL and FM implementa-
tions, hybrid versions, like one pass FM followed by
one pass KL, as well as improvements like multilevel-

gain concept of Krishnamurthy [] that adds a look-
ahead ability, or dynamic locking of Ho	man [], and
Dasdan and Aykanat [] that relaxes vertex moves
allowing a vertex to be moved multiple times in the
same pass. PaToH also provides heuristic trade-o	s, like
early-termination in a pass of KL/FM algorithms, or
boundary KL/FM, which only considers vertices that are
in the boundary, to speed up the re
nement.�e default
re
nement scheme is boundary FM+KL.

Related Entries
⊲Chaco
⊲Data Distribution

⊲Graph Algorithms
⊲Graph Partitioning
⊲Hypergraph Partitioning
⊲Linear Algebra, Numerical
⊲Preconditioners for Sparse Iterative Methods

Bibliographic Notes and Further
Reading
Latest PaToH binary distributions, including recently
developed MATLAB interface [], and related papers
can be found on the Web site listed in []. �e “Hyper-
graph Partitioning” entry contains some use cases of
hypergraph partitioning.

Bibliography
. Alpert CJ, Kahng AB () Recent directions in netlist partition-

ing: a survey. VLSI J (–):–

. Aykanat C, Cambazoglu BB,Uçar B (May )Multi-level direct

k-way hypergraphy partitioning with multiple constraints and

xed vertices. J Parallel Distrib Comput ():–

. AykanatC, PinarA,ÇatalyürekUV () Permuting sparse rect-

angular matrices into block-diagonal form. SIAM J Sci Comput

():–

. Bui TN, Jones C () A heuristic for reducing
ll-in sparse

matrix factorization. In: Proceedings of the th SIAM conference

on parallel processing for scienti
c computing, Norfolk, Virginia,

pp –

. Catalyurek U, Boman E, Devine K, Bozdag D, Heaphy R, Riesen

L (Aug ) A repartitioning hypergraphy model for dynamic

load balancing. J Parallel Distrib Comput ():–

. ÇatalyürekUV()Hypergraphmodels for sparsematrixparti-

tioningandreordering.Ph.D. thesis,BilkentUniversity,Computer

Engineering and Information Science, Nov . http://www.cs.

bilkent.edu.tr/tech-reports//ABSTRACTS..html.

. Çatalyürek UV, Aykanat C (Dec ) A hypergraph model for

mappingrepeatedsparsematrixvectorproductcomputationsonto

multicomputers. In: Proceedings of international conference on

high performance computing

. Çatalyürek UV, Aykanat C () Hypergraph-partitioning based

decomposition for parallel sparse-matrix vector multiplication.

IEEE Trans Parallel Distrib Syst ():–

. Çatalyürek UV, Aykanat C () PaToH: amultilevel hypergraph

partitioning tool, version .. Bilkent University, Department of

ComputerEngineering,Ankara,Turkey.PaToH.http://bmi.

osu.edu/~umit/so�ware.html,  (accessed on November ,

)

. Çatalyürek UV, Aykanat C () A hypergraph-partitioning

approach for coarse-grain decomposition. In: ACM/EEE SC,

Denver, CO, November 

. Çatalyürek UV, Aykanat C, Kayaaslan E () Hyper-

graph partitioning-based_ll-reducing ordering. Technical Report

http://dx.doi.org/10.1007/978-0-387-09766-4_310
http://dx.doi.org/10.1007/978-0-387-09766-4_40
http://dx.doi.org/10.1007/978-0-387-09766-4_102
http://dx.doi.org/10.1007/978-0-387-09766-4_92
http://dx.doi.org/10.1007/978-0-387-09766-4_1
http://dx.doi.org/10.1007/978-0-387-09766-4_126
http://dx.doi.org/10.1007/978-0-387-09766-4_247
http://bmi.osu.edu/~umit/software.html
http://bmi.osu.edu/~umit/software.html
http://www.cs.bilkent.edu.tr/tech-reports/1999/ABSTRACTS.1999.html
http://www.cs.bilkent.edu.tr/tech-reports/1999/ABSTRACTS.1999.html

