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Abstract. Although an increasing number of RDF knowledge bases are
published, many of those consist primarily of instance data and lack so-
phisticated schemata. Having such schemata allows more powerful query-
ing, consistency checking and debugging as well as improved inference.
One of the reasons why schemata are still rare is the effort required
to create them. In this article, we propose a semi-automatic schemata
construction approach addressing this problem: First, the frequency of
axiom patterns in existing knowledge bases is discovered. Afterwards,
those patterns are converted to SPARQL based pattern detection algo-
rithms, which allow to enrich knowledge base schemata. We argue that
we present the first scalable knowledge base enrichment approach based
on real schema usage patterns. The approach is evaluated on a large set
of knowledge bases with a quantitative and qualitative result analysis.

1 Introduction

Over the past years, the quantity and size of RDF knowledge bases has signifi-
cantly increased. Nevertheless, many of those knowledge bases lack sophisticated
schemata and instance data adhering to those schemata. For content extracted
from legacy sources, crowdsourced content, but also manually curated content,
it is challenging to ensure a co-evolution of schemata and data, in particular for
large knowledge bases. For this reason, there has been significant recent interest
in semi-automation of schemata creation and revision based on the available in-
stance data [7,18,31,33]. The combination of instance data and schemata allows
improved querying, inference and consistency checking. In particular, in previous
work [7], we investigated lightweight and efficient schema creation approaches,
which can scale to large knowledge bases. Furthermore, those methods are able
to work with SPARQL based access to knowledge bases, which is currently the
dominating form for querying knowledge bases, which cannot easily be handled
by standard OWL reasoners. The main drawback of this early work is that we
were limited to learn property axioms, e.g. domain and range. In this work,
we go one step further and provide an approach, which is able to handle many
frequent axiom types, while still being efficient. This is achieved by following a
two phase approach: First, we analyse several data repositories to detect which
terminological axiom patterns are frequently used and convert those patterns
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to SPARQL queries, which help to find those axiom patterns in instance data.
This preparation phase only needs to be performed once. Secondly, we perform
a lightweight statistical analysis to actually find specific axiom candidates as
suggestions for a knowledge engineer and compute a confidence score for each of
them.

Example 1. As a running example for knowledge base enrichment, consider an
axiom pattern1:

A ≡ B u ∃r.C

which can be instantiated by an axiom

SoccerPlayer ≡ Person u ∃team.SoccerClub

describing that every person which is in a team that is a soccer club, is a soccer
player. Adding such an axiom to a knowledge base can have several benefits: 1.)
The axioms serve as documentation for the purpose and correct usage of schema
elements. 2.) They improve the application of constraint violation techniques.
For instance, when using a tool such as the Pellet Constraint Validator2 on a
knowledge base with the above axiom, it would report soccer players without
an associated team as violation.3 3.) Additional implicit information can be in-
ferred, e.g. in the above example each person, who is in a soccer club team can
be inferred to belong to the class SoccerPlayer, which means that an explicit
assignment to that class is no longer necessary. The main purpose of our research
is, therefore, to reduce the effort of creating and maintaining such schema infor-
mation by providing enrichment suggestions to knowledge base maintainers.

We implemented our enrichment methods in the DL-Learner4 framework [17]
based on earlier work in [22,20]. The ORE tool [19]5 provides a graphical interface
for them. Our main contributions are as follows:

– An analysis of 1392 ontologies containing approximately 20.5 million termi-
nological axioms with respect to axiom patterns.

– Scalable retrieval and evaluation methods via SPARQL using sampling and
confidence estimation.

– A manual evaluation of 11 patterns and 718 axioms in DBpedia [26].
– An open source implementation in DL-Learner.

The article is structured as follows: First, we present the overall workflow in
Section 2. After that, the axiom normalisation into patterns and the estimation
of their usage frequency is described in Section 3. Using [8] for converting such a

1 We use standard description logic syntax in this paper and refer to [2] for an intro-
duction.

2 http://clarkparsia.com/pellet/icv/
3 Under OWL semantics, this is not a violation, due to the Open World Assumption,

unless we can infer from other knowledge that the player has no team.
4 http://dl-learner.org
5 http://ore-tool.net
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pattern to a SPARQL query, we show how to suggest new candidates for axioms,
which could be added to the knowledge base in Section 4. For each suggestion,
we provide a confidence value based on F-Score, which is detailed in Section 5. A
performance optimisation for the workflow is outlined in Section 6. In Sections 7
and 8, we present our experimental setup and evaluation results, in particular
we discuss benefits as well as cases in which our approach fails to provide correct
suggestions. Related work is presented in Section 9 and we conclude in Section 10.

