Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1986

Patricia Tries Again Revisited

Wojciech Szpankowski
Purdue University, spa@cs.purdue.edu

Report Number:
86-625

Szpankowski, Wojciech, "Patricia Tries Again Revisited" (1986). Department of Computer Science
Technical Reports. Paper 543.
https://docs.lib.purdue.edu/cstech/543

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PATRICIA TRIES AGAIN REVISITED

Wojciech Szpankowski

CSD-TR-625
September 1986




PATRICIA TRIES AGAIN REVISITED

Wajciech Szpankowski*
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Abstract

This paper studies the average complexity of Patricia tries from the successful and unsuceess-
ful search point of view. It is assumed that the Patricia trie is buill over a V-element alphabet,
and keys are strings of elements from the alphabet. The occurrence of the i th element from
the alphabet in a key is given by a probability p;, { =1,2,..., V. We also assume that n
keys are stored in the Patricia tric. These assumptions determine the so called Bernoulli
model. Let S, and U/, denote the successful search and unsuccessful search in the Patricia,
respectively. We prove that the m-th moment of the successful search, E (S,)™, satisfies

Lm E (S,)"/in™n = 1/hT, where by =3 p; Inp;. In particular, we show that the vari-
H— -

i=l
ance of S, is varS,=cInn+0(l) (¢ is a consiant dependent on p;,
i=1,2,..., V) ior an asymmetric Paticia, and var S, = O (1) for a symmetric Patri-
cia (e.g. if V =2 var S, = 1.00). The unsuccessful search U,,, is studicd only for binary
symmetric Patricia tries. We prove that lim E (U,)™/lg™n. = 1. In particular, the variance
n—ym

of U, is given by var U/, = 0.8790.

1. INTRODUCTION

Digital searching is a well-known technique for storing and retrieving information using
lexicographical (digital) structure of words. Let A be an alphabet containing V elements,
A ={oy,..., oy} and we define a set S which consists of finite numbers, say n, of (possible
infinite) strings (keys) from A. A trie or radix search trie is a V-ary digital search tree in which
edges are labelled by elements from A and leaves (external nodes) contain the keys [2], [7], [10].
[12], [14], [18]. The access path from the root to the leaf is a minimal prefix of the information
contained in the leaf. The radix trie has an annoying Aaw: there is ‘‘one-way branching’* which
leads to the creation of extra nodes in the tree. DR. Mormison discovered a way to avoid this
problem in a structure which he named the Patricia trie. In such a tree all nodes have branching
degree greater equal than two. This is achieved by collapsing one-way branches on intemal

nodes. For more details see [7], [10], [14], [18). The Patricia tree finds many applications e.g. in

*and Technical University of Gdainsk, Poland
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lexicographical order [16], dynamic hashing algorithms [4], and most recently in conflict resolu-

tion algorithms [9], [21]. (For more examples see [10], [14].)

Two quantities are of interest for tries in general, and in particular for the Pafricia trie,
namely successful search and unsuccessful search, A successful search occurs whenever a new
key added to the Patricia is already in the trie. If a new key is not in the Patricia, then an unsuc-
cessful search occurs. The average complexity analysis of the Patricia is very scarce, (see [7],
[13], [14]) and in fact restricted to binary symmetric Patricia, that is, V = 2 is assumed with equal
probability of occurrence of the elements over a binary alphabet. Moreover, only average values
were studied. These simplifications are dropped in this paper. For the successful search, we
assume that a sequence of elements from the alphabet A is an independent sequence of Bemoulli
trials (Bernoulli model), and the probability of occurrence of an element 6; € A in a key is equal

top;, i=1,2,..., V. Under these assumptions we study all moments of the successful

v
search, §,. It is shown that im E(S,)"/in™n = U/hT, where hy=-3, p; Inp; and m is an
n—y=

i=1

integer. In particular, we prove that the variance of S, is (h, — A2 In n + O(1) for an

v
asymmetric Patricia, where iz = Y’ p; In 25;. Note that this implies that the variance in the sym-
i=1

metric Patricia is equal to O(1) (e.g. for V =2 the variance var S, = 1.00, for V =3 we find
var S, =0.6309 and so on). These results extend the works of Knuth [14], Flajolet and

Sedgewick [7], and Kirschenhofer and Prodinger [13].

The results for the unsuccessful search are even more scarce, and to the author’s knowledge
only the mean value of U, was obtained by Knuth [14]. The problem is also much more intri-
cate, therefore, symmetric binary Patricia tries are assumed. However, asymptotic analysis of all
moments of the unsuccessful search is discussed. It is proved that that the »-th moment of U,

satisfies lim E(U,)"/lg n =1 for any integer m, where ign =logyn. In particular, the variance
n—yoo

of U, is equal to 0.8790.
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The paper is organized as follows. In the next section we present some notation. and prel-
iminary results. In particular, we derive a recurrence equation for the generating function of the
V -ary asymmetric Patricia tric. Then, in Section 3, we study the successful search. At the begin-
ning we present some recurrence equations, show how 10 solve them using the results obtained
by the author in [19], [22], and we also give final results of this section. In the last part of the sec-
tion we show how to prove the main results. In a similar way, we organize Section 4 where

unsuccessful search for binary symmetric Patricia trie is discussed.

2. NOTATIONS AND PRELIMINARY RESULTS

Let us consider a family T, of Patricia tries with n keys (records) built over and alphabet
A={0,..., oy} Akeyis astring of (possible infinite) elements from A, such that the i -th

element ©; € A occurs independenfly of other elements, and with probability p;,

v
i=1,2,...,V, X pi=1 Atdet e T, built over A is called V-ary asymmetric Patricia

i=1

trie since the alphabet contains V' elements which are distributed according to the probabilities p;,

i=1,2,..., V. The keys are stored in external nodes, while internal nodes determine branch-
ing strategy. The degree of each internal node is greater equal than two ,that is, one-way
branches are collapsed on intemal modes by including in the nodes the number of bits to skip
over before making the next decision (for details see [7], [10], [19], [18]). Two parameters of
tries are of particular interest: successful search and unsuccessful search. The successful search,
called also the depth of a leaf, is the number of internal nodes in the trie on the path from the root
10 a given key (extemnal node) if the key is already in the trie. If the new key is not in the trie,
then an unsuccessful search occurs. The unsuccessful search is not simply related to the success-

ful search, since unsuccessful searches are more likely 1o occur at external nodes near the root.

We study properties of successful and unsuccessful searches in a random family of Patricia

tries 7,. Let S, and U/, (random variables) denote the successful search and the unsuccessful
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search in T,,. The m-th factorial moments of S, and U,, are defined as follows

def
SB = E{Sy(Sp — 1S, ~2) -+ (Sx—m + 1)}, (2.1)

Ui =E{Up(Up - YU, =2) -+ (Up —m + D} 2.2)
where the expectations in (2.1) and (2.2) is taken over all tries in 7,, and over all external nodes in
agiventrie t € T,. Itis shown (see next sections) that these moments are related to m -th deriva-
tives of the so called generating functions of T,. Let H,(z) denote this generating function with

the coefficient at z* being the expected number of external nodes at level & in our family of trees.

