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ABSTRACT Modern cyber-physical power systems are vulnerable to cyber attacks. Given that cyber and
physical networks are coupled tightly, attacks in the cyber layer can penetrate the physical layer, causing the
outage of transmission lines and other physical equipment, thus changing the topology of the grid. In some
extreme scenarios, the topological change will disrupt the emergency response of the grid, eventually causing
cascading outages along with a blackout. Therefore, as the defender, the operator of a cyber-physical power
system should identify critical cyber attacks. In this paper, patterns of sequential cyber topological attacks
are analyzed. Firstly, a coordinated attack process is established, including mechanism and probability
analysis considering the different timescales. Secondly, the concept of patterns is defined as minimal attack
sequences aimed at causing blackouts. Furthermore, the representativeness of patterns is illustrated, which
can significantly reduce the storage of risky attack sequences. Thirdly, to address the problem that the
identification of patterns is computationally intensive, a search strategy that selects the next attack target
dynamically and increases the search depth gradually is proposed to avoid unnecessary search trials. Lastly,
tests are carried out on the IEEE 39-node system using the AC power flow model, which validates the
representativeness of patterns and the performance of the proposed search strategy.

INDEX TERMS Cascading outages, cyber attack, pattern, topological attack, tree search.

I. INTRODUCTION
Modern power systems are more coupled with cyber
infrastructures than ever before [1]. The emerging various
types of cyber equipment provide information flow, enhance
the ability to flexibly and economically control the grid, and
thusmake power systems smarter andmore intelligent. As the
two networks interact intensively, modern power systems are
no longer physical networks alone in the conventional sense.
In this way, both the physical and cyber networks should be
considered as an integrated one, called Cyber-Physical Power
System (CPPS).

However, if there are outages in the cyber layer, the
physical layer will also be affected [2]. During the outage,
the delivery of the data packages is delayed or even lost,
which makes the situation awareness weakened. The cyber
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outage will further disrupt the actuation of control or even
emergency response, resulting in major blackouts. While the
CPPS usually has firewalls and other defenses, it is still
vulnerable to malicious attacks. Therefore, the risk of cyber
attacks cannot be ignored but should be studied.

Malicious attacks can be divided into three types, namely
False Data Injection Attack (FDIA) [3], False Command
Injection Attack (FCIA) [4] and Distributed Denial of Ser-
vice (DDoS) attack [5], [6]. The former two refer to unau-
thorized agents intruding a system and falsifying its data.
The FDIA falsifies measurement data, whereas the FCIA
forges control instructions of breakers or other equipment.
Therefore, after an FCIA, breakers may malfunction, caus-
ing the topology of the grid changed. The DDoS attack
aims at paralyzing the communication network by producing
mass invalid data packages. This characteristic makes the
DDoS attack suitable as an auxiliary attack of the FDIA
or FCIA.
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In general, researches on the FDIA show that it is gentle
and does not jeopardize the stability of the system. Although
the FDIA can cause economic loss to the CPPS [7], by dis-
rupting the optimal power flow (OPF) in an undetectable
manner [8], it is difficult to induce severe outages because of
its limitations and constraints [9]. So operators of the CPPS
should also pay attention to other kinds of cyber attacks to
mitigate the risk of severe blackouts.

According to [10], [11], power networks are heterogeneous
complex networks that are vulnerable to intended topological
changes. The FCIA can change the topology of a power
grid by attacking breakers, so it is a critical part of the
topological attack. Researches have highlighted the threat
of topological attacks. Ref. [12] predicted risky areas in a
heterogeneous CPPS under topological attacks. In both [13]
and [14], the authors proposed a cyber-physical coordinated
attack scheme, which trips a transmission line physically
while falsifying measurements in the cyber layer, to mislead
operators and thus cause load shedding. Meanwhile, authors
in [15] constructed a framework of topological attacks tar-
geting non-backbone lines, which is to disrupt the economic
dispatch of power systems. Not all attacks are necessarily
successful, the probability of which depends on the capa-
bility (resources) of the attacker. To maximize/minimize
the expectation of topological attacks, a model of optimal
resource allocation considering both attackers and defenders
are presented in [4]. However, the existing work does not con-
sider the consequence of cascading outages. While authors in
[14] mentioned the possibility of cascading outages caused
by the topological attack, they did not analyze the process
in depth. Ref. [16] established a tri-level optimization model
and then concluded that attackers should choose the attack
strategy that would cause cascading failures. However, it did
not illustrate the multilevel cascading process of the power
system. Therefore, we still need to explore the mechanism
of cyber topological attacks and the process of the following
cascading outages.

