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In this paper, a method for pattern analysis in networks of diffusively coupled nonlinear systems of Lur’e

form is presented. We consider a class of nonlinear systems which are globally asymptotically stable

in isolation. Interconnecting such systems into a network via diffusive coupling can result in persistent

oscillatory behavior, which may lead to pattern formation in the coupled systems. Some of these pat-

terns may co-exist and can even all be locally stable, i.e. the network dynamics can be multi-stable.

Multi-stability makes the application of common analysis methods, such as the direct Lyapunov method,

highly involved. We develop a numerically efficient method in order to analyze the oscillatory behavior

occurring in such networks. We focus on networks of Lur’e systems in which the oscillations appear

via a Hopf bifurcation with the (diffusively) coupling strength as a bifurcation parameter and therefore

display sinusoidal-like behavior in the neighbourhood of the bifurcation point. Using the describing func-

tion method, we replace nonlinearities with their linear approximations. Then we analyze the system of

linear equations by means of the multivariable harmonic balance method. We show that the multivari-

able harmonic balance method is able to accurately predict patterns that appear in such a network, even

if multiple patterns co-exist.

Keywords: Periodic Solutions, Bifurcations, Harmonic Balance, Nonlinear Systems
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1. Introduction

In recent years, the study of complex networks consisting of coupled nonlinear dynamical systems has been a sig-

nificant subject in mathematical biology, control theory, applied physics, and interdisciplinary fields. Its relevance is

due to several factors: complex networks are prevalent in the world (e.g. neuroscience, heart cells synchronization,

social networks, flocks of birds and other kinds of collective behavior); such networks show a rich dynamic behavior

and may induce a large number of different applications (see [Pikovsky et al., 2001], [Strogatz, 2003] and references

therein). In particular, different synchronous regimes and a pattern formation in coupled systems are subjects of

intensive study.

Numerous activities in nature exhibit oscillatory behavior and can be described by a collection of coupled non-

linear oscillators. Due to complex dynamics and different types of coupling, various phenomena appear in nonlinear

networks. An omnipresent form of interaction is a diffusive coupling ([Hale, 1997]), in which the feedback to each

(sub)system in the network is a (weighted) sum of differences in each (sub)system’s output and those of its neigh-

bours. Networks with diffusive coupling exhibit surprisingly rich phenomena, such as synchronization ([Pogromsky

& Nijmeijer, 2001]), partial synchronization ([Pogromsky et al., 2011]), and formation of oscillatory patterns in-

cluding standing, travelling and rotating waves (see [Golubitsky et al., 1999] and [Iwasaki, 2008]). Moreover, some

of these patterns may co-exist and can be stable for the same set of parameters [Nakao & Mikhailov, 2010] [Gor-

ban et al., 2015b] [Gorban et al., 2015a]. These patterns arise from a diffusion-driven instability first discussed by

[Turing, 1952]. In that research, the author ”suggests that a system of chemical substances reacting together and dif-

fusing through a tissue is adequate to account for the main phenomena of morphogenesis”. Several concepts related

to the chemical basis of morphogenesis (development of patterns), spatial chemical patterns, and what is now called

diffusion-driven instability are introduced. In general, the pattern formation phenomenon refers to the generation of

complex organization in space and time.

A nonlinear analysis of Turing instability or the diffusion-driven instability phenomenon is described in [Smale,

1976]. In this paper, an example of two diffusively coupled systems is studied. Each individual system represents

a cell which is inert or dead in the sense that it is globally asymptotically stable. However, when the cells are

coupled via diffusion, ”the cellular system pulses (or expressed perhaps overdramatically, becomes alive!) in the

sense that the concentration of enzymes in each cell will oscillate infinitely”. The author poses the question of

determining conditions under which the diffusive coupling leads to oscillatory behavior in the network of initially

globally asymptotically stable systems. Answers to this question are found in [Yakubovich & Tomberg, 1989],

[Tomberg & Yakubovich, 2000], and [Pogromsky et al., 1999], and references therein.

Another related result is presented in [Pogromsky et al., 2011]. In that work, the authors present conditions

under which a network of systems which are globally asymptotically stable by themselves, being diffusively coupled

display different synchronous regimes, such as partial synchronous oscillations. In [Lowenstein et al., 1964] the same

phenomenon for a neuron network is described. These conditions are related to the coupling strength between the

agents of the network and network topology. When the largest eigenvalue of the coupling matrix exceeds some

threshold, the (network) equilibrium loses stability via a Hopf bifurcation and oscillatory patterns emerge. The Hopf

bifurcation changes the dynamics of the network from a stable equilibrium to oscillatory patterns.

In this work, we extend the previously obtained results. In particular, we consider the problem of prediction of

oscillatory patterns which appear in (diffusively) coupled Lur’e systems via a Hopf bifurcation. A challenge is that

there may be co-existence of different oscillatory patterns, such as an in-phase and an anti-phase synchronization, and

clockwise and counterclockwise waves in a ring-like structure. Some of these co-existent patterns may be stable for

the same set of parameters (coupling strength), i.e. there is multi-stability. Considering multi-stability, the application

of common methods for the analysis of network behavior, such as the direct Lyapunov method and the analysis of

Poincaré maps, becomes highly non-trivial.

To solve these problems, we propose an extension of the multivariable harmonic balance (MHB) method, which

is described in [Iwasaki, 2008] for neuronal circuits called the central pattern generators (CPGs). The method allows

to analyse the behavior of the complex network near the bifurcation point and to determine an oscillatory profile that

approximates the output of the studied network without simulating ordinary differential equations (ODEs). Despite

these advantages, the MHB method cannot be directly applied to a network consisting of diffusively coupled Lur’e

systems due to different structure of (sub)systems of the network and in order to achieve the best accuracy of the

approximation the coupled systems must be in the neighbourhood of the Hopf bifurcation point. Being inspired by
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previous results obtained in [Pogromsky et al., 2011] and [Iwasaki, 2008], we developed a new approach in order

to analyze oscillatory behavior and predict the patterns with equal amplitudes for the oscillations in the complex

network by means of the multivariable harmonic balance (MHB) method (see [Rogov et al., 2018]). In this work,

we extend our results and present an approach based on the MHB method aiming at pattern analysis with arbitrary

amplitudes of oscillation in networks of (diffusively) coupled identical nonlinear systems.