There is no explicit formula for H, (z) but a rather sophisticated recurrence. To find it, let

us denote by j=(j;,Jj2,-... jy) a vector such that j,+j,+ -+ +jy=n. Also let

n def n n! . . .
[ =] . . =-—————— be a multinomial coefficient, and et
J J1.--a by syl

2 fGr....,Jv) denote a sum of f(,...,jy) over all j such that
{iz=n}

Ji1+Jj2+ -+ +jy =n for a given function f (). Then the following recurrence on H,(z) may

be established.

Lemma 1. For any natural # the generating function H,(z) of the random family of Patricia

tries, T,,, satisfies the recurrence

HQ(Z)=0. HI(Z)‘—‘].
n ) ] 2.3)
Hy(@)=z % [j ] pi - Pl H@)+ - +Hy(2) 1= - Dlpt +p3 + - +pf ]
{jiz=n}
Proof. Consider V subtrees of the root, each with j,, J2 o jvkeys, i+ i+ - vy =n

Then, for a given et e T,

Ho(z) = [H;(z) + - + Hp(2)][z + 8; (1 —2)+ 8p,a1—2)+ - + 8, (1l —2)].
where §; ; is the Kronecker delta. In the second squared bracket the first z shows the fact that

the subtrees are one level below the root, and the other terms are responsible for avoiding one-
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way branches {e.g. if j;=mn, then the leftmost branch would be one-way branch, but
z + 8;, (1 —z) = 1, hence the subtree starts at the root). Taking now the expectation of the last

recurrence over all tries in 7,, and noting that in our Bemoulli model the probability of

J1+-.., jy keys in the subtrees is equal to [ ;' ] p{* -+ pf#, we finally obtain (2.3).

3. SUCCESSFUL SEARCH

In this section we analyze the successful search, that is, we derive an asymptoti¢ approxi-
mations for all moments of S,. We start with some initial results follow by our final results. In

the further part of this section, we show how to derive these results.

3.1. Initial and final results

Let L, denote an external path in a trie ¢ € T,, that is, it is the sum of all paths from the
root to external nodes. We generalize the definition of L, as follows. Let S, (¢) be a path from
root to the { -th external node. For a given integer m we define

n » - 3
LE=3 SIS, 0) — 1S, ) =2] - [S,()—m + 1] (3.1
i=1
and let I*= EL;”. The quantity /7 is not exactly the m-th factorial moment of L,, but it is

closely related to it. We call /7* the m -th semi-factorial moment of the extemal path length.

Denole now by H,™X1) the m -th derivative of Hy(z)atz = 1. Then the following is easily

to establish { see [14], [22])
Property 1, For integers a and m the below relationships hold

Hy()=n I =H™() (3.2)

sE=LEn (3.3)
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Using Lemma 1 and (3.2) we derive a recurrence equation for /2, hence by (3.3) also on s
We shall work at the beginning with /2. For simplicity of computations, assume now that ¥V =2

andpy=p, po=1—p,=¢g. Thenform =1 we find immediately that

lnl_= ﬂ(l _pn _qﬂ) + Z [ z] pkq"_k“kl_+[nl_—k]- (34)
k=0
Computing the second derivative of H,(z) one shows that

Inz_z 2[i [ 2 ] ptq"_t(lnl_'l' In!'—k) - lﬂ(pilll + q")] +
k=0

n

E [ z ] ptqn_k[lnz_'F "n&—k]-
k=0

But, the first term of the above is by (3.4) equal to ZL — r, hence

IE=2(1-p" —g")it-nl+ 3, [ 2] pEq IR+ 1R (3.5)
k=0

Note that (3.4) and (3.5) is a system of recurrences, i.e., to find I,% we need [L Generalizing the

above, we can prove that

Lemma 2. For any integers m and #, the m-th semi-factorial moment of L, satisfies the follow-

ing recurrence
IFg=IE=0
v m I:i n ) ) (3.6)
E=mi(1-3 p ZC1"* -+ 3 [ : ] pi - pPUZ+ -+ +12)

i=1 k=1 (k=1)! fic=n} -7
where in (3.6) we have defined 12= .
Proof. The proofuses induction arguments applied to (2.3), and is left to the reader.

d

As noted before, (3.6) is a system of recurrences. To compute IZ we need [},
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12, ..., ™=l from the previous recurrences, Note also that (3.6) has a common pattem and the
recurrences differ only by the first term in (3.6) which we call the addirive term and denote by a,,.
This type of recurrence has been solved by Szpankowski in [19], [22] ( see also [14] ). Since we
use it extensively in the further part of the paper we quote below, without proofs, some of these

results.

Solution of a recurrence equation

Letxg xy...., x, be asequence of numbers satisfying the following linear recurrence

given xg=x;=0
. _ . (3.7
solve x,=a, + 3 [j ] i - pllxj, + - +x3,]
{jt=n}
where a, is any sequence of numbers. We call g, an additive term of the recurrence (3.7). To
solve (3.7) we introduce the so called binomial inverse relations. Let us, for a given sequence a,,,

define a new sequence 4, as

g, = ?:‘O (1) a  a=gert(7]a (38)

k=0

(The second equation justify the name binomial inverse relations). For more details see Riordan

[23). Using the above we proved in [19] that

Theorem 1. The recurrence (3.7) possesses the following solution

n dy + kay, — ag
n=3e (1] SR (39
k=2 1-3 pf
L
O

From the numerical point of view the solution (3.9) is not better than the recurrence (3.7),

however, (3.9) might be used to derive asymptotic approximation for x,. In most computer sci-

n

r]c", where » is an

ence applications g, is a linear combination of the following terms [
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integer, and ¢ is a constant. From [23] [14], we know that

a, = [f]c" -4, = [ﬁ] (~cY (1 —c)~.

(3.10)

Since Lhe recurrence (3.7) is linear, from the asymptotic point of view we need an approximation

for large n of the following

r,..,@"fg(—n* (2] (¢) ——

(3.11)

v
Let iy = (-1)* ¥ p; In* p;. Then in [19] we have proved that (for some details of the derivation

i=1

see also this section)

Theorem 2. Forany r, ¢ and large n the following holds

{!n(nc) +Y=3,0 N hy
¢ hy 2h¢
Tn,r(c) =1

, 1
1) ne {—r(r—l)h1 +f,(nc)}+0QQ) rz2

+ 1 fr(ne)}+00)

(3.12)

where ¥ = 0.571 is the Euler constant, and £, (n) is a fluctuating function with a small amplitude

defincd as
1"(2;‘:')31"'2‘r
fmy=— 3 .
{z 20, r-1} ¥ plg-+1—zk1npi
i=1
The numberzg, £ =0,1,..., r=0,1,..., r are roots of the equation

v
1-3 pl==0.
i=l

(3.13)

(3.14)
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It is shown [6], (7], [10], [12], [19] that the function f,(#) has a very small amplitude and may be

safely ignored in practice.

