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We propose a new modeling and solution method for probabilistically constrained optimization problems. The method-

ology is based on the integration of the stochastic programming and combinatorial pattern recognition fields. It permits

the fast solution of stochastic optimization problems in which the random variables are represented by an extremely

large number of scenarios. The method involves the binarization of the probability distribution, and the generation of a

consistent partially defined Boolean function (pdBf) representing the combination (F, p) of the binarized probability dis-

tribution F and the enforced probability level p. We show that the pdBf representing (F, p) can be compactly extended as

a disjunctive normal form (DNF). The DNF is a collection of combinatorial p-patterns, each of which defining sufficient

conditions for a probabilistic constraint to hold. We propose two linear programming formulations for the generation of

p-patterns which can be subsequently used to derive a linear programming inner approximation of the original stochastic

problem. A formulation allowing for the concurrent generation of a p-pattern and the solution of the deterministic equiv-

alent of the stochastic problem is also proposed. Results show that large-scale stochastic problems, in which up to 50,000

scenarios are used to describe the stochastic variables, can be consistently solved to optimality within a few seconds.

Subject classifications: Programming: stochastic; Probability; Combinatorial Pattern; Probabilistic Constraint; Boolean

Programming

History: Accepted, September 2012

1. Problem Formulation, Literature Review, and Contributions

In this paper, we propose a new modeling and numerical solution framework for stochastic programming

problems (Prékopa, 1995; Birge and Louveaux, 1997; Ruszczyński and Shapiro, 2003). The methodol-

ogy is based on pattern recognition (Vapnik, 1998; Grenander and Miller, 2007) and, in particular, on

the derivation of logical and combinatorial patterns (Hammer, 1986; Martinez-Trinidad and Guzmán-

Arenas, 2001; Truemper, 2004; Triantaphyllou and Felici, 2006). The framework allows for the deter-

ministic reformulation and solution of probabilistically constrained programming problems of the form:

min qTx

subject to Ax ≥ b

P(h jx ≥ ξ j, j ∈ J) ≥ p

x ≥ 0

. (1)
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The notation |J| refers to the cardinality of the set J, ξ is a |J|-dimensional random vector which has a

multivariate probability distribution with finite support, x is the m-dimensional vector of decision vari-

ables, q ∈ Rm,b ∈ Rd, A ∈ Rd×m and h ∈ R|J|×m are deterministic parameters, p is a prescribed probability

or reliability level, and the symbol P refers to a probability measure. We consider the most general and

challenging case in which there is no independence restriction between the components ξ j of ξ. Thus,

P(h jx ≥ ξ j, j ∈ J) ≥ p (2)

is a joint probabilistic constraint which enforces that the combined fulfillment of a system of |J| linear

inequalities
m
∑

k=1

h jk xk ≥ ξ j must hold with a |J|-variate joint probability. Stochastic programming problems

of this form are non-convex and very complex to solve.

1.1. Literature Review

Programming under probabilistic constraints has been extensively studied (see Prékopa (2003) for a

review), and has been used for many different purposes ranging from the replenishment process in mil-

itary operations (Kress et al., 2007), the enforcement of cycle service levels in a multi-stage supply

chain (Lejeune and Ruszczyński, 2007), the construction of pension funds (Henrion, 2004), the moni-

toring of pollution level (Gren, 2008), etc. Probabilistic constraints with a random right-hand side have

a deterministic technology matrix H in (1), while the stochastic component is in the right-hand side of

the inequality Hx ≥ ξ subject to the probabilistic requirement. Stochastic optimization problems with

individual (Charnes et al., 1958) probabilistic constraints (i.e., ξ is a one-dimensional vector) have a

deterministic equivalent, whose continuous relaxation is straightforward to derive using the quantile of

the one-dimensional random variable. However, the modeling of the reliability of a system through a set

of individual probabilistic constraints does not allow the attainment of a system-wide reliability level

(Prékopa, 1995), but instead enforces a certain reliability level for each individual part of the system. To

that end, joint probabilistic constraints, first analyzed by Miller and Wagner (1965) under the assumption

of independence between each component of the random vector, are needed. Prékopa (1970) studied the

most general setting by removing the independence assumption between the components of the system.

A key factor for the computational tractability of stochastic problems with joint probabilistic con-

straints concerns the convexity property of the feasible set. Prékopa (1973) showed that, if the functions

h jx− ξ j ≥ 0 are concave in x and ξ, and ξ is continuously distributed with logarithmically concave prob-

ability density function, then the set of vectors x satisfying the joint probabilistic constraint is convex,

allowing therefore to resort to a solution method based on convex programming techniques. However,

such convexity properties do not apply when the random variables are discretely distributed. The corre-

sponding optimization problems are non-convex and NP-hard, and have been receiving particular atten-

tion lately (Dentcheva et al., 2001; Ruszczyński, 2002; Cheon et al., 2006; Lejeune and Ruszczyński,
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2007; Luedtke and Ahmed, 2008; Lejeune and Noyan, 2010; Luedtke et al., 2010, Saxena et al., 2010;

Tanner and Ntaimo, 2010; Dentcheva and Martinez, 2012; Küçükyavuz, 2012; Lejeune, 2012).

Three main families of solution approaches for the above probabilistically constrained optimization

problems can be found in the literature. The first one relies on the concept of p-efficiency (Prékopa,

1990), which requires the a priori uncovering of the finite set of p-efficient points (pLEPs) and permits

the derivation of a mixed-integer programming (MIP) or disjunctive problem equivalent to the stochastic

one. The reformulated problem can be solved through a convexification process and the cone gener-

ation algorithm (Dentcheva et al., 2001), with a primal-dual algorithm (Dentcheva et al., 2004), with

a specialized column generation algorithm (Lejeune and Ruszczyński, 2007), or with an augmented

Lagrangian method (Dentcheva and Martinez, 2012). While pLEPs are typically generated with enu-

merative schemes (see, e.g., Prékopa et al., 1998; Beraldi and Ruszczyński, 2002; Prékopa, 2003), Leje-

une and Noyan (2010) and Lejeune (2012) propose MIP formulations to identify pLEPs. To solve the

MIP problems, Lejeune and Noyan (2010) develop a modular method based on a bundle preprocessing

algorithm and an outer approximation method. This latter solves a series of increasingly tighter outer

approximations by using a set of valid strengthening inequalities and a fixing strategy. Lejeune (2012)

revisits the p-efficiency concept and introduces the concept of an ep-pattern. An ep-pattern defines a

pLEP as a conjunction of literals and is the Boolean Programming representation of a pLEP. Lejeune

(2012) shows that the exhaustive collection of pLEPs can be represented as an irreducible disjunctive

normal form that can be derived in an integrated (i.e., solution of a large-scale MIP) or sequential (i.e.,

solution of a finite series of MIPs) fashion.

The second family of solution methods associates a binary variable with each possible realization of

the random vector and, then, substitutes an MIP problem of very large dimensionality (i.e., one binary

variable per possible realization) for the original stochastic one (Cheon et al., 2006). To solve the result-

ing MIP problem, which contains a cover and ”big-M” constraints, Ruszczyński (2002) develop spe-

cialized cutting planes which he embeds in a branch-and-cut algorithm. Cheon et al. (2006) design a

branch-reduce-cut algorithm that iteratively partitions the feasible region and uses bounds to fathom infe-

rior partitions. Luedtke et al. (2010) propose stronger MIP formulations for which they generate a family

of valid inequalities, which are subsumed by the facet-defining family of cuts derived by Küçükyavuz

(2012). In a set of recent studies, a sample approximation problem (Luedtke and Ahmed, 2008) is used

to generate feasible solutions and optimality bounds for problems with joint probabilistic constraints.

Tanner and Ntaimo (2010) propose an MIP formulation which they strengthen by deriving irreducibly

infeasible subsystem optimality cuts. It was also shown that MIP reformulations of the probabilistic set

covering problem can be solved in a very computationally efficient way (Saxena et al., 2010).

The third type of approaches consists in deriving safe approximations (Calafiore and Campi, 2005;

Nemirowski and Shapiro, 2006) that take the form of convex optimization problems whose optimal
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solution is not always close to the true optimal solution. In fact, the probability level enforced by these

techniques can be much larger than the prescribed level p. If the decision-maker is willing to trade some

safety level for lower costs, and sets accordingly the reliability level p to moderately high values (say

p = 0.9, 0.95), then the robust approximation might not always be suitable (Luedtke and Ahmed, 2008).

1.2. Motivation and Contributions

The fundamental contribution of this paper resides in the development of a novel solution methodology

for stochastic programming problems. To the best of our knowledge, this is the first time that techniques

from the pattern recognition field (Fukunaga, 1990; Vapnik, 1998; Duda and Stork, 2001; Grenander

and Miller, 2007) are employed for the optimization of probabilistically constrained problems. Pattern

recognition has been primarily used for feature selection, unsupervised classification, clustering, data

mining or image processing purposes. The expected outcomes of pattern-based methods differ depending

on whether they are used for classification or for optimization. With classification objectives in mind,

logical / combinatorial pattern methods (Hammer, 1986; Boros et al., 1997; Djukova and Zhuravlev,

2000; Ruiz-Shulcloper and Abidi, 2002; Truemper, 2004; Triantaphyllou and Felici, 2006) are used to

derive ”rules” that separate data points belonging to different categories. In the stochastic optimization

context of this paper, the extracted patterns provide a compact representation of sets of conditions that

are sufficient for the satisfaction of a probabilistic constraint, and can be used to derive deterministic

reformulations of the stochastic problem. Besides its novelty, a crucial aspect of the proposed framework

is that it allows the fast exact solution of stochastic optimization problems in which the random variables

are represented by an extremely large number of scenarios. We describe below the main elements of the

proposed methodology and discuss the organization of the paper.