This paper is organized as follows. Preliminary results and the problem statement are given in Section 2. More

precisely, in Subsection 2.1, networks of Lur’e systems are introduced. Oscillatory conditions are presented in Sub-

section 2.2. The Harmonic Balance and the describing function methods are introduced in Subsection 2.3. The

problem is formulated in Subsection 2.4. Pattern analysis using the multivariable harmonic balance is described in

Section 3. There are four subsections in Section 3. Subsection 3.1 describes the multivariable harmonic balance

method presented in [Iwasaki, 2008]. The MHB equation is derived in Subsection 3.2. Subsections 3.3 and 3.4 intro-

duce the equal amplitude case and the general amplitude case, respectively. Numerical results are given in Section

4 and include results for the equal amplitude case and the general amplitude case. In Section 5, the conclusions are

provided.

Throughout the paper, the following notations are used. Ik denotes the identity matrices of the size k×k. ⊤ stands

for the transposition. i stands for the imaginary unit. C1 stands for a set of continuously differentiable functions.

2. Preliminaries and problem statement

In Subsection 2.1 we introduce dynamical systems and the type of coupling that form networks whose dynamics

are analyzed in this work. In Subsection 2.2, conditions that guarantee the occurrence of oscillatory patterns are

provided. Tools being used for the analysis of network behavior are introduced in Subsection 2.3. The formulation

of the problem is given in Subsection 2.4.

2.1. Networks of Lur’e systems

In this paper, a method to analyze the behavior of networks consisting of identical nonlinear dynamical systems

is presented. To do so, we consider a network which describes a collection of identical (diffusively) coupled

(sub)systems. It is assumed that the network cannot be decomposed into two or more uncoupled networks. To turn

the statements above into a mathematical description, we consider a network of k identical systems described by:

ẋ j = Ax j +Bu j,

u j = uc j −ψ(z j),

z j = Zx j,

y j =Cx j,

(1)

where j = 1, ...,k stands for the node number, x j(t)∈R
n is the state of a j-th (sub)system, u j(t)∈R

1 is the combined

input of a j-th (sub)system which consists of two components: ψ(·) which is a continuously differentiable scalar

nonlinear sector-bounded function and uc j ∈ R
1 which is the input receiving data from the coupling of multiple

(sub)systems, y j(t) ∈ R
1 is the output of the j-th system used for the coupling, z j ∈ R

1 is the argument of the

nonlinearity of the j-th (sub)system and A, B, C, Z are constant matrices of appropriate dimension. Taking uc j = 0,

we have k isolated single input single output systems given in Lur’e form.

The (sub)systems are interconnected through linear diffusive output coupling

uc j = γ(−γ j1(y j − y1)− γ j2(y j − y2)− ...− γ jk(y j − yk)), (2)

where γ is the positive overall gain which will play the role of bifurcation parameter later on, γ jl are non-negative

constants and γ jl = γl j, ∀ j, l. Moreover, γ jl > 0 if and only if the j-th and l-th nodes are connected. Graphically, the

connection between the nodes j and l is represented by an edge (arrow) between j and l; see Figure 1. We assume

that the network is connected, i.e. for any two nodes there exists a path (sequence of edges) connects them.
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Fig. 1. An example of the network consisting of dynamical systems.

We define the coupling matrix Γ of size k× k as

Γ = γ











∑
k
l=2 γ1 j −γ12 . . . −γ1k

−γ21 ∑
k
l=1,l 6=2 γ2 j . . . −γ2k

...
...

. . .
...

−γk1 −γk2 . . . ∑
k−1
l=1 γk j











. (3)

Note that Γ = Γ⊤ with all row sums zero and thus all eigenvalues are non-negative [Gershgorin, 1931]. Moreover,

since we assumed that the network is connected, the matrix Γ has simple zero eigenvalue.

Using the Laplace transformation, the time-invariant linear part of the network (1) is rewritten into the transfer

function representation, leading to the following description of the closed loop system (note that s stands for the

differential operator)

y j =Wy(s)u j,

z j =Wz(s)u j,

u j =−
k

∑
l=1

γ jly j −ν j,

ν j = ψ(z j),

(4)

with Wy(s) and Wz(s) defined as

Wy(s) =C(sI −A)−1B, (5)

Wz(s) = Z(sI −A)−1B. (6)

2.2. Conditions for oscillatory behavior

The goal of this subsection is to present conditions that guarantee that the network (1)-(2) exhibits oscillatory be-

havior. The system (1)-(2) is called Y-oscillatory if the system’s solutions are ultimately bounded and there exist a

j ∈ {1, ...,k} such that for almost all initial conditions x(0) ∈ R
kn lim

t→+∞
y j(t) does not exist [Yakubovich, 1973].

Networks of the form (1)-(2) were considered in [Pogromsky et al., 2011] and it was shown that individual dynamics

of the (sub)systems of the network satisfies some conditions for network synchronization.

Assumption 1. The individual dynamics of system (1) and transfer functions (5) and (6) satisfy the following con-

ditions:

i) Matrix A is Hurwitz, so there is a positive definite matrix P = P⊤, so that A⊤P+PA =−I;

ii) Matrix Z satisfies Z⊤ = PB with matrix P as in i);

iii) ψ(·) is an odd, strictly increasing C1-function with the following property ∀L > 0 ∃σ > 0 such that ∀z > σ
ψ(z)> Lz;

iv) Transfer function Wy(s) is non-degenerate, has an even number of zeros with positive real part and relative degree

one, and Wy(0)> 0;

v) Transfer function Wz(s) is such that Wz(0)> 0.
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The following theorem from [Pogromsky et al., 2011] provides a condition under which a network that satisfies

Assumption 1, exhibits oscillatory behavior.

Theorem 1. Consider a network of diffusively coupled systems of the form (4) that satisfy Assumption 1 with a

symmetric coupling matrix Γ as in (3).

There is a number λ̄ > 0 such that if the largest non-zero eigenvalue λmax of Γ exceeds λ̄ then the network is

Y-oscillatory.

The proof of the theorem captures three points:

i) The origin is the unique equilibrium point of the closed loop system;

ii) The system is uniformly ultimately bounded (see [Khalil, 1996]);

iii) The origin is hyperbolically unstable if λmax > λ̄ , where λmax is the largest eigenvalue of Γ.

