Pattern and Variation of C:N:P Ratios in China's Soils: A Synthesis of Observational Data Hanqin Tian¹, Guangsheng Chen¹, Chi Zhang¹, Jerry M. Melillo² and Charles A.S. Hall³ ¹Ecosystem Dynamics and Global Ecology Laboratory, School of Forestry and Wildlife Science, Auburn University, AL 36849, USA; ² The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA; and ³ College of Environmental Science & Forestry, State University of New York, Syracuse, NY 13210, USA ¹Correspondence: Hanqin Tian School of Forestry and Wildlife Science, Auburn University, AL36849, USA Email: tianhan@auburn.edu Phone: 334-844-1059 Fax: 334-844-1084 1 Abstract Inspired by previous studies that have indicated consistent or even 2 well-constrained relationships among carbon (C), nitrogen (N) and phosphorus (P) in soils, we have endeavored to explore general soil C:N:P ratios in China on a national 3 scale, as well as the changing patterns of these ratios with soil depth, developmental 4 stages and climate; we also attempted to determine if well-constrained C:N:P 5 6 stoichiometrical ratios exist in China's soil. Based on an inventory data set of 2,384 7 soil profiles, our analysis indicated that the mean C:N, C:P and N:P ratios for the entire 8 soil depth (as deep as 250 cm for some soil profiles) in China were 11.9, 61 and 5.2, respectively, showing a C:N:P ratio of ~60:5:1. C:N ratios showed relatively small 9 variation among different climatic zones, soil orders, soil depth and weathering stages, 10 11 while C:P and N:P ratios showed a high spatial heterogeneity and large variations in different climatic zones, soil orders, soil depth and weathering stages. No 12 13 well-constrained C:N:P ratios were found for the entire soil depth in China. However, 14 for the 0-10 cm organic-rich soil, where has the most active organism-environment 15 interaction, we found a well-constrained C:N ratio (14.4, molar ratio) and relatively consistent C:P (136) and N:P (9.3) ratios, with a general C:N:P ratio of 134:9:1. 16 17 Finally, we suggested that soil C:N, C:P and N:P ratios in organic-rich topsoil could be 18 a good indicator of soil nutrient status during soil development. 19 20 **Keywords** Carbon · Nitrogen · Phosphorus · Stoichiometry · China # Introduction 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 22 All substances on earth are composed of chemical elements, and elemental composition is the most fundamental in biology and ecology (Michaels 2003; Schimel 2003). Thus a cell, an organism, an ecosystem, and even the biosphere can be reduced to its elemental composition in some simple elemental ratios. Although soil is influenced by complex factors such as climate, soil parent materials, topography and development stages, and is often characterized by high biological diversity, structural complexity and spatial heterogeneity (Chadwick et al. 1999; Cleveland and Liptzin 2007), many previous studies (e.g. Melillo et al. 2003; Vitousek et al. 2002, 2004; Brady and Weil 2002; Post et al. 1982; Walker and Adams 1958) have indicated that soil carbon (C), nitrogen (N) and phosphorus (P) are often closely related. Walker (1956) suggested that C, N, and P are associated in fairly definite proportions in soil organic matter (SOM). Based on the analysis of 22 grassland soil profiles, Walker and Adams (1958) found a constrained correlation among organic C (SOC) and organic P (SOP) in the soil. Through a literature review of 48 published resources, Cleveland and Liptzin (2007) found a well constrained C:N:P ratio in global soil microbial biomass and 0-10cm organic-rich soil. All these findings reported relatively constrained elemental ratios, or homeostasis, in plants and soil organisms. It is suggested that the feedbacks from living organisms can modify soil nutrient content and result in "Redfield-like" correlations between the elemental ratio of the biota and soil in terrestrial ecosystems (Neff et al. 2000; Stener and Elser 2002; Cleveland and Liptzin 44 2007). 45 Redfield (1958) found that planktonic biomass contains C, N and P in an atomic ratio of 106:16:1, similar to the ratio of C, N and P in marine water. This C:N:P 46 47 ratio, known as "Redfield Ratio", has stimulated a large number of subsequent studies 48 on the C:N:P stoichiometry of multiple biota in aquatic and terrestrial ecosystems (e.g., 49 Sterner 1995; Elser et al. 1996; Stener and Elser 2002; Cleveland and Liptzin 2007; 50 McGroddy et al. 2004). Compared to marine ecosystems, terrestrial ecosystems vary 51 greatly due to varied and complex habitats, biota and environmental factors. Furthermore, soil is far more complex than other terrestrial systems. The relative 52 53 immobility of the soil tends to promote and maintain spatial heterogeneity in nutrient 54 cycles. This heterogeneity is caused by both local-scale disturbances, such as land 55 use change and human interferences, and regional-scale differences in glacial history, 56 climate, geologic parent material, topography, and biotic diversity (Jenny 1941). 57 Nutrients are continuously redistributed in terrestrial ecosystems by a number of ways 58 including plant litterfall, soil water flow and plant-atmosphere exchange, none of 59 which appears within marine environments (McGroddy et al. 2004). Unlike the 60 homogeneous aquatic environment, soil is highly heterogeneous both horizontally and vertically. The soil P supply depends on the total P content and the weathering stage of 61 62 the parent material, both of which are characterized by spatial heterogeneities. Furthermore, the infiltration and diffusion rate of nutrients in soil is much slower than 63 64 in the aquatic ecosystem. As the result, the feedbacks from terrestrial organisms are 65 limited to the top-soil, while the supply of P comes from the parent materials that are 66 located at the bottom of the soil. This mechanism results in a complex and highly 67 variable vertical pattern of total P (TP) content through the soil profile (Brady and Weil 2002). Based on vertical soil analysis to a depth of 53 cm, Walker and Adams (1958) 68 69 concluded that the total soil P content was related to the P content of parent material, and decreased down through the soil profile at a rate much slower than the rate of C 70 71 and N. This finding indicates that soil has inconsistent vertical patterns of N:P ratio. 