In Section 2, we introduce the concept of a cut point, define a binarization method for a probability

distribution, propose a method for selecting relevant realizations, and represent the combination (F, p) of

the binarized probability distribution F of the random variable ξ and the enforced probability level p as a

partially defined Boolean function. In Section 3, we extend the pdBf representing (F, p) as a disjunctive

normal form (DNF), which is a collection of combinatorial p-patterns. Each of those defines sufficient

conditions for the probabilistic constraint (2) to hold. Then, we propose a new mathematical program-

ming method for the derivation of combinatorial p-patterns. Two integer programming and two linear

programming formulations are presented. An interesting contribution of the method is that it offers a

remedy to an issue associated with enumerative methods, which are highly efficient for the generation of

patterns of small degrees, but turn out to be not as well performing when large-degree patterns need to be

extracted (Boros et al., 2000). In Section 4, we show how we can use the combinatorial patterns to derive

a linear programming inner approximation and a mixed-integer programming deterministic equivalent

of the probabilistically constrained problem (1). Section 5 discusses the numerical implementation of

the proposed methodology. Section 6 provides concluding remarks.
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2. Representation of (F, p) as a Partially Defined Boolean Function

In this section, we shall first discuss the binarization process of the probability distribution and show

how this allows the representation of the combination (F, p) of the probability distribution F and the

prescribed probability level p as a partially defined Boolean function (pdBf). We shall then present the

required properties of the set of cut points used for the binarization process and define the set of relevant

realizations considered for the pattern generation process.

2.1. Binarization of Probability Distributions

We develop an approach to binarize probability distributions with finite support. We denote by Ω the set

of possible realizations k ∈Ω of the |J|-dimensional random vector ξ with cumulative distribution func-

tion F. Each realization k is represented by the |J|-dimensional deterministic vector ωk =
[

ωk
1
, . . . ,ωk

|J|

]

:

P(ξ ≤ωk) = F(ωk). The marginal probability distributions are denoted by P(ξ j ≤ω
k
j) = F j(ω

k
j), j ∈ J. The

example below is used throughout the manuscript to illustrate our approach.

Example 1 Consider the probabilistically constrained problem

min x1 + 2x2

subject to P

{

8− x1 − 2x2 ≥ ξ1
8x1 + 6x2 ≥ ξ2

}

≥ 0.7

x1, x2 ≥ 0

(3)

where the random vector ξ = [ξ1, ξ2] accepts ten equally likely realizations k represented by ωk = [ωk
1
,ωk

2
]

and has the following bivariate probability distribution:

Table 1 Probability Distribution

k ωk
1
ωk

2
F1(ωk

1
) F2(ωk

2
) F(ωk)

1 6 3 1 0.2 0.2

2 2 3 0.3 0.2 0.1

3 1 4 0.2 0.3 0.1

4 4 5 0.7 0.4 0.3

5 3 6 0.4 0.5 0.3

6 4 8 0.7 0.7 0.5

7 6 8 1 0.7 0.7

8 1 9 0.2 0.9 0.2

9 4 9 0.7 0.9 0.7

10 5 10 0.8 1 0.8

The feasibility set defined by the probabilistic constraint is non-convex. It is the union of the polyhedra
{

(x1, x2) ∈ R2
+ : 8− x1 − 2x2 ≥ 6, 8x1 + 6x2 ≥ 8

}

and
{

(x1, x2) ∈ R2
+ : 8− x1 − 2x2 ≥ 4, 8x1 + 6x2 ≥ 9

}

.

We first introduce the concepts of p-sufficient and p-insufficient realizations.
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Definition 1 A realization k is called p-sufficient if and only if F(ωk) ≥ p and is p-insufficient if

F(ωk) < p.

The inequality sign in ξ ≤ ωk must be understood componentwise. We obtain a partition of the set

Ω of realizations into two disjoint sets of p-sufficient Ω+ and p-insufficient Ω− realizations such that:

Ω = Ω+
⋃

Ω− with Ω+
⋂

Ω− = ∅. Using the concept of cut point, we shall now binarize the probability

distribution and obtain the binary projection ΩB of Ω. We denote by n =
∑

j∈J

n j the sum of the number n j

of cut points for each component ξ j.

Definition 2 The binarization process is the mapping R|J|→ {0,1}n of ωk into an n-binary vector

βk =
[

βk
11, . . . , β

k
n11, . . . , β

k
i j, . . . , β

k
n j j, . . .

]

, (4)

such that the value of each component βk
i j is defined with respect to a cut point ci j as follows:

βk
i j =

{

1 if ωk
j ≥ ci j

0 otherwise
, (5)

where ci j denotes the ith cut point associated with component ξ j,

i′ < i ⇒ ci′ j < ci j , i = 1, . . . ,n j, j ∈ J . (6)

The notation βi j refers to the ith binary attribute associated with component ξ j. The set of cut points is

used to generate a binary image βk of each realization initially represented by the numerical vector ωk.

Each point βk is a vertex of the n-dimensional unit cube {0,1}n, and its component βk
i j takes value 1 (resp.,

0) if the value ωk
j taken by ξ j in realization k is larger than or equal to (resp., strictly smaller than) the

cut point ci j. As an illustration, we consider the set of cut points

C = {c11 = 4; c21 = 5; c31 = 6; c12 = 8; c22 = 9; c32 = 10} (7)

to binarize the numerical components ω1 and ω2. The set (7) includes three cut points defined with

respect to each component (n1 = n2 = 3 and n = 6). The central part of Table 2 displays the binarization

of the probability distribution of ξ (see Example 1) with the set of cut points (7).

Note that the binarization process arranges the cut points in ascending order (6) and defines a set of

regularized Boolean vectors (Crama, Hammer, 2011).

Lemma 3 The binarization process described in Definition 2 generates a regularized set of Boolean

vectors, i.e., for every group
(

β1 j, . . . , βn j, j

)

, j ∈ J of Boolean variables, we have

βk
i j ≤ β

k
i′ j , j ∈ J , k ∈Ω i f i′ < i . (8)
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The binarization process defines the binary projection ΩB of Ω: ΩB = Ω
+
B

⋃

Ω−B ⊆ {0,1}
n, where Ω+B and

Ω−B respectively denote the sets of binarized p-sufficient and p-insufficient realizations. This permits the

representation of the combination (F, p) of a probability distribution F and a probability level p as a

partially defined Boolean function (pdBf).

Definition 4 (Eiter et al., 2002) A partially defined Boolean function defined by the pair of dis-

joint sets Ω+B,Ω
−
B ⊆ {0,1}

n is a mapping g : (Ω+B
⋃

Ω−B)→ {0,1} such that g(k) = 1 if k ∈Ω+B and g(k) = 0 if

k ∈Ω−B.

Although the domain of the mapping g is in {0,1}n, we use an index k (resp., g(k)) to denote an n-

dimensional point (resp., function value) for the sake of notational convenience. We shall thereafter

denote by g(Ω+B,Ω
−
B) a pdBf defined by the pair of sets Ω+B,Ω

−
B. The right-hand side of Table 2 displays

the truth table of the pdBf obtained with the set of cut points (7) for p = 0.7.

Table 2 Realizations, Binary Images, and Truth Table of Partially Defined Boolean Function

k

Numerical Truth Table of Partially Defined Boolean Function

Representations Binarized Images
g(k)

ωk
1

ωk
2

βk
11
βk

21
βk

31
βk

12
βk

22
βk

32

1 6 3 1 1 1 0 0 0 0

2 2 3 0 0 0 0 0 0 0

3 1 4 0 0 0 0 0 0 0 Set Ω−B of

4 4 5 1 0 0 0 0 0 0 p-insufficient

5 3 6 0 0 0 0 0 0 0 realizations

6 4 8 1 0 0 1 0 0 0

8 1 9 0 0 0 1 1 0 0

7 6 8 1 1 1 1 0 0 1 Set Ω+B of

9 4 9 1 0 0 1 1 0 1 p-sufficient

10 5 10 1 1 0 1 1 1 1 realizations

2.2. Properties of Set of Cut Points

In Example 1, the binarization of the probability distribution with respect to the six cut points in (7)

yields a pdBf such that the sets Ω+B and Ω−B do not intersect. However, not all sets of cut points allow this.