Depending on the value of the parameter γ , the dynamics of a network has at least two different modes (a globally

asymptotically stable mode and a Y-oscillatory mode). In this work, we consider the case when the oscillatory

behavior is caused by a Hopf bifurcation in the network at the point λmax = λ̄ . Therefore, γ is chosen to be the

bifurcation parameter. The Hopf bifurcation point can be easily computed for any network consisting of nonlinear

dynamical systems of the form (4). The Hopf bifurcation of an equilibrium is characterized by one bifurcation

condition which is the presence of a purely imaginary pair of eigenvalues of the Jacobian matrix evaluated at this

equilibrium [Kuznetsov, 1998]. For some networks the largest eigenvalue λmax of the coupling matrix Γ has algebraic

and geometric multiplicity larger than one (see Section 3) which corresponds to the occurrence of an equivariant

Hopf bifurcation [Balanov, 1997]. Assuming that ψ ′(0) = 0, the Hopf bifurcation (equivariant Hopf bifurcation)

occurs when the matrix A−BCλ̄ has a pair of purely imaginary eigenvalues with algebraic and geometric multiplicity

one (larger than one) and the other eigenvalues have negative real part. We also compute the bifurcation frequency

ωbi f which will be required later on.

According to normal form theory (see [Han & Yu, 2012] and references therein), the oscillations are sinusoidal-like

near the bifurcation point. It justifies using the describing function method to replace the nonlinearity by its linear

approximation and then to analyze the system of linear equations by means of the harmonic balance method.

2.3. Harmonic Balance Method

The harmonic balance method provides an analytical approximation of periodic solution(s) of an ODE and is appli-

cable to nonlinear systems. In order to apply this method we approximate the nonlinearity ψ(·) of (sub)system (1)

with its describing function. Suppose a (sub)system of the Y-oscillatory network has a periodic solution z j(t). Then,

by Fourier series expansion, we obtain

z j(t) =
∞

∑
m=0

a jm sin(ωmt)+b jm cos(ωmt)

for real vectors a jm and b jm and frequency ω . In the neighbourhood of the bifurcation point the solution can be

approximated by its first harmonics

z j(t)∼= α j sin(ωt +φ0 +φ j), (7)

where α j is the amplitude, ω is the frequency, φ0 is the initial phase and φ j is the phase for the j-th (sub)system of

the network. For an autonomous system we can take φ0 = 0 without loss of generality. In order to approximate the

nonlinearity ψ(·), which is assumed to be odd function, by its describing function k, we first compute the describing

function which stands for the gain and then replace the nonlinearity with the linear gain as follows:

ψ(z j)∼= k(α j)z j, (8)

where

k(α j) :=
2

πα j

∫ π

0
ψ(α j sinθ)sinθdθ , (9)

is the describing function of ψ(·).
The describing function k(α j) stands for the average gain of the nonlinearity ψ(·) when the input of the nonlinearity
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is a sinusoidal signal of amplitude α j ([Khalil, 1996]). The harmonic balance method for networks of CPGs (Central

Pattern Generators) [see Section 3.1 for details], called the Multivariable Harmonic Balance (MHB), was described

in [Iwasaki, 2008].

2.4. Problem formulation

Networks of the form (1)-(2), whose (sub)system’s individual dynamics satisfy Assumption 1, exhibit oscillatory

behavior if the coupling between network agents is strong enough. For coupling strength slightly larger then the

bifurcation point, these oscillatory patterns are characterized by a set of parameters (oscillatory profiles); amplitudes

α j, phases φ j and frequency ω . Some of these patterns can co-exist and can be locally stable, which implies the

multi-stability of the network dynamics. Since we consider the case when oscillations appear via a Hopf bifurcation

(equivariant Hopf bifurcation), the use of an approach based on the harmonic balance method is justified at least

for γ close to the bifurcation point. The harmonic balance method helps to avoid a classical analysis, e.g., by means

of the direct Lyapunov method, which is cumbersome when we deal with multi-stability. Moreover, the harmonic

balance method is numerically efficient. In this paper, we consider the problem of computing approximations (7) of

all patterns of oscillations in a given network.

3. Pattern Prediction by means of Multivariable Harmonic Balance

In this section, we review the multivariable harmonic balance (MHB) method which we extend in order to analyze the

behavior of networks of the form (4) when pattern formation occurs. The MHB method approximates the behavior

of a network consisting of nonlinear systems and determines an oscillatory profile (frequency ω , amplitudes α j,

phases φ j) as a solution to an eigenvalue problem. In Subsection 3.1, the Multivariable Harmonic Balance described

in [Iwasaki, 2008] is introduced. In Subsection 3.2, we show how the MHB method is applied to the network (1)-(2).

There are two cases to discuss namely the equal amplitude case and the general amplitude case which are described

in Subsections 3.3 and 3.4, respectively.

3.1. Multivariable Harmonic Balance

The Multivariable Harmonic Balance (MHB) developed in [Iwasaki, 2008] considers networks of identical intercon-

nected (sub)systems described by a dynamical mapping from input u j to output z j:

z j(s) = f (s)u j(s), u j(s) =
k

∑
l=1

µ jl(s)vl, v j = ψ(z j),

where f (s) is a rational transfer function of variable s, which represents the linear time-invariant part of each

(sub)system, ψ(z j) is a continuously differentiable odd static nonlinear function, z j(s) is the j-th (sub)system output

and µ jk(s) is a transfer function representing the connection from k-th system to j-th system. In vector form, these

dynamics can be written as

z = F(s)u, u = M(s)v, v = Ψ(z), (10)

where Ψ(z) := col[ψ(z1), ...,ψ(zk)], z := col[z1, ...,zk], F(s) := f (s)Ik and M(s) is the transfer matrix of the coupling

whose ( j,k) entry is µ jk(s). Using equations (7)-(9), the dynamic equations are approximated by the MHB equation

(M (s)K (α)− Ik)q = 0, q j := α je
iφ j , q ∈ C

k, (11)

where M (s) = F(s)M(s), K (α) := k(α j)Ik is a diagonal matrix and q is a solution to the eigenvalue problem.

The MHB equation characterizes the oscillatory profiles for (10) as follows. In order to obtain approximations of

oscillatory solutions, we substitute a sample solution of the form q j = α jexp(iφ j). All three components (α , φ , ω)

of the pattern are computed and the oscillatory profile is reconstructed using (7).

