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SOFTWARE

patRoon: open source software platform 
for environmental mass spectrometry based 
non-target screening
Rick Helmus1* , Thomas L. ter Laak1,2 , Annemarie P. van Wezel1 , Pim de Voogt1  
and Emma L. Schymanski3 

Abstract 

Mass spectrometry based non-target analysis is increasingly adopted in environmental sciences to screen and identify 
numerous chemicals simultaneously in highly complex samples. However, current data processing software either 
lack functionality for environmental sciences, solve only part of the workflow, are not openly available and/or are 
restricted in input data formats. In this paper we present patRoon, a new R based open-source software platform, 
which provides comprehensive, fully tailored and straightforward non-target analysis workflows. This platform makes 
the use, evaluation and mixing of well-tested algorithms seamless by harmonizing various common (primarily open) 
software tools under a consistent interface. In addition, patRoon offers various functionality and strategies to sim-
plify and perform automated processing of complex (environmental) data effectively. patRoon implements several 
effective optimization strategies to significantly reduce computational times. The ability of patRoon to perform 
time-efficient and automated non-target data annotation of environmental samples is demonstrated with a simple 
and reproducible workflow using open-access data of spiked samples from a drinking water treatment plant study. In 
addition, the ability to easily use, combine and evaluate different algorithms was demonstrated for three commonly 
used feature finding algorithms. This article, combined with already published works, demonstrate that patRoon helps 
make comprehensive (environmental) non-target analysis readily accessible to a wider community of researchers.

Keywords: High resolution mass spectrometry, Compound identification, Non-target analysis, Computational 
workflows
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Introduction
Chemical analysis is widely applied in environmental sci-

ences such as earth sciences, biology, ecology and envi-

ronmental chemistry, to study, e.g. geomorphic processes 

(chemical) interaction between species or the occur-

rence, fate and effect of chemicals of emerging concern 

in the environment. �e environmental compartments 

investigated include air, water, soil, sediment and biota, 

and exhibit a highly diverse chemical composition and 

complexity. �e number and quantities of chemicals 

encountered within samples may span several orders 

of magnitude relative to each other. �erefore, chemi-

cal analysis must discern compounds at ultra-trace lev-

els, a requirement that can be largely met with modern 

analytical instrumentation such as liquid or gas chroma-

tography coupled with mass spectrometry (LC-MS and 

GC–MS). �e high sensitivity and selectivity of these 

techniques enable accurate identification and quantifica-

tion of chemicals in complex sample materials.

Traditionally, a ‘target analysis’ approach is per-

formed, where identification and quantitation occur by 
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comparing experimental data with reference standards. 

�e need to pre-select compounds of interest constrains 

the chemical scope of target analysis, and hampers the 

analysis of chemicals with (partially) unknown identi-

ties such as transformation products and contaminants 

of emerging concern (CECs). In addition, the need to 

acquire or synthesize a large number of analytical stand-

ards may not be feasible for compounds with a merely 

suspected presence. Recent technological advancements 

in chromatography and high resolution MS (HRMS) 

allows detection and tentative identification of com-

pounds without the prior need of standards [1]. �is 

‘non-target’ analysis (NTA) approach is increasingly 

adopted to perform simultaneous screening of up to 

thousands of chemicals in the environment, such as find-

ing new CECs [1–6], identifying chemical transformation 

(by)products [7–12] and identification of toxicants in the 

environment [13–16].

Studies employing environmental NTA typically 

allow the detection of hundreds to thousands of differ-

ent chemicals [17, 18]. Effectively processing such data 

requires workflows to automatically extract and prior-

itize NTA data, perform chemical identification and 

assist in interpreting the complex resulting datasets. Cur-

rently available tools often originate from other research 

domains such as life sciences and may lack functionality 

or require extensive optimization before being suitable 

for environmental analysis. Examples include handling 

chemicals with low sample-to-sample abundance, recog-

nition of halogenated compounds, usage of data sources 

with environmentally relevant substances, or temporal 

and spatial trends [1, 2, 5, 6, 9, 19].

An NTA workflow can be generalized as a four 

step process (Fig.  1) [1]. Firstly, data from LC or GC-

HRMS is either acquired or retrieved retrospectively, 

and pre-treated for subsequent analysis (Fig.  1a). �is 

pre-treatment may involve conversion to open data for-

mats (e.g. mzML [20] or mzXML [21]) to increase oper-

ability with open-source software, re-calibration of mass 

spectra to improve accuracy and centroiding [22] or 

other raw data reduction steps to conserve space such 

as trimming chromatographs or filtering mass scans 

(e.g. with the functionality from the ProteoWizard suite 

[23]). Secondly (Fig.  1b), features with unique chroma-

tographic and mass spectral properties (e.g. retention 

time, accurate mass, signal intensity) are automatically 

extracted and features considered equivalent across sam-

ple analyses are grouped to allow qualitative and (semi-) 

quantitative comparison further down the workflow. 

�irdly (Fig.  1c), the feature dataset quality is refined, 

for instance, via rule-based filters (e.g. minimum inten-

sity and absence in sample blanks) and grouping of fea-

tures based on a defined relationship such as adducts or 

homologous series (e.g. “componentization”). Further 

prioritization during this step of the workflow is often 

required for efficient data analysis, for instance, based on 

chemical properties (e.g. mass defect and isotopic pat-

tern), suspected presence (i.e. “suspect screening”) or 

intensity trends in time and/or space (e.g. reviewed in 

[1]). Finally (Fig.  1d), prioritized features are annotated, 

for instance by assigning chemical formulae or com-

pounds from a chemical database (e.g. PubChem [24] or 

CompTox [25]) based on the exact mass of the feature. 

�e resulting candidates are ranked by conformity with 

MS data, such as match with theoretical isotopic pattern 

and in silico or library MS fragmentation spectra, and 

study-specific metadata, such as number of scientific ref-

erences and toxicity data [1, 19].

Various open and closed software tools are already 

available to implement (parts of ) the NTA workflow. 

Commercial software tools such as MetaboScape [26], 

UNIFI [27], Compound Discoverer [28] and ProGenesis 

Fig. 1 Generic workflow for environmental non-target analysis
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QI [29] provide a familiar and easy to use graphical user 

interface, may contain instrument specific functionality 

and optimizations and typically come with support for 

their installation and usage. However, they are generally 

not open-source or open-access and are often restricted 

to proprietary and specific vendor data formats. �is 

leads to difficulties in data sharing, as exact algorithm 

implementations and parameter choices are hidden, 

while maintenance, auditing or code extension by other 

parties is often not possible. Many open-source or open-

access tools are available to process mass spectrometry 

data, such as CFM-ID [30, 31], enviMass [32], enviPick 

[33], nontarget [34], GenForm [35], MetFrag [36], FOR-

IDENT [37], MS-DIAL [38], MS-FINDER [39], MZmine 

[40], OpenMS [41], ProteoWizard [23], RAMClustR [42], 

SIRIUS and CSI:FingerID [43–47], XCMS [48], CAMERA 

[49] and XCMS online [50] (Table 1, further reviewed in 

[51, 52]). Various open tools are easily interfaced with 

the R statistical environment [53] (Table  1). Leverag-

ing this open scripting environment inherently allows 

defining highly flexible and reproducible workflows and 

increases the accessibility of such workflows to a wider 

audience as a result of the widespread usage of R in data 

sciences. While many tools were originally developed to 

process metabolomics and proteomics data, approaches 

such as XCMS and MZmine have also been applied to 

environmental NTA studies [6, 54]. However, as stated 

above, these tools can lack the specific functionality and 

optimizations required for effective environmental NTA 

data processing. While a complete environmental NTA 

workflow requires several steps from data pre-processing 

through to automated annotation (see Fig.  1), existing 

software approaches designed for processing environ-

mental data (e.g. enviMass and nontarget) and most oth-

ers only implement part of the required functionality, 

as indicated in Table 1. Furthermore, only few workflow 

solutions support automated compound annotation. 