Consider, for example, the set of cut points {c11 = 5; c12 = 4; c22 = 6} that generates the same binary

image (0,1,1) (Figure 1) for the p-sufficient realization 9 and the p-insufficient ones 5, 6 and 8. Such a

set of cut points does not preserve the disjointedness between the sets of p-sufficient and p-insufficient

realizations. Indeed, it results in p-sufficient and p-insufficient realizations having the same binary pro-

jection and impedes the derivation of the conditions that are necessary for (2) to hold. Clearly, the ability

to accurately separate p-sufficient from p-insufficient realizations is a prerequisite for the reformulation

to the stochastic problem (1). This requires the generation of a consistent set of cut points.
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Figure 1 Inconsistent Set of Cut Points
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Definition 5 (Boros et al., 1997) A set of cut points is consistent if the sets Ω+B and Ω−B associated

with the pdBf g(Ω+B,Ω
−
B) are disjoint. If this is the case, g(Ω+B,Ω

−
B) is a consistent pdBf.

We introduce the concept of sufficient-equivalent set of cut points. It is the cornerstone for the construc-

tion of a consistent pdBf representing the probability distribution F and the probability level p. Section 4

shows the importance of this concept for the derivation of inner approximations and an MIP reformula-

tion equivalent to the stochastic problem (1) and containing a small number of binary variables.

Definition 6 A sufficient-equivalent set of cut points Ce comprises a cut point ci j for any value ωk
j

taken by any of the p-sufficient realizations on any component j:

Ce =

|J|
⋃

j=1

C j , where C j = {ω
k
j : k ∈Ω+} . (9)

The pdBf g(Ω+B,Ω
−
B) associated with the sufficient-equivalent set of cut points is called sufficient-

equivalent pdBf. Proposition 7 is obvious and a direct consequence of Definition 6.

Proposition 7 A sufficient-equivalent set of cut points is consistent.

The construction of the sufficient-equivalent set of cut points is immediate. In our example, the sufficient-

equivalent set of cut points is the one defined in (7): C1 = {4,5,6} and C2 = {8,9,10}. Note that the

combinatorial pattern literature (Boros et al., 1997; Hammer and Bonates, 2006; Ibaraki, 2011) describes

several techniques (polynomial-time algorithm, set covering formulation) to build consistent set of cut

points with special features (master or minimal set of cut points).

2.3. Set of Relevant Realizations

The objective is to derive a combinatorial pattern that defines sufficient conditions, possibly the minimal

ones, for the probabilistic constraint (2) to be satisfied. In order to do so, we must not only take into



Lejeune: Pattern Method for Probabilistic Programming Problems

Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

consideration the realizations k ∈ Ω of the random vector, but we should also consider all points that

could be p-sufficient. For k to be p-sufficient (i.e., F(ωk ≥ p)), the |J| following conditions must hold:

F j(ω
k
j) ≥ p, j = 1, . . . , |J| , (10)

where F j is the marginal probability distribution of ξ j. Thus, for every j, we create the set Z j

Z j =
{

ωk
j : F j(ω

k
j) ≥ p, k ∈Ω

}

, j = 1, . . . , |J| (11)

which contains the values that must be considered to identify the sufficient conditions for (2) to be

satisfied. Then, we define the direct product (Prékopa, 2003)

Z = Z1 × . . .×Z j × . . .×Z|J| , (12)

and obtain the extended set Ω
⋃

Z of realizations.

The application of the binarization process to the additional points included in Z provides their bina-

rized images. In Example 1, the set Z comprises five realizations (k = 11, . . . ,15 in Table 3).

Figure 2 shows that each p-sufficient realization is mapped into a binary vector which differs from all

the binary vectors associated with p-insufficient realizations. The gray (resp., black) area in Figure 2 is

the integer hull of the p-sufficient (resp., p-insufficient) realizations. All the points in the area between

the two integer hulls correspond to vectors β with fractional values, which, by virtue of the binarization

process (5), are numerical values that ξ j cannot take and that do not belong to Z j (11). The binarization

process and the construction of the extended set of realizations enable the representation of the upper

(resp., lower) envelope of the integer hull of the p-insufficient (resp., p-sufficient) points. Note that, if

we do not consider realization 11 (which belongs to set Z) with binary image β11 = (1,1,0,1,0,0), we

are not able to obtain the upper envelope of the integer hull of the p-insufficient points. This would be a

problem for generating patterns defining sufficient conditions for the constraint (2) to hold.

Figure 2 Integer Hull of p-Sufficient and p-Insufficient Realizations
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The binarization phase allows the elimination of a number of points from the extended set and the

derivation of the set Ω̄B of relevant realizations. Several realizations have the same binary image (e.g.,

realizations 2 and 3) and we only include one of them in Ω̄B. Recall that the objective is to derive patterns

defining sufficient conditions for the satisfaction of (2). A well known set of necessary conditions for

p-sufficiency is given by (10) which can be rewritten as

wk
j ≥ F−1

j (p) = min
{

ωk
j :ωk

j ∈C j

}

= c1 j, j ∈ J (13)

using the definition of the sufficient-equivalent set of cut points (9). The binarization process (5) implies

further that:

wk
j ≥ c1 j, j ∈ J ⇔ βk

1 j = 1, j ∈ J . (14)

A realization k such that βk
1 j
= 0 for any j ∈ J does not meet the basic preliminary condition and is a

priori known to be p-insufficient. Thus, such a k is not needed to generate patterns separating p-sufficient

realizations from p-insufficient ones and is not included in the set of relevant realizations. Table 3 gives

the set of relevant realizations Ω̄ for Example 1. In order to simplify the narrative, we omit the adjective

”relevant” in the remaining part of the manuscript, and simply refer to k ∈ Ω̄+B (resp., k ∈ Ω̄−B) as a p-

sufficient (resp. p-insufficient) realization.

Table 3 Set of Relevant Realizations Ω̄B

Numerical Representations Binarized Images

k ωk
1

ωk
2

βk
11
βk

21
βk

31
βk

12
βk

22
βk

32

6 4 8 1 0 0 1 0 0

7 6 8 1 1 1 1 0 0

9 4 9 1 0 0 1 1 0

10 5 10 1 1 0 1 1 1

11 5 8 1 1 0 1 0 0

12 4 10 1 0 0 1 1 1

13 5 9 1 1 0 1 1 0

14 6 9 1 1 1 1 1 0

15 6 10 1 1 1 1 1 1

3. Mathematical Programming Approach for Combinatorial Patterns

In this section, we shall develop a mathematical programming approach allowing for the construction of

combinatorial patterns that define sufficient conditions for the probabilistic constraint to hold. Prior to

generating combinatorial patterns, we introduce the terminology and explain the rationale for the use of

mathematical programming in pattern derivation.
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3.1. Extension of the Partially Defined Boolean Function of (F, p)

Section 2 details how the binarization process permits the derivation of a pdBf that represents the combi-

nation (F, p) of the probability distribution F with the probability level p. The question that arises now is

whether a compact extension (Urbano and Mueller, 1956) of the pdBf representing (F, p) can be derived.

Definition 8 (Eiter et al., 2002) A function f : {0,1}n → {0,1} is called an extension of a pdBf

g
(

Ω̄+B, Ω̄
−
B

)

if Ω̄+B ⊆ Ω̄
+
B( f ) = {k : f (k) = 1} and Ω̄−B ⊆ Ω̄

−
B( f ) = {k : f (k) = 0}.

Boros et al. (1997) showed that a pdBf g
(

Ω̄+B, Ω̄
−
B

)

has a Boolean extension if and only if Ω̄+B
⋂

Ω̄−B = ∅,

which is equivalent to saying that any consistent pdBf can be extended by a Boolean function. Thus,

Proposition 7 implies that the sufficient-equivalent pdBf representing (F, p) can be extended as a Boolean

function. With the existence of a Boolean extension for the pdBf ensured, the objective is to find an

extension f that is defined on the same support set as g(Ω̄+B, Ω̄
−
B) and that is as simple as possible. Since

every Boolean function can be represented by a DNF, we shall extend g(Ω̄+B, Ω̄
−
B) as a DNF which is a

disjunction of a finite number of combinatorial patterns. Broadly defined, a combinatorial pattern is a

logical rule that imposes upper and lower bounds on the values of a subset of the input variables.

3.2. Terminology

Before defining the DNF that extends g(Ω̄+B, Ω̄
−
B), we introduce the key Boolean concepts and notations

used in this paper and illustrate them with Example 1.

The Boolean variables βi j, i = 1, . . . ,n j, j ∈ J and their negations or complements β̄i j are called literals.

A conjunction of literals t =
∧

i j∈P

βi j

∧

i j∈N

β̄i j, P
⋂

N = ∅ constitutes a term whose degree d is the number

(|P|+ |N| = d) of literals in it. The set P (resp., N) is the set of non-complemented (resp., complemented)

literals involved in the definition of the term t. A disjunction
∨

s∈S

ts of terms ts is called a disjunctive

normal form (DNF).

Definition 9 A term t is said to cover a realization k, which is denoted by t(k) = 1, if the products of

the values βk
i j taken by k on the literals βi j defining the term is equal to 1:

t(k) = 1⇔
∧

i j∈P

βk
i j

∧

i j∈N

β̄k
i j = 1 .

The coverage of a term is the number of realizations covered by it. In our example, t = β11 β̄12 is a term of

degree 2 covering the p-insufficient realizations 1 and 4, and f = β11 β̄12

∨

β31 β̄32 is a DNF that contains

two terms of degree 2: f covers two p-insufficient (1 and 4) and two sufficient (7 and 14) realizations.