In general, the MHB equation is nonlinear in α and might have multiple solutions and it is necessary to determine

the stable oscillations. In order to examine stability of such oscillatory solution, we use an approximate method from

[Glad & Ljung, 2000] commonly accepted in the engineering literature. Based on (8), we consider the linear systems
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obtained by replacing the nonlinearity Ψ with constant gain K (α) as follows.

LK :=

{

z = M (s)v,

v = K (α)z.
(12)

The block scheme representation of the linear system LK is illustrated in Figure 2. From the perspective of the

describing function method, the linear system LK contains some information on the network behavior when its

oscillations are sinusoidal-like with a set of amplitudes α . According to the approximate method from [Glad &

Ljung, 2000], the oscillation with certain ω,α,φ is stable if the linear approximation LK is marginally stable, which

is equivalent (if linear system has pure imaginary eigenvalues) to the boundedness of all solutions of (12).

Fig. 2. Linear system LK .

From the above, the key ideas of the MHB analysis are summarised as follows:

• The oscillatory profile can be obtained by solving equation (11) for frequency ω and eigenvector z containing

encoded amplitudes and phases.

• The predicted oscillatory pattern is stable if the corresponding linear system LK given in (12) with K := K (α)
is marginally stable with a pair (pairs) characteristic roots at s = ±iω on the imaginary axis and with the rest

characteristic roots located in the open left half plane.

3.2. Deriving the MHB equation

It is shown that the MHB method turns the problem of determining oscillatory profiles into an eigenvalue problem.

System (4) does not belong to the class of systems considered in [Iwasaki, 2008], so the previously described MHB

method cannot be directly applied. In [Iwasaki, 2008], it was considered the case of linear system dynamics with

nonlinear coupling and we deal with nonlinear system dynamics with diffusive linear coupling. In order to apply

the MHB analysis, a loop transformation is performed. Figure 3 displays how the loop transformation reorders the

structure of the network. The left and right blocks describe the networks (4) and (10), respectively.

Fig. 3. Loop Transformation reorders the structure of the network in order to apply the MHB method.
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The following manipulations are performed to turn system (4) into the form of (10). Recall System (4) and rewrite

the input u in vector form as

u =−Wy(s)Γu−ν ,

Wy(s)

[

1

Wy(s)
Ik +Γ

]

u =−ν ,

with matrix Γ defined in (3). Defining the resolvent R( 1
Wy(s)

) = [ 1
Wy(s)

Ik +Γ]−1, we obtain

u =−
1

Wy(s)
R

(

1

Wy(s)

)

ν .

The network now takes the form of (10) with

F(s) =Wz(s)Ik,

M(s) =−
1

Wy(s)

[

1

Wy(s)
Ik +Γ

]−1

.
(13)

Combining the second equation from (10) with (13) and replacing s by iω , we arrive at the following equation

M (iω) =−
F(iω)

Wy(iω)

(

1

Wy(iω)
Ik +Γ

)−1

.

Define the diagonal matrix

H(iω) :=
F(iω)

Wy(iω)
=

(

Wz(iω)

Wy(iω)

)

Ik

and substitute it in the previous equation in order to obtain

M (iω) =−H(iω)

(

1

Wy(iω)
Ik +Γ

)−1

.

Subsequently, we rewrite the MHB equation (11) as follows

M (iω)(K (α)−M
−1(iω))q = 0,

where M−1(iω) =−((1/Wy(iω))Ik +Γ)H(iω)−1 and expand it in order to obtain

M (iω)

(

Wz(iω)

Wy(iω)

)[

K (α)

(

Wz(iω)

Wy(iω)

)

+
1

Wy(iω)
Ik +Γ

]

q = 0.

Since M (iω)(Wz(iω)/Wy(iω)) is non-singular for ω > 0, we obtain

J(α,ω)q :=

[

K (α)

(

Wz(iω)

Wy(iω)

)

+
1

Wy(iω)
Ik +Γ

]

q = 0, q j := α je
iφ j (14)

which is the multivariable harmonic balance equation for the networks of identical Lur’e systems. We focus on

determining patterns that appear in such networks. We consider both the equal amplitude case with α j = αe ∀ j, and

some αe ∈ R
+, and the general amplitude case with possibly (all) different α j ∈ R

+, j = 1, ...,k.

3.3. Equal amplitude case

In this subsection we review the equal amplitude case to gain some insight into the method. This special case is

derived for networks exhibiting oscillations with equal amplitudes α j = αe ∀ j. In particular, we consider ring-like

networks with three and four nodes (Fig.4). Each (sub)system of these networks is a dynamical system that satisfies

Assumption 1 and whose dynamics are presented in Section 4. The network topology is represented by a symmetric

unweighted graph with the overall coupling gain, which means that γ jl = 1 if there is the connection between the jth

and lth nodes and γ jl = 0 otherwise. The nodes are interconnected with neighbours via diffusive coupling. According

to this, considered networks are regular in the following sense: Networks are referred to as regular if each node has

exactly the same number of links [Chen, 1997]. Regularity favours the occurrence of stable oscillations with equal
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amplitudes. Since we look for α j = αe ∀ j, the analysis of the network behavior can be substantially simplified using

the structural properties of the network. In this subsection, it is shown how the oscillatory profile is determined by

the MHB method for the equal amplitude case.

Fig. 4. Ring-like networks of diffusively coupled systems displaying oscillations with equal amplitudes

Fig. 5 reflects the oscillatory patterns that can be observed in the networks shown in Fig.4. Oscillatory profiles are

obtained by direct simulation of ordinary differential equations (ODEs) of network (1). For presentation purposes,

components of z j(t) are shifted to z j(t) + (k + 1− j). The oscillatory pattern has equal amplitudes with a phase

shift of 120 degrees for the three-node configuration which is a rotating wave. A standing wave is observed for the

four-node configuration. There are two synchronized groups of nodes which are in antiphase with each other.

Fig. 5. Oscillatory patterns with equal amplitudes in ring-like networks (left fig.: 3-node network, right fig.: 4-node network). Network

dynamics is given in Section 4.

Since we look for equal amplitudes α j = αe ∀ j, the describing function matrix K (α) = k(αe)Ik and equation (14)

reduces to

[

k(αe)Wz(iω)+1

Wy(iω)
Ik +Γ

]

q = 0, q j := αeeiφ j , (15)
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where q is the solution to the eigenvalue problem. One can see that equation (15) has several solutions. The trivial

solution q = 0 corresponds to the equilibrium and is not point of interest. Therefore, we solve

det

[

k(αe)Wz(iω)+1

Wy(iω)
Ik +Γ

]

= 0.