PCI Express P 

P

OSUBMI-TR--n and BU-CE-, �e Ohio State Uni-

versity, Department of Biomedical Informatics and Bilkent

University, Computer Engineering Department, . submitted

for publication

. Çatalyürek UV, Aykanat C, Ucar B () On two-dimensional

sparse matrix partitioning: models, methods, and a recipe. SIAM

J Sci Comput ():–

. Cheng C-K, Wei Y-C () An improved two-way partitioning

algorithm with stable performance. IEEE Trans Comput Aided

Des ():–

. DasdanA,Aykanat C (February ) Two novelmultiway circuit

partitioningalgorithmsusingrelaxedlocking. IEEETransComput

Aided Des ():–

. Fiduccia CM, Mattheyses RM () A linear-time heuristic

for improving network partitions. In: Proceedings of the th

ACM/IEEE design automation conference, pp –

. Hendrickson B, Leland R () A multilevel algorithm

for partitioning graphs. Technical reports, Sandia National

Laboratories

. Ho	mann A () Dynamic locking heuristic – a new graph

partitioning algorithm. In: Proceedings of IEEE international

symposium on circuits and systems, pp –

. Karypis G, Kumar V () A fast and high quality multilevel

scheme for partitioning irregular graphs. SIAM J Sci Comput

():–

. Karypis G, Kumar V () Multilevel algorithms for multi-

constraint graphpartitioning.TechnicalReport -,University

of Minnesota, Department of Computer Science/Army HPC

Research Center, Minneapolis, MN , May 

. Kernighan BW, Lin S (Feb ) An e�cient heuristic procedure

for partitioning graphs. Bell SystTech J ():–

. Krishnamurthy B (May ) An improvedmin-cut algorithm for

partitioning VLSI networks. IEEE Trans Comput ():–

. LengauerT ()Combinatorial algorithms for integrated circuit

layout. Willey–Teubner, Chichester, UK

. Sanchis LA (Jan ) Multiple-way network partitioning. IEEE

Trans Comput ():–

. Schloegel K, Karypis G, Kumar V () Parallel multilevel

algorithms for multi-constraint graph partitioning. In: Euro-Par,

pp –

. Schweikert DG, Kernighan BW () A proper model for the

partitioning of electrical circuits. In: Proceedings of the th

ACM/IEEE design automation conference, pp –

. Uçar B, Çatalyürek ÜV, Aykanat C () A matrix partitioning

interfacetoPaToHinMATLAB.ParallelComput(–):–

. WeiY-C,ChengC-K(July)Ratiocutpartitioningforhierarchical

designs. IEEE Trans Comput Aided Des ():–

Partitioning Tool for Hypergraphs
(PaToH)

⊲PaToH (Partitioning Tool for Hypergraphs)

PC Clusters

⊲Clusters

PCI Express

Jasmin Ajanovic
Intel Corporation, Portland, OR, USA

Synonyms
GIO; PCI-Express; PCIe; PCI-E

Definition
PCI (Peripheral Component Interconnect) Express is a
highly scalable interconnect technology that is the most
widely adopted IO interface standard used in the com-
puter and communication industry []. By providing
scalable speed/width, extendable protocol capabilities,
a common con
guration/so�ware model, and various
mechanical form-factors, PCI Express supports a broad
range of applications. It allows implementation of �exi-
ble connectivity between a processor/memory complex
and an IO subsystems, including peripheral controllers,
such as graphics, networking, storage, etc. PCI Express
technology development is managed by PCI-SIG (PCI
Special Interest Group), an industry association com-
prising of over  member companies.

Discussion

Introduction – A Brief History of PCIe
PCI Express has his roots in Peripheral Component
Interconnect (PCI), an open standard speci
cation that
was developed by the computing industry in . PCI
was a replacement for the ISA bus which was a main-
stream PC architecture IO expansion standard at the
time. Although there were several alternative solutions,
such as MicroChannel, EISA, and VL-bus, that were
aiming to replace/supplement ISA, none of them fully
addressed the needs of an evolving PC industry.�ePCI
speci
cation covered both the hardware and so�ware
interfaces between PC’s CPU/memory complex and
add-in cards, such as graphics, network, and disk con-
trollers. One of the most important aspects of PCI was
support for the so called “plug-and-play” mechanisms

http://dx.doi.org/10.1007/978-0-387-09766-4_93
http://dx.doi.org/10.1007/978-0-387-09766-4_18
http://dx.doi.org/10.1007/978-0-387-09766-4_2354
http://dx.doi.org/10.1007/978-0-387-09766-4_2357
http://dx.doi.org/10.1007/978-0-387-09766-4_2355
http://dx.doi.org/10.1007/978-0-387-09766-4_2356

