

 University of Groningen

Pattern-Based Architecture Reviews
Harrison, Neil B.; Avgeriou, Paris

Published in:
Ieee software

DOI:
10.1109/MS.2010.156

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Harrison, N. B., & Avgeriou, P. (2011). Pattern-Based Architecture Reviews. Ieee software, 28(6), 66-71.
https://doi.org/10.1109/MS.2010.156

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 22-08-2022

https://doi.org/10.1109/MS.2010.156
https://research.rug.nl/en/publications/bcc57c3c-8912-4fb5-b8a6-3399a89c3996
https://doi.org/10.1109/MS.2010.156

66 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

QUALITY ATTRIBUTES DESCRIBE a

system’s usability, maintainability, per-

formance, and reliability (though not

its functionality). They can drive cus-

tomer satisfaction and differentiate one

product from another.

Quality attributes are systemwide,

so architecture has a huge impact on

them. Paul Clements and his colleagues

stated, “Modi� ability, performance,

security, availability, reliability—all of

these are precast once the architecture

is laid down. No amount of tuning or

clever implementation tricks will wring

any of these qualities out of a poorly ar-

chitected system.”1 Unfortunately, this

also means these qualities can’t be fully

veri� ed until the system is basically

complete and ready for system-level

veri� cation. Nevertheless, it’s impor-

tant to identify relevant quality issues

prior to system testing.

Architecture reviews are a possi-

ble solution: they � nd potential prob-

lems,2–4 particularly those related to

quality attributes. However, despite

their demonstrated bene� ts, many

projects are unable or unwilling to use

them. These projects tend to be charac-

terized by

•	 short schedules, possibly including

repeated development episodes with

very short cycles;

•	 tight deadlines, leaving little or

no time for activities other than

production;

•	 neglected documentation, espe-

cially internal documentation such

as architecture documents;

•	 frequently changing technological

or user requirements; and

•	 small teams.

These characteristics can lead to a fo-

cus on producing merely “working”

software or “getting the product out

the door”—other activities are lower

priority. For lack of a better term, we

describe these projects as production-

focused. Many such projects (though

not all) follow practices found in ag-

ile and lean software development

methodologies.5–7

We’ve developed a lightweight ar-

chitecture review process suitable for

production-focused projects. It identi-

� es architecture patterns and exam-

ines their effects on quality attributes.

We used it to review nine projects; it

not only uncovered important architec-

tural issues but also improved the de-

velopment team’s understanding of the

architecture.

Architecture Reviews
and Production-Focused
Projects
Many software architecture review

practices examine quality attributes in

architectures in depth.8 However, they

have key incompatibilities with pro-

duction-focused projects, including the

following:

•	 Manpower. Production-focused proj-

ects generally have only enough

Pattern-Based
Architecture
Reviews
Neil B. Harrison, Utah Valley University

Paris Avgeriou, University of Groningen

// A lightweight architecture review process can help

achieve systemwide quality attributes, offering an

alternative to heavyweight architecture reviews. //

FEATURE: SOFTWARE PATTERNS

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 67

resources to simply write the soft-

ware. The approximate cost of an

ATAM-based architecture evalua-

tion for even a small project is 32

staff days.1 The average cost of an

architecture review in AT&T is 70

staff days.2

•	 Price. Published architecture review

methods are generally expensive.

•	 Architectural	documentation. Even

though many architecture review

methods base much of their analy-

sis on it,1 production-focused proj-

ects have little architectural doc-

umentation—a widely recognized

problem.9

•	 Requirements. Architecture re-

view methods require detailed re-

quirements speci�cation and corre-

sponding stability—a process that

takes two to six weeks.3 Extensive

preparation hinders a review from

being held in response to changing

requirements.

These incompatibilities lead project

managers to not review their architec-

ture, forgoing the inherent bene�ts.

However, a lightweight review process

that addresses these incompatibilities

still gives projects some of the bene�ts

of architecture review.

Pattern-Based
Architecture Reviews
A pattern-based architecture review

(PBAR) is a lightweight evaluation

method based on software architec-

ture patterns, which are generalized

solutions to recurring design problems.