After diagonalizing the coupling matrix Γ via a similarity transformation, which is possible due to Γ = Γ⊤, and using

the property of the determinant product, we arrive at

k(αe)Wz(iω)+1

Wy(iω)
+λ j = 0, (16)

where λ j is an eigenvalue of the coupling matrix Γ.

The described procedure implies that different oscillatory patterns may appear based on each eigenpair (an eigen-

value and its corresponding eigenvector) of the matrix
[

k(αe)Wz(iω)+1

Wy(iω) Ik +Γ

]

. Nonetheless, from Theorem 1, it is

known that if λmax exceeds some threshold the network is Y-oscillatory. It was mentioned above that an oscillation

is expected to be stable if the linear approximation (12) is marginally stable. Since Γ = Γ⊤, the eigenvalues located

on the imaginary axis, have linearly independent eigenvectors which are eigenvectors of the coupling matrix Γ. The

eigenvalue with the largest real part λmax of the coupling matrix Γ characterizes the Hopf bifurcation (equivariant

Hopf bifurcation) point in the network. We now consider equation (16) for λmax

k(αe)Wz(iω)+1

Wy(iω)
+λmax = 0. (17)

Substituting (5) and (6) into (17), we obtain

k(αe)Z(iωIn −A)−1B+1+λmaxC(iωIn −A)−1B = 0,

1+(k(αe)Z +λmaxC)(iωIn −A)−1B = 0.

Since the isolated system is exponentially stable, det(iωIn −A) 6= 0 for all ω , we have

(iωIn −A)[1+(k(αe)Z +λmaxC)(iωIn −A)−1B] = 0.

Using Schur’s Lemma (see [Dummit & Foote, 1999]), we arrive at

det[iωIn −A+B(k(αe)Z +λmaxC)] = 0.

Thus the matrix A− B(k(αe)Z + λmaxC) has a pair of pure imaginary eigenvalues with algebraic and geometric

multiplicity one for Hopf bifurcation (larger than one for equivariant Hopf bifurcation) for ±iω , where ω stands for

frequency of the oscillations and the other eigenvalues are in the open left-half complex plane

Re(λ1,2(A−B(k(αe)Z +λmaxC))) = 0. (18)

In other words, k(αe) and ω can be derived from the Hopf bifurcation condition. Now two components of the

oscillatory profile are obtained: αe using (9) and ω . The phases φ j are encoded in the eigenvector that corresponds

to the largest eigenvalue λmax of the coupling matrix Γ.

Substituting (k(αe)Wz(iω)+1)/Wy(iω) =−λmax in (15), we obtain

[Γ−λmaxIk]q = 0. (19)

Since we look for equal amplitudes, we need such eigenvector q with the entries represented as q j = α j exp(iφ j) that

all elements of q j have the same modulus αe. In order to determine the phases from the eigenvector the following

equation is used

φ j = arg(q j). (20)

Having all components of the oscillatory profile computed, the approximation of the oscillatory pattern of the given

network using the equation (7) can be constructed.

It was mentioned above that multiple oscillatory patterns occurring in such networks may co-exist. Co-existence

implies that there simultaneously exist at least two stable solutions in ring-like structured networks, such as clockwise

and counter-clockwise rotating waves. This happens when the largest eigenvalue λmax of the coupling matrix Γ
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has algebraic and geometric multiplicity two which implies the existence of two linearly independent eigenvectors

corresponding to this eigenvalue or, in other words, an equivariant Hopf bifurcation occurs [Balanov, 1997]. The

phases of clockwise and counter-clockwise rotating waves are encoded in these eigenvectors and be determined

using (20).

3.4. General amplitude case

In this subsection a method for estimating the profile of oscillations with arbitrary amplitudes is presented. Networks

exhibiting oscillatory patterns with different amplitudes can be easily obtained by attaching additional nodes to the

networks presented in Fig.4 as shown in Fig.6. These networks consist of identical dynamical systems that satisfy

Assumption 1 and whose individual dynamics is given in Section 4. As in the equal amplitude case, we consider

networks whose topology is described by a symmetric unweighted graph with the overall coupling gain. Unlike the

equal amplitude case, these networks are not regular.

Fig. 6. Networks of identical diffusively coupled systems displaying oscillations with unequal amplitudes.

Such networks are perfect candidates to illustrate and study the general amplitude case due to their structure and

behavior. Fig. 7 reflects the oscillatory patterns that can be observed in the networks shown in Fig.6. Results are

obtained by the direct simulation. For presentation purposes, components of z j(t) are shifted to z j(t)+ (k+ 1− j).
Two groups of nodes with equal amplitudes are observed. The first group corresponds to the core ring which is the

subnetwork of nodes with more than one neighbour. Core rings of the networks from Fig.6 belong to the first group

and the attached nodes belong to the second group.

Recall equation (14),

J(α,ω)q :=

[

K (α)

(

Wz(iω)

Wy(iω)

)

+
1

Wy(iω)
Ik +Γ

]

q = 0.

To solve the equation above, we formulated it as an optimization problem. Since the trivial solution q = 0 is not a

point of interest, we look for a set of phases φ j, amplitudes α j and frequency ω which solves the nonlinear equation

(14). Define the objective function to minimize as

F(g) := Q′Q+ p⊤p, (21)

where

g := [φ ;α;ω] ∈ R
2k+1, Q := J(α,ω)q ∈ C

k, p := α −|q| ∈ R
k,

where |q|= [|q1|, |q2|, ..., |qk|]
⊤.

The vector g contains unknown phases, amplitudes and frequency, the component p represents the second equa-

tion of (14). To simplify the problem the phase of the first node is fixed at φ1 = 0 and boundaries are chosen as:

φ j ∈ [0,2π] ∀ j 6= 1, α j ∈ [0,β ] ∀ j, ω ∈ [0,2ωbi f ], where β is a heuristically chosen number. A smart choice of β
allows a substantial reduction in convergence time.
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bring3.png

Fig. 7. Oscillatory patterns with unequal amplitudes (left fig.: 6-node network, right fig.: 8-node network). Network dynamics is given in

Section 4.