Moreover, available tools often overlap in functionality 

(Table 1), and are implemented with differing algorithms 

or employing different data sources. Consequently, tools 

may generate different results, as has been shown when 

generating feature data [55–59] or performing structural 

annotations [19, 60]. Hence, the need to learn, combine, 

optimize and sometimes develop or adapt various spe-

cialized software tools, and perform tedious transfor-

mation of datasets currently hinders further adoption of 

NTA, especially in more routine settings lacking appro-

priate in-house computational expertise. �us, before 

NTA is fully “ready to go” [1], a new platform is necessary 

that (a) is independent of closed MS vendor input data, 

(b) incorporates optimizations and functionality neces-

sary for a complete environmental NTA workflow and 

(c) allows researchers to seamlessly combine and evaluate 

existing and well-tested algorithms in order to tailor an 

optimal NTA workflow to the particular study types and 

methodological characteristics.

Here, we present an R based open-source software 

platform called patRoon (‘pattern’ in Dutch) provid-

ing comprehensive NTA data processing from HRMS 

data pre-treatment, detection and grouping of features, 

through to molecular formula and compound annota-

tion. �is is achieved by harmonizing various commonly 

used (and primarily open) tools in a consistent and easy 

to use interface, which provides access to well-estab-

lished algorithms without aforementioned limitations 

when used alone. Complementary and novel functional-

ity is implemented, such as automated chemical annota-

tion, visualization and reporting of results, comparing 

and combining results from different algorithms, and 

data reduction and prioritization strategies, which fur-

ther improve and simplify effective NTA data processing. 

�e architecture of patRoon is designed to be extendable 

in order to accommodate for rapid developments in the 

NTA research field.

Implementation

�e implementation section starts with an overview of 

the patRoon workflows. Subsequent sections provide 

details on novel functionality implemented by patRoon, 

which relate to data processing, annotation, visualization 

and reporting. Finally, a detailed description is given of 

the software architecture. patRoon is then demonstrated 

in the Results and discussion section. �e software tools 

and databases used for the implementation of patRoon 

are summarized in Additional file 1.

Work�ow in patRoon

patRoon encompasses a comprehensive workflow for 

HRMS based NTA (Fig.  2). All steps within the work-

flow are optional and the order of execution is largely 

customizable. Some steps depend on data from previ-

ous steps (blue arrows) or may alter or amend data from 

each other (red arrows). �e workflow commonly starts 

with pre-treatment of raw HRMS data. Next, feature data 

is generated, which consists of finding features in each 

sample, an optional retention time alignment step, and 

then grouping into “feature groups”. Finding and group-

ing of features may be preceded by automatic parameter 

optimization, or followed by suspect screening. �e fea-

ture data may then finally be used for componentization 

and/or annotation steps, which involves generation of 

MS peak lists, as well as formula and compound annota-

tions. At any moment during the workflow, the generated 

data may be inspected, visualized and treated by, e.g. rule 

based filtering. �ese operations are discussed in the next 

section.
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Several commonly used open software tools, such as 

ProteoWizard [23], OpenMS [41], XCMS [48], MetFrag 

[36] and SIRIUS [43–47], and closed software tools, such 

as Bruker DataAnalysis [61] (chosen due to institutional 

needs), are interfaced to provide a choice between mul-

tiple algorithms for each workflow step (Additional file 3: 

Table  S1). Customization of the NTA workflow may be 

achieved by freely selecting and mixing algorithms from 

different software tools. For instance, a workflow that 

uses XCMS to group features allows that these features 

originate from other algorithms such as OpenMS, a situ-

ation that would require tedious data transformation 

when XCMS is used alone. Furthermore, the interface 

with tools such as ProteoWizard and DataAnalysis pro-

vides support to handle raw input data from all major MS 

instrument vendors.

To ease parameter selection over the various feature 

finding and grouping algorithms, an automated feature 

optimization approach was adopted from the isotopo-

logue parameter optimization (IPO) R package [62], 

which employs design of experiments to optimize LC–

MS data processing parameters [63]. IPO was integrated 

in patRoon, and its code base was extended to (a) sup-

port additional feature finding and grouping algorithms 

from OpenMS, enviPick and usage of the new XCMS 3 

interface, (b) support isotope detection with OpenMS, 

(c) perform optimization of qualitative parameters and 

(d) provide a consistent output format for easy inspection 

and visualization of optimization results.

In patRoon, componentization refers to consolidat-

ing different (grouped) features with a prescribed rela-

tionship, which is currently either based on (a) highly 

similar elution profiles (i.e. retention time and peak 

shape), which are hypothesized to originate from the 

same chemical compound (based on [42, 49]), (b) par-

ticipation in the same homologous series (based on [64]) 

or (c) the intensity profiles across samples (based on [4, 

5, 65]). Components obtained by approach (a) typically 

comprise adducts, isotopologues and in-source frag-

ments, and these are recognized and annotated with 

algorithms from CAMERA [49] or RAMClustR [42]. 

Approach (b) uses the nontarget R package [34] to cal-

culate series from aggregated feature data from repli-

cates. �e interpretation of homologous series between 

replicates is assisted by merging series with overlapping 

features in cases where this will not yield ambiguities to 

other series. If merging would cause ambiguities, instead 

links are created that can then be explored interactively 

and visualized by a network graph generated using the 

igraph [66] and visNetwork [67] R packages (see Addi-

tional file 2: Figure S1).

During the annotation step, molecular formulae and/

or chemical compounds are automatically assigned and 

ranked for all features or feature groups. �e required 

MS peak list input data are extracted from all MS analysis 

data files and subsequently pre-processed, for instance, 

by averaging multiple spectra within the elution profile 

of the feature and by removing mass peaks below user-

defined thresholds. All compound databases and rank-

ing mechanisms supported by the underlying algorithms 

are supported by patRoon and can be fully configured. 

Afterwards, formula and structural annotation data may 

be combined to improve candidate ranking and manual 

interpretation of annotated spectra. More details are 

Fig. 2 Overview of the NTA patRoon workflow. All steps are optional. Steps that are connected by blue and straight arrows represent a one-way 
data dependency, whereas steps connected with red curved and dashed arrows represent steps with two-way data interaction
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outlined in the section “MS peak list retrieval, annotation 

and candidate ranking”.

Data reduction, comparison and conversion

Various rule-based filters are available for data-cleanup 

or study specific prioritization of all data obtained 

through the workflow (see Table 2), and can be inverted 

to inspect the data that would be removed (i.e. negation). 