2 Knowledge Base Enrichment Workflow

In this section, we describe the overall workflow illustrated by Figure 1.

Fig. 1: Enrichment Workflow: In the preparation phase, typical axiom patterns are
detected and converted to SPARQL queries, which are then used in the execution
phase to learn new axiom suggestions.

The preparation phase (upper part), described in the next section, results
in an automatically compiled library of query patterns for learning frequent ax-
ioms. Herein, the frequency is determined by analysing several ontology reposi-
tories and, afterwards, applying the method in [8] for converting the patterns to
SPARQL queries.

In the execution phase, which is an extension of previous work [7], the actual
axiom suggestions are generated. To achieve this, a single algorithm run takes
an axiom pattern as input and generates a set of OWL axioms as a result. It
proceeds in three steps:

1. In the optional first step, SPARQL queries are used to obtain existing in-
formation about the schema of the knowledge base, in particular we retrieve



axioms which allow to construct the class hierarchy. It can be configured
whether to use an OWL reasoner for inferencing over the schema or just
taking explicit knowledge into account.6 Naturally, the schema only needs
to be obtained once per knowledge base and can then be re-used by all
algorithms and all entities.

2. The second step consists of obtaining data via SPARQL, which is relevant
for learning the considered axiom. This results in a set of axiom candidates,
configured via a threshold.

3. In the third step, the score of axiom candidates is computed and the results
returned.

We will explain the preparation phase and steps 2 and 3 of the execution
phase in the following sections in more detail by referring to our running example.

3 Pattern Frequency Detection

For detecting patterns, a set of input OWL files is used. Each axiom in those files
is then transformed to a normal form, which we call an axiom pattern, which is
defined as structural equivalence class7.

An axiom is transformed to a pattern as follows: Let Sig(ax) be the signature
of an OWL axiom ax. Let C be an ordered list of named classes, P be an ordered
list of properties and I be an ordered list of individuals. This order is then
extended to class expressions using an ordering over the different types of class
expressions. Based on this ordering, we can re-order the elements of intersection
and disjunction expressions in axioms. After that, each element of Sig(ax) is
replaced by a placeholder variable.

As an example, this normalisation ensures that the axiom pattern A v B u
∃r.(C) is equally obtained from both Father v Person u ∃hasChild.Male and
Carnivore v ∃eat.Meat uAnimal .

Naturally, there is no unique way to define patterns. For instance, in the
above approach, we focus on patterns containing a single axiom. It would also be
possible to detect sets of axioms, which combined result in typical usage patterns.
At this stage, we did not do this due to scalability reasons: The algorithm needs
to be able to read hundreds of potentially large files and, in a later stage, the
generated SPARQL queries need to run on knowledge bases with billions of facts.

4 Data Retrieval

Usually, we have to run 3 SPARQL queries to obtain all data for computing the
score by means of precision and recall: one query for the number of instances

6 Note that the OWL reasoner only loads the schema of the knowledge base and,
therefore, this option worked even in cases with several hundred thousand classes in
our experiments using the HermiT reasoner.

7 http://www.w3.org/TR/owl2-syntax/#Structural_Specification
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of the left hand side (|A|), one for the instance count of the right hand side
(|B u ∃ p.C|), and another one to get the number of instances contained in
the intersection of both (|A u B u ∃ p.C|). Based on that information, we can

compute precision P as P = |AuB u∃ p.C|
|B u∃ p.C| and recall R as R = |AuB u∃ p.C|

|A| in

our example.
The transformation function defined in [8] applied to A u B u ∃ p.C (the

intersection) leads to the following SPARQL query pattern:

?x a <A> .

?x a <B> .

?x <r> ?s0 .

?s0 a <C> .