Final results of this section

Using Property 1, Lemma 2 and Theorem 1,2 we prove our main results of this section. Let

- 14
us, in addition to 4, defined before, introduce a new notation 4, = (-1)* 3 p; In" (1—p;). Then

i=l

Proposition 1.

(i) The mean of the successful search S, forlarge r is given by

1

ES, = . fin n+p+Fi(n)}+0@E™D (3.15)
1
df —  hy . . S :
wherep = y—h + m and F(n) is a Auctuating function with a small amplitude.

(i) The variance, var S,, of the successful search for large n satisfies

hz-‘hlz 1
varS, = 3 Inn+a-2+Fy(n)+ 0™, (3.16)
i
where
1 .2 3 hi 2k, 2 hs — —
a_h%[lﬁ +v2+2 h?+ n 3 h1+h2+h2+2h1h1]—
3.17)
Yauthy, p P (
2(hy + hy) 3 +h1(1_h|)
and
1 Y = [;] LA pil~-py ¥V .
= — c| I pir Inf1 + Z5—220 11 pivy. 3.18
B M%Emm{gﬁg} i) [P 1 —p, L PEE (I8

In particularly, for V-ary symmetric Patricia tries Az = A7 and (3.16) is reduced to (the

coefficient at In »n is equal to zero)

_® 12
6n2y 12 IV

-] 1 _
1n{!1=11 1+ W) }+ Faln) + 0(n7D). (3.19)
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(iii) The n-th moment E (§,)™, of the successful search satisfies

E(S, Y
G _ 1 (3.20)
o= n™n hT

We now compare the successful search for regular tries and Patricia tries. Let S, and §, /7]
denote S, for the regular trie and the Patricia trie respectively. Then by the proposition and the
results from [22] we easily see that ES,7) — ESIP1 = h\/h|. The variance of S, for a regular trie
is given by (3.16) with p = 0 [22]. Table 1 compares the variances for tries and the Patricia tries
in the symmetric case. For V =2 (symmetric case) the result was previously obtained by Kir-

schenhofer and Prodinger [13] (see also [12]).

vV | varSITt | var§Fl
2 3.507 1.000
3 1.446 0.630
4 0.939 0.500
5 0.718 0.430
6 0.596 0.387

Finally, let us mention that the recurrence for the variance is very slowly ‘‘convergent’” to its
asymptotic approximation (at least 150 terms must be computed), so the above results are partic-

ularly useful.

3.2 The first two moments of S,

The mean value of S, is [}, where Ll is given by (3.4). But (3.4) is a recurrence of type

v 4
(3.7) witha, =n(1 — ¥, pf'). Using (3.8) we find 4, =n 3 p?~! for n 22, hence by Theorem 1

i=1 i=]

the solution of (3.4) is

v
n Z pl'(l _p'_)k—l
r=sen (1) (4] 2—
k=2 1- % pf
i=1

(3.21)

O
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To find an asymplotic approximation of (3.21) we apply Theorem 2. Note that

Y. Db
=3 Ty Taal=p0)

i=] i

hence, by (3.3) and (3.12) we obtain our result (3.15) with

v
Fi(n)=Z pi f1ln(1 - p)l. (3.22)
i=1

The second moment /2 is more difficult to compute. As before assume for simplicity
V =2. Note that by (3.5) /,2 satisfies the recurrence (3.7), but now a, = (1 — pr— g™t —n).

Hence, the inverse sequence 4, is (we use (3.8))

d, = 20+ 28, 1 — npq"~ = mpg™ ™) - 2 (P11 - 2(g" D). (3.23)
where I(p™ 1) is the inverse relation to p” /L. Two problems are encountered in obtaining the
exact expression for 4,. Namely, we must know /L, and - what is more iniricate - the inverse

sequence to p" Iy The first problem is easy. We know that [l is given by (3.21). But by the

H L] - -
definition of the inverse relations /L = Y, (-1* [ z ] Ik'— and {y = {1 = 0. Hence combining this
k=0

with (3.21) we immediately find

v
2 pidl - pi)t!
=k =— (3.24)
1- 3 pf
i=1
Let us compute now I (p” IL). We first prove
Lemma 3. Let a, and 4, are given, and let b, = p"a,, where0 S p < 1. Then
b=5 (1) apia—pr 629

j=o -7

Proof. Using well known relationships for binomial coefficients (see Riordan [23]) we find
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o= gt (1) art- gt (3] e (4] -

5 (4] a0 Beor (") apra -5 (5] g pia-pr

j=0 j=0

Using Lemma 3 and (3.24) (once again for V = 2) we immediately obtain that

" .Y . pai-1 -1
1= 3 [;:] [{] pit~py BE %P (3.26)
=0 1-3% pl
&

Therefore, using (3.26), (3.23), (3.24) and (3.9) from Theorem 1, we finally derive an exact solu-

tion for /2

Theorem 3. The second semi-factorial moment [2 has the following solution

v v
i AL -p) 1} 19> pi3
I2=2 3 (1 [2] [’1‘] = — =L
k=2 (I - ZP:‘k)-z
i=1
{E', i1 ad {E', ( Y1
il =p )" Y p:i(1 ~p: Y}
1 1 3 k ; i=1 i=
2 5 (7)) —— 5 (4] ({)
k=2 l_zpik j=2 l_zpj
i=l1

327

Proof. The details of algebraic manipulations are left to the reader.

Asymprotic approximation for var S,

We compute here the asymptotic approximation for the variance, var §,, of the successful
scarch. For this we need asymptotic expression for (3.27). Let us denote by A, and B, the first

and the second term in (3.27), that is, 2= 24, — 2B,.

The expression for 4, does not fall into (3.11) ( since the denominator is raised to the
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power two ), hence Theorem 2 cannot be applied. However, for asymptotic approximation of A,

we need to evaluate the following

Tn@}(c)=é;2(—l)k [E] [H ﬁ;p,:): (3.28)
i=l

which generalized (3.11). We use the Mellin transform technique [4], [11], [14], [22]. Perform-

ing some algebra over (3.28) we can prove that (for details see [22])

—Ye+im -z
TAe)=- - L& 4+ oq) (3.29)
“h-e (] yplay2
( Eip ™)

where I'(z) is the gamma function [1). The evaluation of the integral is standard: we must com-
pute residues of the function under the integral to the right of the line (Y4—i c0, —%+{ =), Let
z k=01112,.... denote roots of the denominator, that is,
14
1-¥ pi'=0. (3.30)
i=1
Note that zq = 0, while the other roots are complex. For more detailed treatment of (3.30) see
[6], [12], [22]. The most difficult to handle is the pole zq = O since it is the double pole of the
denominator and, in addition, singular point of the gamma function. But, the following Taylor

expansions of the functions under the integral are available [1], [4], [11]

Tz)=z1l-v+ % [% +9z + 0(z%
22
(ney*=1—zInnc + - Innc + 0(z3)
14
(A~ p"™2 =z2bo+ bz + byz? + 0 (2%
i=1
where bo=hE, by=hihs by= % h% + % hihs (for details see [22]), and as before

v
By = (1F PN Inf p;. The algorithm to compute the residue at zg = 0 is provided in [11],

i=l
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[22]. Let g (z) denote the function under the integral in (3.29). Then, after some algebra

res,g(z) = e velnne + S

2h}
where

Yhy+ ho
E=—=

h?