It follows from Definition 8 that the DNF f extending the pdBf g(Ω̄+B, Ω̄
−
B) must be such that each

realization defined as p-sufficient (resp., p-insufficient) by the pdBf g(Ω̄+B, Ω̄
−
B) must also be considered
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as p-sufficient (resp., p-insufficient) by the DNF f . This is equivalent to requiring that the DNF f covers

all p-sufficient realizations and does not cover any p-insufficient ones: f (k) = 1, k ∈ Ω̄+B and f (k) = 0, k ∈

Ω̄−B. The DNF f =
∨

s∈S

ts includes a number |S | of p-patterns, each defining sufficient conditions for (2)

to hold. Evidently, for a probabilistic constraint to hold, one condition at least must be imposed on each

component of the random vector ξ. More precisely, we need to have βk
1 j
= 1, j ∈ J (14) for k to be p-

sufficient. This, and the fact that the regularization property implies that βk
i j ≤ β

k
i′ j
, j ∈ J if i′ < i (8), mean

that a p-pattern defining sufficient conditions for a probabilistic constraint to be satisfied must include at

least one non-complemented literal βi j associated with each component j ∈ J.

Definition 10 A p-pattern is a term that covers at least one p-sufficient realization and does not cover

any p-insufficient one
∨

k∈Ω̄+
B

t(k) = 1 and
∧

k∈Ω̄−
B

t(k) = 0 ,

and includes at least one non-complemented literal βi j for each component j of the random vector ξ.

Corollary 11 The degree of a pattern defining sufficient conditions for (2) to hold is at least equal

to |J|.

A p-pattern is a combinatorial rule represented as a conjunction of literals. It is a subcube of the n-

dimensional unit cube {0,1}n that intersects Ω̄+B (i.e., one or more p-sufficient realizations satisfy its

conditions) but does not intersect Ω̄−B (i.e., no p-insufficient realization satisfies its conditions). The

term β21 β32 is a p-pattern: it does not cover any p-insufficient realization, but covers the p-sufficient

realizations 10 and 15. Finally, note that a p-pattern is easier to generate than and differs from an ep-

pattern that represents a p-efficient point (Lejeune, 2012).

3.3. Pattern Properties: Rationale for Mathematical Programming Generation

3.3.1. Properties In order to derive patterns that can be conveniently used for computational pur-

poses, we shall attempt to derive prime patterns (Hammer et al., 2004).

Definition 12 A pattern is prime if the removal of one of its literals transforms it into a term which is

not a pattern.

Basically, it means that a prime pattern does not include any redundant literals. We now investigate

whether the pdBf representing (F, p) can take some particular functional form facilitating its compu-

tational handling. In particular, we consider the monotonicity property which, for Boolean functions,

provides key computational advantages (Crama and Hammer, 2011).
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Definition 13 (Radeanu, 1974) A Boolean function f is positive (increasing) monotone, also called

isotone, if x ≤ y implies f (x) ≤ f (y).

The inequality sign is understood componentwise. The conditions under which a pdBf can be extended

as a positive Boolean function is given by Boros et al. (1997) as:

Lemma 14 A pdBf g
(

Ω̄+B, Ω̄
−
B

)

has a positive Boolean extension if and only if there is no k ∈ Ω̄+B and

k′ ∈ Ω̄−B such that βk ≤ βk′ .

Lemma 14 is used to derive Theorem 15 which applies to the type of extension (i.e., extension of a

pdBf representing the combination of a probability distribution and of a probability level) studied in this

paper.

Theorem 15 A consistent pdBf g(Ω̄+B, Ω̄
−
B) representing (F, p) is extended as a positive Boolean func-

tion.

Proof: (i) The binarization process (5) is defined in a way that if ωk′ �ωk, then βk′ � βk.

(ii) A cumulative probability distribution is positive monotone. Thus, if F(ωk′) ≤ F(ωk), then ωk′ � ωk.

Definition 1 states that k ∈ Ω̄+ if and only if F(ωk) ≥ p, and k′ ∈ Ω̄− if and only if F(ωk′) < p. Thus, for

every pair (k, k′), k ∈ Ω̄+, k′ ∈ Ω̄−, we have F(ωk′) < F(ωk) and ωk′ �ωk.

Combining (i) and (ii), we can see that for any pair (k, k′), k ∈ Ω̄+, k′ ∈ Ω̄−, we have ωk′ � ωk implying

βk′ � βk. This, along with Lemma 14, completes the proof. �

It was shown (see Torvik and Triantaphyllou, 2009) that patterns included in a DNF that constitutes

a positive Boolean function do not need to contain complemented literals. We denote by P j the set of

non-complemented literals associated with j and involved in the definition of a term t: P =
⋃

j∈J

P j.

Lemma 16 Consider a sufficient-equivalent set of cut points. Any term t =
∧

i j∈P

βi j with P j , ∅, j ∈ J that

does not cover any p-insufficient realization is a p-pattern.

Proof: It is enough to show that t necessarily covers at least one p-sufficient realization to prove that

t is a p-pattern (Definition 10). Let k′ ∈ Ω̄+ be such that ωk′

j = cn j j, j ∈ J. The binarization process (5)-(6)

implies that βk′

i j = 1, i = 1, . . . ,n j, j ∈ J. Obviously,
∏

i j∈P

βk′

i j = 1, and Definition 9 allows us to conclude that

k′ is covered by t, which is hence a p-pattern. �

Clearly, prime patterns (Definition 12) included in a DNF that is an isotone Boolean function do not

contain complemented literals (Boros et al., 2000). For the problem at hand, this leads to the Lemma

Lemma 17 Prime p-patterns do not contain any complemented literal β̄i j.

which, combined with Proposition 11, indicates that
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Lemma 18 Prime p-patterns for realizations of a |J|-variate random variable are of degree |J|.

Proof: Let t =
∧

i j∈P

βi j

∧

i j∈N

β̄i j be a p-pattern. From Lemma 17, we know that N = ∅ if t is a prime pattern.

Consider that t includes two literals βi j and βi′ j associated with the same component j. Let i′ < i which

implies that ci′ j < ci j (6) and βi j ≤ βi′ j (8). If the removal of βi j transforms t into a term that is not a pattern,

then βi j must be kept among the literals included in t. This makes βi′ j redundant and the definition of a

prime pattern requires its removal. On the other hand, if the removal of βi j does not result in t covering

any p-insufficient realization, then βi j is not required and should be removed. This shows that prime

p-patterns contain at most one literal per component j, and are thus of degree |J|. �

Lemma 19 follows immediately:

Lemma 19 A pdBf g(Ω̄+B, Ω̄
−
B) representing (F, p), where F is a |J|-variate probability distribution,

can be extended as a DNF containing prime p-patterns of degree |J| that do not include complemented

literals.

3.3.2. Rationale In the combinatorial data mining literature (Boros et al., 2000; Hammer and Bon-

ates, 2006; Djukova et al., 2006), combinatorial patterns are usually generated by using term enumera-

tion methods. Recent research related to the combinatorial methodology called logical analysis of data

(Hammer, 1986) has led to major developments in this area and has shown that enumeration methods are

very efficient (Alexe and Hammer, 2006; Hammer et al., 2006) when used for the generation of patterns

of small degree (up to 4). The LAD - Datascope 2.01 software package (Alexe, 2007) implements

a variety of enumeration algorithms. However, enumerative techniques are extremely computationally

expensive (Boros et al., 1997) when they are used to generate terms of larger degree. Indeed, the num-

ber of terms of degree up to d is equal to
d
∑

d′=1

2d′

(

n

d′

)

and increases very fast with the number n of

Boolean variables (and cut points). This is a concern, since, as indicated by Lemma 18, prime p-patterns

are of degree |J|, which is equal to the dimensionality of the multivariate probability distribution of ξ

and potentially large. This motivates the development of a mathematical programming approach for the

generation of patterns.

In combinatorial data mining, a set covering formulation has been proposed by Boros et al. (1997) for

the generation of patterns. While patterns are derived to classify observations in data mining, the objec-

tive pursued in this paper is to use combinatorial patterns for the solution of probabilistically constrained

optimization problems. Namely, the generated patterns permit the formulation of a tight linear program-

ming inner approximation as well as that of the deterministic equivalent of probabilistically constrained

problems. Besides the difference in objective, the mathematical programming formulations proposed in

this paper substantially differ from those that can be found in the data mining literature. In particular,

we propose two linear programming formulations for the derivation of patterns. The reader is referred
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to Jeroslow (1989), Hooker (2000, 2007), and Crama and Hammer (2011) for studies of the interplay

between logic, Boolean mathematics, and optimization.

3.4. Mathematical Programming Derivation of p-Pattern

In this section, we propose four mathematical programming formulations for the generation of a p-

pattern. Definition 10 shows that a p-pattern defines sufficient conditions for the probabilistic constraint

(2) to hold. The optimal p-pattern is the one that enforces the minimal conditions for (2) to hold. How-

ever, it is not possible to identify some specific properties of an optimal p-pattern and to accordingly

propose a tailored formulation for its generation. Thus, we shall focus on the derivation of a p-pattern

that defines sufficient conditions that are “close to“ the minimal ones. The proposed formulations account

for the following aspect. The optimal p-pattern, as well as those defining close-to-minimal conditions,

represent faces of the lower envelope of the integer hull of the set of p-sufficient realizations, and are

thus likely to have “large” coverage (see Figure 2).