72 Although Cleveland and Liptzin (2007) stated that a remarkably constrained soil C:N:P 73 ratio of 186:13:1 exists on the global scale, their analysis was mainly based on samples from surface soils (0~10 cm mineral soil). The constrained C:N:P ratio in the topsoil 74 found by Cleveland and Liptzin (2007) may not be applicable to the entire depth of soil 75 76 profiles. 77 Considering the high spatial heterogeneity of soil nutrients and the dependence of 78 P supply on weathering conditions of parent material, large-scale soil datasets of soil C, 79 N, and P that cover a range of ecosystem types and soil weathering stages are 80 necessary to examine the patterns of elemental ratio in the soil. However, even the 81 most frequently cited global soil database today, the World Inventory of Soil Emission 82 (WISE) database (Batjes 2002), contains less than 900 soil profiles that record soil P content. While several previous studies tried to compile soil observations through 83 84 published reports, inconsistent soil sampling and measuring approaches, as well as 85 incomplete site descriptions from various literature resources has usually limited the 86 quantity and quality of available data sources. Since China has various soil types that developed under different bioclimatic conditions and are derived from various parent materials in diversified topographical environments, the study of the relationships among C, N, and P in China's soil is likely to make great contributions to the establishment of a global C, N, and P relationship. Based on soil chemical data from the Second Chinese Soil Survey, which provided C:N:P for over 2,473 typical soil profiles across China that were sampled and measured in standard approaches (Wang, et al. 2003; Tian, et al. 2006; Zhang, et al. 2005; Wu et al. 2003; Yang et al. 2007), our objectives in this study are to: 1) explore the general C:N, C:P and N:P ratios in China's soil at a national scale; and 2) find how these ratios change with climate, soil orders, soil depth and weathering status. Based on these two objectives, we have also tried to verify whether or not well-constrained C:N:P ratios exist in the top and deeper soils. ### Materials and methods ## Data sources We examined geo-referenced soil profiles collected in the second Chinese soil survey and developed mean values for various soil groups (National Soil Survey Office 1993, 1994a, b, 1995a, b, 1996). This database includes 2,473 soil profiles, each of which represents a soil type in the Chinese Soil Taxonomy system (Li and Zhao 2001; Wang et al 2003). Each soil profile is divided into A, B, C and other horizons, according to actual soil conditions. The properties investigated include the thickness of horizons, total soil organic matter (SOM) (determined by the K₂Cr₂O₇-H₂SO₄ digestion method), total P content (measured by Perchloric acid digestion followed by the molybdate colorimetric test), total soil N (analyzed with the Kjeldahl procedure), soil bulk density (measured according to the core sampling method), soil available P (The Olsen method (Olsen et al., 1954) was used for available P analysis) and geographic location information. SOC content was calculated as a portion of SOM which has been described by Wang et al. (2003). Of all the 2,473 soil profiles, 2,405 have total P content records, 2,462 have SOM data and 2,445 have total N records, 1,760 have available P records, and 1,535 profiles have geographic location information. We excluded soil profiles that did not have any of the total C, N or P data. The final dataset used in this analysis includes 2,384 soil profiles. We integrated the soil data for the 1,535 profiles for which we had geographical information into a Geographical Information System (GIS) database to show their geographic distribution (Fig. 1). The Chinese Soil Taxonomy system (National Soil Survey Office 1998) was used in this soil survey. This system has a hierarchical structure, with 12 orders, 61 great groups, 235 sub-great groups, 909 families and more than 2,473 soil types (soil profiles, each with its distribution area in China). Using the transformation procedure of Zhang et al. (2005), we were able to compare these results with the United Nation Food and Agriculture Organization/UNESCO (1988) soil classification system, and also the equivalent USDA soil taxonomy system (Soil Survey Staff 1975). Calculation of soil C, N and P ratios: The soil total C, N and P concentrations (mg/kg) were transformed to a unit of mmol/kg, and C: N, C: P and N: P ratios for each 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 type soil were calculated as molar ratios (atomic ratio), rather than mass ratios. To reflect China's soil C, N and P ratios more accurately, we used both area-weighted and number-weighted average methods to calculate the mean ratios. The formula for area-weighted mean soil C, N and P ratios is: 136 $$\overline{R}_{CNP} = \frac{\sum_{i=1}^{n} (AREA_i \times R_{CNP_i})}{\sum_{i=1}^{n} AREA_i},$$ (1) where \overline{R}_{CNP} is the area-averaged C: N, C: P or N: P ratio, i refers to the i^{th} soil 137 type; n is the total number of soil, $AREA_i$ is the area of the i^{th} soil type, and R_{CNP_i} is 138 the corresponding C: N, C: P or N: P ratio of the i^{th} soil type. The number-weighted 139 140 average also has its own advantages as the impacts of soil area on soil C, N and P ratio patterns can be discerned and results from different research studies can be compared. 