3h7 4k h

5=L2[i+ﬁ+ 2 M2 _ 3

Rt 12 2 4ni 3h,

On the other hand, the residues ofg(z)atz, k£0are

Tz )(nc)™
res, g(z) = —_h lz(z&)

def V
where £(z;) = = 3 p;™ In p;. So finally by (3.29)—(3.33) we obtain

i=1

7@ = Klz Innc +emnc + 8 +F9nc) + 0(1)
i

where

= T(zgm™
@) = 2Eein
W=z e
k0

Using the above we prove

Lemma 4. The coefficient A, (the first term in (3.27) ) for large » is equal to

A =n{Ll.nzn+ E— hl+51 Inr+n+F (n)}+0(1)
ST h? 4
where
=#(h2+}72+2h1 hy)—ethy +h) + 8
1

_ y
by = (1 ¥ p; In*(1 - p;) and

i=]

v v
Fa(n)=3 3 pi pj f%n pj(1 —p)]
i1 j=I

(3.31)

(3.32)

(3.33)

(3.34)

(3.353)

(3.35b)

(3.36)
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Proof. To prove (3.35) it is enough to note that (3.27) and (3.28) imply

Di 14
Y TP [pi(1 - p)

i1 1= g

Using (3.34) afier some algebra one finds (3.35).

0

To evaluate the second term in (3.27), namely B,, we need some additional computations.

Let
n B ;
B, = Y (-1} [g] — (3.37a)
k=2 1-3 pk
i=1
where, after some simple algebra, one obtains
v o o 7 -
E (g E i (1—p)*7 3 py(l —pyy~
’ ] =1 =1
-3 (4 (1) £
=2 1-3 p/
=1
Now we develop the denominator in a geometric series and for i = (i), i ,..., i) such that
V I}
Ly +ig+ -+ +iy =1 is aninteger) we denote ¢; = 1'1I py - Then (3.37b) becomes
p=

. v Vv o
Bi=k 3 X porr Y X [f] efles Pl —po) + 1= pal*! = (1 - p0*1}
A=1 v=l 1=0 {iz=1}

But by (3.37a) and our notation (3.11) one finds that

]C { Teale Pl —po +1-pa] n,la—po}

v Vv o
. I
B, = .
p=Z Lk X 1 el —-py+1—p; 1—-py

A=l u=1 =0 fiz=1}

Hence by Theorem 2 (see (3.12)) we finally obtain

vV Vv [
By=nB=rl-- X S pmpmy [f] e In[l + pa(i = pyei(l — p)] + Fp(n} 1 (3.38)

hl =1 v=I i=0 {ig=1}
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where

v Vv o
Fpr)=Z T oo Y X [f] aiffiln (1l —po) # 1 - pI] = Filn(1 - p) } (3.39)

a=1 v=1 =0 {ig=1}
and the constant f is defined as B,/n. Note that we prove in fact that B, = O (n). This we shall

use later to derive higher moments of S, .

Finally, taking into account (3.3), (3.27), (3.35) and (3.38) we prove
Theorem 4. The second factorial moment s,2 of the successful search S, is given by

1 hy +hy
2 _ _ — Ip2
s,,——ZA,,fn—ZB,,fn—hlz In“n +2[e— n2

2N —2B 4+ 2F,(n) = 2Fp(n) + O(n™YH)

llnn +
(G40

where | and B are given by (3.35b) and (3.38), and F,(n), Fy(n) are presented in (3.36) and
(3.39).

O
To compute the variance of S, we note that varS, = 5%+ ES, — (ES,)? hence the Proposi-

tion 1(ii) follows with ot = 2n + f—(l - —hp—) (see definition of p just after (3.15) and for 1| see
1 1

(3.35b)). The function Fo(r)in (3.17)is

Fon) =2F4(n) = 2Fp(n) + F(n) = [Fy(n)}? (341
where the terms of (3.41) are defined in (3.36), (3.39) and (3.22). Note also that for the sym-
metric Patricia trie £y =In V and &, = k%, In particular, the coefficient at In n disappears and

1 _ _ _ |
e 2y + 1z 20d 2B is the third tem in (3.19). It is

var S, = — 2B+ O(n~!) where o=

interesting that for a regular symmetric V-ary trie var S, = & + O (n~}) with o the same as for

the Patricia,
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3.3 Higher moments of S,
In Lemma 2 we have established the recurrence equation (3.6) for the m-th semi-factorial

moment of the extemal path length. By Property-1 the m-th factorial moment of §,,, 57, is equal

to ,7%n. Note that the recurrence (3.6) is of type (3.7) with the additive term a, equal io

k=1

m " 1kl 14 n " 1=l
a, =m! I?:‘_‘1(-1)"‘ Dt~ m! { Ei p,—"} 2=:(—1) DI [ (3.42)

Let us denote the first and the second term in (3.42) by o, and a,®, respectively, that is,
m

a, = aV + a®. But (3.6) is a linear recurrence, hence I = I — I, where a{!) contributes to

2 and a,® to I2. We prove that [ = O(n), hence s = [n + O (1)

Lemma 5. For any £ and m I2 < I and

- n m m h2
r=—1In"n+n — W™ nly+ = — — (m=Dh, — k7F (n)] +
AT e TZhl()ln()]
O(n In™2n) 343

where F (n) is a fluctuating function with a small amplitude.

Proof: We recognize that /;* is the m-th semi-factorial moment of the external path length in a

regular digital trie (see [22]). Then (3.43) is proved in [22].

O

We now prove that 7 = O(n). Note that by IZ < Z,’E, and by (3.43) we can find such con-

stants €g, &y , ..., &, thata,® is bounded, and

m def
aP<Y pr Y & [f] = AP
i=1 r=0
Let now y, be a sequence

R L P R A R (3:44)

{iz=n}
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By linearity of the recurrence for 2 we have for each m

oyl (3.45)

Hence, to prove that [ is O (n) it is enough to show that y®=0 (n). But
Lemma 6. For any m and large n

Yo =0(n)
Proof: The recurrence (3.44) is of type (3.7), hence Theorem 1 and 2 may be applied. By (3.12)

after some algebra we find

v
I = hil > { Elp; + (1 = p)In(l —p) 1+ &y p; In(1 — p;) +

= p{
& - } =0(n)
Ez r(r=1(1 —p;)!
O
Finally by Lemma 5, 6 and (3.45) we prove our last result of this section,
Theorem 6. Form > 2 the m-th factorial moment of the successful search S, is
sr= Lo Bt B2 R +
hY At 2 mn
0 (]_nm—Zn) (346)
O

This, in a trivial way, implies our Proposition 1(ii).