3.4.1. Integer Programming Formulations The first integer programming (IP) formulation IP1 is

such that its optimal solution defines the p-pattern with maximal coverage. The following notations are

used. The decision variables ui j and yk, respectively associated to the literals βi j and to the p-sufficient

realizations k, are binary (19)-(20). The value taken by ui j defines the literals that are included in the

p-pattern t: ui j takes value 1 if βi j is included in t, and is equal to 0 otherwise. The binary variable yk

identifies which p-sufficient realizations k are covered by t as defined by the solution of IP1: yk takes

value 1 if k is not covered by t, and can take value 0 otherwise.

The objective function (15) minimizes the number of p-sufficient realizations not covered by t. Each

constraint in (16) forces yk to take value 1 if the p-sufficient realization k is not covered by t. Each

constraint in (17) does not permit t to cover any p-insufficient realization. Constraints (18) force the

inclusion in t of one non-complemented literal (and no complemented literal) per j. We denote by z∗

the optimal value of the objective function. Recall that the parameter βk
i j indicates whether ωk

j is at least

equal to ci j (5) and that we use a sufficient-equivalent set of n cut points.

Theorem 20 Any feasible solution (u,y) of the integer programming problem IP1

z =min
∑

k∈Ω̄+
B

yk (15)

subject to
∑

j∈J

n j
∑

i=1

βk
i jui j + |J|y

k ≥ |J|, k ∈ Ω̄+B (16)

∑

j∈J

n j
∑

i=1

βk
i jui j ≤ |J| − 1, k ∈ Ω̄−B (17)

n j
∑

i=1

ui j = 1, j ∈ J (18)
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ui j ∈ {0,1}, j ∈ J, i = 1, . . . ,n j (19)

yk ∈ {0,1}, k ∈ Ω̄+B (20)

defines a prime p-pattern

t =
∧

ui j=1

j∈J,i=1,...,n j

βi j (21)

of degree |J|. Problem IP1 has an upper bound equal to |Ω̄+B| − 1 and its optimal solution (u∗,y∗) defines

the p-pattern with maximal coverage equal to
(∣

∣

∣Ω̄+B

∣

∣

∣− z∗
)

.

Proof: (i) Prime p-pattern: Let t (21) be a term defined by an arbitrary feasible solution (u,y) of IP1

and P = {i j : ui j = 1, j ∈ J, i = 1, . . . ,n j} be the set of non-complemented literals in t.

It follows from Definition 9 that k ∈ Ω̄B is covered by t if and only if
∧

i j∈P

βk
i j = 1, which is equivalent to

∑

i j∈P

βk
i j = |P| = |J| . (22)

Indeed, (18) and (19) ensure the inclusion of exactly one non-complemented literal per j in t. Thus, the

number of literals in t is |J| = |P|.

Since ui j = 1, i j ∈ P, and ui j = 0, i j < P, implying that βk
i j ui j = 0, i j < P, then

∑

i j∈P

βk
i j =

∑

i j∈P

βk
i j ui j =

∑

j∈J

n j
∑

i=1

βk
i j ui j . . (23)

Therefore, it follows that

∑

j∈J

n j
∑

i=1

βk
i j ui j ≤ |J| − 1, k ∈ Ω̄−B ⇒

∑

i j∈P

βk
i j ≤ |J| − 1, k ∈ Ω̄−B . (24)

The above relationship implies that (17) prevents t from covering any k ∈ Ω̄−B (see (22)). This, combined

with Lemma 16, is enough to show that t is a p-pattern. As above-mentioned, (18) and (19) ensure that

t is a p-pattern of degree |J| and is therefore prime (Lemma 18).

(ii) Upper bound: We have shown above that if k ∈ Ω̄B is not covered by t, then
∑

j∈J

n j
∑

i=1

βk
i j ui j ≤ |J| − 1. It

follows that (16) forces yk, k ∈ Ω̄+B to take value 1 if k ∈ Ω̄+B is not covered by t. Otherwise, yk can take

value 0. Part (i) of the proof indicates that any feasible solution of IP1 determines a p-pattern which, by

definition, covers at least one k ∈ Ω̄+B, for which yk = 0. Therefore, the number of non-covered p-sufficient

realizations
∑

k∈Ω̄+
B

yk is bounded from above by |Ω̄+B| − 1.

(iii) Coverage: The objective function maximizes the number
∑

k∈Ω̄+
B

(1− yk) of k ∈ Ω̄+B covered by t. Thus,

the pattern defined by the optimal solution (u∗,y∗) has maximal coverage equal to the difference between

the number (|Ω̄+B|) of p-sufficient realizations and the number (z∗ =
∑

k∈Ω̄+
B

yk) of those not covered by t. �
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The number of binary variables in IP1 is equal to n+ |Ω̄+B|, and increases with the number of cut points

and with the number of p-sufficient realizations. Note that IP1 does not need to be solved to optimality,

since any feasible solution defines a p-pattern, and that a pattern with maximal coverage is a strong

pattern (Hammer et al., 2004).

Next, we formulate an MIP problem IP2 which contains a significantly smaller number of binary

variables than IP1 and allows for the derivation of a p-pattern. The generated prime p-pattern t contains

|J| literals βi j, and each literal defines a specific condition (ωk
j ≥ ci j) for a realization k to be covered by

t. Instead of minimizing the number of p-sufficient realizations not covered by the pattern (see IP1), we

shall now minimize the number of conditions imposed by the literals involved in t that are not satisfied

by the p-sufficient realizations. If k is covered by t, then
∑

j∈J

n j
∑

i=1

βk
i jui j = |J| and constraint (26) requires

yk = 0. Otherwise, (26) forces yk to be equal to the number (|J| −
∑

j∈J

n j
∑

i=1

βk
i jui j) of conditions defined by the

literals included in t that k does not satisfy. The resulting MIP problem IP2 contains n binary variables

instead of (n+ |Ω̄+B|) in IP1. The variables yk are now continuous (27).

Theorem 21 Any feasible solution (u,y) of the mixed-integer programming problem IP2

z =min
∑

k∈Ω̄+
B

yk (25)

subject to
∑

j∈J

n j
∑

i=1

βk
i jui j + yk = |J|, k ∈ Ω̄+B (26)

0 ≤ yk ≤ |J|, k ∈ Ω̄+B (27)

(17)− (19)

defines a prime p-pattern

t =
∧

ui j=1

j∈J,i=1,...,n j

βi j

of degree |J| and coverage |V | with V = {k : yk = 0, k ∈ Ω̄+B}. Problem IP2 has an upper bound equal to

|J| · (|Ω̄+B| − 1).

Proof: (i) p-pattern: As shown in Theorem 20, constraints (17), (18) and (19) ensure that t is a prime

p-pattern. Each constraint (26) allows yk to take value 0 if and only if t covers k ∈ Ω̄+B. Thus, the coverage

of t is equal to the cardinality of the set V .

(ii) Upper bound: Each yk is bounded from above by |J| (27). Any feasible solution of IP2 defines a

p-pattern (see (i)) that covers at least one k ∈ Ω̄+B. For k ∈ Ω̄+B covered by t, yk is equal to 0. The upper

bound on the objective value of IP2 is thus |J| · (|Ω̄+B| − 1). �
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The IP1 and IP2 formulations for Example 1 are given below. The optimal solutions of IP1 and IP2

provide both the same p-pattern t = β11β22 with coverage equal to |V | = 6 (t does not cover realization 7),

and z∗ is equal to 1 for IP1 and IP2.

IP1

z = min y7 + y9 + y10 + y12 + y13 + y14 + y15

s. to u11 + u21 + u31 + u12 + 2y7 ≥ 2

u11 + u12 + u22 + 2y9 ≥ 2

u11 + u21 + u12 + u22 + u32 + 2y10 ≥ 2

u11 + u12 + u22 + u32 + 2y12 ≥ 2

u11 + u21 + u12 ++u22 + 2y13 ≥ 2

u11 + u21 + u31 + u12 + u22 + 2y14 ≥ 2

u11 + u21 + u31 + u12 + u22 + u32 + 2y15 ≥ 2

u11 + u12 ≤ 1

u11 + u21 + u12 ≤ 1

u11 + u21 + u31 = 1

u12 + u22 + u32 = 1

ui j ∈ {0,1}, i = 1,2,3, j = 1,2

yk ∈ {0,1}, k = 7,9,10,12,13,14,15

IP2

z = min y7 + y9 + y10 + y12 + y13 + y14 + y15

s. to u11 + u21 + u31 + u12 + y7 = 2

u11 + u12 + u22 + y9 = 2

u11 + u21 + u12 + u22 + u32 + y10 = 2

u11 + u12 + u22 + u32 + y12 = 2

u11 + u21 + u12 ++u22 + y13 = 2

u11 + u21 + u31 + u12 + u22 + y14 = 2

u11 + u21 + u31 + u12 + u22 + u32 + y15 = 2

u11 + u12 ≤ 1

u11 + u21 + u12 ≤ 1

u11 + u21 + u31 = 1

u12 + u22 + u32 = 1

ui j ∈ {0,1}, i = 1,2,3, j = 1,2

0 ≤ yk ≤ 2, k = 7,9,10,12,13,14,15

3.4.2. Linear Programming Formulations In this section, we propose two linear programming

formulations for the generation of p-patterns. This is another difference between the p-patterns and

ep-patterns whose generation requires the solution of an MIP problem.