141 142 Therefore, we calculated mean C, N and P ratios for different soil orders, soil depth 143 and climate zones using number-weighted average. The formula for a number-weighted average is: 144 $$\overline{R}_{CNP} = \frac{\sum_{i=1}^{n} (R_{CNP_i})}{n}$$ (2) 146 147 148 149 150 151 Because the classification systems of soil horizons are different for different soil samples, we divided each soil profile into four layers with a range of soil depths (0-10 cm, 20-50 cm, 50-100 cm, and >100 cm, respectively), rather than into the horizontal or subhorizontal types (such as O, A, E, B and C horizons). The patterns of soil C, N and P concentrations and their ratios for these four layers were compared in all soil types and orders. We calculated the C: N, C: P and N: P ratios of each soil layer using the soil C, N and P concentration data of the corresponding soil type and layer. The mean C, N and P concentrations and C: N, C: P and N: P ratios of each soil layer were based on number-weighted averages (Formula 2). The mean C: N, C: P and N: P ratios for all Chinese soil types (entire depth) were based on the number-averaged values of all the soil types (Formula 2) rather than on soil sub-great groups or soil orders. We changed the Chinese soil taxonomic classification system to produce 12 soil orders (Entisols, Gelisols, Histosols, Inceptisols, Andisols, Aridisols, Vertisols, Alfisols, Mollisols, Ultisols, Spodosol, and Oxisols) which correspond to the USDA soil taxonomic system (Zhang et al. 2005). We then compared the C, N and P concentrations and ratios of different soil orders. The C, N and P concentrations and ratios of each soil sub-great group were averaged based on Formula 2. We weathered soils (Entisols, Gelisols, Inceptisols,), moderately weathered soils (Aridisols, Vertisols, Alfisols, Mollisols), and strongly weathered soils (Ultisols, Spodosol, reclassified these 12 soil orders into three soil weathering status groups; slightly Oxisols) according to the soil developmental time series described by Brady and Weil (2002) and Zhang et al. (2005). We compared the C, N and P ratios of these three weathering status groups based on data that considered entire soil depth. Division of climate zones Precipitation and temperature are known to influence vegetative cover, plant litter quality and soil biota, which in turn influence the physical and chemical properties of soil, and soil development. Thus, climate can leave a distinct imprint on soil C, N, and P concentrations and ratios. China is characterized by great spatial variability in climate, ranging from tropical to cool temperate zones (Tian et al., 2003; Wu et al., 2003). The tropical & subtropical zone is extremely humid due to the influence of Asian monsoon circulations (Tian et al., 2003), while in frigid highland areas annual precipitation and temperature are very low due to the northern location and higher elevation (See Table 1). Considering the obvious differences in climate and parent soil types, and applying the Holdridge life-zone classification system, we divided China into five zones: frigid highland, cool temperate, warm temperate, temperate desert, and tropical & subtropical, based on the 1: 1,000,000 Land-use Map of China (Wu 1988). These five zones reflect only climate differences among these zones, rather than any specific land covers. For example, Temperate Desert includes woodlands, grasslands, desert, wetlands, and other types of land cover. We obtained the mean soil C, N and P concentrations and ratios in each climate zone by averaging the corresponding values of all soil types within the climate zone (Formula 2). Statistical Analysis We performed all the statistic analyses using SPSS v11.5 software (SPSS Inc., Chicago, Illinois). We used variance of analysis (ANOVA) with LSD (Least Square Difference) post hoc test of significance to compare C, N and P concentrations, densities, and ratios within and across groups. The mean values were reported with 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 95% confidence intervals. 196 197 195 ## Results and analysis 198 199 General patterns of soil C, N and P ratios in China 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 Although soil C, N and P content varied significantly due to the differences in climate, parent material, biota, topography and disturbance history, we found a general pattern of soil C, N and P ratios in China (Table 2). The number-weighted mean soil C: N, C: P and N: P ratios were 11.9, 61 and 5.2, respectively, which was not vastly different from area-weighted means (12.1, 61, and 5.0, respectively, Table 2). The C: N, C: P and N: P ratios of the surface organic-rich layer (0-10 cm of A horizon) were 14.4, 136, and 9.3, respectively. From the frequency distribution of soil C, N and P ratios (Fig. 2), we found that all the soil elemental ratios followed a normal distribution pattern, with most C:N, C:P and N:P ratios in the range of 6-12, 24-48, and 3-6, respectively. The C:N, C:P and N:P ratios of the organic-rich soil layer were significantly higher than corresponding values for total soil depth (Table 2). The C:N:P ratio (134:9:1) of this layer was also different from that of the total soil depth (60:5:1). However, the C: available P (15,810) and N: available P (1114) ratios of the organic-rich layer were significantly lower than that of the total soil depth (64,233 and 5,725, respectively). The C:N ratio showed no significant difference among different soil depths where the deeper soil was greater than 50cm (Table 3). The C: P ratio of the organic-rich soil layer was over four times higher than that of the >100 cm soil layer and showed significant decrease as soil depth increased; this can be attributed to soil C concentration decreasing faster than soil P concentration as soil depth increases. The vertical pattern of the N:P ratio was similar to that of the C:P ratio, showing a peak value in 0-10 cm organic-rich soil (Table 3). The highest C:N ratios were found in Northeast China, the eastern Tibet Plateau and sandy areas of Northwest China(Fig. 3a). The C:P and N:P ratios showed almost the same distribution patterns across China. The highest C: P and N:P ratios were found in Northeast China and the eastern Tibet Plateau (Fig. 3b, 