	P
	Parafrase
	Synonyms
	Discussion

	Parallel Communication Models
	Parallel Computing
	Definition
	Discussion
	Introduction and History
	Parallel Architectures

	Parallel Software Concepts
	Application Software Development
	Parallelization Methods

	Parallelization Impediments
	Unexploited Parallelism in ``Well-Parallelized'' Applications

	System Architecture Performance Criteria
	Parallel Performance

	Parallel Program Correctness
	Future
	Bibliography

	Parallel I/O Library (PIO)
	Parallel Ocean Program (POP)
	Parallel Operating System
	Parallel Prefix Algorithms
	Parallel Prefix Sums
	Parallel Random Access Machines (PRAM)
	Parallel Skeletons
	Synonyms
	Definition
	Discussion
	Programming with Skeletons
	Data-Parallel Skeletons and Transformational Programming
	Task- and Algorithm-Oriented Skeletons
	Skeleton-Based Systems

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Parallel Tools Platform
	Synonyms
	Definition
	Discussion
	Challenges
	Productivity
	Productive Parallel Programming
	C, C++, Fortran, and UPC Programming in Eclipse
	Code and Static Analysis for Parallel Programs
	Launching and Monitoring Parallel Programs
	Parallel Debugging
	Utilizing External Tools
	Remote Development
	The Parallel Tools Platform Today
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Parallelism Detection in Nested Loops, Optimal
	Synonyms
	Definition
	Discussion
	Optimal Parallelism Detection in Loops
	The Organization of Computations in a System of Uniform Recurrence Equations
	Definition of a SURE
	Computability: Definition and Properties
	The case of a single equation
	The case of several equations

	Loop Transformations and AutomaticLoop Parallelization
	Representation of DO Loops
	Approximations of Distances: Dependence Level and Direction Vector
	Uniformization Principle: From Dependence Polyhedra to SUREs
	Going Beyond, with the Affine Form of Farkas Lemma

	Multi-dimensional Affine Ranking Functions and Program Termination
	Integer Interpreted Automata and Invariants
	Termination and Ranking Functions
	A Greedy Complete Polynomial-Time Procedure

	Conclusion
	Related Entries
	Bibliography

	Parallelization
	Parallelization, Automatic
	Synonyms
	Definition
	Discussion
	Introduction
	Requirements for Autoparallelization
	Dependence Analysis
	Semantic Analysis
	Program Transformations
	Transformations for Reducing the Number of Dependences
	Transformations for Runtime Resolution
	Scheduling Transformations

	Autoparallelization Today

	Future Directions
	Related Entries
	Bibliographic Notes And Further Reading
	Bibliography

	Parallelization, Basic Block
	Synonyms
	Definition
	Discussion
	Introduction
	Basic Concepts
	Unlimited Resources
	ASAP Algorithm
	ALAP Algorithm

	Limited Resources
	List Scheduling
	Linear Analysis
	An Example

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Parallelization, Loop Nest
	ParaMETIS
	PARDISO
	Definition
	Discussion
	Introduction
	Sparse Gaussian Elimination in PARDISO
	Reordering Algorithms and Software in PARDISO
	Parallelization Strategies in PARDISO
	Approximate Sparse Gaussian Factorization in PARDISO
	General Software Issues in PARDISO
	Example
	Future Research Directions

	Related Entries
	Further Reading
	Bibliography

	PARSEC Benchmarks
	Partial Computation
	Particle Dynamics
	Particle Methods
	Partitioned Global Address Space (PGAS) Languages
	PASM Parallel Processing System
	Definition
	Discussion
	Introduction
	The Overall PASM Organization
	The Parallel Computation Unit
	The Memory Storage and Management Systems
	Using the PASM System

	Conclusions
	Related Entries
	Acknowledgments
	Bibliographic Notes and Further Reading
	Bibliography

	Path Expressions
	Synonyms
	Definition
	Discussion
	Implementation
	Uses of Path Expressions

	Summary
	Bibliographic Notes and Further Reading
	Bibliography

	PaToH (Partitioning Tool for Hypergraphs)
	Synonyms
	Definition
	Discussion
	Introduction
	Preliminaries
	Using PaToH
	PaToH Library Interface
	Stand-Alone Program

	Customizing PaToH's Hypergraph Partitioning

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Partitioning Tool for Hypergraphs (PaToH)
	PC Clusters
	PCI Express
	Synonyms
	Definition
	Discussion
	Introduction – A Brief History of PCIe
	Technology Overview
	Basic Elements and Concepts
	Link and Lane
	Signaling, Speed, and Bandwidth