To process feature data, multiple filters are often applied, 

however, the order may influence the final result. For 

instance, when features were first removed from blanks 

by an intensity filter, a subsequent blank filter will not 

properly remove these features in actual samples. Simi-

larly, a filter may need a re-run after another to ensure 

complete data clean-up. To reduce the influence of order 

upon results, filters for feature data are executed by 

default as follows:

1. An intensity pre-filter, to ensure good quality feature 

data for subsequent filters;

2. Filters not affected by other filters, such as retention 

time and m/z range;

3. Minimum replicate abundance, blank presence and 

‘regular’ minimum intensity;

4. Repetition of the replicate abundance filter (only if 

previous filters affected results);

5. Other filters that are possibly influenced by prior 

steps, such as minimum abundance in feature groups 

or sample analyses.

Note that the above scheme only applies to those fil-

ters requested by the user, and the user can apply another 

order if desired.

Further data subsetting allows the user to freely select 

data of interest, for instance, following a (statistical) pri-

oritization approach performed by other tools. Similarly, 

features that are unique or overlapping in different sam-

ple analyses may be isolated, which is a straightforward 

but common prioritization technique for NTA studies 

that involve the comparison of different types of samples.

Data from feature groups, components or annotations 

that are generated with different algorithms (or parame-

ters thereof ) can be compared to generate a consensus by 

only retaining data with (a) minimum overlap, (b) unique-

ness or (c) by combining all results (only (c) is supported 

for data from components). Consensus data are useful to 

remove outliers, for inspection of algorithmic differences 

or for obtaining the maximum amount of data gener-

ated during the workflow. �e consensus for formula and 

compound annotation data are generated by comparison 

of Hill-sorted formulae and the skeleton layer (first block) 

of the InChIKey chemical identifiers [72], respectively. 

For feature groups, where different algorithms may out-

put deviating retention and/or mass properties, such a 

direct comparison is impossible. Instead, the dimension-

ality of feature groups is first reduced by averaging all fea-

ture data (i.e. retention times, m/z values and intensities) 

for each group. �e collapsed groups have a similar data 

format as ‘regular’ features, where the compared objects 

represent the ‘sample analyses’. Subjection of this data to 

a feature grouping algorithm supported by patRoon (i.e. 

from XCMS or OpenMS) then allows straightforward and 

reliable comparison of feature data from different algo-

rithms, which is finally used to generate the consensus.

Hierarchical clustering is utilized for componentiza-

tion of features with similar intensity profiles or to group 

chemically similar candidate structures of an annotated 

feature. �e latter “compound clustering” assists the 

interpretation of features with large numbers of can-

didate structures (e.g. hundreds to thousands). �is 

method utilizes chemical fingerprinting and chemical 

similarity methods from the rcdk package [73] to cluster 

Table 2 Major rule-based �ltering functionality implemented in patRoon

a Retention time, chromatographic peak width, m/z and mass defect range

b e.g. adducts, isotopologues, formula composition, neutral loss

c expected formula composition based on [68–71]

Filter functionality Features Feature groups MS peak lists Formulae Compounds Components

Intensity threshold X X X

Feature  propertiesa X X

Max intensity deviation across replicates X

Minimum intensity above blank X

Minimum size or abundance X X

Top most abundant/highest scoring X X X

Minimum scoring X X

Annotationb X X X

Organic matter  rulesc X
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similar structures, and subsequent visual inspection of 

the maximum common substructure then allows assess-

ment of common structural properties among candi-

dates (methodology based on [74]). Cluster assignment 

for both componentization and compound annotation 

approaches is performed automatically using the dynam-

icTreeCut R package [75]. However, clusters may be re-

assigned manually by the desired amount or tree height.

Several data conversion methods were implemented to 

allow interoperability with other software tools. All work-

flow data types are easily converted to commonly used R 

data types (e.g. data.frame or list), which allows 

further processing with other R packages. Furthermore, 

feature data may be converted to and from native XCMS 

objects (i.e. xcmsSet and XCMSnExp) or exported to 

comma-separated values (CSV) formats compatible with 

Bruker ProfileAnalysis or TASQ, or MZmine.

MS peak list retrieval, annotation and candidate ranking

Data for MS and MS/MS peak lists for a feature are 

collected from spectra recorded within the chromato-

graphic peak and averaged to improve mass accuracies 

and signal to noise ratios. Next, peak lists for each fea-

ture group are assigned by averaging the mass and inten-

sity values from peak lists of the features in the group. 

Mass spectral averaging can be customized via several 

data clean-up filters and a choice between different mass 

clustering approaches, which allow a trade-off between 

computational speed and clustering accuracy. By default, 

peak lists for MS/MS data are obtained from spectra that 

originate from precursor masses within a certain toler-

ance of the feature mass. �is tolerance in mass search 

range is configurable to accommodate the precursor iso-

lation window applied during data acquisition. In addi-

tion, the precursor mass filter can be completely disabled 

to accommodate data processing from data-independent 

MS/MS experiments, where all precursor ions are frag-

mented simultaneously.

�e formula annotation process is configurable to allow 

a tradeoff between accuracy and calculation speeds. Can-

didates are assigned to each feature group, either directly 

by using group averaged MS peak list data, or by a con-

sensus from formula assignments to each individual fea-

ture in the group. While the latter inherently consumes 

more time, it allows removal of outlier candidates (e.g. 

false positives due to features with poor spectra). Can-

didate ranking is improved by inclusion of MS/MS data 

in formula calculation (optional for GenForm [35] and 

DataAnalysis).

Formula calculation with GenForm ranks formula can-

didates on isotopic match (amongst others), where any 

other mass peaks will penalize scores. Since MS data of 

“real-world” samples typically includes many other mass 

peaks (e.g. adducts, co-eluting features, background 

ions), patRoon improves the scoring accuracy by auto-

matic isolation of the feature isotopic clusters prior to 

GenForm execution. A generic isolation algorithm was 

developed, which makes no assumptions on elemental 

formula compositions and ion charges, by applying vari-

ous rules to isolate mass peaks that are likely part of the 

feature isotopic cluster (see Additional file 2: Figure S2). 

�ese rules are configured to accommodate various data 

and study types by default. Optimization is possible, for 

instance, to (a) improve studies of natural or anthropo-

genic compounds by lowering or increasing mass defect 

tolerances, respectively, (b) constrain cluster size and 

intensity ranges for low molecular weight compounds or 

(c) adjust to expected instrumental performance such as 

mass accuracy. Note that precursor isolation can be per-

formed independently of formula calculation, which may 

be useful for manual inspection of MS data.

Compound annotation is usually the most time and 

resource intensive process during the non-target work-

flow. As such, instead of annotating individual features, 

compound assignment occurs for the complete feature 

group. All compound databases supported by the under-

lying algorithms, such as PubChem [24], ChemSpider 

[76] or CompTox [25] and other local CSV files, as well 

as the scoring terms present in these databases, such as 

in silico and spectral library MS/MS match, references 

in literature and presence in suspect lists, can be utilized 

with patRoon. Default scorings supported by the selected 

algorithm/database or sets thereof are easily selectable to 

simplify effective compound ranking. Furthermore, for-

mula annotation data may be incorporated in compound 

ranking, where a ‘formula score’ is calculated for each 

candidate formula, which is proportional to its ranking 

in the formula annotation data. Execution of unattended 

sessions is assisted by automatic restarts after occurrence 

of timeouts or errors (e.g. due to network connectivity) 

and automatic logging facilities.