As the CPPS has several defenses, attackers should use
multiple types of attacks to cause a blackout. In this paper,
a process of coordinated topological attacks is proposed.
To identify risky attacks schemes, the pattern of attacks is
defined, as a minimal series of attacks able to initiate cascad-
ing outages. So patterns help operators identify truly risky
outages. Then an efficient search strategy is proposed. The
contributions of this paper are threefold:

1) A process of coordinated cyber topological attacks in
the CPPS, which can cause cascading outages, is estab-
lished. It incorporates different kinds of attacks to
achieve the final target and makes cover-up. Therefore,
the synthesized attack formulates a novel type of
security threat of the CPPS.

2) The concept of the pattern of topological attacks is
proposed. In this paper, the pattern is defined as
the minimal attack sequence extracted from attack
sequences. Therefore, patterns can represent many
risky attack sequences, thus reducing the storage and

FIGURE 1. Mechanism of the topological attack.

computational resources significantly while keeping
the key information. This is helpful for further risk
mitigation.

3) An efficient sequential search strategy is presented. It
dynamically selects the next attack target and gradually
increases the search depth. The above features enhance
the performance and accuracy, and make it outperform
the existing similar method.

The remainder of this paper is organized as follows.
Section II formulates the procedure of coordinated cyber
topological attacks. Section III defines the attack sequence
and pattern. The loss of the physical network resulting
from the attacks is then assessed. Section IV proposes the
‘‘gradual’’ search strategy to identify patterns more effec-
tively. Section V presents test results of the IEEE 39-node
system. Finally, conclusions are drawn in Section VI.

II. PROCESS OF COORDINATED CYBER
TOPOLOGICAL ATTACK
In this Section, we establish the process of a coordinatedmali-
cious cyber topological attack, including intrusion, FCIA,
and post-contingency DDoS attack. These steps target the
confidentiality, integrity, and availability of the CPPS, respec-
tively. After the attack, the outage is transferred from
the cyber layer to the physical layer (breaker), as shown
in Fig. 1. The mechanism and probability of the three
steps are analyzed in the following subsections, respectively.
Considering different events have different timescales, it is
worth clarifying the time effect of each dynamic at first.

An example of a sequence of successful cyber topological
attacks is illustrated in Fig. 2. In this example, the attacker
took 10 hours (10 middle-term periods) to learn about a
loophole. Then it launched the intrusion, followed by three
FCIAs. As a result, three transmission lines were tripped.
The defender tried to perform a redispatch but failed due to
the interruption of DDoS attacks. Finally cascading outages
were induced, which triggered an emergency load shedding
with major loss of load. The attacks and the following outages
occurred in just several minutes (less than a middle-term
period), so the overall process is within a long-term period
(96 hours).

A. TIMESCALE OF CPPS DYNAMICS
The attacker needs preparation to successfully implement an
intrusion [17]. Meanwhile, the security of the cyber environ-
ment has been strengthened with the assistance of the peri-
odic security patch installation. Moreover, after the intrusion,
it should instead launch the FCIA as swiftly as possible to let
the attack take into effect before detected. Therefore, these
different dynamics should be addressed separately.
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FIGURE 2. Example of cyber topological attacks on a time scale.

TABLE 1. Timescales of Major Dynamics in the CPPS.

In this paper, we categorize cyber-related processes into
long, middle, and short timescales. The main events of each
timescale are shown in Table 1, which is slightly different
from those in [18] because this paper considers both physical
and cyber dynamics.

1) SHORT-TERM PROCESS
The FCIA is with the short-term timescale, which occurs
in just a few seconds. Meanwhile, in the physical network,
the relay protection will be triggered shortly after the
corresponding component is overloaded. The emergency con-
trol (load shedding or disconnection) may further be acti-
vated if the stability is endangered, which is also performed
fast.

2) MIDDLE-TERM PROCESS
This category includes intrusion preparation, DDoS attack,
and post-contingency redispatch. Before breaking through
cyber defenses to finally accomplish the intrusion,
the attacker should first discover and exploit a software
loophole, which takes time to make itself well-prepared. The
time needed is usually several hours, therefore belonging to
the middle-term process. Besides, it takes a quarter or so to
ramp up/down generators, so the post-contingency redispatch
is also considered in this process. In the meantime, DDoS
attacks are executed to interrupt that redispatch, so they
should last a period no shorter than that of the redispatch.