2c), which might be due to C and N having a higher rate of accumulation than P's weathering rate. Soil C, N and P ratios among different climate zones and soil orders The highest C:N ratio (13.6) was in the frigid highland zone where there is soil with higher C content and lower N, while the lowest one (10.7) was in the warm temperate zone which has the lowest C and N contents compared to other climate zones. Soil C: P and N: P ratios varied considerably among different climate zones (Table 4). The highest C: P (78) and N:P (6.4) ratios occurred in the tropical & subtropical zone which had the lowest P content, while the lowest C:P (32) and N:P (2.6) ratios were in the temperate desert zone where N content was lower and P content was the greatest. Soil orders are assigned largely on the basis of soil properties that reflect the course of major soil developments; thus, C, N and P ratios of a specific soil order can reflect the accumulated impact of climate, organisms, relief, parent material, and time on soil chemical properties (Jenny, 1941). In China, only nine soil orders were found, with Histosols and Andisols being the least frequent (Table 5). We found that Histosols had the highest C: N ratio, while Vertisols and Entisols had the lowest. With the exception of Histosols, the differences between C: N ratios and the eight remaining soil orders in China were small (variance range from 10.73 to 13.38). Histosols had the highest C: P (340) and N:P ratios (17.77), while Aridisols had the lowest C:P (29.0) and N:P (2.60) ratios. #### **Discussions** # Do well-constrained soil C:N:P stoichiometric ratios exist? Well-constrained C:N:P ratios in planktonic biomass were found to have important impacts on nutrient cycles and biological processes in marine ecosystems. The "Redfield-like" ratios were found in plants (e.g. Reich and Oleksyn 2004; McGroddy et al. 2004) and soil microbial communities (e.g. Cleveland and Liptzin 2007). Could the relatively fixed elemental ratios in terrestrial organisms (such as plant leaves, litters, and microbes) result in consistent nutrient ratios in the soil just like that found by Redfield (1958) in the marine ecosystem? Could the analysis of soil element ratios provide insight into the nature of nutrient limitation in terrestrial ecosystems? Cleveland and Liptzin (2007) studied the C:N:P stoichiometry in soil and stated that similar to marine ecosystems, the atomic C:N:P ratios in the top soil were well-constrained due to the interactions between the environment and soil organisms. Their study, however, only focused on surface soils (typically 0-10 cm), which represent organic-rich horizons, and their data were obtained from discrete publications. The limited sample size (< 150) of their study also indicates that it is necessary for further studies to verify the well-constrained relationships at the top soil. Based on more than 2,437 soil profiles and over 8,000 soil layers across China, we carried out the correlation analyses among soil total C, N and P and among total C, total N and available P (Table 9), the results revealed that the C:N ratio of the organic-rich soil layer was well-constrained considering the relatively high correlation coefficient (0.93) among C and N concentrations. There were also relatively constrained C:P and N:P ratios in the organic-rich soil layer (Correlation coefficients were 0.62 and 0.51, respectively). This might imply that there has a relatively constrained C:N:P ratio in the organic-rich soil layer as reported by Clevaland and Liptzin (2007). In this sense, we agree with Cleveland and Liptzin (2007) on their statement that "Redfield-like" interactions between C, N and P may exist in soil. We found a similar C:N ratio (14.4) to that found by Clevaland and Liptzin (2007) in the organic-rich soil layer, but we found lower C:P (136) and N:P (9.3) ratios; that the C:N:P ratio (134:9:1) from this study is different from theirs (186:13:1) implies that C:N:P ratios might change with environmental factors although C, N and P are relatively well-constrained at the organic-rich topsoil. When came to the total soil 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 depth, there was no relatively constrained C:N:P stoichiometric ratios for deeper soil (correlation coefficients are very low except that between total C and N, Table 9). However, a well-constrained C:N ratio was found for the deeper soil considering its higher correlation coefficient (0.88). Many previous studies (e.g. Vitousek 2004; Melillo et al. 2003; Post et al. 1985) also found strong correlations between total C and total N in the soil. As in the marine ecosystem where most of the soil N is fixed by microorganisms, the relatively constrained C:N:P ratios in the topsoil reflect the ability of terrestrial organisms to modify their abiotic environment to meet their nutrient requirements. Unlike the soil C and N, the weathering of the parent material, which is located at the bottom of the soil profile, provides the major sources of available soil P (Walker and Adams 1958). Soil P is further translocated by plants and accumulated in the surface soil in the form of SOP resulting in a complex vertical distribution pattern in the soil profile (Smeck 1985; Mellilo et al. 2003; Vitousek 2004). We found that the C:P ratio decreased dramatically with the soil depth (Table 3). Walker and Adams (1958) also found that as the soil depth increased, the C:P ratio declined much faster than the C:N ratio. This is mainly because of the relatively stable soil P content throughout the soil profile when compared to the rapid decline in SOC with soil depth (Table 3). Through analyses of C: P and N: P ratios, we found that despite large variations of C and N content, low soil P content always led to high C: P and N: P ratios. This pattern indicates, as suggested by Walker and Adams (1958), that the C:N:P ratio in the soil is mainly controlled by the P supply. Although there is no constrained C:N:P ratio in the deeper soil, the vertical distribution