Once having converted an axiom pattern into a SPARQL query pattern, in
a next step we need to replace entities of the query pattern with variables V ,
resulting in another query pattern. Usually, the left hand side of the pattern
represents the named classes in our knowledge base. For this reason, we can also
iterate over all classes. This is not formally necessary, but in practice it splits up
a large problem into subproblems, each of which requires less expensive SPARQL
queries. Assuming that D is the current class, we obtain the following query:

?x a <D> .

?x a ?cls1 .

?x ?p ?s0 .

?s0 a ?cls2.

After that, we group and project the results to all entities which were replaced
by variables in the previous step (?p, ?cls0, ?cls1 in this case), and count the
frequency for each combination. This results in a set of pattern instantiations
and frequency counts. In Example 1, the corresponding is:

SELECT ?p ?cls0 ?cls1 (COUNT(DISTINCT (?x) as ?cnt)) WHERE

{ ?x a <D>.

?x a ?cls0.

?x ?p ?s0 .

?s0 a ?cls1

} GROUP BY ?p ?cls0 ?cls1 ORDER BY DESC(?cnt)

We assume that we do this for all three required queries (left hand side, right
hand side, intersection).

5 Pattern Scoring

In the third workflow phase, we need to compute the confidence score for axiom
candidates, which involves computing the F-measure for each candidate. For
Example 1, computing the F-measure means that we need to count the number
of instances which belong to SoccerPlayer, the number of instances of Personu
∃team.SoccerClub, as well as the number of instances belonging to both, i.e.
SoccerPlayer u Person u ∃team.SoccerClub. As explained above, the latter



value is divided on the one hand by the first value to obtain the recall, and
on the other hand by the second value to get the precision, both resulting in
a total score using standard F-measure. For our running example, assume that
the following facts about some famous soccer players are given:

SoccerPlayer(Wayne Rooney)

SoccerPlayer(Lionel Messi)

Person(Wayne Rooney)

Person(Lionel Messi)

Person(Cristiano Ronaldo)

SoccerClub(FC Barcelona)

SoccerClub(Manchester United F.C.)

SoccerClub(Real Madrid C.F.)

team(Wayne Rooney, Manchester United F.C.)

team(Lionel Messi, FC Barcelona)

team(Cristiano Ronaldo, Real Madrid C.F.)

In the above example, we would obtain a recall of 100% (2 out of 2) and
a precision of 66,7% (2 out of 3), resulting in a total F1 score of 80% for the
pattern instantiation SoccerPlayer ≡ Person u ∃team.SoccerClub
of Example 1.

A disadvantage of using this straightforward method of obtaining a score is
that it does not take the support for an axiom in the knowledge base into account.
Specifically, there would be no difference between having 100 out of 100 correct
observations or 3 out of 3 correct observations when computing precision and
recall.

For this reason, we do not just consider the count, but the average of the
95% confidence interval of the count. This confidence interval can be computed
efficiently by using the improved Wald method defined in [1]. Assume we have
m observations out of which s were successful, then the approximation of the
95% confidence interval is as follows:

max(0, p′ − 1.96 ·
√

p′ · (1− p′)

m + 4
) to min(1, p′ + 1.96 ·

√
p′ · (1− p′)

m + 4
)

with p′ =
s + 2

m + 4

This formula is easy to compute and has been shown to be accurate in [1]. In the
above case, this would change the precision to 57.3% (previously 66,7%) and the
recall to 64.5% (previously 100%), thus leading to a total score of 60.7%. This
indicates that there is not much support for the axiom in the knowledge base.
However, when larger amounts of data are available, the score would increase
and ultimately converge to standard F-score.



6 Optimizations

The disadvantage of the retrieval method in Section 4 is that it performs a
remote count putting high computational load on the SPARQL endpoint in case
of complex axiom patterns and very large data sets. An alternative option is to
compute a relevant fragment of the knowledge base in a first step and then use
that fragment to generate axiom candidates. We generate the relevant fragment
as follows: Since we always had named classes on the left hand side of an axiom
pattern, we iterate over all classes in the knowledge base. For each class A
and axiom pattern p, we retrieve Concise Bounded Descriptions 8 of depth n for
instances of A in a given time limit, where n is the modal depth of p. This is done
via SPARQL CONSTRUCT queries and the result is loaded into a local triple
store. We can then query this local store to obtain a local approximation of the
recall value for specific instantiations of the axiom pattern. Each instantiation
which is above a configurable threshold can then be processed by using the
remote count method described in Section 4. In summary, this method performs
a local filtering of axiom suggestions and only for viable candidates the exact
precision and recall values are computed. The effect of this optimisation is that
we reduce the query load on the triple store, in particular several simple queries
are send instead of few very expensive queries, which could cause timeouts or
overburden endpoints.