This review method provides a proven

approach on using the pattern solution,

including the consequences of applying

the solution.10 Although the most well-

known software patterns are object-

oriented design patterns, we’re more

concerned with those that deal with a

system’s architecture.11

Architecture patterns focus on the

entire software system’s design and

contain its high-level modular decom-

position.11–13 Applying a given archi-

tecture pattern can make it easier or

harder to implement certain quality

attributes. For example, the layers

pattern divides the system into dis-

tinct layers so that each one provides

a set of services to the layer above

and uses the services of the one be-

low.11 This structure supports fault

tolerance in that you can use layers to

implement transactions for easy roll-

back in the case of failure. However,

this pattern requires requests to pass

through multiple layers, which can

hurt performance.

PBAR leverages patterns’ relation-

ships with quality attributes to create

a review that’s compatible with pro-

duction-focused projects. It addresses

the key incompatibilities between these

projects and traditional architecture

reviews:

•	 PBAR	requires	only	a	small	amount	
of	 time	 and	 effort. This makes it

more compatible with small proj-

ects that focus on writing produc-

tion code.

•	 PBAR	 doesn’t	 require	 architecture	
documentation. Instead, it �nds

the architecture patterns in use and

leverages any existing documenta-

tion to make inferences about how

quality attributes will be imple-

mented within the context of those

patterns.

•	 Production-focused	 projects	 ac-
commodate	 changing	 require-
ments.	PBAR has a short prepara-

tion time, a short review, and can

return feedback to a project within

one or two days. This allows it to

be used on short notice in response

to changing requirements.

The essential elements of the review

are the same as in heavyweight archi-

tecture reviews, but are simpler and

more focused.

Resources and Planning

The reviewer should have expertise

in architecture, architecture patterns,

quality attributes, and a general knowl-

edge of the domain. The reviewer

should come from outside the team, in

order to provide a fresh perspective on

the system’s architectural design—this

task is more of an audit than an inter-

nal review.

Scheduling the Review

All developers, as well as other inter-

ested stakeholders, should be invited

to a review that should be scheduled

early in development, once the system’s

basic structure is known. Participants

don’t need formal preparation, but the

reviewer should study any architecture

and requirements documentation avail-

able, such as user stories or use cases.

The Review Meeting and Follow Up

The review is a face-to-face meet-

ing during which the following steps

should be iteratively executed:

 1. Identify the system’s most impor-

tant quality attributes and discuss

them. Go through the user stories

and walk through scenarios that are

relevant to quality attributes.

 2. Discuss the system’s architec-

ture (even draw it on a whiteboard).

 3. Identify the architecture patterns

The pattern-based architecture reviews

method leverages patterns’

relationships with quality attributes.

68 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOFTWARE PATTERNS

used. (The reviewer does this,

but other participants who know

architecture patterns can help.)

The main technique is to match the

system’s structure to the patterns’

structure. You want to �nd estab-

lished patterns rather than new ones

because the impact on quality attri-

butes is already understood for es-

tablished architecture patterns.

 4. Examine the architecture and qual-

ity attributes together to determine

each pattern’s effects on the sys-

tem’s quality attributes. Review

past scenarios, implementations,

and where in the architecture the

implementation occurs. Use existing

pattern documentation to look for

matches (and mismatches) between

the patterns and quality attributes.

 5. Identify and discuss quality attri-

bute issues, including quality attri-

butes not addressed or adequately

satis�ed, patterns not used that

might be useful, or potential con-

�icts between patterns used and

quality attributes. For example, a

layered architecture is often incom-

patible with a high-performance

requirement.

After the review, the reviewer should

provide a summary for the entire team.

This should go quickly, as most issues

will have already surfaced during the

review meeting itself. (Our meetings

have all lasted well under an hour.)

Reviews and Production-
Focused Practices
Table 1 shows typical practices of

production-focused projects and how

both PBAR and traditional heavy-

weight reviews accommodate them.

These practices are also found in many

agile and lean methodologies. Note

that not all production-focused proj-

ects follow agile methodologies, and

conversely, not all agile projects are

production-focused.

Frequent Releases

To increase �exibility, projects can have

frequent internal or external releases.

An architecture review should �t into

this time: both the planning and the

review itself should be short. Because

participants don’t need to prepare,

PBAR can be �exibly scheduled. Its

short duration is only a minor disrup-

tion in even a very short release cycle.

Changes for User Needs

Comprehensive architecture reviews

are based on requirements speci�ca-

tions (generally written). But because

requirements often change, the re-

view’s utility is reduced. PBAR focuses

on quality attributes, which are likely

to be more stable than functionality

requirements.