	Link Configuration
	Packet-Based Protocol

	PCI Express Layering Overview
	Transaction Layer
	Data Link Layer
	Physical Layer
	Packet Flow Through the Layers

	PCI Express Platform Examples
	Architecture Features
	Scalable Protocol
	PCI Compatible Software Model
	Scalable Performance
	Advanced Power Management
	Reliability, Availabilty, Serviceability (RAS) Support
	Differentiated Quality of Service (Qos) Support
	IO Virtualization and Device Sharing Support
	Support for Heterogeneous Processing and Application Acceleration

	Form-Factors
	PCI Express Today
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	PCIe
	PCI-E
	PCI-Express
	Peer-to-Peer
	Synonyms
	Definition
	Discussion
	The Paradigm
	Implications
	Applications
	Architecture Variants
	Scientific Origins
	Hypercubic Overlays and Consistent Hashing
	Dealing with Churn
	Fostering Cooperation
	Current Trends and Outlook

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Pentium
	PERCS System Architecture
	Definition
	Discussion
	Introduction

	Key Elements of the PERCS Design
	Compute Node Design
	PERCS Interconnect
	Routing Between Nodes
	Novel Features of the PERCS Hub Chip
	Collective Accelerator Unit (CAU)
	Power Bus Interface
	Host Fabric Interface
	Integrated Switch Router (ISR)

	POWER7 Processor Overview
	Processor Core
	Processor Cache Hierarchy
	On-chip Integrated Fabric and Chip Interconnect

	Memory Subsystem
	Blue Waters: The First PERCS Installation
	Bibliography

	Perfect Benchmarks
	Performance Analysis Tools
	Synonyms
	Definition
	Discussion
	Introduction
	Event Model
	Monitoring
	Hardware Monitoring
	Sampling
	Instrumentation

	Analysis
	Level of Detail
	Performance Aspects
	Perturbation
	Automation
	Scalability

	Representative Tools

	Related Entries
	Bibliography

	Performance Measurement
	Performance Metrics
	Periscope
	Definition
	Discussion
	Introduction
	Performance Properties
	Search Strategies
	Architecture
	Summary

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Personalized All-to-All Exchange
	Petaflop Barrier
	Petascale Computer
	Related Entries

	Petri Nets
	Synonyms
	Definition
	Discussion
	Introduction
	Definition and Examples
	Example: A Barber Shop
	Petri Nets and Finite State Machines
	Conflict and Determinacy
	The Petri Net Hierarchy
	Extensions
	Coloured Petri Nets
	Timed Petri Nets
	Continuous and Hybrid Petri Nets

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	PETSc (Portable, Extensible Toolkit for Scientific Computation)
	Definition
	Discussion
	Library Design
	Applications

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	PGAS (Partitioned Global Address Space) Languages
	Definition
	Discussion
	Introduction
	Local Versus Shared Memory
	Computation and Address Spaces
	Messaging
	References to Remote Memory
	Array Programming and Implicit Parallelism
	Parallel Loops and Explicit Data Parallelism
	Collectives, Teams, and Synchronization
	Memory Consistency

	Future Trends
	Related Entries
	Bibliography

	Phylogenetic Inference
	Phylogenetics
	Synonyms
	Definition
	Discussion
	Introduction
	Input
	Output
	Combinatorial Optimization
	Optimality Criteria

	Vectorization
	Fine-Grain Parallelization
	Medium-Grain Parallelization
	Coarse-Grain Parallelization
	Coarse-Grain Parallelism in Distance-Based Analyses
	Coarse-Grain Parallelism in Maximum Likelihood Analyses
	Coarse-Grain Parallelism in Bayesian Analyses

	Phylogenetics Today
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Pi-Calculus
	Synonyms
	Definition
	Discussion
	Introduction
	Mobility
	Syntax
	Examples
	Names
	Types
	Theory
	Variants and Extensions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Pipelining
	Related Entries
	Bibliography

	Place-Transition Nets
	PLAPACK
	Definition
	Discussion
	Introduction
	The PLAPACK Project
	Objects and Communications
	Referencing (Sub)Objects
	Distributing and Interfacing with Parallel Operands
	An Illustrative Example

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	PLASMA
	Definition
	Discussion
	Related Entries
	Bibliography