of P in the soil still provided strong evidence of biotic regulation of soil nutrients. Despite the location of the parent material and the downward movement of P leaching, the terrestrial organisms seem to be able to reduce P gradient along the soil profile by uptake and trans-locating P from the P-rich deep soil to the surface layer to meet their nutrient requirements (Zhang et al. 2005). Controlling factors in the C:N:P ratio in China's soil Climate imposes important controls both on soil development and on the biota and its interaction with the soil nutrients (Chadwick et al. 1999; Vitousek 2004; Oleksyn 2004). Spatial distribution of soil C, N and P density across China has seen substantial variation (Wang et al. 2003; Zhang et al. 2005; Tian et al. 2005). Despite the spatial variations of C and N contents, the C:N ratio was relatively stable among climate zones (Table 4), indicating the feedbacks of a similar biota on the chemical composition of the soil. The C:P and N:P ratios, however, varied significantly among different climate zones in China (Table 4). The element ratio highlights the impacts of extreme climate regimes on soil nutrient balance. The high temperature and precipitation in tropical-subtropical regions can result in high P leaching rate and P occlusion in highly weathered soils (Vitousek and Walker 1987; Neufeldt et al. 2000; Zhang et al. 2005). At the same time, the high productivity of tropical-subtropical 327 ecosystems maintains relatively high soil C and N content, which gave these regions 328 the highest C:P and N:P ratios. In contrast, the dry and cool climate regime in the temperate desert resulted in low productivity, lower soil C and N contents and low P 329 330 loss through leaching, and higher soil P content, which gave it the lowest soil C:P and 331 N:P ratios among all the climate zones. 332 Site-level chronosequence studies have suggested that soil C:N:P ratios may 333 change during soil development, indicating a shift in soil limitation nutrients (Crews et 334 al. 1995; Chadwick et al. 1999; Frizano et al. 2002; Vitousek 2004). To capture the pattern of elemental ratios of different soil developmental stages, we further grouped 335 336 the nine soil orders into three soil weathering classes: slight, moderate and strong 337 weathering soil (Brady and Weil 2002; Zhang et al. 2005). The soil C: N ratios 338 increased significantly (P<0.05) with increasing soil weathering time (11.37, 12.32, 339 and 13.32, respectively) (Table 6). We also found that the strongly weathered soil 340 had the highest C: P ratio (99.0), while the C: P ratio of the moderately weathered soil 341 (63.1) was similar to that of the slight weathering soil (64.9). The N: P ratio showed 342 the same trend, with the highest N: P ratio in strong weathering soil (7.37), indicating P 343 deficiency in highly weathered soils. The N:P ratio was found to be the lowest in the moderate weathering soil (5.41), which was not significantly lower than that of the 344 345 slight weathering soil (5.78). This result was similar to that reported by Crews et al. (1995) and Vitousek (2004). Walker and Syers (1976) proposed that soil total P 346 347 decreases with increasing soil developmental time. We found the same pattern in this 348 study. 349 ### Chinese vs. global soil C:N:P ratios 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 350 While several studies have been conducted to explore the patterns among soil C: N ratios, soil C: N ratios were not the primary focus of these studies. For example, based on the global World Inventory of Soil Emission Potential (WISE) dataset (http://www.daac.ornl.gov), Batjes (1996) studied the changing patterns of C: N ratios in relation to soil depth (Table 7). The average C: N ratios of all the soil orders reported by Batjes for 0-30, 30-50, and 50-100 cm depths (15.84, 14.93, and 13.36, respectively) were higher than our corresponding values (12.65, 11.69, and 11.19, respectively). Additionally, based on the WISE dataset, Batjes (1996, 2002) explored the concentrations of soil C and N as well as C: N ratios of eleven soil orders around the world (Table 7). The average C: N ratio reported by Batjes for all soil orders at 0-100 cm depth (14.42) was higher than our corresponding values. Both studies found Histosols had the highest C: N ratio. Based on global soil C and N data of 2,700 soil profiles from Oak Ridge National Laboratory (http://www.dacc.ornl.gov, Zinke et al. 1984), Post et al. (1982; 1985) reported global patterns of soil C and N storage and C: N ratios in terms of the Holdridge life zones. We summarized the mass-based C:N ratios and transformed them into mole-based ratios for climate zones: tundra/ Frigid highland (20.3), cool temperate zone (20.2), warm temperate zone (20.6), and tropical and subtropical zone (15.4), respectively. We found that all the C: N ratios reported by Post et al. were higher than our results for each corresponding climate zone. These differences might be due to some of the soil samples used in Post et al. (1985) having a humified litter layer (i.e., 0 cm soil depth in the Zinke et al. 1984 dataset) which has a higher C:N ratio than soil. For regional climate patterns, Post et al. (1985) indicated that relatively large amounts of soil N in tropical and subtropical regions was associated with both recalcitrant humic materials in an advanced state of decay and the lowest C: N ratios, while slow decomposition in boreal regions resulted in higher C:N ratios than in other regions. Since Post et al.'s research included no soil samples from China, our dataset and analysis can provide valuable supplementary information for the study of global soil C:N ratios. The reports for large-scale soil C:P and N:P ratio patterns are limited. Recently, Cleveland and Liptzin (2007) estimated the global soil C:P and N:P ratios of the surface soil (0-10 cm) to be 186 and 13.1, respectively. Our analysis reveals relatively lower C:P (136) and N:P 9.3 ratios at the 0-10 cm soil in China. # **Conclusions** We