7 Experimental Setup

Pattern Frequency Detection There exists a number of well-known ontology
repositories which are frequently used for empirical experimentation. For the
pattern frequency detection step, we used the following repositories (details are
listed in Table 1):

NCBO BioPortal9, an open repository of biomedical ontologies [28] that al-
lows users to browse, search and visualize ontologies as well as to annotate
and create mappings for ontologies. As of May 2013, the repository contains
385 ontologies in various ontology formats. Due to its ontologies ranging
widely in size and complexity, the BioPortal has become a popular corpus
for testing OWL ontology applications in recent years, such as pattern anal-
ysis [25] and ontology modularization [32].

TONES10, a curated ontology repository which was developed as part of the
TONES project as a means of gathering suitable ontologies for testing OWL
applications. It contains 219 well-known test and in-use ontologies, varying
strongly in size (up to over 100,000 logical axioms) and complexity (from
EL++ to SROIQ). The TONES ontologies are frequently used for empirical
studies, such as the prediction of reasoning performance [15] and ontology
debugging [19].

8 CBD: http://www.w3.org/Submission/CBD/
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Repository #Ontologies #Axioms
Total Error Total Tbox RBox Abox

Avg Max Avg Max Avg Max Avg Max

TONES 219 12 14,299 1,235,392 8297 658,449 20 932 5981 1,156,468
BioPortal 385 101 25,541 847,755 23,353 847,755 35 1339 2152 220,948
Oxford 793 0 49,997 2,492,761 15,384 2,259,770 25 1365 34,587 2,452,737

Table 1: Overview about the ontology repositories used in the experiments.

Oxford ontology library11, a collection of OWL ontologies which was, similar
to the TONES repository, gathered for the purpose of testing OWL tools.
The library which was established in late 2012 and currently contains 793
ontologies from 24 different sources, including an existing test corpus and
several well-known in-use and test ontologies, the largest containing more
than 2,000,000 axioms.

From the selected repositories, we used all ontologies which were available
online and could be parsed by the OWL API12, leading to 1392 ontologies con-
taining approximately 20.5 million terminological axioms. From the ontologies
that could not be processed (error column in Table 1), it was either not possible
to load them from the given URL (TONES), they could not be parsed by the
OWL API (TONES), or they were not publicly accessible (BioPortal).

Pattern Application For the evaluation of the pattern application, we used 100
randomly chosen classes with at least 5 instances of the well-known DBpedia
(http://dbpedia.org/sparql) knowledge base, which is a crowd-sourced com-
munity effort to extract structured information from Wikipedia. In the used
version (3.8), it contains facts about 3.77 million resources, many of them de-
scribed by the 359 classes, 800 object properties and 859 datatype properties of
the DBpedia ontology. We applied the optimization described in Section 6 with
a time limit of 60 seconds for the fragment extraction process using thresholds of
0.6. From the results we showed at most 100 pattern instantiations per pattern
to 3 non-author evaluators.

8 Results and Discussion

Pattern Frequency Detection As a result of the pattern frequency detection,
we obtained an ordered list of the 15 most frequent non-trivial13 TBox axiom
patterns existing in at least 5 ontologies, as shown in Table 2. It shows how
often each axiom pattern occurred (frequency), in how many ontologies it was
contained, and the rank by frequency in each ontology repository. In addition,
we also report the winsorised frequency: In the sorted list of pattern frequencies
for each ontology (without 0-entries), we set all list entries higher than the 95th

12 http://owlapi.sourceforge.net/
13 A v > and A v A were filtered
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1. A v B 10,174,991 5,757,410 1050 2 1 1
2. A v ∃ p.B 8,199,457 2,450,582 604 1 2 2
3. A v ∃ p.(∃ q.B) 509,963 441,434 24 n/a n/a 3
4. A ≡ B u ∃ p.C 361,777 316,420 319 8 4 4