Visualization, reporting and graphical interface

In patRoon, visualization functionality is provided for 

feature and annotation data (e.g. extracted ion chromato-

grams (EICs) and annotated spectra), to compare work-

flow data (i.e. by means of Venn, chord and UpSet [77] 

diagrams, using the VennDiagram [78], circlize [79] and 

UpSetR [80] R packages, respectively) and others such 

as plotting results from automatic feature optimization 

experiments and hierarchical clustering data. Reports can 

be generated in a common CSV text format or in a graph-

ical format via export to a portable document file (PDF) 

or hypertext markup language (HTML) format. �e lat-

ter are generated with the R Markdown [81, 82] and flex-

dashboard [83] R packages, and provide an easy to use 
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interface for interactive sorting, searching and browsing 

reported data. As plotting and reporting functionalities 

can be performed at any stage during the workflow, the 

data that is included in the reports is fully configurable.

While patRoon is primarily interfaced through R, sev-

eral graphical user interface tools are provided to assist 

the (novice) user. Most importantly, patRoon provides a 

Shiny [84] based graphical user interface tool that auto-

matically generates a commented template R script 

from visual user parameter input selection, such as MS 

data input files, workflow algorithms and other com-

mon workflow parameters (Fig.  3a). Secondly, chroma-

tographic data of features may be inspected either by 

automatic addition of EICs in a Bruker DataAnalysis ses-

sion or with a Shiny graphical based interface (Fig. 3b).

Software architecture

patRoon is distributed as an R package. Its source code 

is primarily written in the R language, with some sup-

port code written in C++ and JavaScript. Both Micro-

soft Windows (hereafter referred to as Windows) and 

Linux platforms are supported (support for macOS is 

envisaged in the future). Several external dependencies 

are required; notable examples are in Additional file  3: 

Table  S1. GenForm is automatically compiled during 

package installation. For Windows platforms, an instal-

lation script is provided to install and configure patRoon 

and all of its dependencies automatically. Documentation 

includes a handbook, tutorial and full reference manual 

[85–88], which are produced with the bookdown [89, 90], 

R Markdown and roxygen2 [91] R packages, respectively. 

Example data is contained in the patRoonData R package 

[92, 93].

An important design goal was to provide a consistent, 

generic and easy to use interface that does not require 

the user to know the implementation and interfacing 

details of the supported algorithms. Each workflow step 

is executed by a generator function that takes the desired 

algorithm and its parameters as input and returns objects 

from a common set of data formats (see Fig. 4). Names 

for commonly used parameters supported by multiple 

algorithms are standardized for consistency and defaults 

are set where reasonable. Furthermore, the format of 

input data such as retention time units as well as formula 

and adduct specifications are harmonized and automati-

cally converted to the format expected by the algorithm. 

Nearly all parameters from the underlying algorithm 

can be set by the user, hence, full configurability of the 

workflow is retained wherever possible. Generic nam-

ing schemes are applied to output data, which assist the 

user in comparing results originating from different algo-

rithms. All exported functions from patRoon verify user 

input with the checkmate [94] package, which efficiently 

performs tests such as correctness of value range and 

type, and prints descriptive messages if input is incorrect.

A set of generic methods are defined for workflow 

classes that perform general data inspection, selec-

tion, conversion and visualization, irrespective of the 

Fig. 3 Graphical user interface tools in patRoon. Tools are provided a to create a new patRoon data analysis project and b to inspect feature 
chromatography data



Page 9 of 25Helmus et al. J Cheminform            (2021) 13:1  

algorithm that was used to generate the object (see 

Table 3). Consequently, the implementation of common 

function names for multiple output classes allows a pre-

dictable and consistent user interface.

Several optimization strategies are employed in 

patRoon to reduce computational requirements and 

times. Firstly, external command line (CLI) tools are 

executed in parallel to reduce overall execution times 

for repetitive (e.g. per sample analysis or per feature) 

calculations. Commands are queued (first in, first out) 

and their execution is handled with the processx pack-

age [95]. Secondly, functions employing time intensive 

algorithms automatically cache their (partial) results in a 

local SQLite database file, which is accessed via the DBI 

[96] and RSQLite [97] R packages. �irdly, performance 

critical code dealing with OpenMS data files and loading 

chromatographic data was written in C++ (interfaced 

with Rcpp [98–100]) to significantly reduce times needed 

to read or write data. Fourthly, the output files from 

OpenMS tools are loaded in chunks using the pugixml 

software library [101] to ensure a low memory footprint. 

Finally, reading, writing and processing (large) internal 

tabular data is performed with the data.table R package, 

which is a generally faster and more memory efficient 

drop-in replacement to the native tabular data format of 

R (data.frame), especially for large datasets [102].

Interfacing with ProteoWizard [23], OpenMS, Gen-

Form, SIRIUS and MetFrag occurs by wrapper code that 

automatically executes the CLI tools and perform the 

data conversions necessary for input and output files. 

An alternative interface to MetFrag is also provided by 

employing the metfRag R package [103], however, in our 

experience this option is currently significantly slower 

than the CLI and therefore not used by default. For tools 

that are not readily controllable from R (i.e. ProfileAnaly-

sis, TASQ and MZmine), interfacing occurs via import-

ing or exporting CSV files (only export is supported for 

MZmine). Finally, the RDCOMClient R package [104] 

is used to interface with Bruker DataAnalysis via the 

distributed component object model, which allows 

Fig. 4 Interface for the patRoon workflow. The workflow steps are performed by a set of functions that execute the selected algorithm and 
return the data in a harmonized format by utilizing the ‘S4’ object oriented programming approach of R. These objects all derive from a common 
base class and may be further sub-classed in algorithm specific classes (as is exemplified for features). Generic functions are defined for all 
workflow classes to implement further data processing functionality in a predictable and algorithm independent manner (see also Table 3). Further 
information is provided in the reference manual [85, 86]

Table 3 Common generic methods de�ned in patRoon to process work�ow data

Generic Purpose

length(), show(), algorithm(), names(), groupNames() Obtain general object information such as object length and 
unique identifiers for contained results

filter() Rule-based filtering operations

[, [[, $ operators Subsetting or extracting data

as.data.table(), as.data.frame() Conversion to data.table or data.frame object

unique(), overlap() Extract unique or overlapping features across replicates

consensus() Generates a consensus between different objects of the same class

plot(), plotEIC(),
plotSpec()

Plot general, chromatographic and annotation data

plotChord(), plotUpSet(), plotVenn() Comparison of feature data or workflow objects from different 
algorithms by chord, UpSet and Venn diagrams
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automation of DataAnalysis functionality from R that 

otherwise would only be available via its integrated visual 

basic scripting environment.