Lightweight Documentation

Traditional reviews tend to be based

on comprehensive architecture doc-

umentation, but it can simply be too

much work for a project to produce it.

PBAR is a lighter-weight alternative in

these cases.

Walking Skeleton

A walking skeleton is an early end-to-

end implementation of the architecture,

often used as prototyping to help prove

architectural concepts. An ideal time

for an architecture review is at the com-

pletion of a walking skeleton. Because

of the small preparation time and effort

needed, you can hold a PBAR as soon

as a walking skeleton is implemented,

unlike a traditional review, which

needs considerable planning and up-

front work.

Experiences with PBAR
We used PBAR on nine projects. Al-

though roughly half were student soft-

ware engineering capstone projects, all

were real projects with real customers.

Of these reviews, six were highly suc-

cessful, one was partially successful,

and two were unsuccessful. The partial

success and two failures have helped

us re�ne the process. Table 2 summa-

rizes projects and the results; the “Ma-

jor issues” column includes signi�cant

incompatibilities between the architec-

ture and important quality attributes.

Most projects followed the bulk

of the practices described earlier. All

had high developer communication

and high informal communication

with the customer. Most had little or

no architecture documentation, and

didn’t document or even use architec-

ture patterns. All had frequent integra-

tions, and a few had frequent releases.

Most projects considered changing

user needs and managed a �exible pri-

oritized list of features. A few explicitly

created walking skeletons.

Participants were positive about

the review and its results; some were

downright enthusiastic. Their feedback

revealed four main bene�ts from the

reviews:

•	 Basic	 quality	 attribute	 issues. The

PBARs uncovered, on average,

nearly four issues per project, one

of which was major. In one case,

the architecture used the layers pat-

tern, but to improve performance, it

offered a way to bypass the layers—

a separate path through the system.

You can hold a PBAR as soon

as a walking skeleton is implemented,

unlike a traditional review.

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 69

In another case, the review revealed

that the user interface design (based

on existing software) was arcane

and dif�cult to extend.

•	 Team	 understanding	 about	 archi-
tecture. Two comments were, “The

review helped everyone see the

whole picture,” and, “The review

helped clarify and unify the vision

of the system.”

•	 Team	understanding	about	quality	
attribute	 requirements. For exam-

ple, one team knew the system was

reliable but needed further clari�ca-

tion. During the review, we deter-

mined that the system didn’t need

to be up continuously, but it did

need to handle certain failure cases.

•	 Team	 members	 knowing	 more	
about	 software	 architecture	 itself.
Through the PBAR process, teams

T
A

B
L
E

 1 Common practices of production-focused projects and architecture reviews.

Production-focused practice PBAR Traditional reviews

Frequent releases5–7 Can be scheduled between early releases; a short

review-feedback cycle �ts well in small release windows

Not practical between releases; long planning-

review-feedback time can cut across releases

Changes for user needs5,7 Focuses on quality attributes (which are more stable

than functional requirements); allows features to change

Requires stability of requirements, including

functional requirements

Lightweight documentation5,6 Requires no special documentation; leverages

knowledge in patterns about architecture-QA issues

Encourages extensive architecture documentation;

may require some to be written for review

Walking skeleton6 Can be scheduled in response to walking skeleton being

implemented

Requires calendar-based scheduling due to need

for extensive planning

T
A

B
L
E

 2

Pattern-based architecture reviews.

System Size Project phase

Project

description

No. of

issues

found

No. of

major

issues

No. of

major issues

resolved

Effort

(in staff hours

[reviewer/team])

A Large Implementation Streaming data

manipulation and

analysis

3 1 0 5 (5/0)

B Medium Architecture Computer-controlled

process control

4 1 0 11 (6/5)

C Small Postrelease Embedded GPS

platform application

2 0 0 6 (4/2)

D Small Early

implementation

Web-based time-

tracking system

7 1 1 8 (3.5/4.5)

E Small Early

implementation

Distributed

subscription

management system

3 2 1 9.5 (3.5/6)

F Small Early

implementation

E-commerce

inventory

management system

3 1 1 8 (3.5/4.5)

G Small Early

implementation

Android phone

application

3 1 1 7.5 (3.5/4)

H Small Early

implementation

Web-based game

platform

5 0 0 7.5 (3.5/4)

I Small Early architecture Web-based business

process support

system

0 0 0 4 (2/2)

70 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOFTWARE PATTERNS

learned about architecture patterns

and their relationship with quality

attributes.