Theorem 22 Any feasible solution (u,y) of the linear programming problem LP1

z =min
∑

k∈Ω̄+
B

yk (28)

subject to (16)− (18)

0 ≤ ui j ≤ 1, j ∈ J, i = 1, . . . ,n j (29)

0 ≤ yk ≤ 1, k ∈ Ω̄+B (30)

defines a p-pattern

t =
∧

ui j>0

j∈J,i=1,...,n j

βi j (31)

with coverage |V | with V = {k : yk = 0, k ∈ Ω̄+B}.

Proof: The presence of (17) ensures that t (31) is a p-pattern (Theorem 20). Every constraint (16)

requires the associated k to be covered by t for yk to take value 0. Thus, the coverage of t is |V |. �
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Problem LP1 is a linear program and is obviously simpler to solve than IP1 and IP2. The “cost” of

removing the integrality restrictions on the variables is twofold. First, although the objective function is

still related to the coverage of the generated pattern, it cannot be interpreted anymore as representing

the number of p-sufficient realizations covered by t (IP1) or as the number of conditions imposed by

t that are not met by the p-sufficient realizations (IP2). Second, the pattern t defined by a feasible

solution of LP1 is not necessarily prime and can contain a number of literals larger than |J|, which could

be inconvenient from a computational point of view. This can easily be remedied. Indeed, from the

knowledge of the pattern t generated by LP1, one can immediately derive a prime p-pattern.

Corollary 23 A prime p-pattern

t =
∧

j∈J

βī j j (32)

with ī j = arg max
i

ui j > 0, j ∈ J (33)

can immediately be derived from any feasible solution (u,y) of the linear programming problem LP1.

Proof: Let (u,y) be an arbitrary feasible solution for LP1 and P = {i j : ui j > 0, j ∈ J, i = 1, . . . ,n j}. For

k to be covered by t defined by (31), we need βk
i j = 1, i j ∈ P. The regularization property (8) of the

Boolean vector β implies that if i′ < i, then βk
i′ j
≥ βk

i j, j ∈ J. Thus, all conditions βk
i j = 1, i j ∈ P associated

with a component j can be subsumed by βk

ī j j
= 1, j ∈ J with ī j defined by (33): βk

ī j j
= 1 implies that

βk
i j = 1, i = 1, . . . , ī j. Therefore, t defined by (32) includes only one literal βī j j per component j and defines

the same conditions as t defined by (31): t defined by (32) is a prime p-pattern. �

In Example 1, the optimal solution for LP1 allows the derivation of a prime p-pattern t = β11β22 with

coverage equal to |V | = 6 and z∗ = 0.5.

In the second linear programming formulation LP2, we have a reduced set of n+ |J|+ |Ω̄−B| constraints

and only n continuous decision variables u. We introduce a set of parameters bi j which can be viewed

as the price of including the literal βi j in the definition of the pattern t. The optimal solution (u∗) of LP2

defines the “least costly” p-pattern. We propose the two following guidelines for the pricing approach

and the determination of the weights bi j:

• intra-component pricing: We differentiate the weights bi j assigned to the literals associated with the

same component j. The goal is to generate a p-pattern that defines the minimal (or close to minimal)

conditions for the attainment of the probability level p. Accordingly, we want to include in the pattern

t the literals imposing the least demanding conditions. Thus, for any given j and i > i′, it is preferable,

when possible, to include βi′ j than βi j in t and we accordingly price βi′ j cheaper than βi j by setting

bi j > bi′ j, j ∈ J.

• inter-component pricing: The value of bi j, i = 1, . . .n j associated with component j is an increasing

function of the cost associated with j in the objective function of the stochastic problem (1).
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Theorem 24 Any feasible solution (u) of the linear programming problem LP2

z =min
∑

j∈J

n j
∑

i=1

bi jui j (34)

subject to (17) ; (18) ; (29)

defines a p-pattern

t =
∧

ui j>0

j∈J,i=1,...,n j

βi j .

The proof is the same as for LP1. As for LP1, a feasible solution for LP2 does not necessarily define a

prime p-pattern, but we can apply Corollary 23 to construct a prime p-pattern.

In Example 1, we use the intra-component pricing approach and set bi j = i, i = 1, . . . ,n j, j ∈ J. The opti-

mal solution of LP2 gives the p-pattern t = β11β22 with coverage equal to |V | = 6. The LP1 and LP2

formulations in Example 1 are given below.
LP1

z = min y7 + y9 + y10 + y12 + y13 + y14 + y15

s. to u11 + u21 + u31 + u12 + 2y7 ≥ 2

u11 + u12 + u22 + 2y9 ≥ 2

u11 + u21 + u12 + u22 + u32 + 2y10 ≥ 2

u11 + u12 + u22 + u32 + 2y12 ≥ 2

u11 + u21 + u12 ++u22 + 2y13 ≥ 2

u11 + u21 + u31 + u12 + u22 + 2y14 ≥ 2

u11 + u21 + u31 + u12 + u22 + u32 + 2y15 ≥ 2

u11 + u12 ≤ 1

u11 + u21 + u12 ≤ 1

u11 + u21 + u31 = 1

u12 + u22 + u32 = 1

0 ≤ ui j ≤ 1, i = 1,2,3, j = 1,2

0 ≤ yk ≤ 1, k = 7,9,10,12,13,14,15

LP2

z = min b11u11 + b21u21 + b31u31

+ b12u12 + b22u22 + b32u32

s. to u11 + u12 ≤ 1

u11 + u21 + u12 ≤ 1

u11 + u21 + u31 = 1

u12 + u22 + u32 = 1

0 ≤ ui j ≤ 1, i = 1,2,3, j = 1,2

In Section 5, we shall evaluate the numerical efficiency of the four proposed mathematical program-

ming formulations and the time needed to solve them to optimality.

4. Linear Reformulation of Probabilistic Problems

4.1. Linear Programming Inner Approximation of Probabilistic Problems

In this section, we derive an inner approximation, taking the form of a linear program, for the prob-

abilistically constrained problem (1). The construction of the inner approximation problem is based on

the generation of a p-pattern using one of the formulations proposed in Section 3.4.
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Theorem 25 Consider a p-pattern t =
∧

i j∈P

βi j, with P denoting the set of literals included in t. The

linear programming problem IALP

min qTx

subject to Ax ≥ b

h jx ≥ ci j, i j ∈ P

x ≥ 0

(35)

is an inner approximation of the probabilistic problem (1).

Proof: The definitions of a p-pattern and of its coverage (Definition 9 and 10) imply that, if t =
∧

i j∈P

βi j

is a p-pattern, we have

{

t(k) = 0, ∀k ∈ Ω̄−B ⇔ βk
i j = 0, for at least one i j ∈ P, ∀k ∈ Ω̄−B

t(k) = 1, for at least one k ∈ Ω̄+B ⇔ βk
i j = 1, ∀ i j ∈ P, for at least one k ∈ Ω̄+B

. (36)

The definition of the binarization process (5) permits us to rewrite the second relationship in (36) as:

βk
i j = 1, ∀ i j ∈ P ⇔ ωk

j ≥ ci j, ∀i j ∈ P . (37)

The construction of the sufficient-equivalent set of cut points (see (9) in Definition 6) implies that:

ωk
j = ci j, ∀i j ∈ P, for one k ∈ Ω̄+ . (38)

Let k′ ∈ Ω̄+ be the realization for which (38) holds:

ωk′

j = ci j, ∀i j ∈ P . (39)

Since k′ ∈ Ω̄+, we have P
(

ωk′ ≥ ξ
)

≥ p, and thus,

ωk′

j ≤ h jx, j ∈ J ⇒ P
(

h jx ≥ ξ j, j ∈ J
)

≥ p . (40)

Using (39), we can now rewrite (40) as

ci j ≤ h jx, i j ∈ P ⇒ P
(

h jx ≥ ξ j, j ∈ J
)

≥ p , (41)

which was set out to prove. �

The above linear programming problem can be obtained by using any of the four formulations pro-

posed for the generation of p-patterns. The key question that is addressed in Section 5.1 pertains to the

tightness of the inner approximation obtained with the four proposed models. The tightness of an approx-

imation problem is understood as the gap between the optimal value of the approximation problem and

this of the stochastic problem (1).
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4.2. Linear Deterministic Equivalent of Probabilistic Problems

We shall now derive a linear deterministic problem DEIP equivalent to the probabilistically constrained

program (1). Problem DEIP takes the form of an MIP problem including a number of binary variables

equal to the number of cut points used in the binarization process. The solution of DEIP allows for the

concurrent (i) generation of the prime p-pattern defining the minimal conditions for the probabilistic

constraint (2) to hold and (ii) reformulation and exact solution of the stochastic problem (1).