4. UNSUCCESSFUL SEARCH

The unsuccessful search is neither simply related to the external path length nor to the suc-
cessful search, since unsuccessful searches are more likely (o occur at external nodes near the

root. This makes the analysis much more difficult. Therefore, we consider only binary sym-
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metric Patricia tries, that is, V =2 and p, = p, = 0.5 is assumed, however, we derive asymptotic
approximation for all moments of the unsuccessful search. The organization of this section is the

same as for Section 3.

4.1. Imitial and final results

Let H,™)('4) denote the m-th derivative of the generating function H,(z) (see (2.3) in

Lemma 1) at z = %. Then one proves

Property 2. For any integer m the following holds

H (%) =1 (4.12)
W= - H{0%) (.1b)

Progf. For binary symmetric Patricia tries (V =2, p| = p, = 0.5) the generating function H, (z)

from Lemma 1 becomes

H (z) =2z 2\ ﬁ; [z] H(2)-2Y"@ -1 H,(z), n22 @.2)
k=1

Substituting z = %% in (4.2) one proves (4.1a). The average value of the unsuccessful search, u,-

is 3 I H2™' =% H1(%), since we end up at a given extemal node on level / with probability
=0

27 (by H; we denote the number of extemnal nodes at level 1), For m =2 we have

k= 1 — DH;2™ = (4 H, (%), and so on. This proves (4.16).
=0

To compute the factorial. moments # we must find the derivatives of the recurrence (4.2).

Differentiating (4.2) and using (4.1b) for m = 1 one immediately obtains

ug =ul =

n- (4.3)
w2 —-2=2" -2+ 1 [g] ul
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For the second factorial moment we must differentiate (4.2) twice. Then

B X2 —2)=2:>;:1 H u,3-+:>;i He:

But the first term of the above might be computed from (4.3). Then finally

n—1
wE2" ~2)=2Q2" - 2)ut-1H+ Y [ 2];;,,2- @4
k=1

Generalizing the above, we find
Lemma 7. For any integers # and m, the m-th factorial moment of U, satisfies
ugd =uf =0

m n-1
U2 =2 =m@" -2)| ur=l + Z(—1)k(m - k)u;";*] +3 [ }:] ug 4.5)
k=1 k=1

def
and 2 = 1

Proof. The proof uses induction arguments and is left to the reader.

O
Note that (4.5) is a system of recurrences. To compute % we need u.t, x2,..., y™L.
But recurrences of type (4.5) have a common pattern, and for various m they differ only by addi-
tive terms. To solve (4.5) we shall use extensively a solution of a recurrence discussed in Szpan-
kowski [20]. Below, we sammarize the most important results from [20].
Solution of a recurrence equation
Letxg, xy,..., x, be asequence of number such that
given xg=x;=0, x5,..., Xy
n—1 4.6
solve x,(2" -2)=2"a, + ¥, [ z]xk n>N

k=1
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where N is an integer, and g, is a given, but otherwise arbitrary sequence. It tumns out that the
solution of (4.6) depends on the so called Bernoulli inverse relations (see Riordan [23]). Define

for an @, anew sequence 4, as

a, = ;:;D [z] B, a,, (4.73)

where B are the Bemoulli numbers defined as the coefficients of the Taylor expansion of

z(e? — 1)1, that is,

= B, — 4.8
ra— Eo £ L 4.8)

For more details about Bemoulli numbers see [1], [15), [20], [23]. The sequence 4, and @, are

called inverse pair since [23]

n g n
_ H k1 [n+1]_
w-% (1) Fr-ms 5 ) @)

hence also d,, = a,. Using the above, we have proved in [20] that

Theorem 7. The solution of (4.6) is given by

1 & n+l ] by
Xy =b, + [ 49
n+l Ez A (49)
where
b, =a, +g, X s (4.10a)
&k
g=x(1-2%)—g -2+ % [;] x k=1,2,...,N (4.10b)
i=1
- N (e
by =dp —ag B + 3 [,] 8 By 4.11)
i=1
and X < nyis the indicator function.
O

Note also that (4.9) and (4.7b) imply that the inverse sequence %, , to x, defined in the recurrence
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{4.6)is
f,,=b‘,,+m n22 4.12)
To find asymptotic approximation of x, we need more information about @, and &,. In par-

ticular, it is proved that [20], [23]

=[] e sa=[") 0 s 412
where r is an integer, and 0 < ¢ < 1, while B, (¢) denotes the Bernoulli polynomial defined as

[1], [15], [20]

ze't

o zk
2 1 = t§0 Bt(t) F (414)

Some more inverse pairs the reader may find is [23]. For example, it is easy to prove that

d, = 8,0 (4.153)

a, =1 d, =B, + 3, (4.15b)

Let us now restrict our considerations to a, given by (4.13), and define

Rur(q)=— _1” é"z ["II] [f] %‘f{-% 4.16)

The following is proved in [20].
Theorem 8. Forlarge n the below holds

El(l —-q+ 641.1)
In2

Roofq) = (Y+ 8,1 - q¥lgn — e+ L)+ +fm)+0@Y)  (4.17a)

1-
R,i(g)=1Ign - A+ ln?2 _¥ 1?1; .1 +fi(n)+0@™) (4.17b)
R, (@)= ﬁ Cro1—q+0, )+ ;le,(n) +0@m™Y, rz2 4.17¢)
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where y(x) is the psi function, {(z, ) is the generalized Riemman zeta function ({(z) = {(z, 1))

[1], [11], [24], and

£i(n) = ﬁ S L +2nkMn2)T( + 2nikn2)expl2mik lgn]  (4.17d)
k=—o00

k20
and lgn = lgon.

O
The functon f,(n) is a fluctuating function with a small amplitude and may be safely ignored in

practice [14], [20].

Final results of this section
Using the recurrence (4.5), and Theorems 7 and 8 we prove our main result of this section.
Proposition 2.

(1) The mean of the unsuccessful search is

EUp=lgn -8+ Fim)+0@n™ (4.18)
where
0= II‘IHL;I — 1% =0.31875 (4.19)

and F(n) is a Auctuating function with a small amplitude.