Obviously, these bene�ts must be

weighed against the costs, but fortu-

nately the cost was very low—the total

effort for all participants was under two

staff days. The short preparation time

lets teams use the reviews in reaction to

changing requirements. Although none

of the reviews we did were held speci�-

cally in response to changing require-

ments, in some cases they were sched-

uled on short notice (a week or less).

The only real complaint we heard was

about the timing of the review—most

were done while development was well

along, and several participants wished

the review had happened earlier.

If the participants found the reviews

useful and acted on the issues identi-

�ed, we succeeded. In six out of nine

cases, this was true. Possible factors

contributing to the three failures in-

clude the following:

•	 The issues identi�ed had already

been acted upon.

•	 We didn’t receive con�rmation of

results, possibly because the review

was done of�ine.

•	 The review wasn’t completed, pos-

sibly because the reviewer was a

novice architect. (In one particular

case, requirements hadn’t yet been

established with the user, making it

impossible to review the architec-

ture against the requirements.)

Unsuccessful reviews teach us that re-

views must be done with the team’s

full participation and early in the de-

velopment cycle, yet not so early that

requirements aren’t yet understood. Fi-

nally, a person with strong expertise in

both architecture and architecture pat-

terns must conduct them.

A Detailed Example
In order to illustrate the PBAR process

and its bene�ts, we take one of the re-

views and describe it in more detail.

The project we studied was a student

capstone project, so the students had

no time for a lengthy project review.

The small team of three developers fol-

lowed no particular methodology, with

few written requirements and no writ-

ten architecture documentation. An ad-

ditional challenge was that the project

was an Android application, and the

Android software development kit was

very new at the time and under con-

stant change; this affected feature de-

velopment and implementation.

We began the review by discussing

the functional and quality attribute

requirements. We walked through sce-

narios to help us understand the four

most important quality attributes,

which were usability, security, reliabil-

ity (fault tolerance), and extensibility.

This was especially helpful for explor-

ing fault tolerance. We then discussed

the architecture and drew it on a white-

board, using boxes and lines to repre-

sent components and connectors. A

team member took notes, so at the end

of the review, the team had some archi-

tecture documentation. We identi�ed

two architecture patterns: peer-to-peer

and shared	repository.13

We identi�ed three issues with the

quality attributes, one of which was sig-

ni�cant, and discussed ways to resolve

the issues, identifying three measures

the team could implement to do so. Len

Bass and his colleagues call these tac-

tics.4 We annotated the architecture

diagram with notes about where these

tactics would be implemented, thus giv-

ing the team a “map” of how to imple-

ment them. The review took less than

two hours.

The team noted speci�c bene�ts to

the review, such as

•	 producing some architecture

documentation;

•	 increasing their understanding of

the architecture;

•	 increasing their understanding

about the project’s quality attribute

requirements; and

•	 identifying some issues with pro-

posed solutions.

This experience demonstrated that

PBAR is useful even when the architec-

ture documentation is entirely nonexis-

tent and requirements are only sparsely

documented.

T
hrough these experiences using

PBAR, we learned some impor-

tant overall lessons about how

to make PBAR as successful as pos-

sible. The architecture reviewer must

come from outside the project. This is

the case with all types of reviews and

similar to the rationale for pair pro-

gramming—a separate set of eyes can

detect problems that project members

can’t. Having a team of two reviewers

is better still.

Moreover, the review should be

done as early as possible once enough

of the architecture is in place to hold

a meaningful review. It’s important

to note that because of PBAR’s light-

weight nature, it can be done very

early, even before the architecture has

solidi�ed. However, if the quality attri-

PBAR [is] useful even when the architecture

documentation is entirely nonexistent and

requirements are only sparsely documented.

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 71

bute requirements aren’t yet solidi� ed,

the review is likely to fail.

What if the architects didn’t use pat-

terns in their architecture? This was

the case in most of the reviews we con-

ducted. But because architecture pat-

terns are almost always present,14 the

review can proceed normally, and pat-

terns will be identi� ed.

Alas, PBAR won’t � nd all the issues

that a traditional architecture review

will. Instead, it offers a trade-off: a re-

view process that requires little time

and effort and that can work even with

little architectural documentation, cer-

tainly more so on an agile project when

a heavyweight review process isn’t used

at all. PBAR � nds incompatibilities be-

tween architecture patterns used and

important quality attributes (for in-

stance, performance versus layers, or

fault tolerance versus pipes and � lters);

it won’t � nd obscure problems such as

performance issues from complex inter-

actions of components.