Solutions to the nonlinear equation (14) are found by minimizing the squared residual norm of the objective func-

tion (21). The local solver fmincon included in MATLAB environment [MATLAB, 2017] is used. The solver uses

the interior-point algorithm [Byrd et al., 2000] in order to find a minimum of constrained nonlinear multivariable

function in defined feasible region. Since equations (14) are nonlinear and multiple solutions exist, the solutions

heavily depend on the initial conditions. Multiple values of the initial conditions are generated by the MultiStart

algorithm [Ugray et al., 2007].

A big advantage of the MultiStart method is that start points for the minimization procedure are not needed to be

specified. A set of random points is used as initial conditions. The key point in the procedure is to choose the correct

boundaries for the start points and the unknown variables.

The procedure has the following steps:

(1) Define the objective function to minimize;
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(2) Define the constraints for start points and unknowns;

(3) Set start points for the solver (random or custom);

(4) Run the solver.

Moreover, the MultiStart algorithm can deal with multi-stability. Stable clockwise and counter-clockwise wave-

like solutions can be simultaneously found.

4. Numerical examples

In this section, it is shown how the multivariable harmonic balance method is applicable to networks consisting

of dynamical systems of Lur’e form whose structures given in the Figures 4 and 6. These networks are perfect

candidates to demonstrate the performance of the method. The networks exhibit different oscillatory patterns, such

as patterns with equal and unequal amplitudes, patterns with a simple phase shift (180 degrees) and with non-trivial

phase shift (e.g. 120 degrees), and co-existing clockwise and counter-clockwise wave-like patterns. The individual

dynamics of the nodes, as in [Pogromsky et al., 2011], is given in (1) with

A =





1 −1 1

1 0 0

−4 2 −3





B =
(

0 0 1
)⊤

, C =
(

0 0 1
)

, Z = B⊤P,

where P is the solution to the Lyapunov equation

A⊤P+PA =−I3.

The nonlinear function ψ(·) is given as follows

ψ(z j) = z3
j ;

and computing the describing function by (9), we obtain

k(α j) =
3

4
α2

j .

The presented setting satisfies the conditions from Assumption 1. Since numerical methods are employed, it implies

that a computational error exists which is given as residual of Eq.(14). In order to show, that the MHB method

accurately predicts oscillatory patterns, the reconstructed oscillations and the output of a direct simulation are com-

pared. The direct simulation results are obtained using a nonstiff differential equation solver of medium order ode45

included in MATLAB environment [Dormand & Prince, 1980]. In order to measure the accuracy of the method we

provide residual norm of the MHB equation and compare amplitudes and frequency with the ones that are extracted

from ODE simulation as follows.

∆α = 100||α −αs||/||αs||;

∆ω = 100(ω −ωs)/ωs,

where αs and ωs are taken from the simulation. In the following two subsections, we will present results of the

analytical approach for the equal amplitude case and the numerical approach for the general amplitude case.

4.1. Results for the equal amplitude case

In this subsection, we show that it is possible to predict patterns occurring in regular networks with certain symmetry

and that oscillatory patterns possess equal amplitudes. An example of such networks is given in the Figure 4. It is

shown how to refine an oscillatory profile of the given network by means of the analytical approach presented above.

This approach is applicable only for networks exhibiting patterns with equal amplitudes.
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The coupling topology of the networks are given by matrices Γ3 and Γ4 where a subscript denotes the number of

nodes in the network

Γ3 = γ3





2 −1 −1

−1 2 −1

−1 −1 2



 , Γ4 = γ4









2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2









,

where γ3,4 are bifurcation parameters. In the Section 2, it is shown that the Hopf bifurcation (equivariant Hopf bifur-

cation) occurs in the network when the largest eigenvalue λmax with algebraic and geometric multiplicity one (larger

than one) of the coupling matrix parametrized by bifurcation parameter γ exceeds some threshold λ̄ . Parameters

λ̄3, λ̄4 can be calculated from the Hopf bifurcation (equivariant Hopf bifurcation) condition A−BCλ̄ described in

Section 2.2 and for the given networks these are: λ̄3 = 0.43426 and λ̄4 = 0.32569.

For the three node network, two stable wave-like oscillatory patterns (clockwise and counter-clockwise waves) are

found and the oscillation parameters are successfully determined. The accuracy of the MHB method and the derived

oscillatory profiles for the coupling strength γ3 = 1.01 are presented in Table 1.

Table 1. Oscillatory profiles of the network represented by matrix Γ3. Multi-stability.

Wave Residual ∆α in % ∆ω in % ω αe φ1 φ2 φ3

Clockwise 9.9256e-07 0.5781 0.0371 0.8365 0.1296 0 240 120

Counterclockwise 9.9256e-07 0.5781 0.0371 0.8365 0.1296 0 120 240

For the four node network, one wave-like solution is predicted. The predicted solution corresponds to a partial syn-

chronization regime. We can observe synchronous behavior between two pairs of nodes, namely between the 1st and

the 3rd, and between the 2nd and the 4th. Moreover, these pairs are in anti-phase synchronization with respect to

each other. The accuracy of the MHB method and the predicted oscillatory profile for the coupling strength γ4 = 1.01

are provided in Table 2.

Table 2. Oscillatory profile and comparison of the MHB method and ODE simula-

tion of the network represented by matrix Γ4.

Residual ∆α in % ∆ω in % ω αe φ1 φ2 φ3 φ4

1.0171e-06 1.0793 0.0521 0.8362 0.1159 0 180 0 180

In the case of the four node network, the MHB method predicts the result which was previously obtained by means

of the direct Lyapunov method in [Pogromsky et al., 2011]. For the three node case, the analysis by means of the

direct Lyapunov method is cumbersome due to the co-existence of two stable solutions.

Figure 8 shows that in the initial period of time the oscillations computed by the simulation and the output of the

MHB method do not match because of transient effects. When the transients have sufficiently decayed the outputs

are almost identical which implies that the MHB method accurately describes the patterns occurring in the networks.

The vertical axis stands for the mismatch between outputs of the simulation and the MHB method and the mismatch

is computed as e(t) = z(t)−q(t). For some initial conditions, oscillations computed by the MHB method have dif-

ferent initial phases compared to the simulation ones. In order to compensate for this difference, an initial phase

offset φ0 can be applied to the MHB output vector as shown in (7).
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Fig. 8. Error between the MHB method and ODE simulations for three- and four-node networks for γ3,4 = 1.01λ̄3,4. Inner plots represent

zoomed-in sections for the presentation purposes.