* 5. B v ¬ A 237,897 53,516 417 3 3 9
6. A ≡ B 104,508 8332 151 13 34 7

* 7. A ≡ ∃ p.B 70,040 11,031 139 36 32 8
8. ∃ p.Thing v A 41,876 34,795 595 6 7 11
9. A v ∀ p.B 27,556 21,046 266 4 11 19

10. A ≡ B u ∃ p.C u ∃ q.D 24,277 20,277 196 11 13 13
11. A ≡ B u C 16,597 16,597 78 5 20 22
12. A v ∃ p.(B u ∃ q.C) 12,453 12,161 84 23 18 15
13. A v ∃ p.{a} 11,816 4342 65 12 22 20
14. A ≡ B u ∃ p.(C u ∃ q.D) 10,430 10,430 60 39 21 17

* 15. p ≡ q− 9943 7393 433 17 19 23

Table 2: Top 15 TBox axiom patterns ordered by frequency with additional informa-
tion about the rank (if occurred) in each processed repository. Axiom patterns marked
with * were omitted for the user evaluation.

percentile to the 95th percentile. This reduces the effect of outliers, i.e. axiom
patterns scoring very high because of few very large ontologies frequently using
them. The axioms marked with a star (*) are already covered by our previous
work on learning an large knowledge bases [7]. We will use the remaining 12
patterns for our evaluation.

Fixpoint Analysis Based on the results of the pattern frequency detection, we
performed a fixpoint analysis, i.e. we analysed how the ranking of the most
frequent axiom patterns changed and, thus, investigated whether the ranking of
the axiom patterns is fluctuating or stable. To do this, we processed ontology-
by-ontology in random order and computed the current corresponding frequency
ranking for each axiom pattern. The results shown in Figure 2 indicate that the
ranking shows only minor changes after 300 ontologies and, hence, our input set
of ≈ 1400 ontologies is sufficient.

Manual Evaluation Results Table 3 shows the result of the manual evaluation,
which was done by 3 non-author evaluators. For the evaluation, we used a thresh-
old score of 0.6. If more than 100 axioms were generated for a pattern type, we
randomly selected 100 entries. This is shown as the sample size in Table 3. For
pattern A v ∀ p.B, we could not find axioms above the threshold. Thus, we only
evaluated the 11 remaining patterns. The last four columns are the result of a
manual evaluation. All evaluators independently observed the sample manually
and judged the axioms. An advantage of using DBpedia in this context is that



Fig. 2: Top 15 axiom patterns and its sequence of rank when processing the ontologies
in random order.

the Wikipedia pages provide sufficient background knowledge in most cases in
order to judge a particular axiom. Four different categories were used: “correct”
indicates that it is likely that they would be accepted by a knowledge engineer,
“minor” are axioms which are logically correct, but have modelling problems,
“incorrect” are those, which contain conceptual flaws and “not judged” are ax-
ioms which could not be evaluated by the authors. Overall, out of 2154 decisions
(718 evaluated axioms for each of the 3 reviewers), 48.2% were judged to be
correct, 2.7% had minor issues, 49.0% were incorrect and 0 not judged. For a
semi-automatic approach with manual validation, this is a reasonable score. The
average interrater agreement was substantial, although it was poor for one axiom
type. While half of the axiom patterns were frequent in DBpedia, one did not
exist at all and 5 were infrequent.

Threshold Analysis The following diagram shows the correlation between the
computed accuracy score of the pattern instantiations and the evaluator judge-
ments, i.e. how many of the pattern instantiations with an accuracy value in a
particular interval are correct using majority voting (at least 2 out of 3 reviewers
have to judge it as correct).

To perform the analysis, questions were added in 10% buckets by confidence
interval (60–70%, > 70% − 80%, > 80% − 90%, > 90% − 100%). Only buckets
with at least 5 entries were used (which is why the lines are interrupted). For
most axiom types, the trend is that axioms with higher confidence are more
likely to be accepted, although two of the 11 axiom types show a decline with
higher confidence. The overall trend (dashed line) shows a slope from approx.
50% to almost 60% indicating that higher accuracy scores result in better axiom
suggestions.



manual evaluation in %
pattern sample size correct minor issues incorrect κFleiss’