(ii) The variance, var U, , of U, satisfies

varU, =4(a—p-0-2)—0-0%+ Fo(n) + O(n7 D)

= 0.87904 (4.20)
where
a=%9+§—z+ﬁ —ZTE:—+%—-—‘YL212£—C2] (4.21a)
2
Ly =16 L7(0) = i{; + % _ % - E-fi) 4.21b)
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with ¢y =-0.0728158 and

) oo C(k)z—k oo —kO1) 2+ & 21—1 1
= 1 -t L1
P=b+¥h+g7 2 {Ezz D A TETTY
= 0.48738, (4.21¢)
and F(n) is a fluctuating function with a small amplitude.
(iii) The m-th moment, E (/)" ,of U, satisfies
EU, Y
Wa) =1. (4.22)
n—oew g™ p

4.2, The first two moments of U,
'The mean value of U, is given by recurrence (4.3). This falls into our general recurrence
(4.6) with N =2 and a, =1—2!"", and b, = a, and b, = 2{B; — Br(A)] = 4B, [1 - 27*] (we

use here the following identity B, (*2)=B, (2™ —1) {1]). Hence, by Theorem 7 we obtain

4 2 2 [ n+l ] B,
l_9_ T —_— _r
wh=2- T+ Bt 2 3 gy @23)
Note also that by (4.12) and (4.15) the inverse sequence to 4, is given by
y 28,
= 43,, + 28,11 - 48,,0 +(1 - 5,,0 - 5,,1) F—T (4.24)

The asymptotic approximation of (4.23) follows directly from (4.16) and Theorem 8. Namely,

for large n

Ug=2R, o(1) = Ig — 0 + fo(n) + O (n™)
as necded in Proposition 2(i).
The analysis of the second moment is much more intricate. The recurrence is given by

(4.4). This recurrence does not fall exactly in our general recurrence (4.6). Therefore, Iet us split
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the additive term into two parts, namely

202" =Dt -11=2-2"(wt—1+2""]+4u}
and let the solution of (4.4) derived from the first part of the above be denoted as U\, while the

solution that follows from the second part is defined as U, By linearity of (4.4) we have

ui=UM0_y@ (4.25)

Note that for U’ we have the following recurrence

U =u =0

n—1
@ -uP=2" 2ul-1+2"1+ ¥ [g] U
k=1

and this falls into (4.6) with a, = 2{u,l — 1 + 2""]. Since 4, =2[z}— B, - 8,, + 28,(%)],
and by (2.24) we immediately obtain from Theorem 7 (we use the following identity

B, (5 =B, (2™ - 1)[1])

8 & [ n+l B, 4 2 [asl By
v = =_ [ n ] + [ ] T E— 2
n n+1 Ez k 2&—1 - 1 ﬂ+1 k§2 k (2&—1 - 1)2 (4 6)

The analysis of U,® is much more difficult. Note that the recurrence for U, is not exactly
of type (4.6), since the additive term is 4u,! (not 2" a, as required). But ul=2"(2"uL), and for

the solution, we need the inverse sequence to 2" u,L. But

Lemma 8. Let A, = g"a,, and 4, is given. Then

- 2 .1 Ban-j@)—Bau—;
i=3 (1) g B : ‘
n ;Eo i) 44 Ty, @.27)

Proof. In the proof we use identities from [1], [23] and (4.7). We have

N n k 1
A, = | Bakg ey = [M]B‘ll qt [k] - d; =
Ea[l] w1 Tk Eo k| ak Ea J| k#1=j %

s | 2| g5 [ nd | A bov |8 g L "L | nel £
2| il gGed X T3 Bajat =2 | | 49 P Bt -jaq =
J =l k] ksl J k

=0 = n=j+l 15

—
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n g qj_.] Bu+1 —j(q)_B:Hl—j
! n+l —j

Let now A, =2 u,L. Then, using (4.27) and (4.24) one shows that

BJI +1 (l/z) - Bn +1
n+l

A,=2[B, (%) -B,1-8 + 2V,

where

k B; . By _ (A — B
Ve=3 [k] i 1 Ben () — By

=RV PRI k+1—j

Finally, applying Theorem 7 and the above we obtain

Theorem 9. The solution to .2 given by recurrence (4.4) is 2 = UV — U@ where UM is done

in (4.26) and

8 & |n+1]| Be(D)+B 32 2| el | Ben(2) — By
U,,m =4.2" "L —_ —
(4.29)
8 é n+l 1 é k B, ol Bra _j(%5) — By —;
nl S| k| o ST 21 k+1—j
O
Asymptotic approximation for U\
Let
1 2 [ n+l By
Rl (1] B
" n+l Ez k 1 - 1) 4.30)

Then by (4.26), (4.16) and the above U,® = 8 R, o(1) +4 R®. But by Theorem 8 we have

Roo)=%lgn —%0-1+fn)+00n™D 4.31)
Hence to find approximation for U,{"’ we need asymptotic analysis for R, But applying the

Mellin transform to (4.30) one proves (see [3], [20].)
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—Ytiw

@_ 1 L&@pm= 4
BT TR 32

and to evaluate R® we need residues of the function under the integral. Note that the roots of the
denominator are z; = 2mik/In2, with zo = 0. In addition, there is a single pole of the zeta func-
tion {(z), at z = 1 [1]. The root zo = 0 is a triple pole since z¢ = 0 is also a singular point of the
gamma function , I'(z). It tums out also that this pole makes the biggest contribution to the
asymptotic analysis of (4.32). To find the residue at zo = 0 we use the following Taylor expan-

sions [1], [4], [11], [24].

In2n

nZ*=1-zIln+ 22 + 0(z%)

T)=z71—y+% [% +¥z +0(zd

1 1 e, 1 .5
- m2’ Tm® tzto®
and
() =—Y— = I2n+yz + 0@

2

where {3 = % £”(0). The value of {, is computed in [3, p.204], and

VN T L W S YN
L=%{O="1+ > ~ 45~ 7 m) = —1.0032 @.33)

where ¢; =—0.0728158. Multiplying the above and taking the coefficient at z~! one finds the

desired residue. In a similar way the residues at z; might be obtained. Computations show that

RO® = % Ig?n — Y4 [25+0]lg n + -+ Foln) + fo(r) + 0 ()

where

8—%9+£+L[i+ﬁ—ﬂn2ﬂ:

24 ¥ 24 4 2

i [C@ DT (20) + Tz )8 (z) — In nT(zYlexp[—2xik Ig n)
=#—H

=~ Ll
(4.34)
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Finally using the above and (4.31) we find

UM =1lg2n —[14+20]lg n +4( -0 — 1)+ 12fo(n) + 4Fo(n) + O (0™  (4.35)

where 0 and & are defined in (4.19) and (4.34).

Upper and lower bounds for U,®

We now study U,@. It is easy to show that U,® satisfies the following recurrence

n=1
@ -UP =dul+ Y [g] U@ 22 (4.36)
k=1

with U 62) =U fz) =0. Since (4.36) is not of type (4.6), h_ence we explore some other methods to
evaluate U@, In this subsection, we give a tight lower bound and a tight upper bound on U@,

In fact, we prove that U = 0 (1).

Note that by Proposition 2 (i) .l =Ig » + O (1), hence we can find such constants &, &,
and &, that & < u, < &;n + &,. This implies that upper and lower bound for #,! might be esta-
blished through Theorem 7 and 8, since for the lower bound we assume a,, = £,2™ while for the
upper bound we seta, =&; 127" + £;27, and these fall into our recurrence (4.6). The accuracy
of our evaluation depends, in fact, on a good approximation of u, for small values of n, say,

n < N. Infact, we assume that we know ud = ul =0anduj ,..., uk Then

Lemma 9. Forn > N the following holds

EoSut<En + &, (4.37)

with &y = uyy, & = [(V+DI?, &y = &g — 1/In2.