4.2. Results for the general amplitude case

In this subsection, the results obtained by means of the optimization tools are presented. The numerical approach

seeks for the set of the phases, amplitudes, and frequency that solves equation (14). This optimization method can

also be applied to the equal amplitude case, at the cost of higher computation time. In the equal amplitude case the

structure of the network can be exploited in such a way that one ends up with an eigenvalue problem of size n instead

of nk.

Here we present the analysis of the networks which are given in Figure 6 and whose structure is described by matrices

Γ6 and Γ8 where a subscript denotes the number of nodes in the network:

Γ6 = γ6

















3 −1 −1 −1 0 0

−1 3 −1 0 −1 0

−1 −1 3 0 0 −1

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1

















, Γ8 = γ8

























3 −1 0 −1 −1 0 0 0

−1 3 −1 0 0 −1 0 0

0 −1 3 −1 0 0 −1 0

−1 0 −1 3 0 0 0 −1

−1 0 0 0 1 0 0 0

0 −1 0 0 0 1 0 0

0 0 −1 0 0 0 1 0

0 0 0 −1 0 0 0 1

























,

where γ6,8 are bifurcation parameters. The Hopf bifurcation (equivariant Hopf bifurcation) occurs in these networks

when the largest eigenvalue of matrix Γ6,8 exceeds λ̄6 = 0.30278 and λ̄8 = 0.24881 for the six node network and the

eight node network, respectively.

We use the MultiStart optimization framework in order to predict patterns that appear in the given networks. The

objective function is given in (21), without loss of generality, we set the first phase φ1 = 0 in order to simplify the

problem , and boundaries are chosen to be φ j ∈ [0,2π] ∀ j 6= 1, α j ∈ [0,β ] ∀ j, ω ∈ [0,2ωbi f ], where ωbi f 6,8 = 0.8350

derived from the bifurcation condition and β = 0.2 is heuristically chosen. In order to show the accuracy of the MHB

method for the general amplitude case, an error analysis is performed. First, we present the results for the network

of six nodes and the coupling strength parameter γ6 = 1.01. The procedure starts from ten random points within
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the chosen domain and two distinct solutions are found that represent the clockwise and counter-clockwise waves.

Existence of these waves implies the multi-stability of the network dynamics. The determined oscillatory patterns

are given in Table 3 and the accuracy of the method is given in Table 4.

Table 3. Oscillatory profiles of the network represented by matrix Γ6. Multi-stability.

Wave ω α1 α2 α3 α4 α5 α6 φ1 φ2 φ3 φ4 φ5 φ6

CW 0.8364 0.1226 0.1242 0.1242 0.0375 0.0380 0.0380 0 240 120 180 60 300

CCW 0.8364 0.1226 0.1242 0.1242 0.0375 0.0380 0.0380 0 120 240 180 300 60

Table 4. Comparison of the MHB method

and ODE simulation applied to the network

represented by matrix Γ6. Multi-stability.

Wave Residual ∆α in % ∆ω in %

CW 0.00016 2.5387 0.0499

CCW 0.00016 2.5080 0.0230

One can see that the multivariable harmonic balance method accurately predicts the oscillatory patterns which appear

in such networks, even for co-existing patterns.

The objective function (21) has the argument g ∈R
2k+1. It is not possible to visualize a function of this dimension in

3D and that is why we provide cross-sections of the objective function. We change two (out of the 2k+1) variables

within some range and fix the remaining variables. Figures 9 and 10 show cross-sections in order to display that the

computed solutions correspond to local minima. Figure 10 shows that there exist local minima for the clockwise and

counter-clockwise wave-like solutions which implies multi-stability of the network.

We have the same setting (ten random points within the chosen boundaries) for the eight node network whose

structure is represented by coupling matrix Γ8. Multi-stability is not observed in this network. The coupling strength

parameter is chosen to be γ8 = 1.01. The determined oscillatory pattern is provided in Table 5 and the accuracy of

the method is given in Table 6.

Table 5. Oscillatory profile of the network represented by matrix Γ8.

ω α1 α2 α3 α4 α5 α6 α7 α8 φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

0.8363 0.1209 0.1209 0.1209 0.1209 0.0289 0.0289 0.0289 0.0289 0 180 0 180 180 0 180 0

In a network of an even number of nodes in a ”core” ring, we observe a partial synchronization mode and a simple

phase shift of 180 degrees. As it was mentioned above, the MHB method approximates a nonlinearity by a linear

gain. Theoretically, the accuracy of the approximation becomes better as the network moves closer to a bifurcation

point. We show how the accuracy changes when we increase the coupling strength. The example of eight nodes is

used to illustrate this dependence and the results are presented in Table 7 and Figure 11. We run the method for the

eight node network but for different coupling strength parameter γ8. We performed six runs increasing γ8 from 1.01

till 1.5.

The numbers in Table 7 and Figure 11 illustrate that the accuracy changes as it was predicted and the mismatch
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Fig. 9. Objective Function cross-section of α1 and α2 for clockwise and counterclockwise waves. Since both wave-like solutions has equal

amplitudes α1 and α2, they are shown as a single point.

Fig. 10. Objective Function cross-section of φ2 and φ3 for both solutions.

increases when the system goes away from the Hopf bifurcation point. This data shows that the MHB method can

accurately predict oscillatory patterns even if the system is ”far” from the bifurcation point.

5. Conclusion

This work addresses the problem of predicting patterned oscillations of arbitrary amplitudes in networks of identical

nonlinear dynamical systems of Lur’e form. The patterns are characterized by a set of parameters consisting of
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Table 6. Comparison of the MHB

method and ODE simulation applied

to the network represented by ma-

trix Γ8.

Residual ∆α in % ∆ω in %

0.00056 2.4267 0.0367

Table 7. Comparison of the MHB method and ODE simulation for 8-n-

ode network vs. coupling strength.