	PMPI Tools
	Synonyms
	Definition
	Discussion
	Simple Usage Example
	Performance Measurement ToolsBased on PMPI
	Verification Tools Based on PMPI
	Future Directions

	Related Entries
	Bibliography

	Pnetcdf
	Point-to-Point Switch
	Polaris
	Synonyms
	Definition
	Discussion
	Introduction
	Detecting Parallelism
	Advanced Program Analysis

	Mapping Parallel Computation to the Target Machine
	Internal Organization
	Uses of Polaris
	Challenges and Future Directions

	Related Entries
	Bibliography

	Polyhedra Scanning
	Polyhedron Model
	Synonyms
	Definition
	Discussion
	The Basic Model
	Transformations
	An Example
	The Search for a Transformation
	Scheduling
	Placement

	Code Generation
	Extensions
	WHILE Loops
	Conditional Statements
	Iteration Domain Splitting
	Tiling
	Treatment of Expressions
	Relaxations of Affinity

	Applications Other than Loop Parallelization
	Array Expansion
	Array Shrinking
	Communication Generation
	Locality Enhancement
	Dynamic Optimization

	Tools
	Mathematical Support
	Code Generation
	Full-Fledged Loop Restructurers

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Polytope Model
	Position Tree
	POSIX Threads (Pthreads)
	Power Wall
	Definition
	Discussion
	Introduction
	Power Trends
	CMOS Technology Determinants

	Power-Performance Efficiency Metrics
	A Review of Key Ideas in Power-Aware Architectures
	Power Efficiency at the ProcessorCore Level
	Power-Efficient Microarchitecture Paradigms

	Conclusions
	Bibliography

	PRAM (Parallel Random Access Machines)
	Definition
	Discussion
	Introduction
	Complexity Measures and Work–Time Framework
	Basic PRAM Techniques
	Matrix Multiplication
	Prefix Sums or Scan
	List Ranking
	Fractional Independent Set
	Superfast Maximum Algorithm

	Bibliographic Notes and Further Reading
	Bibliography

	Preconditioners for Sparse Iterative Methods
	Synonyms
	Definition
	Discussion
	Simple Preconditioners Based on Stationary Methods
	Jacobi and Block-Jacobi Preconditioners
	Gauss–Seidel Preconditioner
	SOR Preconditioner

	Preconditioners Based on Incomplete Factorization
	Static-Pattern Incomplete Factorization
	Threshold-Based Incomplete Factorization
	Incomplete Factorization Based on Inverse-Norm Estimate

	Sparse Approximate Inverse Preconditioners
	Multigrid Preconditioners
	Geometric Multigrid
	Algebraic Multigrid

	Stochastic Preconditioners
	Matrix-Free Methods and Physics-Based Preconditioners

	Related Entries
	Bibliographic Notes
	Bibliography

	Prefix
	Prefix Reduction
	Problem Architectures
	Process Algebras
	Synonyms
	Definition
	Introduction
	Process Operators and Operational Semantics
	Three Process Algebras: CCS, CSP and ACP
	CCS: Calculus of Communicating Systems
	CSP: A Theory of Communicating Sequential Processes
	ACP: An Algebra of Communicating Processes

	Future Directions
	Relationships to Other Modelsof Concurrency
	Interleaving vs True Concurrency
	Linear-time vs Branching-time
	Synchrony vs Asynchrony

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Process Calculi
	Process Description Languages
	Process Synchronization
	Processes, Tasks, and Threads
	Processor Allocation
	Processor Arrays
	Processors-in-Memory
	Profiling
	Profiling with OmpP, OpenMP
	Program Graphs
	Programmable Interconnect Computer
	Programming Languages
	Programming Models
	Prolog
	Prolog Machines
	Related Entries
	Bibliography

	Promises
	Protein Docking
	Definition
	Discussion
	Introduction
	Approaches to Conformational Searching
	Exhaustive Rigid Body Searching
	Reduced Search Space Methods
	Side-Chain Refinement

	Incorporation of Protein Flexibility in Protein–Protein Docking
	Scoring Functions for Protein–Protein Docking
	Critical Assessments of Protein–Protein Docking Methods
	Applications of Protein–Protein Docking and Large-Scale Predictions

	Bibliographic Notes and Further Reading
	Bibliography

	Pthreads (POSIX Threads)
	PVM (Parallel Virtual Machine)
	Synonyms
	Definition
	Discussion
	Introduction
	Resource Management
	Process Control
	Message Passing
	Dynamic Task Groups
	Fault Tolerance

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