3) LONG-TERM PROCESS
Like any other cyber system, the manufacturer of cyber
equipment releases security patches periodically, which
repair known vulnerabilities and thus strengthen the security
level of the CPPS. Additionally, after one day or longer of
operation, the grid may change its topology by the unit com-
mitment and bus split. Therefore, both two factors demand
that the attacker implement the topological attack within one
long-term period, or its preparation will be undone.

B. INTRUSION
1) MECHANISM
Before launching an attack, the attacker should first illegally
get access to the cyber system and grab the control author-
ity. Under the normal condition, the network maintains its
confidentiality, which prevents an unauthorized agent from
obtaining private information. However, according to [19],
the confidentiality of the system can be compromised by the
local or remote intrusion, which includes exploiting poorly
configured firewalls, utilizing backdoors in the network
perimeter, and hijacking the VPN connection.

The existence of software loopholes is rare but inevitable,
because of the large scale and complexity of the software.
To reduce the risk, vendors will release regular security
patches, which can plug the known vulnerabilities. Therefore,
the attacker should finish the discovery and exploitation of a
software loophole within a long-term process, or the loophole
will likely expire. Considering the rarity of the loophole,
we assume that there is only one available loophole yet to be
repaired during a long-term process.Meanwhile, the defender
of the CPPS would also scan and try to repair any vulner-
ability of the cyber network (independent of the software
manufacturer). So the two agents compete with each other.

2) PROBABILITY EVALUATION
Both the attacker and the defender would take time to learn
about the newly identified loophole to improve their action
schemes. Suppose the attacker’s and the defender’s degree of
understanding of the loophole is KA(tA) and KD(tD), respec-
tively. Either of KA(tA)/KD(tD) increases with their learning
time tA/tD, which is a Poisson process [20]. Here, we use
different notations of time, because they identify the same
loophole independently, maybe at different time points.

Then the probability Pr1 of a successful intrusion through
this loophole is

Pr1(tA, tD) = KA(tA)(1− KD(tD))

= (1− e−τAtA )e−τDtD (1)

where τA and τD are the capability of the attacker and the
defender, respectively. A larger τA or a smaller τD will lead
to a larger Pr1.

The time difference between the attacker and the defender
of the discovery of a loophole has a significant impact on Pr1.
Fig. 3 shows an example. While the understanding of the
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FIGURE 3. (a) Attacker and defender’s understanding to a loophole
(τA = 0.024/h, τD = 0.02/h) (b) Impact of time difference 1t = tA − tD
on Pr1.

attacker to the loophole keeps increasing with time, the
overall probability Pr1 increases at first but decreases later.
This is because the defender also gets knowledge of it. If
there is a difference of time1t when they identify a loophole,
their progress is also different. The larger1t is, the higher Pr1
turns. Then the Pr1 is affected, as shown in Fig. 3(b).

The strategy of the defender is fixed because it should
certainly defend against the loophole immediately upon its
discovery. However, as for the attacker, it only has one chance
of the intrusion attempt. If it fails, the attacker will be exposed
and thus cannot intrude again. The attacker only knows its
own tA, but not aware of tD, i.e., how long the defender
has learned about the loophole. So it cannot exactly pick up
the optimal timing of the intrusion. To increase its success
probability as much as possible, it should adopt a profitable
strategy from different strategies, which will be discussed in
Section IV.

C. FCIA
1) MECHANISM
In the field of computer science, the cyber attack is modelled
as an attack graph [21], [22], which is also adopted in recent
CPPS researches [23], [24]. While different theories includ-
ing the semi-Markov process [25] and Petri network [26] are
used, they can be seen as equivalent from the perspective of
probability analysis. Therefore, this paper also uses the attack
graph to model the FCIA process.

The attack graph is a data structure that models all possible
paths of attacking a cyber system. A typical version is a
directed graph as shown in Fig. 4 where nodes represent
system states and edges represent the application of an exploit
that transforms one state into another, more compromised
state. The ending state of the attack graph represents the state
in which the attacker has achieved its goals.

FIGURE 4. Attack graph.

2) PROBABILITY EVALUATION
The attacker should assess the probability of each path and
then choose the most probable path. If one path which has m
steps is selected, then the probability to finally achieve the
goal is

Pr2 =
m∏
i=1

pi (2)

where pi is the success probability of the attack at the i-th
step.