Theorem 26 The mixed-integer programming problem DEIP

min qTx

subject to Ax ≥ b

h jx ≥
n j
∑

i=1

ci j ui j , j ∈ J (42)

∑

j∈J

n j
∑

i=1

βk
i j ui j ≤ |J| − 1 , k ∈ Ω̄−B (43)

n j
∑

i=1

ui j = 1, j ∈ J (44)

ui j ∈ {0,1}, j ∈ J, i = 1, . . . ,n j (45)

x ≥ 0

is a deterministic equivalent of the probabilistically constrained problem (1). The optimal solution

(u∗,x∗) of DEIP gives the prime p-pattern

t∗ =
∧

i j∈P

βi j , with P =
{

i j : u∗i j = 1, j ∈ J, i = 1, . . . ,n j

}

(46)

that defines the minimal conditions for the probabilistic constraint (2) to be satisfied.

Proof: Let t =
∧

i j∈P

βi j with P =
{

i j : ui j = 1, j ∈ J, i = 1, . . . ,n j

}

be a term defined by an arbitrary feasible

solution (u,x) of DEIP.

(i) Prime p-pattern: Constraints (43) do not allow t to cover any k ∈ Ω̄−B. Hence, t defined by an arbitrary

feasible solution for DEIP is a p-pattern (Lemma 16), and (44) and (45) imply that t is prime, with degree

|J|. Thus, t∗ (46) is a prime p-pattern.

(ii) We show now that any feasible solution for DEIP is feasible for (1). The definition of a p-pattern

(Definition 10) and the construction of the sufficient-equivalent set of cut points (Definition 6) imply

that there exists k′ ∈ Ω̄+ covered by t such that

ωk′

j = ci j, i j ∈ P . (47)
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Constraints (44) and (45) ensure that exactly one term ui j, i j ∈ P in the left-hand side of each constraint

(44) is non-zero and equal to one. Similarly, exactly one term ci j ui j, i j ∈ P in the right-hand side of each

constraint (42) is non-zero and equal to ci j, i j ∈ P. This allows rewriting (47) as

ωk′

j =

n j
∑

i=1

ci j ui j, j ∈ J . (48)

Since k′ ∈ Ω̄+, we obtain (40) which can be rewritten using (48) as

n j
∑

i=1

ci j ui j ≤ h jx, i j ∈ P ⇒ P
(

h jx ≥ ξ j, j ∈ J
)

≥ p . (49)

This shows that any feasible solution for DEIP is feasible for (1).

(iii) Next, we show that any feasible solution for (1) is feasible for DEIP. The points k′′ : P(ξ ≤ωk′′) ≥ p

are such (40) that

h jx ≥ω
k′′

j , j ∈ J ⇒ P(h jx ≥ ξ j, j ∈ J) ≥ p ,

and form the feasible set defined by (2). For any such point k′′, we can always find (by construction of

the sufficient-equivalent set of cut points) a point k′ ∈ Ω̄+, such that ωk′ ≤ωk′′ and ωk′

j =
∨

i=1,...,n j

ci j, j ∈ J.

Let i′j = arg max
i

βk′

i j = 1, j ∈ J, and let’s construct the vector u′ defined by k′:

u′i j =

{

1 if i = i′j
0 otherwise

. (50)

To prove that any feasible solution for (1) is feasible for DEIP, we show that, for any k′′ : P(ξ ≤ωk′′) ≥ p,

one can find k′ ∈ Ω̄+ :ωk′ ≤ωk′′ such that u′ (50) is feasible for (42), (43), (44) and (45).

It is easy to see that u′ is feasible for (44) and (45). As for the constraints (43), u′ is feasible if

∑

j∈J

n j
∑

i=1

βk
i j u′i j =

∑

j∈J

βk

i′
j
j
u′

i′
j
j
=

∑

j∈J

βk

i′
j
j
≤ |J| − 1, k ∈ Ω̄−B . (51)

Clearly, the feasibility of the above constraints is ensured if

βk

i′
j
j
= 0 for at least one j, ∀k ∈ Ω̄−B . (52)

It is shown in Theorem 15 that there is no k ∈ Ω̄−B such that βk ≥ βk′ . This implies that

(βk
1 j, . . . , β

k
n j j) < (βk′

1 j, . . . , β
k′

n j j) for at least one j, ∀k ∈ Ω̄−B .

Let h ∈ J be a coordinate such that (βk
1h
, . . . , βk

nhh
) < (βk′

1h
, . . . , βk′

nhh
) for an arbitrary k ∈ Ω̄−B. Since i′

h
=

arg max
i

βk′

ih
= 1, it follows that, for any i > i′

h
, βk

ih
= βk′

ih
= 0. Thus, the vectors βk′ and βk differ only in

terms of the i′
h

first components, and we have

(βk
1h, . . . , β

k

i′
h

h
) < (βk′

1h, . . . , β
k′

i′
h
h
) . (53)
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The regularization property ((8) in Lemma 3) indicates that (53) can only be true if βk

i′
h

h
= 0 < βk′

i′
h
h
= 1.

This shows that, for any k ∈ Ω̄−B, βk

i′
j
j
= 0 for at least one j, which yields (52) and results in

∑

j∈J

βk

i′
j
j

being

bounded from above by (|J| − 1) for each k ∈ Ω̄−B (51). This shows that u′ is feasible for (43).

Concerning the feasibility of u′ for (42), we must show that

h jx ≥

n j
∑

i=1

ci j u′i j, j ∈ J ⇒ P(h jx ≥ ξ j, j ∈ J) ≥ p . (54)

Since i′j = arg max
i

βk′

i j = 1 with (5) setting βk′

i j = 1 if ωk′

j ≥ ci j and the fact that ωk′

j =
∨

i=1,...,n j

ci j, j ∈ J, we

have ωk′

j = ci′
j
j. Further, the definition of u′ (50) implies that

ωk′

j = ci′
j
j =

n j
∑

i=1

ci j u′i j, j ∈ J . (55)

Since k′ ∈ Ω̄+, we have (40). Using (55), we substitute
n j
∑

i=1

ci j u′i j for ωk′

j in (40) and obtain the desired

result (54). We conclude that any feasible solution for (2) defines a solution u′ feasible for (42), (43),

(44) and (45). Thus, any feasible solution for (1) is feasible for DEIP.

Parts (ii) and (iii) show that the feasible sets of (1) and DEIP are equivalent, and the optimal solution of

DEIP is thus optimal for (1). Part (i) shows that any feasible solution of DEIP defines a prime p-pattern.

The optimal solution of DEIP defines the p-pattern imposing the minimal conditions for (2) to hold. �

Other MIP reformulation approaches have been proposed to derive a deterministic equivalent for (1).

The MIP deterministic equivalent reformulations (Dentcheva et al., 2001; Prékopa, 2003; Lejeune, 2008)

obtained by using the p-efficiency concept (Prékopa, 1990) associate one binary variable with each

pLEP which must be found a priori. Luedtke et al. (2010) propose several MIP formulations in which a

binary variable is associated with each scenario. In contrast to this, the number of binary variables in the

proposed reformulation DEIP is not an increasing function of the number of scenarios used to describe

the uncertain variables. It contains a significantly lower number (n) of binary variables, equal to the

cardinality of the sufficient-equivalent set of cut points (Definition 6) used for the binarization process.

The deterministic equivalent formulation DEIP for Example 1 reads:

z = min x1 + 2x2

subject to u11 + u12 ≤ 1

u11 + u21 + u12 ≤ 1

8− x1 − 2x2 ≥ 4u11 + 5u21 + 6u31

8x1 + 6x2 ≥ 8u12 + 9u22 + 10u32

u11 + u21 + u31 = 1
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u12 + u22 + u32 = 1

ui j ∈ {0,1}, i = 1,2,3, j = 1,2

x1, x2 ≥ 0

The optimal value is 1, the optimal solution is (u∗,x∗) = (0,0,1,1,0,0,1,0), and the p-pattern defined by

(46) is t = β31 β12.

5. Numerical Implementation

This section evaluates the computational efficiency of the proposed combinatorial pattern approach.

The first part compares the speed of the four mathematical programming methods for the generation

of p-patterns and analyzes the tightness of the inner approximation obtained with these methods. The

second part looks at the computational times needed to solve the deterministic equivalent reformulation

of the probabilistic problem. The tests are conducted on hundreds of instances describing a supply chain

problem and a cash matching problem.

In the supply chain problem, the set K of distributors must satisfy the random demand ξ of a set J of

customers. The decision variables xk j are the supply quantities delivered by a distributor k to a customer

j. The model reads:

min
∑

k∈K

∑

j∈J

qk jxk j (56)

subject to
∑

j∈J

xk j ≤Mk , k ∈ K (57)

xk j ≤ Vk j , k ∈ K, j ∈ J (58)

P

(

∑

k∈K

xk j ≥ ξ j, j ∈ J

)

≥ p (59)

x ≥ 0

The parameter qk j represents the cost of supplying one unit from k to j. The objective function (56)

minimizes the sum of the distribution costs. Constraints (57) upper-bound (Mk) the aggregated supply

quantity delivered by k to all its customers. Constraints (58) upper-bound (Vk j) the individual supply

quantity delivered by k to each customer j. Constraints (59) require that the distributors satisfy the

demand of all of their customers with a large probability level p.