A continuous integration pipeline performs automated 

tests during development and delivers files to simplify 

installation of patRoon and all its dependencies (Addi-

tional file 2: Figure S3). More than 900 unit tests are per-

formed (> 80% code coverage) with the testthat and vdiffr 

R packages [105, 106]. After successful test completion, 

the final step involves building (a) Windows binary R 

packages of patRoon and its dependencies and (b) Linux 

Docker images with a complete working environment 

of patRoon and the RStudio integrated development 

environment [107] (based on [108]), which both facili-

tate installation of patRoon with tested and compatible 

dependencies.

Results and discussion
�is section starts with benchmarks of important optimi-

zation strategies implemented in patRoon, and concludes 

with demonstrations on how patRoon can implement 

a common NTA workflow and the algorithm consen-

sus functionality. Since the implementation of individ-

ual workflow steps, such as obtaining feature data and 

annotations, heavily rely on well-established algorithms 

that have been evaluated elsewhere, further evaluations 

have not been performed here. Furthermore, an objec-

tive comparison of patRoon with other NTA workflows 

is currently being performed as part of a collaborative 

trial organized by the NORMAN Network [109]. Recent 

applications of complete environmental NTA studies 

performed with patRoon are already described in several 

publications [7, 12, 14, 71, 110].

Benchmark and demonstration data

�e data used to benchmark and demonstrate patRoon 

were obtained with an LC-HRMS analysis of influent and 

effluent samples from two drinking water treatment pilot 

installations and a procedural blank. �e pilot installa-

tions were fed by surface water (Meuse and IJsselmeer, 

the Netherlands) that were subjected to various pre-

treatment steps (e.g. rapid and slow sand filtration, drum 

sieves and dune filtration). Effluent samples investigated 

in this study were produced after advanced oxidation uti-

lizing  O3 and  H2O2 or ultrafiltration and reverse osmosis. 

Sample blanks were obtained from tap water. All samples 

were filtered in triplicate by 0.2  µm regenerated-cellu-

lose filters. Influent samples were spiked with a set of 18 

common environmental contaminants (see Table 5). �e 

analyses were performed using an LC-HRMS Orbitrap 

Fusion system (�ermoFisher Scientific, Bremen, Ger-

many) operating with positive electrospray ionization. 

Further details of the pilot installations and analytical 

conditions are described in [11]. �e raw data files can be 

obtained from [111].

Parallelization benchmarks

Several benchmarks were performed to test the mul-

tiprocessing functionality of patRoon. Tests were per-

formed on a personal computer equipped with an 

 Intel® Core™ i7-8700  K CPU (6 cores, 12 threads), 32 

gigabyte RAM, SATA SSD storage and the Windows 10 

Enterprise operating system. Benchmarks were per-

formed in triplicate using the microbenchmark R pack-

age [112]. Standard deviations were below ten percent 

(see Fig.  5a). Benchmarking was performed on msCon-

vert, FeatureFinderMetabo, GenForm, SIRIUS and Met-

Frag. �e multiprocessing functionality was compared 

to native multithreading for the tools that supported 

this (FeatureFinderMetabo, SIRIUS and MetFrag). In 

addition, the performance of batch calculations with 

multiprocessing was compared with native batch cal-

culation modes of tools where possible (msConvert and 

SIRIUS). Parallelization methods were tested with 1-12 

parallel processes or threads (i.e. up to full utilization of 

both CPU threads of each core). Input conditions were 

chosen to simulate “simple” and “complex” workflows, 

where the latter resulted in more demanding calculations 

with ~ 2–10 × longer mean execution times (Table 4). �e 

caching functionality of patRoon was disabled, where 

appropriate, to obtain representative and reproducible 

test results. Prior to benchmarking, candidate chemi-

cal compounds from PubChem for MetFrag tests were 

cached in a local database to exclude influences from 

network connectivity. Similarly, general spectral data 

required to post-process FeatureFinderMetabo results 

were cached, as this is usually loaded once during a 

workflow, even with varying input parameters. �e input 

features for GenForm tests that resulted in very long 

individual run times (i.e. > 30  s) were removed to avoid 

excessive benchmark runtimes. Generating feature and 

MS peaklist input data for annotation related tests was 

performed with patRoon using algorithms from OpenMS 

and mzR [113], respectively. Pre-treatment of feature 

data consisted of removal of features with low inten-

sity and lacking MS/MS data. �e number of features 

for SIRIUS (except tests with native batch mode) and 

MetFrag benchmarks were further reduced by applica-

tion of blank, replicate and intensity filters to avoid long 

total runtimes due to their relatively high individual run 

times. Finally, the feature dataset was split in low (0-500) 

and high (500-1000) m/z portions, which were purposed 

for execution of “simple” and “complex” experiments, 

respectively. For more details of the workflow and input 

parameters see the R script code in Additional file 4. �e 
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Fig. 5 Parallelization benchmark results. a Benchmark results for commonly used CLI tools applied in patRoon workflows under varying 
parallelization conditions. The tested tools were msConvert, FeatureFinderMetabo (FFM), GenForm, SIRIUS and MetFrag. Tests were performed with 
“simple” (left) and “complex” (right) input conditions (Table 4) to simulate varying workflow complexity. Parallelization was performed with the 
multiprocessing functionality of patRoon (top) or by using native multithreading (bottom, for tools that supported this). Graphs represent number 
of processes or threads versus relative execution time (normalized to sequential results). The dotted grey lines represent the theoretical trend if 
maximum parallelization performance is achieved. The dashed blue line represents the number of physical cores that became the default selection 
in patRoon based on these results. b Comparison of execution times (normalized to the execution times of the unoptimized results) when tools are 
executed without optimizations (green), executed with native multithreading (FeatureFinderMetabo, SIRIUS and MetFrag) or batch mode (GenForm) 
(orange), executed with multiprocessing (purple) or a combination of the latter two (pink), using simple (left) and complex (right) input conditions. 
c Overview of execution times for a complete patRoon workflow executed under optimized versus unoptimized conditions. All results for msConvert 
and SIRIUS were obtained without enabling their native batch mode
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software tools used for benchmarking are summarized in 

Additional file 1. 

When multiprocessing was used all tests (except Gen-

Formsimple, discussed below) showed a clear downward 

trend in execution times (down to ~ 200–500%), and 

optimum conditions were generally reached when the 

number of parallel processes equaled the number of 

physical cores (six, see Fig. 5a). When algorithms are fully 

parallelized, execution times are expected to follow an 

inverse relationship with the number of parallel process 

(i.e. 1/n) and this was observed most closely with msCon-

vert, whereas execution times for other tools show a less 

Table 4 Utilized conditions for “simple” and “complex” tests

a Features with m/z 0–500 (low) and m/z 500–1000 (high)

b Based on a test run without parallelization (n = 3)

c Supports (con�gurable) native multithreading

d Number of executions for native batch mode benchmarks

Test Input  conditionsa Executions Mean 
individual run 
 timeb (s)

msConvert Simple Conversion centroided input 15 4.8

Complex Centroiding and conversion non-centroided input 15 8.5

FeatureFinderMetaboc Simple High intensity threshold 15 4.1

Complex Low intensity threshold 15 38

GenForm Simple CHNO elements, low m/z 512 0.2

Complex CHNOPS elements, high m/z 128 1.7

SIRIUSc Simple CHNO elements, low m/z 152  (512d) 2.3

Complex CHNOPS elements, high m/z 44  (128d) 7.7

MetFragc Simple Limited scoring, narrow mass search (5 ppm), low m/z 152 3.0

Complex Thorough scoring, wide mass search (20 ppm), high m/z 44 8.6

Table 5 Spiked compounds and their annotation rankings obtained with the demonstrated suspect screening work�ow

a Averaged value from feature group assigned to suspect

b A mixture was spiked (35%/65%), experimental retention times were not determined and therefore unknown

c Two chromatographic peaks observed [11]