The attacker should intrude into multiple substations and
attack their connecting branches to cause severe outages.
For each target, the intrusion is performed collaboratively
while attacks are executed individually. If targeted substa-
tions share the same software, then they are all vulnerable
to the same loophole [27]. Therefore, the probability of the
intrusion Pr1(tA, tD) is calculated once. As a contrast, Pr2 of
the multiple FCIAs should be multiplied as the number of
actual attacks.

D. POST-CONTINGENCY DDoS INTERRUPTION
The operator will perform a redispatch as long as it is aware
of a topological attack. However, both the data collection
and instruction delivery rely on the communication network,
which is composed of the cyber system of each substation in
the CPPS. Information will not flow promptly if the network
is jammed. Then the redispatch will not take full effect, that
is, not all outages can be addressed. As a result, new outages
may occur. The detailed model of the impaired adjustment is
discussed in the next Section.

While only part of intruded substations is used to inject
false commands, all compromised nodes can contribute to
the DDoS attack to jam the communication network. During
a DDoS attack, enormous invalid data packages are gener-
ated to exhaust the capacity of the intruded and neighboring
nodes. Meanwhile, defenders will adopt and update advanced
defensive control schemes against cyber attacks, for example,
adaptive secure control [28] or reliable leader-to-follower
formation control [29]. Affected by these defensive strategies,
an individual DDoS attack has a probability to fail at each
node. However, the overall DDoS attack has redundancy,
so the target of congesting the communication network is
to succeed as long as attacks at a few nodes lying in the
transmitting link succeed. Therefore, the success probability
of overall DDoS Pr3 is considered to be 1.

According to the above mentioned discussion, if all
substations are homogeneous and k branches are attacked,
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the overall probability of the whole topological attacks
PrT is

PrT = Pr1(tA, tD)× Prk2 × Pr3 (3)

III. PATTERN OF CYBER ATTACK
Due to the N − 1 security check, a single FCIA tripping
only one branch cannot cause cascading outages. The attacker
should instead impose a sequence of topological attacks to
trigger cascading outages. In the sequence, some attacks play
a decisive role, which means that no severe blackout will
occur without them. Therefore, the core of an attack sequence
is defined as a pattern.

According to the definition of the pattern, branches
appearing in patterns are critical. Therefore, system operators
should not let branches in the same pattern fail simultane-
ously, or there will be a blackout. This can be implemented by
reasonably configuring the software diversity, so ‘‘available’’
branches of the attacker are limited.

A. DEFINITION OF PATTERN
An attack sequence F consists of several member branches
Ls1, Ls2, . . ., each of which corresponds to a targeted branch,
denoted as

F = (Ls1,Ls2, . . . ,Lsk ) (4)

Some sequences lead to the loss of load, i.e. Loss(F) > 0 or
Loss(F) = ‘‘EC’’ (meaning that the emergency control is
activated).

Under a given threshold TH , we can subtract some
members from a sequence F that satisfies Loss(F) ≥ TH ,
to get a subsequence F ′. Usually, there is a relation that
Loss(F ′) ≤ Loss(F), because the disturbance caused by
F ′ is smaller. If F ′ is the minimal subsequence of F while
maintaining that Loss(F ′) ≥ TH , then we define that F ′ is
the ‘‘pattern’’ of F . In that process of subtraction, the order of
remaining branches is kept unchanged. This is because some-
times the order influences the loss. So in this paper, patterns
containing the same members but with different orders are
temporarily seen as different. If all of them share an approx-
imate loss, then they can be merged as an ‘‘unsequenced’’
pattern.

The pattern is representative according to its definition.
By adding branches, a large number of risky attacking
sequences can be generated from one pattern. On the contrary,
however, it may take great efforts to identify the pattern of a
sequence F , becauseF has many subsequences. One can only
try the subsequences in turn, which is a computation-intensive
process.

B. FORMATION OF PATTERN/SEQUENCE
Every time after an FCIA, the topology of the grid is
altered. So the vulnerability of each branch varies at different
topology (state). The attacker should judge which branch
is ‘‘valuable’’ to attack next, dynamically, according to the
current state of the CPPS. Ref. [12], [30] figured out that
power systems have the Markovian property, so the decision

FIGURE 5. MDP with system degradation.

can be made independently with only the current states. This
is a tree-layout Markov decision process (MDP), as shown
in Fig. 5.

According to the MDP model, the sequence of actions
from s0 (the normal condition with no outage) is the attack
sequence. If n nonrepeated search trials are performed, then
we will get n attack sequences. Patterns will be extracted
from these sequences in the following passage. It should be
noted that this MDP is just used to organize attack sequences
because some share the same heads. So we do not solve
the optimal strategy (corresponding to the riskiest attack
sequence) of the attacker, as our previous work [31] has
discussed this problem. Instead, every risky pattern is worth
attention.