found that the number-weighted average soil C: N, C: P, and N: P ratios in China were 12, 61, and 5, respectively, with a C: N: P ratio of 60:5:1 for all soil layers. The C:N ratio variation range among samples from different climate zones and different soil depth was relatively small, while large spatial heterogeneity (both horizontal and vertical) was found in C:P and N:P ratios. C:P and N:P ratios decreased dramatically with increased soil depth. However, a highly constrained C:N:P ratio of 134:9:1 was found at the 0-10 cm organic-rich soil, which indicated reciprocal 393 interactions between terrestrial organisms and the abiotic soil environment in the biologically active soil layer. The C:P and N:P ratios in the soil were primarily 394 395 determined by soil P content, which was controlled by the soil (parent material) type, soil weathering stage, and climate factors that affect soil weathering rate. Certainly, the 396 C:N:P ratios derived from this analysis based on China's soil database are very 397 398 different than those derived from other studies based on global soil datasets. 399 Consequently, our dataset and analysis provides valuable supplementary information for the study of global soil elemental ratios, especially C:P and N:P ratios. 400 401 402 **Acknowledgements** This study was supported by NASA Interdisciplinary Science Program (NNG04GM39C), NASA Land Cover and Land Use Change Program 403 (NNX08AL73G S01), and the Chinese Academy of Science ODS Program. We 404 405 thank Dr. S. Wang for compiling the soil data sets, Dr. D. Johnson and two anonymous reviewers for critical comments. 406 407 | 408 | References | |-----|------------------------------------------------------------------------------------------------| | 409 | Batjes NH (1996) Total carbon and nitrogen in the soils of the world. European Journal | | 410 | of Soil Science 47: 151-163 | | 411 | Batjes NH (2002) A homogenized soil profile data set for global and regional | | 412 | environmental research (WISE, version 1.1), Int. Soil Ref. and Inf. Cent., | | 413 | Wageningen, Netherlands, 2002/01. (www.isric.org) | | 414 | Brady, NC, Weil RR (2002) The Nature and Properties of Soils. 13 th edition Pearson | | 415 | Education, Incorporation, New Jersey. Chadwick OA, Derry LA, Vitousek PM, | | 416 | Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million | | 417 | years of ecosystem development. Nature 397:491-497 | | 418 | Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: Is there a "Redfield ratio" | | 419 | for the microbial biomass? Biogeochemistry 85: 235-252. | | 420 | Crews TE, Kitayama K, Fownes J, Herbert D, Mueller-Dombois D, Riley RH, | | 421 | Vitousek PM (1995) Changes in soil phosphorus and ecosystem dynamics across a | | 422 | long soil chronosequence in Hawai'i. Ecology 76: 1407-1424. | | 423 | Elser JJ, Dobberfuhl D, MacKay NA, Schampel JH (1996) Organism size, life history, | | 424 | and N: P stoichiometry: towards a unified view of cellular and ecosystem | | 425 | processes. BioScience 46: 674-684. | | 426 | Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks | | 427 | on ocean primary production. Science 281: 200-206. | | 428 | Frizano J, Johnson AH, Vann DR, Scatena FN (2002) Soil phosphorus fractionation | | 429 | during forest development on landslide scars in the Luquillo mountains, Puerto | 430 Rico. Biotropica 34: 17-26. 431 Jenny H (1941) Factors of Soil Formation. McGraw-Hill, New York, USA. Li Z, Zhao Q (2001) Organic carbon content and distribution in soils under different 432 433 land uses in tropical and subtropical China. Plant Soil 231: 175-185 McGonigle TP, Chambers ML, White GJ (2005) Enrichment over time of organic 434 435 carbon and available phosphorus in semiarid soil. Soil Science Society of America 436 Journal 69: 1617-1626. 437 McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C: N: P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85: 438 439 2390-2401 440 Melillo, JM, Field CB, Moldan B (2003) Interactions of the Major Biogeochemical 441 Cycles: Global Change and Human Impacts. Scientific Committee on Problems of 442 the Environment (SCOPE) Series VOL 61. Island Press, Washington, USA. 443 National Soil Survey Office (1993, 1994a, 1994b, 1995a, 1995b, 1996, 1998) Soil 444 species of China, vol. I, II, III, IV, V, VI, VII, China Agriculture Press, 445 Beijing. Michaels AF (2003) The ratios of life. Science 300: 906-907. Neff, J.C., S.E. Hobbie, and P.M. Vitousek. 2000. Nutrient and mineralogical controls 446 on dissolved organic C, N, and P fluxes and stoichiometry in Hawaiian soils. 447 448 Biogeochemistry 51: 283-302. 449 Neufeldt H, da Silva JE, Ayarza MA, Zech W (2000) Land-use effects on phosphorus 450 fractions in Cerrado Oxisols. Biology and Fertility of Soils 31: 30–37. Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG (2003) Nutrient 452 conservation increases with latitude of origin in European Pinus sylvestris 453 populations. Oecologia 136: 220–235. 454 Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil Carbon Pools & 455 World Life Zones. Nature 298: 156-159 456 Post WM, Pastor J, Zinke PJ, Stangenberger G (1985) Global patterns of soil nitrogen 457 storage. Nature 317: 613-616. 458 Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to 459 temperature and latitude. Proceedings of the National Academy of Sciences USA 101: 11001-11006. 460 461 Redfield AC (1958) The biological control of chemical factors in the environment. 462 American Scientist 46: 205-211. 463 Schimel DS (2003) All life is chemical. BioScience 53: 521-524. 464 Soil Survey Staff. 1975. Soil taxonomy. USDA, Washington DC, USA. 465 Sterner RW (1995) Elemental stoichiometry of species in ecosystems. In: Jones CG, 466 Lawton JH (eds). Linking species and ecosystems. Chapman and Hall, New York, 467 USA. p 240-252. Sterner RW, Elser JJ (2002) Ecological stoichiometry: The biology of elements from 468 469 molecules to the biosphere. Princeton University Press, Princeton, New Jersey. 