Another limitation is that the re-

viewers must be well versed in archi-

tecture, architecture patterns, quality

attributes, and tactics. This is like tra-

ditional reviews: reviewers need similar

expertise, although architecture pat-

tern knowledge isn’t as critical. The

key challenge for many organizations

will be � nding reviewers with suf� cient

expertise.

Nearly all the projects that have

used PBAR so far are very small, which

might not involve the same demands

as larger industrial projects. Although

users consider this lack of experience to

be a limitation, we expect that PBAR

would continue to be successful.

References
 1. P. Clements, R. Kazman, and M. Klein,

Evaluating	Software	Architectures:	Methods	
and	Case	Studies, Addison-Wesley, 2001.

 2. G. Abowd et al., Recommended	Best	
Industrial	Practice	for	Software	Architecture	
Evaluation, tech. report CMU/SEI-96-
TR-025, Carnegie Mellon Univ., Software
Eng. Inst., 1997.

 3. J.F. Maranzano et al., “Architecture Reviews:
Practice and Experience,” IEEE	Software, vol.
22, no. 2, 2005, pp. 34–43.

 4. L. Bass et al., Risk	Themes	Discovered	
through	Architecture	Evaluations, tech. report
CMU/SEI-2006-TR-012, Carnegie Mellon
Univ., Software Eng. Inst., Sept. 2006.

 5. K. Beck and K. Andrus, Extreme	Pro-
gramming	Explained:	Embrace	Change, 2nd
ed., Addison-Wesley, 2004.

 6. A. Cockburn, Crystal	Clear:	A	Human-
Powered	Methodology	for	Small	Teams,
Addison-Wesley, 2004.

 7. M. Poppendieck and T. Poppendieck,
Implementing	Lean	Software	Development:	
From	Concept	to	Cash, Addison-Wesley,
2006.

 8. L. Dobrica and E. Niemelä, “A Survey on
Software Architecture Analysis Methods,”
IEEE	Trans.	Software	Eng., vol. 28, no. 7,
2002, pp. 638–653.

 9. R. Kazman and L. Bass, “Making
Architecture Reviews Work in the Real
World,” IEEE	Software, vol.
19, no. 1, 2002, pp. 67−73.

 10. E. Gamma et al., Design	
Patterns:	Elements	of	Reusable	
Object-Oriented	Software,
Addison-Wesley, 1994.

 11. F. Buschmann et al.,
Pattern-Oriented	Software	
Architecture:	A	System	of	
Patterns, vol. 1, Wiley, 1996.

 12. N. Harrison, P. Avgeriou,
and U. Zdun, “Using Patterns
to Capture Architectural
Decisions,” IEEE	Software,
vol. 24, no. 4, 2007, pp. 38–45.

 13. P. Avgeriou and U. Zdun,
“Architectural Patterns

Revisited: A Pattern Language,” Proc.	
10th	European	Conf.	Pattern	Languages	
of	Programs (EuroPLoP 05), Butterworth-
Heinemann, 2005, pp. 1003–1034.

 14. N. Harrison and P. Avgeriou, “Analysis
of Architecture Pattern Usage in Legacy
System Architecture Documentation,” Proc.	
7th	Working	IEEE/IFIP	Conf.	Software	
Architecture (WICSA 08), IEEE CS Press,
2008, pp.147–156.

NEIL HARRISON is an associate professor of computer science at

Utah Valley University. His research interests include software patterns,

effective organizations, and software testing. Harrison received a PhD

in software engineering from the University of Groningen, the Neth-

erlands. He’s a coauthor of Organizational Patterns of Agile Software

Development (Prentice Hall, 2004). Contact him at Neil.Harrison@

uvu.edu.

PARIS AVGERIOU is a professor of software engineering at the Uni-

versity of Groningen, the Netherlands. His research interests concern

software architecture with a strong emphasis on architecture modeling,

knowledge, evolution, and patterns. Avgeriou received his PhD in

software engineering from the National Technical University of Athens,

Greece. Contact him at paris@cs.rug.nl.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Silver Bullet
Security Podcast

Hosted by
Gary Mc Graw

Sponsored by

www.computer.org/security/podcasts
*Also available at iTunes

Selected CS articles and columns

are also available for free at

http://ComputingNow.computer.org.