A v ∃ p.B 50 88.0 0.7 11.3 24.8
A v B 47 63.8 2.1 34.0 53.8
A ≡ B 25 10.7 0.0 89.3 44.0
A ≡ ∃ p.B 68 29.9 2.0 68.1 60.4
A ≡ B u ∃ p.C 100 25.0 3.0 72.0 72.9
A ≡ B u ∃ p.(C u ∃ q.D) 100 23.0 5.3 71.7 43.5
A v ∃ p.(∃ q.B) 71 85.0 3.3 11.7 34.0
A v ∃ p.(B u ∃ q.C) 100 87.0 0.3 12.7 -2.8
A v ∃ p.{a} 15 71.1 0.0 28.9 45.9
A ≡ B u C 42 14.3 7.1 78.6 46.7
A ≡ B u ∃ p.C u ∃ q.D 100 37.0 2.7 59.7 75.0

718 48.2 2.7 49.0 66.1

Table 3: Result of the manual evaluation for each axiom pattern.

Discussion In this part, we will explain some of the evaluation results and present
specific examples. In general, many axioms appeared to be close to human intu-
ition. One of the reasons why axioms were often judged to have ”minor issues” is
that several suggestions for a particular class and axiom pattern were provided.
The lower scoring ones often contained irrelevant parts. An example of this is
GrandPrix ≡ Eventu (∃poleDriver.Athlete)u (∃secondDriver.Agent). While
logically correct, defining a grand prix via the Agent class relation ship of the
driver finishing second is not intuitive.

Fig. 3: Correlation between the accuracy value of the pattern instantiations and the
confidence of the evaluators.



In other cases, there were conceptual flaws, e.g. in the following axioms:

1. Song v ∃album.MusicalWork
2. Song v ∃artist.(∃recordLabel.RecordLabel)
3. BritishRoyalty v ∃parent.BritishRoyalty
4. President v ∃successor.Person
5. SoccerManager ≡ Agentu(∃birthPlace.Country)u(∃managerClub.SportsTeam)
6. SoccerClubSeason ≡ Organisationu(∃manager.Person)u(∃team.SoccerClub)

The first axiom is not correct, because not each song actually appears on an
album, although that is the case for the vast majority of songs in Wikipedia.
Similarly, not each song is done by an artist having a record label. The third
axiom is flawed, because to our understanding persons can marry British Royals
and, e.g. become queen later on, without having been member of the royalty
before. The fourth axiom is logically incorrect, because the current president does
not have a successor yet. There are many successor relationships in DBpedia,
which were suggested by our approach, so this was a major error type in the
evaluation. The fifth axiom is also a typical example: The conceptual flaw is
that a soccer manager has to manage a soccer team and not just an arbitrary
sports team. This suggestion is generated, because soccer data is dominant in
Wikipedia relative to other sports. However, in the best suggestion for the class
SoccerManager, our approach provides the correct axiom. Finally, the last axiom
is also incorrect. A soccer club season in DBpedia is modeled as a combination
of a soccer club and a specific year, in which the team had a manager. However,
SoccerClubSeason is a subclass of Organisation, which is a modeling error
already in DBpedia itself. This particular modeling error had a negative influence
on a significant number of axiom suggestions. Overall, the conceptual flaws are
either axioms just above the threshold or those for which there is significant
statistical evidence for their truth, but corner cases render them invalid. This is
also the major reason why we believe that knowledge base construction cannot
easily be fully automated.

For equivalent classes, there were 8 axioms above the 60% threshold. How-
ever, the DBpedia ontology does not contain classes, which could be seen as
equivalent, so all axiom suggestions by our algorithm were classes suggested to
be equivalent to their super classes due to having almost the same instances.

9 Related Work

Ontology Enrichment usually involves applying heuristics or machine learning
techniques to find axioms, which can be added to an existing ontology. Natu-
rally, different techniques have been applied depending on the specific type of
axiom. One of the most complex tasks in ontology enrichment is to find def-
initions of classes. This is strongly related to Inductive Logic Programming
(ILP) [27] and more specifically supervised learning in description logics. Early
techniques [9] using least common subsumers were later enriched with refinement



operators [14]. However, those algorithms tend to produce very long and hard-
to-understand class expressions. The algorithms implemented in DL-Learner [22]
overcome this problem and investigate the learning problem and the use of top
down refinement in detail. However, they require the ontology to be stored in an
OWL reasoner in contrast to the work proposed in this article. DL-FOIL [10] is
a similar approach, which is based on a mixture of upward and downward refine-
ment of class expressions. Most recently, [18] implements appropriate heuristics
and adaptations for learning definitions in ontologies.