C. SYSTEM DEGRADATION AND LOSS EVALUATION
The change of the topology of the grid will lead to
the alteration of the admittance matrix Y = G + jB.
Therefore, according to the following power flow equation
(5), measurements of each node and branch are also changed.{

Pi = Vi
∑

j Vj(Gij cos θij + Bij sin θij)

Qi = Vi
∑

j Vj(Gij sin θij − Bij cos θij)
(5)

The CPPS is going near its security margin as the attack
continues. This is a process of degradation. Meanwhile, oper-
atorsmay try to perform a redispatch as soon as they detect the
anomaly. However, the communicational network is jammed
by the DDoS attack, so the concentrated adjustment cannot
take effect. Instead, only simple automatic adjustments at
each component are performed.

1) OUTAGE OF NODES
If measurements, mainly voltage V are beyond their upper or
lower bound, the local relay protection will be automatically
activated. This may shed part of the load to force V back
to their secure region. In this paper, we assume that the
power factor of each load keeps constant during the load
shed. Therefore, the following constraints should be satisfied
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during the clearance of outage at node i
0 ≤ PDi ≤ PD0i

QDi =
PDi
PD0i

QD0i (if PD0i 6= 0)

Vmin ≤ Vi ≤ Vmax

(6)

where PD0i is the amount of active demand load before
shedding. Due to the lack of a concentrated redispatch,
the load shedding may not be ‘‘optimal’’, so there is not an
objective function in (6).

2) OUTAGE OF BRANCHES
Branches, i.e., transmission lines and transformers also have
the risk of an outage, mainly due to overloading. A branch has
a rated power limit Sr according to its thermal threshold. If
its apparent power S =

√
P2 + Q2 > Sr , the relay protection

will automatically trip it out of the grid. This will not directly
result in load loss. However, if islanding occurs and the new
island il cannot meet the following power balance, part of
load should be shed.∑

i∈il

PGi =
∑
i∈il

PDi + pn,il (7)

where pn,il is the grid loss caused by the resistance of
branches.

3) LOSS EVALUATION
The activation of local protections does not always mitigate
the risk, due of the lack of a coordinated redispatch. In some
cases, it will worsen the situation, and new outages may
emerge. Then the power flowmay be updated repeatedly until
no more outages or the emergency control is finally activated.
After the system degradation ends, the loss of load caused by
the attacker can be evaluated in the following way:

(a) If no load is shed, then Loss = 0;
(b) If some load is shed and the stability of the system can

be maintained, then Loss > 0;
(c) If the stability of the system cannot be maintained, then

Loss = ‘‘EC’’, which is a special mark meaning that the final
loss is determined by the consequent emergency control.

IV. SEARCH STRATEGY OF PATTERNS
For sequences containing two branches (denoted as ‘‘2-seq’’),
we can assert them to be patterns (‘‘2-pat’’) upon knowing
their Loss ≥ TH by simulation because they do not have any
risky subsequence. Therefore, we can identify risky 3-seqs as
patterns directly after finding out all 2-pats in the same way.
That is the basis of the gradual increasing search strategy.

Although all 2-pats or 3-pats can be obtained by
enumeration, it is very difficult to identify d-pats by checking
every d-seqs if the length (search depth) d is large. So we
cannot obtain ‘‘all’’ d-pats. Instead, we should begin to search
for (d + 1)-pats when there is enough risky d-seqs. The
increase of d is performed by the following practical criteria.

Suppose the search is executed by batch, and one batch
contains 1n search trials. If mi risky sequences have been

found during the i batches, then we can calculate performance
vi by

vi =
1m
1n
=
mi − mi−1

1n
(8)

In general, given i > j, the former vi is smaller than the latter
vj, because remaining patterns are distributed more sparsely
at batch j than i, as the search continues. In this way, the search
will step into the next depth d when the vmeets the following
criteria

vi < v(d)0 /THv (9)

where v(d)0 is the performance of the first batch at d , and THv
is a given threshold.

To sum up, the procudure of the pattern identification is
1) Set the initial depth d ← 2.
2) Search begins.
3) Execute the i-th of search, calculate the performance vi.
4) If the i-th is the first batch at depth d , set v(d)0 ← vi.
5) If vi satisfies (9), let d ← d + 1.
6) Loop step 3) – 5) until search ends.
Lastly, we use the accuracy to compare different strategies.