Spiked compound Spike concentration 
(µg/l)

Retention  timea 
(min)

m/za Compound rank Formula rank

(4/5)-Methylbenzotriazoleb 1 10.0/10.1 134.0709 2/4 1

Aniline 1 – – – –

Barbital 10 2.3 185.0918 1 1

Benzotriazole 1 8.0 120.0553 1 1

Carbamazepine 1 13.3 237.1018 1 2

Carbendazim 1 6.3 192.0764 1 1

Dimethomorphc 1 16.2/16.6 388.1303 1/1 25/21

Gabapentin 1 6.4 172.1328 1 1

Hexamethylenetetramine 3 2.1 141.1132 1 1

Melaminec 3 2.1/2.3 127.0724 1/1 1/1

Metformin 5 2.2 130.1084 1 1

Propranolol 1 11.8 260.1640 1 1

Terbuthylazine 1 16.9 230.1163 1 2

Tetraglyme 3 7.8 223.1536 1 1

Tiamulin 1 13.8 494.3290 1 3

Tramadol 1 9.4 264.1953 1 1

Triphenylphosphine oxide 1 15.4 279.0928 1 2



Page 13 of 25Helmus et al. J Cheminform            (2021) 13:1  

steep reduction. Furthermore, utilizing multiple threads 

per core (i.e. hyperthreading) did not reduce execution 

times further and even slowed down in some cases (e.g. 

MetFragcomplex). �ese deviations in scalability were not 

investigated in detail. Since they were more noticeable 

under complex conditions, it is expected that this may 

be caused by (a) more involved post-processing results 

after each execution, which is currently not parallelized, 

and (b) increased memory usage, which may raise the 

overhead of context switches performed by the operating 

system. Nevertheless, the experiments performed here 

clearly show that the multiprocessing functionality of 

patRoon can significantly reduce execution times of vari-

ous steps in an NTA workflow.

An exception, however, was the test performed with 

GenFormsimple, which exhibited no significant change in 

execution times with multiprocessing (Fig.  5a). Due to 

the particularly small mean run times (0.2 s) of this test, 

it was hypothesized that the overhead of instantiating a 

new process from R (inherently not parallelized) domi-

nated the overall run times. To mitigate this, a ‘batch 

mode’ was implemented, where such process initiation 

occurs from a command shell sub-process instead. Here, 

multiple commands are executed by the sub-process in 

series, and the desired degree of parallelization is then 

achieved by launching several of these sub-processes and 

evenly dividing commands amongst them. �e maximum 

size of each series (or “batch size”) is configurable, and 

represents a balance between reduction of process ini-

tiation overhead and potential loss of effectively load bal-

ancing of, for instance, commands with highly deviating 

execution times. Next, various batch sizes were tested for 

GenForm, both with and without multiprocessing paral-

lelization (Additional file 2: Figure S4). For GenFormsimple, 

execution times clearly decreased with increasing batch 

sizes, however, no further reduction was observed with 

parallelism. In contrast, serial execution of GenFormcom-

plex was not affected by varying batch size, whereas added 

parallelism reduced execution times for small batch sizes 

(≤ 8), but significantly increased such times for larger 

sizes. �e results demonstrate that the typical short lived 

GenForm executions clearly benefit from batch mode. 

In addition, it is expected that by further increasing the 

batch size for GenFormsimple, overall lifetimes of batch 

sub-processes may increase sufficiently to allow better 

utilization of parallelization. However, since GenForm-

complex results for larger batch sizes clearly show possible 

performance degradation for more complex calculations 

(e.g. due to suboptimal load balancing), eight was con-

sidered as a ‘safe’ default which improves overall perfor-

mance for both simple and complex calculation scenarios 

(Fig. 5b).

Utilizing native multithreading for FeatureFinderMe-

tabo, SIRIUS (without native batch mode) and MetFrag 

yields only relatively small reductions in their execution 

times (Fig. 5b). Under optimum conditions (6-8 threads), 

the most significant drop was observed for SIRIUScomplex 

(~ 40%), followed by FeatureFinderMetabosimple, Feature-

FinderMetabocomplex and MetFragcomplex-C (~ 20%). �ese 

results suggest that native multithreading only yields par-

tial parallelization, which primarily occurs with complex 

input conditions. Note that SIRIUS supports different 

linear programming solvers (Gurobi [114], CPLEX [115] 

and the default GLPK [116]), which may influence over-

all performance and parallelization [117]. Nevertheless, 

a comparison between these solvers did not reveal sig-

nificant changes with our experimental conditions (Addi-

tional file  2: Figure S5). Combining the multiprocessing 

functionality with native multithreading under optimum 

conditions (i.e. 6 parallel processes/threads) only reduces 

execution times for SIRIUScomplex (Fig. 5b). As such, both 

performance improvements and scalability of the mul-

tiprocessing implementation of patRoon appear highly 

effective at this stage.

�e native batch modes of msConvert and SIRIUS allow 

calculations from multiple inputs within a single execu-

tion. �is reduces the total number of tool executions, 

which may (1) lower the accumulated overhead associ-

ated with starting and finishing tool executions and (2) 

hamper effective parallelization from multiprocessing, 

especially if executions are less than the available CPU 

cores. �e combination of multiprocessing (optimum 

conditions) and native batch mode was benchmarked 

with increasing number of inputs per tool execution 

(i.e. the native batch size; Additional file  2: Figure S6). 

For msConvert, execution times were largely unaffected 

by the input batch size if multiprocessing was disabled, 

which indicates a low execution overhead. Lowest execu-

tion times were observed when multiprocessing was ena-

bled with small batch sizes (≤ 25% of the total inputs), 

which indicates a lack of native parallelization support. In 

contrast, SIRIUS showed significantly lower overall exe-

cution times with increasing batch sizes (up to ~ 7000% 

and ~ 320% for SIRIUSsimple and SIRIUScomplex, respec-

tively), while enabling multiprocessing did not reduce 

execution times for batch sizes > 1. �ese results show 

that (1) SIRIUS has a relative large execution overhead, 

which impairs multiprocessing performance gains, and 

(2) supports effective native parallelized batch execution. 

�us, SIRIUS performs most optimal if all calculations 

are performed within a single execution. Similar to previ-

ous SIRIUS benchmarks, no significant differences were 

found across different linear solvers (Additional file  2: 

Figure S7). �e results demonstrate that multiprocess-

ing may improve efficiency for batch calculations with 
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tools with low execution overhead and/or lack of native 

parallelization. Nonetheless, the dramatic improvement 

in SIRIUS calculation times when using the native batch 

mode indicates that software authors should gener-

ally consider implementing native threaded batch mode 

functionality if large batch calculations are an expected 

use case.