Progf. The proof uses induction applied to recurrence (4.3), and is left to the reader.

Let us now define two sequences x, and x,, as



xo=x1=0, x2=UP/4, ..., xy =UP14
- (4.38)
Q" -2, =Eo+ 3 [z];_ck n>N
=1
and
Tp=x1=0, X2 =UP4 ..., xy=U4
(4.39)

_ n-1 nl —
Q" -Dx, =6 +En+ Y [k] X n>N
k=1

Note that by Lemma 9 4z, < U < 4x,. The asymptotic approximations for (4.38) and (4.39)

are available by Theorem 7 and 8 with a, = §g2™" and @, = &;n2™" + ;27" respectively. Hence

Theorem 10. Forlarge n the following holds

1 ¥ LG 4
x, = 05846 + 0.5) + > +0n™ (4.40a)
In2 r=2
with
G =x, -27[n +&+ Y [;] xl, r=1,2,...,N
i=1
and
N rlg.
X, =& +0.56,(0 + 0.5) + 1 Y. Hre +0(™Y (4.40b)
1In2 four} ¥
with
_— N r
& =% =275 +Er +E+ T (1) r=L2.. N
i=1
O

Note that by Theorem 10 we have proved that U® = 0(1). Let U = 4B, and B, P be
the lower and the upper bound for P, that is, x, =B and %, =B. The accuracy of B evaluation

depends on N. Table 2 contains B and B for2 S N < 6.
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Table 2.

N g B

046574 | 0.49869
0.48020 | 0.49031
0.48479 | 0.48824
0.486411 | 0.48766
048701 | 0.48748

S alh|w b

We prove in the next subsection that B = 0.487385, which confirms the above approximations. In
fact, the method established here can be used to solve the recurrence (4.6) in the case when
Theorem 7 and 8 are not applicable, that is, when the additive term is not of the form 2" a,. For
example, if the additive term in (4.6) is /g n, then using our approach, we can prove that

04997 < x, < 0.5001.

Exact asympiotic analysis of U2

Although we have obtained above very tight bounds for U,@ it is interesting to see if exact
asympiotic analysis of U, is possible. This interest follows not only from ‘‘pure mathematical
whim’, but such a solution enables to extend the analysis of (4.6) to the case when the additive

term is any sequence of numbers, not particularly 2" a,. This finds many applications in practice.

An asymplotic solution of U, depends on finding an appropriate approximation on the last

term of (4.29), that is

def 1 n [ Vv,
- _1 n+1] _ "k
V) ] k§2 & 21 1 (4.41a)
where V, is given by (4.28), i.e.
def k k] B; 1-j SkHl -;j(A) — Brn -
Vi = % [} 2471 _ 1 2 k+1—§ (4.410)

j=2

To apply Theorem 8 we must express V, in terms of Bemoulli polynomials B, (x) as (4.16)
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suggests. Note that developing the derominator (2/~! — 1) in (4.41b) in a geometric series we

obtain

n - Boyi(¥) — By
Yy [f] B2 Zard U = By @42)

Va = n+l—j

i

j=2

We prove

Lemma 10. Let ¢ = % and define

n 1y Bri1j(@) — Bpaaj
— n P V() n+l—j a+l—j
Then
oy |
T = ¥ B.(g')+B, (4.44)
=l

Proof. Let T3(z) be the exponential generating function for T4. Then multiplying both sides of

(4.43) by z*/k! one finds

z ezﬂ -1
M@=t (4.45)

(The easiest way (o show (4.45) is by using so called generalized Bernoulli polynomials as
defined in [15]). Now wuse the fact that (e*2-1)= (e - 1) +1)=

(e*’® — 1)(e*’®+1)(e*’* + 1) and so on. Finally we obtain (g='4)

A
Ta(z) = T A + e (4.46)
For example, forA =3
2q _ 2{g*+ ¢’) 2 27}
To(z) = z 3 : 1 __Z (ez‘71+1)(e"72+1)= ze + -Z€ 4 2 42
et =1 e -1 e*-1 et —1 e -1 e -1 et -1

Hence by finding explicit formula for the product in (4.46) we obtain terms as above. But each of
this term is the generating function for 2 Bernoulli polynomial. For example, the first term in the

above is the gencrating function for B,{g2 + g3). This proves, after some additional algebra,
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(4.44).
Comparing now (4.42) and (4.43) we find that
- Bn ) — Br: Bn Y8) — Bn
Vo= 3 | 1y - g B0 —Bun | BiCA) @47
o n+l1 2

Because of (4.44), (4.41a) and Theorem 8 the asymplotic approximation of V(D is easy to obtain,

ifone evaluates the following

n+l) Br+1(q) = Bryy
ra(g) = +1 [ ) D@1 (448)
Then U@ = 4B, where by (4.29) and the above
B=2[R, o(*4) + R, o(1)] — 8, (}2) +
(4.49)

2 3[R, o027 + 1 R, (1) = 2 1, (%) + % R, o(4)]
A<2

The appropriate approximation of R, o{(g) is given in Theorem 8. We need only asymptotic

approximation for r, (1%).

Lemma 11. Forlarge » the following holds

ry (V2) = %(lgn + % ) + — j C-0)dt +Yafoln) + 0™ (4.508)

where

1 ]11‘21; + 5 L2 [<(3Vnmd

%
‘(1 -t)dt = 4.50b
Jea—na= Z “tD (4.500)
Proof. We know that [1], [15]
Bin(@)— B ¢
T = g B, (t)dt
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hence

79 1 2 [n+1] B (1)

rn(q)= 0 mk=2 k

q
— T dt = | Ry o(t)d:
oy &= [ Ruo®)

Therefore, Theorem 8 (4.172) might be used. Noting that [4] (1 — ¢) = InT(1 — ¢) ~ % In2xt

ang [4]
=% k
Inr(l— )=y + 3 KX
= Kk
we finally obtain (4.50).

O

Using (4.49), (4.50) and (4.17) we easily figure out the constant B. In fact, all coefficients at

Ig n disappear, and the first two terms of (4.49) give

_ _ 8 oo C(k)z—k—l
2[Rn,0(2) + Ry o(1)] = 8r, (44) = 8 + 0.5 — & "k

while the sum in (4.49) is

2 oLt =) ani . 2
2 = & ,Ez{z ZE -t

This gives [ as established in (4.21¢). The Proposition 2(ii) follows from the above, (4.35) and
(4.18) if one notes that varU, = u,2+ u,l — (u)2. The fuctuating function F,(n) in (4.21) is

cqual 1o Fo(n) = 12f o(n) + 4F o(n), where f o(n) and Fo(n) are given by (4.17d) and (4.34).