After finding m risky sequences, they are checked whether
they are ‘‘true’’ patterns or not. If p patterns are eventually
identified, then the accuracy is

A = p/m (10)

If all strategies find p patterns, then the strategy with a larger
A is better, because it means less false positive samples and
thus save the time of checking.

V. TEST RESULTS
A. CASE SETUP
In this paper, we use the IEEE 39-node system (New
England) to validate the representativeness of the pattern
and the efficiency of the strategy. The CPPS has 29 buses
(numbered 1, 2, . . ., 29), 46 branches (transmission lines and
transformers), and 10 generators. Every node is equipped
with a cyber communicational and control system. The cyber
systems are interconnected by the same topology of the phys-
ical network. Additionally, we suppose that generators cannot
be penetrated.

The software configuration of the cyber system in [32] is
adopted. Besides, the capacity of the attacker and the defender
are the same as Fig. 3(a). The durations of long and medium
timescales are 168 and 1 hour, respectively.

Lastly, the case is carried out by MATLAB R2016a
software on a laptop with an Intel i5-3210M CPU and 8GB
RAM.

B. PROBABILITY EVALUATION
1) OPTIMAL TIMING OF INTRUSION
According to (1), the success probability of intrusion Pr1 is
affected by both the attacker and the defender. They scan
loopholes independently, and the attacker does not know
when the regular security patch will arrive. We denote tA0,

134262 VOLUME 8, 2020



Z. Zhang et al.: Pattern Analysis of Topological Attacks in CPPSs

FIGURE 6. Distribution of Pr1 at different (tA0, tD0) (if launching intrusion
46h after discovery, i.e. tA = 46h).

TABLE 2. Paths and probabilities of the attack graph.

tD0 as the discovery time of the attacker and the defender,
respectively. Besides, the pair (tA0, tD0) the time of discov-
ery is uniformly distributed across the 168 × 168 square
region. So the Pr1 at each grid can be calculated, as shown
in Fig. 6.

The attacker should launch an intrusion at a proper time,
neither too early nor too late. To this end, it should maximize
the average Pr1 to obtain the optimal timing, which is

max
tA

167∑
tA0=0

167∑
tD0=0

Pr1(tA, tD)/1682 (11)

where tD = max(tA0 + tA − tD0, 0). Pr1 in (11) can be
calculated according to (1), except that Pr1 = 0 if tA0 +
tA ≥ 168, because the timing is beyond the long-term
period.

After optimization according to the case setup, the attacker
should launch an intrusion 46h after discovery. Therefore,
the expected success rate of an intrusion is Pr1,max = 30%.

2) SUCCESS PROBABILITY OF FCIA
There are 7 paths in the attack graph introduced in [32]. Each
path contains 2 to 3 steps. The vulnerability of every step
can be assessed by the common vulnerability scoring system
(CVSS), according to [33].

As shown in Table 2, path 1 and 3 both have the highest
probability, so the attacker will launch attacks along either of
these two paths with Pr2,max = 28%.

TABLE 3. Loss and risk of attack sequences.

TABLE 4. Number of patterns and risky sequences.

C. REPRESENTATIVENESS OF PATTERN
Let TH = 0.01p.u. (1p.u. = 6254.2MW, i.e. the amount of
load supplied by the grid), we discuss the representativeness
from both qualitative and quantitative perspectives.

1) QUALITY OF PATTERN
From the evaluation, the sequence (L28,L33,L38) is identified
as an unsequenced pattern. The loss and risk of this pat-
tern and some of its subsequences and derivatives are listed
in Table 3.
As for this unsequenced pattern, the order does not affect

the loss. After adding other branches, the loss may be larger
or not. However, the risk is smaller than the pattern itself,
because a longer sequence needs more continuous successful
attacks, which leads to a smaller PrT . Therefore, patterns keep
the core part that can cause a blackout and thus has the highest
risk among their derivatives.

2) QUANTITY OF PATTERN
In this part, we analyze the number of derivatives that one
pattern can represent. Table 4 shows the number of attack
sequences and patterns ≤ 4 branches by enumeration.
In this case, one pattern can represent 429 risky sequences

on average. Besides, while the number of risky sequences
increases drastically as the length grows from 2 to 4, the num-
ber of patterns increases rather smoothly. Meanwhile, it is
very computationally expensive to enumerate all risky 4-seqs,
but we can derive them from patterns with high accuracy.
Therefore, the ‘‘pattern’’ is a reasonable concept that can
substantially compress the storage of risky topological attack
schemes for operators.