A different approach to learning the definition of a named class is to compute
the so called most specific concept (msc) for all instances of the class. The most
specific concept of an individual is the most specific class expression, such that
the individual is instance of the expression. One can then compute the least
common subsumer (lcs) [4] of those expressions to obtain a description of the
named class. However, in expressive description logics, an msc does not need to
exist and the lcs is simply the disjunction of all expressions. Other approaches,
e.g. [23] focus on learning in hybrid knowledge bases combining ontologies and
rules.

Another enrichment task is knowledge base completion. The goal of such a
task is to make the knowledge base complete in a particular well-defined sense.
For instance, a goal could be to ensure that all subclass relationships between
named classes can be inferred. The line of work starting in [29] and further pur-
sued in e.g. [3] investigates the use of formal concept analysis for completing
knowledge bases. [34] proposes to improve knowledge bases through relational
exploration and implemented it in the RELExO framework14. It focuses on sim-
ple relationships and the knowledge engineer is asked a series of questions. The
knowledge engineer either must positively answer the question or provide a coun-
terexample.

[35] focuses on learning disjointness between classes in an ontology to allow
for more powerful reasoning and consistency checking. To achieve this, it can
use the ontology itself, but also texts, e.g. Wikipedia articles corresponding to
a concept. The article includes an extensive study, which shows that proper
modelling disjointness is actually a difficult task, which can be simplified via
this ontology enrichment method.

There are further more light-weight ontology enrichment methods. For in-
stance, taxonomies can be learned from simple tag structures via heuristics [7,33,31].
All of those approaches follow similar goals. [7] is the base of this article and fol-
lows the approach described in Section 2. [33] uses association rule mining with
a different set of supported axioms. Learning in this settings is a batch process,
which involves building transaction tables and measuring extensional overlap
between classes. Finally, [31] follows similar idea, but is restricted to learning
property domains and ranges as well as class disjointness. The approach is ap-
plied to inconsistency checking in DBpedia.

14 http://code.google.com/p/relexo/
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Type/Aim References

Taxonomies [36,7,33]
Definitions often done via ILP approaches such as [21,22,18,10,5],

genetic approaches [16] have also been used
Super Class Axioms [18,33,7]
Rules in Ontologies [23,24]
Disjointness [35,7,31]
Properties of Properties [7,11,31]
Completion formal concept analysis and relational exploration [3,34,30]

Table 4: Work in ontology enrichment grouped by type or aim of learned structures.

Ontology Patterns There has been a significant amount of research on ontology
design patterns with regular workshops on that topic. In particular, we want
to refer to [13] for a systematic review on ontology design patterns articles in
the Semantic Web community and [12] for a general introduction to the topic.
Many patterns are listed at http://ontologydesignpatterns.org. Initially, we
planned to use this as axiom pattern library. However, it turned out that only
a small percentage of the patterns are applicable in the context of knowledge
base enrichment and it is difficult to judge their relevancy. Therefore, we decided
to perform the described bottom up approach involving several repositories and
hundreds of ontologies. In the context of ontology learning, design patterns have
been employed in [6]. However, the focus in that scenario is on developing on-
tologies from textual input, whereas our approach focuses on creating or refining
schema structures from existing instance data.

10 Conclusions and Future Work

We presented an approach, which allows to detect frequent axiom usage patterns
using ≈ 1400 ontologies and converted them into SPARQL query patterns al-
lowing to find those patterns in instance data. This allows to improve knowledge
base schemata semi-automatically and is the first scalable schema construction
approach based on actual usage patterns to the best of our knowledge. Moreover,
it improves the co-evolution of schema and data as well as querying, constraint
checking and inference. The evaluation shows that the approach is feasible and
able to provide useful suggestions. Nevertheless, we also pointed out corner cases,
which are difficult to handle for such a statistical analysis and require human
attention. In combination with previous efforts [7,18], we have build an efficient
freely available tool, which is able to suggest both TBox and RBox axioms on
large knowledge bases accessible via SPARQL endpoints.
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