470 Tian HQ, Melillo JM, Kicklighter DW, Pan S, Liu J, McGuire AD, Moore III B (2003) 471 Regional carbon dynamics in monsoon Asia and its implications to the global 472 carbon cycle. Global Planetary Change 37: 201-217. Tian HQ, Wang SQ, Liu JY, Pan S, Chen H, Zhang C, Shi XZ (2006) Storage and 473 - distribution of soil organic nitrogen in China. Global Biogeochemical Cycles 20: - 475 GB1001, doi:10.1029/2005GB002464. - Vitousek PM, Hättenschwiler S, Olander L, Allison S (2002) Nitrogen and nature. - 477 Ambio 31: 97-101. - Vitousek PM (2004) Nutrient Cycling and Limitation: Hawai'i as a Model System. - Princeton University Press, Princeton, New Jersey. - Vitousek PM, Walker LR, Whiteaker LD, Muellerdombois D, Matson PA (1987) - Biological Invasion by Myrica-Faya Alters Ecosystem Development in Hawaii. - 482 Science 238: 802-804. - 483 Walker TW, Syers JK (1976) The fate of P during pedogenesis. Geoderma 14: 1-19 - Walker TW (1956) Nitrogen and herbage production. Proceedings, Seventh - 485 International Grassland Congress 157. - 486 Walker TW, Adams AFR (1958) Studies on soil organic matter. I. Soil Science 85: - 487 307-318. - Wang S, Tian HQ, Liu J, Pan S (2003) Pattern and change in soil organic carbon - 489 storage in China: 1960s-1980s. Tellus 55B: 416-427. - 490 Wu C (1988) 1: 1000,000 Land Use Map of China. Science Press, Beijing, China. - Wu H, Guo Z, Peng C (2003) Distribution and storage of soil organic carbon in China. - 492 Global Biogeochemical Cycles 17: 1048, doi:10.1029/2001GB001844. - 493 Yang YH, Mohammat A, Feng JM, Zhou R, Fang JY (2007) Storage, patterns and - environmental controls of soil organic carbon in China. Biogeochemistry 84: - 495 131-141. | 496 | Zhang C, Tian HQ, Liu J, Wang S, Liu M, Pan S, Shi X (2005) Pools and Distributions | |-----|-------------------------------------------------------------------------------------| | 497 | of Soil Phosphorus in China. Global Biogeochemical Cycles 19: GB1020, | | 498 | doi:10.1029/2004GB002296. | | 499 | Zinke PJ, Stangenberger AG, Post WM, Emanuel WR, Olson JS (1984) Worldwide | | 500 | organic soil carbon and nitrogen data. ORNL/TM-8857. Oak Ridge National | | 501 | Laboratory, Oak Ridge, Tennessee, U.S.A. | | 502 | | # TABLE 1. Climate zones in China and their corresponding annual average # 504 climate data | Climate zones | Minimum
temperature
(°C) | Maximum temperature (°C) | Mean annual temperature $\binom{^0\mathrm{C}}{^*}$ | Mean annual precipitation (mm) | |-----------------------------|--------------------------------|--------------------------|--|--------------------------------| | Frigid highland | -7.3 | 0.7 | -3.4 | 348.5 | | Temperate desert | -1.1 | 11.0 | 4.5 | 252.1 | | Cool temperate zone | -3.7 | 7.9 | 1.7 | 418.2 | | Warm temperate zone | 3.9 | 14.2 | 8.4 | 511.9 | | Tropical & subtropical zone | 11.8 | 19.5 | 15.0 | 1226.3 | ^{*}Data were calculated from the 30-year (1961-1990) average climate data in China. TABLE 2. Soil C, N and P ratios in China | | Sample number | C: N | C: P | N: P | C: Av_P® | N: Av_P | C: N: P | |--|------------------|------------------------|---------|----------|--------------|------------|-----------| | Organic-rich layer (0-10cm) | 133 [§] | 14.4±0.4a ^ξ | 136±11a | 9.3±0.7a | 15810±1832a | 1114±115a | 134: 9: 1 | | All soil layers
(Number-weighte
d) | 8125* | 11.9±0.1b | 61±0.9b | 5.2±0.1b | 64233±20414b | 5725±1564b | 60: 5: 1 | | All soil layers
(Area-weighted) | 7731# | 12.1 | 61 | 5.0 | _ | | 60: 5: 1 | [®] Av_P: available P; $^{^{\}xi}$ Values were geometric means \pm 1 SE; Different letters between two items in a column meant significantly different between them (P<0.05), while the same letters indicated no significant difference; [§] The sample number for available P is only 85; ^{*}The sample number for available P is 1,760; [#]No area information for 394 soil samples. TABLE 3. Total soil C, N and P concentrations and ratios along a gradient of soil depth | Depth | C: N | C· P | N: P | Total C | Total N | Total P | |--------|------------------------|---------|----------------|-----------|-----------|-----------| | (cm) | C. IV | C. 1 | 11. 1 | (mmol/kg) | (mmol/kg) | (mmol/kg) | | 0-10 | 14.4±0.4a ^ξ | 136±11a | 9.3±0.7a | 2047±154a | 134±8.5a | 25±2.8ab | | 10-50 | 12.3±0.1b | 74±1.3b | $6.1 \pm 0.2b$ | 1174±22b | 96±2.5b | 23±1.0a | | 50-100 | 11.2±0.1c | 46±1.4c | $4.2 \pm 0.1c$ | 617±26c | 53±1.5c | 19±0.5b | | >100 | 11.5±1.0c | 29±2.3d | $2.7 \pm 0.1d$ | 439±45d | 38±1.8d | 19±1.1ab | ^{*}Values were means \pm 1 SE; different letters between two items in a column meant significantly different between them (P<0.05), while the same letters indicated no significant difference. TABLE 4. Soil C, N and P concentrations and ratios in different climate zones in China | Climate zone | Number | C: N | C: P | N: P | C content (mmol/kg) | N content (mmol/kg) | P content (mmol/kg) | |-----------------------------|--------|-------------|----------|-----------|---------------------|---------------------|---------------------| | Frigid highland | 749 | 13.6±1.1a* | 62±3.0a | 5.9±0.7ac | 1120±69a | 97±12a | 20.6±1.3ab | | Temperate desert | 319 | 12.2±0.2abc | 32±2.1b | 2.6±0.1b | 775±63b | 60±4b | 26.0±2.6b | | Cool temperate zone | 378 | 12.4±0.2ab | 74±6.0c | 5.4±0.3a | 1826±158c | 128±8c | 26.3±1.1b | | Warm temperate zone | 1676 | 10.7±0.1c | 38±1.1bd | 3.6±0.1b | 581±21b | 53±2b | 21.1±1.0ab | | Tropical & subtropical zone | 2071 | 12.1±0.1b | 78±2.1c | 6.4±0.2c | 997±25d | 79±2d | 19.0±1.3a | | Average | 5193 | 11.9±0.2 | 60±1.1 | 5.1±0.1 | 927±20 | 76±2 | 20.9±0.7 | ^{*}Values were means \pm 1 SE; different letters between two items in a column meant significantly different between them (P<0.05), while the same letters indicated no significant difference. TABLE 5. The C, N and P ratios for different soil orders | | No. of | | | | |-------------|---------|---------------------|-----------------|---------------------| | Soil order | samples | C:N ratio | C:P ratio | N:P ratio | | Entisols | 2150 | 11.35±0.13a* | 56.4±1.6ab | 5.11±0.26ab | | Histosols | 