Run 1 2 3 4 5 6

γ 1.01 1.1 1.2 1.3 1.4 1.5

Residual 0.0005 0.0003 0.0003 0.0003 0.0003 0.0568

∆ω in % 0.0127 0.0242 0.0798 0.1135 0.2266 0.3262

∆α in % 0.7264 0.7905 0.8440 0.9247 1.1635 1.2844

Fig. 11. Comparison of the MHB method and ODE simulation for network represented by Γ8 for different coupling strength.

frequency ω , amplitudes α j and phases φ j. In this work, we consider the case when the Hopf bifurcation (equivariant

Hopf bifurcation) is the origin of oscillations and the oscillations are sinusoidal-like in the neighbourhood of the

bifurcation point. According to this the nonlinearity can be approximated by its describing function and the network

behavior can be analyzed by means of the harmonic balance method. Moreover, these patterns may co-exist which

implies multi-stability. Multi-stability makes the usage of common tools, such as the direct Lyapunov method, highly

involved. The multivariable harmonic balance (MHB) method for coupled systems of specific class was presented

in [Iwasaki, 2008]. The method is able to determine the oscillatory profile of patterns that occur in the network
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of specific structure and deals with multi-stability. The MHB method is not directly applicable to the networks of

interest and in this work, we present a modification of the MHB method for the networks consisting of the Lur’e

systems coupled via diffusion. The multivariable harmonic balance equation for networks of Lur’e systems is derived

and it is shown that the method can accurately predict patterns that are formed in the networks of diffusively coupled

Lur’e systems. For this, two cases are considered the equal amplitude case and the general amplitude case. The equal

amplitude case can be easily solved using structural properties of the network. The general amplitude case requires

numerical analysis. A numerical optimization routine has been developed which determines optimal solutions to the

MHB equation and therewith predicts all possible stable patterns of oscillations.

It is shown that the phenomenon of pattern formation occurring in networks of (diffusively) coupled Lur’e systems

can be analysed by means of the multivariable harmonic balance method and the further research goal is to apply

the MHB method to a collection of interconnected neuronal systems (e.g. FitzHugh−Nagumo model) with delays

in coupling, which has been studied in [Steur & Pogromsky, 2017].
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Glad, T. & Ljung, L. [2000] Control theory - multivariable and nonlinear methods (Taylor and Francis).

Golubitsky, M., Stewart, I., Buono, P.-l. & Collins, J. J. [1999] “Symmetry in locomotor central pattern generators

and animal gaits,” Nature 401, 693–695.

Gorban, A., Jarman, N., Steur, E., Nijmeijer, H., van Leeuwen, C. & Tyukin, I. [2015a] “Directed cycles and multi-

stability of coherent dynamics in systems of coupled nonlinear oscillators,” IFAC-PapersOnLine 48, 19 – 24,

4th IFAC Conference on Analysis and Control of Chaotic Systems CHAOS 2015.

Gorban, A., Jarman, N., Steur, E., van Leeuwen, C. & Tyukin, I. [2015b] “Leaders Do Not Look Back, or Do They?”

Math. Model. Nat. Phenom. 10, 212–231.

Hale, J. [1997] “Diffusive coupling, dissipation, and synchronization,” Journal of Dynamics and Differential Equa-

tions 9, 1–52.

Han, M. & Yu, P. [2012] “Hopf Bifurcation and Normal Form Computation,” Normal Forms, Melnikov Functions

and Bifurcations of Limit Cycles (Springer London), pp. 7–58.

Iwasaki, T. [2008] “Multivariable harmonic balance for central pattern generators,” Automatica 44, 3061–3069.

Khalil, H. K. [1996] Nonlinear Systems (Prentice-Hall, New Jersey).

Kuznetsov, Y. A. [1998] Elements of Applied Bifurcation Theory (2Nd Ed.) (Springer-Verlag, Berlin, Heidelberg).

Lowenstein, O. E., Osborne, M. & Wersll, J. [1964] “Structure and innervation of the sensory epithelia of the

labyrinth in the thornback ray,” Proceedings of the Royal Society of London. Series B. Biological Sciences

160, 1–12.

MATLAB [2017] MATLAB Optimization Toolbox (R2017a) (The MathWorks Inc., Natick, Massachusetts).

Nakao, H. & Mikhailov, A. S. [2010] “Turing patterns in network-organized activator-inhibitor systems,” Nature

Physics 6, 544–550.



January 21, 2020 16:59 paper

20 REFERENCES

Pikovsky, A., Rosenblum, M. & Kurths, J. [2001] Synchronization, Cambridge Nonlinear Science Series (Cambridge

University Press).

Pogromsky, A., Glad, T. & Nijmeijer, H. [1999] “on Diffusion Driven Oscillations in Coupled Dynamical Systems,”

International Journal of Bifurcation and Chaos 09, 629–644.

Pogromsky, A., Kuznetsov, N. & Leonov, G. [2011] “Pattern generation in diffusive networks: How do those brain-

less centipedes walk?” Proceedings of the IEEE Conference on Decision and Control , 7849–7854.

Pogromsky, A. & Nijmeijer, H. [2001] “Cooperative oscillatory behavior of mutually coupled dynamical systems,”

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48, 152–162.

Rogov, K., Pogromsky, A., Steur, E., Michiels, W. & Nijmeijer, H. [2018] “Pattern prediction in networks of dif-

fusively coupled nonlinear systems,” IFAC-PapersOnLine 51, 62 – 67, 5th IFAC Conference on Analysis and

Control of Chaotic Systems CHAOS 2018.

Smale, S. [1976] “A Mathematical Model of Two Cells Via Turing’s Equation,” The Hopf Bifurcation and Its Appli-

cations (Springer New York), pp. 354–367.

Steur, E. & Pogromsky, A. [2017] Emergence of Oscillations in Networks of Time-Delay Coupled Inert Systems

(Springer International Publishing, Cham), pp. 137–154.

Strogatz, S. [2003] Sync: The Emerging Science of Spontaneous Order (Hyperion Press).

Tomberg, E. & Yakubovich, V. [2000] “On one problem of Smale,” Siberian Mathematical Journal 4, 771–774.

Turing, A. [1952] “The chemical basis of morphogenesis,” Philosophical Transactions of the Royal Society of Lon-

don. Series B, Biological Sciences 237, 37–72.

Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J. & Mart, R. [2007] “Scatter search and local nlp solvers: A

multistart framework for global optimization,” INFORMS Journal on Computing 19, 328–340.

Yakubovich, V. [1973] “Frequency conditions for auto-oscillations in nonlinear systems with one stationary nonlin-

earity,” Siberian Mathematical Journal 14, 768–788.

Yakubovich, V. & Tomberg, E. [1989] “Conditions for auto-oscillations in nonlinear systems,” Siberian Mathemati-

cal Journal 30, 641–653.