Finally, the implemented optimization strategies were 

tested for a complete patRoon NTA workflow consisting 

of typical data processing steps and using all previously 

tested tools. �e chosen input conditions roughly fell 

in between the aforementioned “simple” and “complex” 

conditions (see code in Additional file 4). Note that opti-

mization strategies were unavailable for some steps (e.g. 

grouping of features and collection of MS peak lists), and 

native batch mode was not used in order to demonstrate 

the usefulness of multiprocessing for tools that do not 

support this (e.g. other tools than msConvert and SIR-

IUS and those potentially available in future versions of 

patRoon). Regardless, the benchmarks revealed a reduc-

tion in total run times of ~ 50% (from ~ 200 to ~ 100 min; 

Fig. 5c). Since execution times of each step may vary sig-

nificantly, the inclusion of different combinations of steps 

may significantly influence overall execution times.

�e use of multiprocessing for all tools (except SIRIUS), 

the implemented batch mode strategies for GenForm 

and the use of the native batch mode supported by SIR-

IUS were set as default in patRoon with the determined 

optimal parameters from the benchmarks results. How-

ever, the user can still freely configure all these options 

to potentially apply further optimizations or otherwise 

(partially) disable parallelization to conserve system 

resources acquired by patRoon.

As a final note, it is important to realize that a com-

parison of these benchmarks with standalone execution 

of investigated tools is difficult, since reported execution 

times here are also influenced by (a) preparing input and 

processing output and (b) other overhead such as pro-

cess creation from R. However, (b) is probably of small 

importance, as was revealed by the highly scalable results 

of msConvert where the need to perform (a) is effectively 

absent. Furthermore, the overhead from (a) is largely 

unavoidable, and it is expected that handling of input 

and output data is still commonly performed from a data 

analysis environment such as R. Nonetheless, the various 

optimization strategies employed by patRoon minimize 

such overhead, and it was shown that the parallelization 

functionality often provide a clear advantage in efficiency 

when using typical CLI tools in an R based NTA work-

flow, especially considering the now widespread avail-

ability of computing systems with increasing numbers of 

cores.

Demonstration: suspect screening

�e previous section investigated several paralleliza-

tion strategies implemented in patRoon for efficient 

data processing. A common method in environmental 

NTA studies to increase data processing efficiency and 

reducing the data complexity is by merely screening for 

chemicals of interest. �is section demonstrates such a 

suspect screening workflow with patRoon, consisting of 

(a) raw data pre-treatment, (b) extracting, grouping and 

suspect screening of feature data, and finally (c) annotat-

ing features to confirm their identity. During the work-

flow several rule-based filters are applied to improve data 

quality. �e ‘suspects’ in this demonstration are, in fact, 

a set of compounds spiked to influent samples (Table 5), 

therefore, this brief NTA primarily serves for demonstra-

tion purposes. After completion of the suspect screening 

workflow, several methods are demonstrated to inspect 

the resulting data.

Suspect screening: work�ow

�e code described here can easily be generated with the 

newProject() function, which automatically generates 

a ready-to-use R script based on user input (section “Vis-

ualization, reporting and graphical interface”).

First, the patRoon R package is loaded and a data.

frame is generated with the file information of the sam-

ple analyses and their replicate and blank assignments. 

Next, this information is used to centroid and convert the 

raw analyses files to the open mzML file format, a neces-

sary step for further processing.
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�e next step involves finding features and grouping 

them across samples. �is example uses the OpenMS 

algorithms and sets several algorithm specific parameters 

that were manually optimized for the employed analytical 

instrumentation to optimize the workflow output. Other 

algorithms (e.g. enviPick, XCMS) are easily selected by 

changing the algorithm function parameter.

Several rule-based filters are then applied for general 

data clean-up, followed by the removal of sample blanks 

from the feature dataset.
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Next, features are screened with a given suspect list, 

which is a CSV file read into a data.frame contain-

ing the name, SMILES and (optionally) retention time 

for each suspect (see Additional file 5). While the list in 

this demonstration is rather small (18 compounds, see 

Table 5), larger lists containing several thousands of com-

pounds such as those available on the NORMAN net-

work Suspect List Exchange [118] can also be used. �e 

screening results are returned in a data.frame, where 

each row is a hit (a suspect may occur multiple times) 

containing the linked feature group identifier and other 

information such as detected m/z and retention time 

(deviations). Finally, this table is used to transform the 

original feature groups object (fGroups) by removing 

any unassigned features and tagging remainders by their 

suspect name.

In the final step of this workflow annotation is per-

formed, which consists of (a) generation of MS peak list 

data, (b) general clean-up to only retain significant MS/

MS mass peaks, automatic annotation of (c) formulae and 

(d) chemical compounds, and (e) combining both anno-

tation data to improve ranking of candidate compounds. 

As with previous workflow steps, the desired algorithms 

(mzR, GenForm and MetFrag in this example) are set 

using the algorithm function parameter. Similarly, 

the compound database used by MetFrag (here Comp-

Tox via a local CSV file obtained from [119]) can easily be 

changed to other databases such as PubChem, ChemSpi-

der or another local file.
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Suspect screening: data inspection

All data generated during the workflow (e.g. features, 

peak lists, annotations) can be inspected by overloads of 

common R methods.

Furthermore, all workflow data can easily be subset 

with, e.g. the R subset operator (“[“), for instance, to per-

form a (hypothetical) prioritization of features that are 

most intense in the effluent samples.
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Visualization of data generated during the workflow, 

such as an overview of features, chromatograms, anno-

tated MS spectra and uniqueness and overlap of features, 

can be performed by various plotting functions (see 

Fig. 6).

Fig. 6 Common visualization functionality of patRoon applied to the demonstrated workflow. From left to right: an m/z vs retention time plot of all 
feature groups uniquely present in the samples, an EIC for the tramadol suspect, a compound annotated spectrum for the benzotriazole suspect 
and comparison of feature presence between sample groups using UpSet [77], Venn (influent/effluent A) and chord diagrams
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�e final step in a patRoon NTA workflow involves 

automatic generation of comprehensive reports of vari-

ous formats which allow (interactive) exploration of all 

data (see Additional file 2: Figure S8).