D. EFFICIENCY OF THE STRATEGY
Three strategies are compared. All of them search for
patterns no longer than 5-pats. The first one is accord-
ing to (9) (‘‘Gradual’’), where the parameter THv = 3.
The latter two are control groups. One does not limit the
search depth (‘‘Constant’’), whereas the other takes a naïve
increase strategy (‘‘Naïve’’), which increases the depth by
1 every 10 batches. Additionally, given that there are only
46× 45 = 2070 2-seqs in the 39-node system, the initial
depth of the ‘‘Naïve’’ strategy is set to be 3.
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FIGURE 7. Search depth.

FIGURE 8. Search results.

TABLE 5. Performance of each strategy.

All the strategies search for 5×104 times, which consists
of 50 batches of 1×103 search trials. At each search trial,
the attack would choose branches that have heavy power flow
but less visit counts [34]. The search depth of each batch is
shown in Fig. 7.
The numbers of identified patterns with different lengths

are shown in Fig. 8. The number of 2-pats, 3-pats, and
4-pats of the three strategies is near. However, the ‘‘Gradual’’
strategy finds fewer 5-pats than the control groups. Then we
extend the search trials of ‘‘Gradual’’ to 6.5×104, as the
blue bar in Fig. 8 (‘‘Gradual2’’). The extra 1.5×104 search
trials find more 4-pats and 5-pats, making the total found
patterns reach the ‘‘Constant’’ strategy, as shown in Table 5.
Moreover, because the PrT of 4-pats (0.18%) is larger than
that of 5-pats (0.05%), so we can conclude that the proposed
strategy identifiesmore risky patterns than the control groups,
using the same computational resource.

According to Table 5, the proposed strategy used less time
than the other two, because it prioritizes shorter patterns.
Shorter patterns mean fewer topological changes. Given
that the power flow should be updated every time after
the topological change, the proposed method needs fewer
calculations.

Meanwhile, the ‘‘Gradual’’ keeps the highest accuracy,
which is the ratio of ‘‘true’’ patterns to pattern candidates.

For example, the proposed method found 1933 risky attack
sequences within the 5×104 search trial. Theses are candi-
dates for the following check. After checking, 1776 passed as
‘‘true’’ patterns, so the accuracy is 1776/1933=91.88%. As
they finally found roughly equal patterns, the strategy with
higher accuracy avoids more false positive candidates and
thus saves extra checking time.

Then we compare the performance of our method to [35].
Ref. [35] proposed a similar concept called ‘‘minimal N − k
contingencies’’, which can be adapted to the ‘‘attack pattern’’
of this paper. The difference is that ‘‘minimal N − k contin-
gencies’’ occur simultaneously not sequentially. Therefore,
we accustom the ‘‘RC’’ method in [35] to the search for
patterns. The Modified ‘‘RC’’ (MRC) has two steps. First,
it generates many ‘‘minimal N − k contingencies’’ as [35]
did. Second, it checks whether these sets of contingencies are
patterns or not according to Section III-A.

The result of MRC is shown in Table 5. While there is
no concept like ‘‘search trial’’ or ‘‘batch’’ in MRC, we can
compare their found patterns and accuracy. Although using
nearly the same time, MRC finds fewer patterns than both
‘‘Gradual’’ and ‘‘Naïve’’ strategies, and has even less accu-
racy. Thus our method has superiority to this existing similar
method.

E. DISCUSSIONS
1) SCALABILITY
The proposed method of the pattern analysis applies to
large-scale CPPSes as well. To validate the scalability,
a real province-level CPPS in China that has 741 nodes and
1254 branches is studied in this part. 40000 search trials
are executed using DC power flow to search for patterns
that ≤ 6 branches. Then 579 risky attack sequences are
found, of which 81 patterns are identified. This CPPS has
a wider security margin than the virtual New England sys-
tem, so cyber attacks have fewer patterns and thus do less
harm. Therefore, this result is reasonable, which verifies the
scalability of the proposed method.

2) TUNING OF THv

The value of THv can affect the performance of the
‘‘Gradual’’ strategy. We test different THvs and then the
distribution of obtained patterns is illustrated in Fig. 9.
The numbers of 2-pats and 3-pats are almost the same,
whereas the numbers of 4-pats and 5-pats are different. As
THv increases from 2 to 4, the number of 4-pats also increases
while the number of 5-pats decreases. This is because a
smaller THv allows the search stage at depth d = 5 longer
but at d = 4 shorter. Meanwhile, 2-pats and 3-pats are easy
to obtain, so THv does not affect them. Therefore, in this case,
different THvs show different search preferences, and all of 2,
3, or 4 are acceptable values.