Finally note that the above approach might be used to extend the solution of our general

recurrence (4.6) to the case when the additive term is a, without the coefficient 2* at a,.

4.3. Higher moments of the unsuccessful search

Let

0y =murL 4+ 3 (1 (et 451)
k=1
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Then by Property 2 the m-th factorial moment of the unsuccessful search satisfies the recurrence
n
ur=2"a, —2a, + 3, [z] ui", and by linearity we can split 4 into two parts, namely
k=1
u = U, = U where the first component of the above is associated with 2"a,, while the
second with 2a,. We prove that 5;" =lg™n + O{g™ n) and L = 0 Q).

To solve for I._I,l(”‘) we apply the same approach as in the case m = 2. Since the additive

term is 2" g, we may use Theorem 7, and after some algebra one proves that

g _ 2ml 8 n+1] By 1 ml oo [,,H] By

where y;,{=12,..,m—1 are some constants. Using the Mellin transform as in Section 4.2 for

(4.30) we prove that
f n B -—W+ie
rm = L ¥ ["Il] — k — = 1 | (z_)zr(z)" dz + 0™
ntl (o (2" - 1) Myl (27 -

and finding the residue of the function under the integral we show that

R@")—L le™n + 0 (g™ n) 4.53)
Hence by (4.52) and (4.53) we prove that U™ = ig™n + O (lg™n).
To prove U™ =0(1) note that by (4.51)~(4.53) we can find such constants £,
m n def
i=0,1,..., mthata, £} & [ r] = a,. Let us solve now (4.6) with the additive term
r=0
2"(2"a,). This is possible since a, is of form (4.13). Direct applications of (4.17a)—(4.17b)

- shows that U, = O (1) (for more details see proof of Theorem 10). This together with (4.53)

establishes Proposition 2(jii).
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5. FINAL REMARKS

In this paper a family of Patricia tries with n records was studied from the successful and
unsuccessful point of view. We proved that the m-th moment of successful and unsuccessful
searches are of order of magnitude In™»n. We gave a detailed analysis of the first two moments of
S» and U, for large value of n. For example, we showed the the variances of S, and U, for
binary symmetric Patricia tric are 1.000 and 0.879 respectively. These results have been
achicved through extensive applications of two types of recurrences for which the solutions and
asymptotic approximations were obtained clsewhere by the author. However, in deriving the
variance of the unsuccessful search we had to generalize the solution of the sccond recurrence
equation to a wider class of additive terms. This {inds a number of new applications in computer
science and telecommunication, e.g. in the average complexity of an algorithm generating
exponentially distributed variates {8], in the performance evaluation of conflict resolution algo-
rithm in a broadcast communication environment [9], [21], in the analysis of the refined lexico-

graphical sorting [16] and extendible hashing [5], [6], and so on.

There are still some open problems related to an analysis of the Patricia trie, First of all, it
is interesting to determine an asymptotic distribution for the successful and unsuccessful search.
It is reasonable to predict that Lhe successful search in the asymmetric Patricia is normally distri-
buted with the paramcters established in Proposition 1 (i)-(if), for large n (see [12]). The Sym-
metri¢ ¢case needs some additional work. Moreover, the analysis of unsuccessful search should be
extended to asymmetric Patricia trics. In this paper, we have not considered at all the height of
the Patricia, which is another open problem. Note that if H, denotes the height of the Patricia
with n records, then H, is bounded in probability (on the contrary to the regular tries), that is,
Pr{lgyn <H, <n}=1. Asimple upper and lower bound for the average of the height is possi-
ble. Indeed, using the above and noting that the height in the Patricia is not greater than the

height in a regular (rie, one shows immediately that for the binary case lgn < EH, < 2lgn (for
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the height of a trie see [6] [17]). It seems that EH, is closer to the upper bound than the lower

one, However, a detailed analysis is necessary.

REFERENCES

(1] Abramowitz, M., Stegun, 1., Handbook of mathematical functions, Dover (1964).

[2] Aho, A., Hopcroft, J. and Ullman, J., Data structures and algorithms, Addison-Wesley
(1983).

(3] Bemdt, B., Ramanojan’s notebooks, Springer-Verlag (1985).

[4] Frdelyi, A., Higher transcendental functions, McGraw-Hill Book (1953).

[5] Fagin R., Nievergelt, J., Pippenger, N. and Strong H., Extendible hashing: A fast access
method for dynamic files, ACM TODS 4 (1979), 315-344.

[6] Flajolet, Ph., On the performance evaluation of extendible hashing and trie searching, Acza
Informatica 20 (1983), 345-369.

{7] Flajolet, Ph. and Sedgewick, R., Digital search trees revisited, SIAM J. Comput., 15 (1986),
748-767.

[8] Flajolet, Ph, Saheb, N., The complexity of generating an exponentially distributed variate,
to appear in Journal gf Algorithms (1986).

[9] Gallager R., Conflict resolution in a random access broadcast networks, Proc. AFOSR
Worlkshop in Communication Theory and Applications (1978), 74-76.

[10] Gonnet G., Handbook of algorithms and data structures, Addison-Wesley (1984).

[11] Henrici, P., Applied and computational complex analysis, John Wiley & Sons, New York
(1977).

[12] Jacquet, Ph. and Regnier, M., Limiting distributions for trie parameters, INRIA Technical
Report (1985).

[13) Kirschenhofer, P. and Prodinger, H., Some further results on digital trees, /CALP 86, to
appear.

(14] Knuth, D. The art of computer programming, sorting and searching, Addison-Wesley
(1973).

[15] Noérlund, N.E., Mémoire sur les polynomes de Bernoulli, Acta Mathematica, 43 (1923),
124-196.

[16] Paige, R., Tarjan, R., Three efficient algorithms based on partition refinements, preprint.

(17] Pittel, B., Paths in a random digital tree: Limiting distributions, Adv. Appl. Probab., 18
(1986), 139-155.

(18] Sedgewick, R., Algorithms, Addison-Wesley (1983).

[19] Szpankowski, W., Analysis of a recurrence equation arising in stack-type algorithms for
collision-detecting channels, Proc. Intern. Seminar on Computer Networking and Perfor-
mance Evaluation, Tokyo 1985, pp. 399-412,

[20] Szpankowski, W., Solution of a linear recurrence equation arising in the analysis of some
algorithms, to appear in STAM J. Algebraic and Discrete Methods.

[21] Szpankowski, W., An analysis of a contention resolution algorithm - Another approach,

submitted to Acta Informatica.

fr e —— -




-37 -

[22] Szpankowski, W. Some results on V-ary asymmetric tries, Purdue University, CSD TR-
582, March (1986) (submitted to a jounal).

{23] Riordan, I., Combinatorial identities, John Wiley & Sons (1968).
[24] Whirtaker, E. and Watson, G., A course of modemn analysis, Cambrid ge Press (1935).




	Patricia Tries Again Revisited
	Report Number:
	

	tmp.1307986960.pdf.r3p9H