Table 6 Summarizing results for  the  demonstrated 

patRoon NTA work�ow

a Replicate �lters are repeated if necessary, see section “Data reduction, 

comparison and conversion”

Amount

Features Total found 57,113 (mean 3808/sample)

Feature groups Raw dataset 19,970

Replicate filters (1st  passa) 4719 (− 76%)

Blank filter 2933 (− 85%)

Intensity filters 964 (− 95%)

Replicate filters (2nd 
 passa)

678 (− 97%)

Suspects Total found 19 out of 20

Annotated 19

Formulae Total candidates 163 (mean 9/feature group)

Correctly ranked 1st 13 (68%)

Correctly ranked 1st–2nd 16 (84%)

Correctly ranked 1st–5th 17 (89%)

Compounds Total candidates 1017 (mean 54/feature 
group)

Correctly ranked 1st 17 (85%)

Correctly ranked 1st–2nd 18 (90%)

Correctly ranked 1st–5th 19 (100%)

Table 7 Summary of the feature consensus demonstration results. Work�ow details can be found in Additional �le 6

a Italic values in parentheses are unique to the algorithm

b Using the EPA CompTox database

Algorithma Consensus

OpenMS XCMS enviPick Combined Full overlap

Features 57,113 32,078 11,431

Feature groups (un-filtered) 19,970 11,166 2809

Feature groups 678 (95) 801 (238) 836 (208) 1243 370

 With formulas 521 (75) 614 (169) 656 (168) 955 291

 With  compoundsb 251 (33) 291 (68) 298 (62) 440 159

Detected suspects 17 of 18 17 of 18 17 of 18 17 of 18 17 of 18

Suspect screening: results
A summary of data generated during the NTA workflow 

demonstrated here is shown in Tables 5 and 6. �e com-

plete workflow finished in approximately 8 min (employ-

ing a laptop with an  Intel® Core™ I7-8550U CPU, 16 

gigabyte RAM, NVME SSD and the Windows 10 Pro 

operating system). While nearly 60,000 features were 

grouped into nearly 20,000 feature groups, the majority 

(97%, 678 remaining) were filtered out during the various 

pre-treatment filter steps. Regardless, most suspects were 

found (17/18 attributed to 19/20 individual chromato-

graphic peaks, Table 5), and the missing suspect (aniline) 

could be detected when lowering the intensity thresh-

old of the filter() function used to post-filter feature 

groups in the workflow. �e majority of suspects (17) 

were annotated with the correct chemical compound as 

first candidate (Table  6), the two n-methylbenzotriazole 

isomer suspects were ranked as second or fourth. Results 

for formulae assignments were similar, with the excep-

tion of dimethomorph, where the formula was ranked in 

only the top 25 (the candidate chemical compound was 

ranked first, however).

While this demonstration conveys a relative sim-

ple NTA with ‘known suspects’, the results show that 

patRoon is (a) time-efficient on conventional computer 

hardware, (b) allows a straightforward approach to per-

form a complete and tailored NTA workflow, (c) provides 

powerful general data clean-up functionality to prioritize 
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data and (d) performs effective automated annotation of 

detected features.

Demonstration: algorithm consensus

�is section briefly demonstrates how the consensus 

functionality of patRoon can be used to compare and 

combine output from the supported algorithms from 

OpenMS, XCMS and enviPick. �e MS data from the sus-

pect screening demonstration above was also used here. 

�e full processing script can be found as Additional 

file 6.

To obtain the feature data the findFeatures(), 

groupFeatures() and filter() functions were used as 

was demonstrated previously (see Additional file 6). �e 

first step is to create a comparison from this data, which 

is then used to create a consensus (discussed in section 

“Data reduction, comparison and conversion”). �e con-

sensus can be formed from combining all data or from 

overlapping or unique data, which can then be inspected 

with the aforementioned data inspection functionality.

A summary of the results is shown in Table  7 and 

Additional file  2: Figure S9. While the number of fea-

tures prior to grouping and filtering varied significantly 

between algorithms (~ 10 000 to ~ 60 000), they were 

roughly equal after pre-treatment: 678 (OpenMS), 801 

(XCMS) and 836 (enviPick). Combining these resulted in 

1243 grouped features, of which 541 (44%) were unique 

to one algorithm, 332 (27%) were shared amongst two 

algorithms and 370 (30%) fully overlapped. Applica-

tion of the suspect screening workflow from the previ-

ous section revealed that the same 17 out of 18 suspects 

were present in all the algorithm specific, combined 

and overlapping feature datasets. Still, the results from 

this demonstration indicates that each algorithm gener-

ates unique results. Dedicated efforts such as ENTACT 

[120–122] will help to unravel the importance of unique 

and overlapping algorithm results, however, such studies 

are out of the scope of this article. Regardless, this dem-

onstration showed how patRoon provides researchers the 

tools needed to easily use and combine workflow data 

from different algorithms to perform such an evaluation 

for their use cases.

Conclusions
�is paper presents patRoon, a fully open source plat-

form that provides a comprehensive MS based NTA data 

processing workflow developed in the R environment. 

Major workflow functionality is implemented through 

the usage of existing and well-tested software tools, con-

necting primarily open and a few closed approaches. �e 

workflows are easily setup for common use cases, while 

full customization and mixing of algorithms allows for 

execution of completely tailored workflows. In addition, 

extensive functionality related to data processing, anno-

tation, visualization, reporting and others was imple-

mented in patRoon to provide an important toolbox for 

effectively handling complex NTA studies. �e easy and 

predictable interface of patRoon lowers the computa-

tional expertise required of users, making it available 

for a broad audience. It was shown that the optimiza-

tion strategies implemented reduced the computational 

times. Furthermore, it was demonstrated how patRoon 

can be used to perform a straightforward and effective 

suspect screening workflow and how it can easily gen-

erate, compare and combine results from different NTA 

workflow algorithms.
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patRoon has been under development for several 

years and has already been applied in a variety of stud-

ies, such as the characterization of organic matter [71], 

elucidation of transformation products of biocides [7, 

12], assessment of removal of polar organics by reversed-

osmosis drinking water treatment [14] and the investiga-

tion of endocrine disrupting chemicals in human breast 

milk [110]. patRoon will be maintained to stay compat-

ible with its various dependencies and further develop-

ment is planned. �is includes extension of integrated 

workflow algorithms for new and less commonly used 

ones and the implementation of additional componen-

tization strategies to help prioritizing data. Addition of 

new workflow functionality is foreseen, such as usage 

of ion-mobility spectrometry data to assist annotation, 

automated screening of transformation products (e.g. 

utilizing tools such as BioTransformer [123]), prediction 

of feature quantities for prioritization purposes (recently 

reviewed in [124]) and automated chemical classification 

(e.g. through ClassyFire [125]). Finally, interfacing with 

other R based mass spectrometry software such as those 

provided by the “R for Mass Spectrometry” initiative 

[126] is planned to further improve the interoperability 

of patRoon. �e use in real-world studies, feedback from 

users and developments within the non-target analysis 

community, are all critical in determining future direc-

tions and improvements of patRoon. We envisage that 

the open availability, straightforward usage, vendor inde-

pendence and comprehensive functionality will be use-

ful to the community and result in a broad adoption of 

patRoon.

Availability and requirements

Project name: patRoon.

Project home page: https ://githu b.com/rickh elmus /

patRo on.

Operating system(s): Platform independent (tested on 

Microsoft Windows and Linux).

Programming language(s): R, C ++, JavaScript.

Other requirements: Depending on utilized algorithms 

(see installation instructions in [85, 88]).

License: GNU GPL version 3.

Any restrictions to use by non-academics: none.

De�nitions

Features: data points assigned with unique chromato-

graphic and mass spectral information (e.g. retention 

time, peak area and accurate m/z), which potentially 

described a compound in a sample analysis.

Feature group: A group of features considered equiva-

lent across sample analyses.

MS peak list: tabular data (m/z and intensity) for MS or 

MS/MS peaks attributed to a feature and used as input 

data for annotation purposes.

Formula/Compound: a chemical formula or compound 

candidate revealed during feature annotation.

Component: A collection of feature groups that are 

somehow linked, such as MS adducts, homologous series 

or highly similar intensity trends.
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