3) MITIGATION MEASURE
As each pattern suggests a kind of risk, operators of the CPPS
should take measures to reduce the number of patterns. In
this paper, we give a preliminary discussion based on the
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FIGURE 9. Impact of THv on the distribution of obtained patterns.

FIGURE 10. Effect of software diversity to eliminate patterns.

data of Table 4. If the attacker can intrude into all substa-
tions, there are 1568 patterns (≤ 4-pats). However, when
planning and constructing the cyber network, managers of
real CPPSes usually purchase cyber software from different
vendors. Considering that different software does not have
the same loophole, the ‘‘available’’ substations and branches
of the attacker are limited.

Suppose the cyber software from two vendors is adopted.
One is installed at substations with an odd number
(1, 3, . . ., 29), and the other is at those with an even number
(2, 4, . . ., 28). For example, L43 (26–28) is not available for
the attacker intruding odd-numbered substations because the
attacker can only discover one loophole. Then the number of
patterns reduces to 845 and 880, respectively, if the loophole
discovered by the attacker is odd and even-numbered substa-
tions, as shown in Fig. 10. Furthermore, the software can be
configured more precisely if considering the distribution of
patterns, which will be studied in the future.

VI. CONCLUSION
In this paper, the coordinated topological attack from the
cyber system to the physical network in modern CPPSes is
analyzed. The attacker can utilize multiple forms to illegally
get access to physical components, alter the topology, dis-
rupt the redispatch, and finally jeopardize the security of the
CPPS. To protect the CPPS from critical topological attacks,
the pattern of attack sequences is introduced and discussed.
Then a novel search strategy is presented, which dynami-
cally selects the next attack target and gradually increases
the search depth according to the search performance. The
case study on the IEEE 39-node CPPS demonstrates that
the pattern is representative from both the qualitative and

quantitative perspectives. Case studies illustrate that the intro-
duction of the pattern significantly reduces the storage for
risky attack sequences while keeping the key information.
Results also show that the proposed search strategy further
enhances performance and accuracy, and outperforms the
existing similar method.

Next, the authors would explore the configuration of the
software diversity to mitigate cyber risk and try to apply the
pattern analysis to a larger CPPS.

APPENDIX A
NOMENCLATURE
Acronyms and abbreviations

CPPS Cyber-physical
power system

FDIA False data injection attack
FCIA False command injection attack
DDoS Distributed denial of service
VPN Virtual private network
MDP Markov decision process
Pr Probability
EC Emergency control
d-seq Attack sequence that contains d

branches
d-pat Attack pattern that contains d

branches
XCBR Circuit breaker
IHMI and other
notations in Table 2 Interim states of an attack path
p.u. Per unit, the amount of load supplied

by the grid

Cyber attack

Pr1 Probability of a successful intrusion
Pr2 Probability of a successful FCIA
Pr3 Probability of a successful DDoS attack
PrT Probability of the whole topological attack
KA, KD Attacker’s/defender’s understanding degree of a

loophole
tA, tD Time from the discovery of a loophole by the

attacker/defender, loophole learning time
tA0, tD0 Discovery time of a loophole from the beginning

of a long-term period by the attacker/defender
τA, τD Capacity of the attacker/defender
1t Difference of tA and tD
n Number of attack paths of a substation
m Number of steps of an attack path
pi Probability of a successful attack at the i-th step
k Number of attacked branches

System degradation

F Attack sequence
Ls1, Ls2, . . . Attacked branches in an F
Loss Loss of load of an F
TH Threshold of loss
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s0 Normal condition of a CPPS with no outage
s(i)j i-th state at the j-th level

a(i)j i-th attack to the j-th level
Y Admittance matrix of the physical network of a

CPPS
G Real part of Y
B Imaginary part of Y
Pi Active power injected at node i
Qi Reactive power injected at node i
Vi Voltage at node i
θij Difference of phase angle between node i and j
PDi , QDi Demand power of node i
PGi Generated active power of node i
PD0i , QD0i Demand power of node i at s0
pn,il Grid loss of island il
S, Sr Actual/apparent power flow of a branch

Pattern analysis

n Number of nonrepeated search trials
m Number of risky attack sequences
d Search depth
v Search performance
v(d)0 Search performance of the first batch at depth d
p Number of attack patterns
A Accuracy
THv Threshold of performance
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