16 | $17.41\pm1.03c$ | 340±82e | 17.77±3.46c | | Inceptisols | 727 | 11.41±0.19a | 57.6±3.2ab | 4.88±0.23ab | | Andisols | 22 | 13.38±0.67ac | 42.2±7.9acb | 2.96±0.51abde | | Aridisols | 300 | 11.24±0.22a | 29.0±1.8c | $2.60\pm0.15d$ | | Vertisols | 77 | $10.73 \pm 0.36ab$ | 41.7±4.4ac | 4.63±0.68abde | | Alfisols | 614 | 12.1±0.24abc | $63.5 \pm 2.6b$ | 5.46 ± 0.29 abe | | Mollisols | 785 | 13.05 ± 1.07 bc | 59.8±2.9ab | 4.97±0.19ab | | Ultisols | 502 | 13.32±0.26bc | 86.4±4.4d | $6.43\pm0.28e$ | ^{*}Values were means \pm 1 SE; different letters between two items in a column meant significantly different between them (P<0.05), while the same letters indicated no significant difference. TABLE 6. The C, N and P contents and C, N and P ratios for different soil weathering stages | | | | | | C content | N content | P content | |------------------|----------------|-----------------|------------------|------------------|-----------|-----------|-----------| | Weathering stage | No. of samples | C:N ratio | C:P ratio | N:P ratio | (mmol/kg) | (mmol/kg) | (mmol/kg) | | Slight | 2915 | 11.37±0.11a* | 64.9±1.7a | 5.78±0.23a | 803±19a | 71.0±3.2a | 18.7±1.0a | | Moderate | 1776 | $12.32\pm0.48b$ | 63.1±1.9a | $5.41\pm0.16a$ | 1004±36b | 79.4±2.2a | 18.4±0.5a | | Strong | 502 | 13.32±0.26c | $99.0 \pm 5.0 b$ | $7.37 \pm 0.32c$ | 994±46ab | 70.7±2.6a | 13.5±0.6b | ^{*}Values were means \pm 1 SE; different letters between two items in a column meant significantly different between them (P<0.05), while the same letters indicated no significant difference. TABLE 7. Comparisons of soil C: N ratios of different depths and soil orders around the world (Batjes 1996) and in China (this study) | | Soil depth | | | | | | | | | |----------------------|------------|------------------|--------|------------------|--------|------------------|--------|------------------|--| | | 0- | 30 cm | 30- | 50 cm | 50- | 50-100 cm | | 0-100 cm | | | Soil order | Batjes | This study | | | Entisols | 14.21 | 12.05±0.42* | 13.04 | 11.20±0.42 | 12.03 | 10.87±0.43 | 12.89 | 11.50±0.19 | | | Histosols | 30.10 | 16.33 ± 4.17 | 34.77 | 16.53 ± 5.80 | 26.02 | 18.81 ± 2.84 | 28.99 | 17.61 ± 2.44 | | | Inceptisols | 13.42 | 12.36 ± 0.48 | 11.32 | 11.41±0.61 | 10.50 | 10.66 ± 0.85 | 11.54 | 11.36 ± 0.49 | | | Andisols | 15.52 | 13.10 ± 2.00 | 16.10 | 13.00 ± 2.08 | 16.68 | 12.79 ± 2.74 | 16.22 | 13.11 ± 1.62 | | | Aridisols | 13.10 | 11.19±0.59 | 11.46 | 10.89 ± 0.90 | 10.13 | 11.49 ± 0.73 | 11.28 | 11.56 ± 0.46 | | | Vertisols | 15.52 | 10.54 ± 1.54 | 14.58 | 10.52 ± 1.07 | 14.58 | 11.54±1.23 | 14.86 | 11.19±1.14 | | | Alfisols | 13.57 | 14.13±1.06 | 11.56 | 12.57 ± 0.72 | 10.68 | 11.13 ± 0.57 | 11.73 | 12.39 ± 0.60 | | | Mollisols | 13.01 | 12.10 ± 0.37 | 11.73 | 12.69 ± 1.45 | 10.47 | 11.69 ± 0.48 | 11.48 | 11.85 ± 0.33 | | | Ultisols | 15.32 | 15.53 ± 0.89 | 11.74 | 12.71 ± 0.84 | 10.33 | 11.43 ± 0.66 | 12.11 | 12.83 ± 0.86 | | | Average [§] | 15.84 | 12.65 | 14.93 | 11.69 | 13.36 | 11.19 | 14.42 | 11.80 | | ^{*}Mean value \pm 1.96 SE (95% confidence interval) [§]This average is calculated from the number-weighted average (by soil profile numbers) of C: N ratios of all the soil orders. TABLE 8. The C, N densities and C: N ratios summarized from Post et al. (1985)* | Climate zones | No. of samples | C density (kg/m³) | N density (kg/m ³) | C: N ratio | |-------------------------------|----------------|-------------------|--------------------------------|------------| | Tundra/ Frigid
highland | 53 | 22.73 | 1.37 | 20.3 | | Cool temperate zone | 1613 | 14.60 | 0.92 | 20.2 | | Warm temperate zone | 546 | 13.00 | 1.16 | 20.6 | | Tropical and subtropical zone | 547 | 11.07 | 1.08 | 15.4 | ^{*}All the data were summarized from the published results rather than calculated from original dataset. Each climate zone included all the land cover types showing in this zone, and the values of C and N density and C: N ratios were averaged by these land cover types. **Table 9** Correlations among soil organic C (mmol/kg), total N (mmol/kg) and total P (mmol/kg) and among soil organic C, total N and available P (mmol/kg) for the organic-rich soil layer (0-10 cm) and the entire soil depth in China. Relatively well-constrained relationships (P < 0.01) were found among soil total C, N, P and available P at the organic-rich soil layer, while no significant correlations were found for C:N:P ratios in the deeper soil. | Independent variables | Dependent variables | Sample number | Correlation coefficient (R) | |-------------------------|-----------------------------------|---------------|-----------------------------| | Cail C at surface layer | Sail Mat surface layer | 133 | 0.93 | | Soil C at surface layer | Soil N at surface layer | | | | Soil C at surface layer | Soil P at surface layer | 133 | 0.62 | | Soil C at surface layer | Soil available P at surface layer | 85 | 0.69 | | Soil N at surface layer | Soil P at surface layer | 133 | 0.51 | | Soil N at surface layer | Soil available P at surface layer | 85 | 0.60 | | Soil C for all layers | Soil N for all layers | 8125 | 0.88 | | Soil C for all layers | Soil P for all layers | 8125 | 0.14 | | Soil C for all layers | Soil available P for all layers | 1760 | 0.17 | | Soil N for all layers | Soil P for all layers | 8125 | 0.14 | | Soil N for all layers | Soil available P for all layers | 1760 | 0.17 | Note: The relationships between variables were significant (P < 0.001) Fig. 1 Distribution of soil sampling points in China. Five zones were defined based on climate differences: (A) temperate desert; (B) cool temperate zone; (C) warm temperate zone; (D) frigid highland; (E) tropical & subtropical zone. Fig. 2 Frequency distribution of soil C: N (a), C: P (b) and N: P (c) ratios in China. The x-axis of the histogram is presented using a log2 scale to highlight the lognormal distribution. Fig. 3 Distribution of soil C: N, C: P and N: P ratios in China represented by C: N, C: P and N: P ratios of each soil sub-great group (a: C: N ratio; b: C: P ratio; c: N: P ratio).