The parameters qk j,Mk and Vk j of the above model were randomly generated from uniform distribu-

tions. The probability distribution of ξ is described with a finite set of Ω realizations defined as equally

likely and sampled from a uniform distribution. We create 32 types of problem instances character-

ized by the tuple (|J|, |Ω|, p). The instances differ in terms of the dimension (|J| = 10,20) of the random

vector, the number of realizations (|Ω| = 5000,10000,20000,50000), and the enforced probability level
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(p = 0.875,0.9,0.925,0.95). For each instance type, we generate five problem instances. Table 6 reports

the time and gap averages over the five instances of each instance type.

Within the stochastic cash matching problem (Dentcheva et al., 2004; Henrion, 2004), a company

builds a pension fund by investing its available capital in low-risk bonds. The optimization problem is

of the form of (1). The goal of the allocation strategy is to maximize the amount of money available at

the end of the planning horizon (typically 10 to 15 years), while generating, at each period, sufficient

cash amounts for the company to cover its retirement allowances. The problem contains a joint proba-

bilistic constraint which enforces that the cumulative cash inflow exceeds the cumulative random cash

payments with probability p. The decision variables are the positions in each type of bonds. The prin-

cipal and coupon payments of the bonds are known, while the retirement payments at each time-period

are stochastic and follow a discrete distribution. The allocation strategy does not involve any rebalanc-

ing operation. The face value, the yield structure, and the maturity of the bonds were obtained from the

CRSP [8] and Mergent [41] databases and were used to construct 32 types of problem instances charac-

terized by the tuple (|J|, |Ω|, p). The instances differ in terms of the dimension (|J| = 10,15) of the random

vector, the number of realizations (|Ω| = 5000,10000,20000,50000), and the enforced probability level

(p = 0.875,0.9,0.925,0.95). For each instance type, we generate five problem instances. Table 7 reports

the time and gap averages over the five instances of each type.

The binarization process is carried out with Matlab. The AMPL modeling language (Fourer et al.,

2003) is used to formulate the mathematical programming problems which are solved with the CPLEX

11.1 solver. Each problem instance is solved on a 64-bit Dell Precision T5400 Workstation with Quad

Core Xeon Processor X5460 3.16GHz CPU, and 4X2GB of RAM.

5.1. Pattern Generation and Solution of Inner Approximation

The fourth (resp., sixth, eighth, and tenth) column in Table 6 and Table 7 (see Online Appendix for

the latter) reports, for each type of family (see the first three columns of Tables 6 and 7), the sum of

the average computational times needed (i) to generate a pattern with the IP1 (resp., IP2, LP1, and

LP2) formulation and (ii) to solve the resulting linear programming inner approximation. It can be seen

that the four approaches are very fast, even for problems in which the multivariate random variable is

described by a large number of scenarios. The two linear programming formulations are obviously the

fastest (at most 1.8 sec, and most often much less), but the IP formulations can also be solved quickly (at

most 29 seconds for IP1 and 5 seconds for IP2). It is not surprising to observe that the solution times for

the IP2 formulation are consistently smaller than those for IP1, since the former formulation contains a

significantly lower number of binary variables. For the IP formulations, the average computational time

is generally an increasing function of the dimension of the random vector and a decreasing function of

the probability level p.
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The next question to settle pertains to the tightness of the inner approximation derived from the pat-

terns obtained with the four proposed formulations. We measure the tightness of the approximation by

the relative optimality gap between the optimal value of the inner approximation and the optimal value

of the original stochastic problem (1). For each type of instance, the fifth (resp., seventh, ninth, and

eleventh) column in Tables 6 and 7 reports the average relative optimality gap of the inner approxima-

tion obtained by using the IP1 (resp., IP2, LP1, and LP2) formulation. Table 4 reports the number M

of instance types for which each formulation gives the smallest relative optimality gap. Besides being

the fastest, the linear programming approach LP2 is also the one that provides the tightest inner approx-

imation for the largest number of instance types (21 for the supply chain problem and 19 for the cash

matching problem). The LP1 model provides the most conservative approximations.

Table 4 Tightness of Inner Approximation Approaches

IP1 IP2 LP1 LP2 Problem

M
8 8 1 21 Supply Chain

7 8 0 19 Cash Matching

5.2. Concurrent Pattern Generation and Solution of Deterministic Equivalent

For the 320 problem instances, we solve problem DEIP which allows for the simultaneous generation of

the prime p-pattern defining the minimal conditions for the probabilistic constraint (2) to hold and the

solution of the deterministic equivalent formulation of (1). Problem DEIP contains |J| set partitioning

constraints (44) which can be explicitly defined as special ordered set constraints of type one (SOS1).

The twelfth column in Table 6 shows that the deterministic equivalent formulation can be solved

extremely fast (in at most 3 seconds) for each supply chain family instance. The number of integer

variables in problem DEIP is equal to the number of cut points, which, everything else being equal,

increases as the probability level decreases (see Definition 6). Thus, it is logical that the computing

time increases as the value of p decreases. We observe that the computing time increases at a very

moderate rhythm, which suggests that the method could be used for values of p even lower than those

considered here. Similar conclusions can be drawn for the cash matching problem (see Table 7 in Online

Appendix for the detailed results). For the cash matching instances, the longest time taken to solve DEIP

to optimality is 2.125 seconds.

A key feature of the proposed approach is that the number of binary variables does not increase

with the number of realizations. This is what allows the application of the method for cases in which

the random variables are subject to a very fine discretization and are characterized by an extra large

number of scenarios. The results attest that the solution time does not increase monotonically with the

number of scenarios used to represent uncertainty. This is illustrated by Table 5 that displays the average,



Lejeune: Pattern Method for Probabilistic Programming Problems

28 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

minimum, and maximum time to solve to optimality the deterministic equivalent problem DEIP for

each considered number |Ω| of scenarios. The average computational time to solve the 50000-scenario

instances is smaller than that for the 20000-scenario instances.

Table 5 Relationship between Solution Time for DEIP Problem and Number of Scenarios - Cash Matching Problem

Instances (in seconds)

|Ω|

5000 10000 20000 50000

Average Time 0.215 0.268 0.542 0.470

Minimum Time 0.015 0.021 0.011 0.010

Maximum Time 1.064 1.125 2.125 2.035

To our knowledge, none of the existing methods has reported numerical results for problem instances

in which the number of scenarios is larger than 3000 (e.g., up to 3000 in Luedtke et al., 2010 and 500 in

Küçükyavuz, 2012). We have implemented the method proposed by Luedtke et al. (2010) and we could

not obtain the optimal solution for any of the problem instances containing 20,000 or more scenarios in

one hour of CPU time. The proposed method is thus an excellent alternative to the existing algorithmic

techniques.

6. Conclusion

We propose a novel methodology to solve probabilistically constrained optimization problems by using

concepts from the combinatorial pattern recognition field. Combinatorial patterns are able to capture

the ”interactions” between the components of a multi-dimensional random vector and their impact on

making it possible to reach a predefined reliability level. Patterns have the capability not only to identify

the variables that individually influence the probability level p, but also to capture the collective effect of

the values of those variables on the attainment of the prescribed probability level. Besides being new, the

proposed method also scales well. It permits the very fast solution of stochastic optimization problems

in which the random variables are represented by an unprecedently large number of scenarios.

The presented framework introduces the concept of a cut point and describes a binarization method

for a probability distribution with finite support. We represent the combination of a binarized probability

distribution and a probability level by a consistent pdBf which can then be compactly extended as an

isotone Boolean function. The Boolean extension represents the sufficient requirements for a probabilis-

tic constraint to hold, and is modelled as a DNF including p-patterns. Each p-pattern is a conjunction of

literals and defines sufficient conditions for the satisfaction of a probabilistic constraint.

Enumerative methods, which are most often used for pattern generation purposes, are not very effi-

cient for the construction of patterns with large degree. This motivates the design of a mathematical

programming method for pattern generation. Four formulations (2 LPs and 2 IPs) are proposed for the
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Table 6 Supply Chain Instances - Solution Times and Optimality Gap
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generation of p-patterns, which in turn allows for the derivation of a linear programming inner approx-

imation of the probabilistic problem. Finally, we propose a model that allows for the simultaneous (i)

derivation of the p-pattern defining the minimal conditions for the probabilistic constraint to hold and

(ii) optimal solution of the deterministic equivalent problem.

The results for complex stochastic problems, in which a very fine discretization involving up to 50,000

scenarios is applied to represent the random variables, highlight the computational efficiency of the

approach. All problems are solved to optimality in less than three seconds. Moreover, the solution time
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is not an increasing function of the number of realizations used to describe the random variables. Numer-

ical results based on instances of two different problems (cash matching and supply chain) indicate that

the linear programming formulation LP2 is solved the fastest and provides the tightest inner approxima-

tions (i.e., for more than 60% of the problem instances). The formulation LP2 is based on the pricing of

the literals included in the p-pattern. This study offers the possibility to solve either a tight inner approx-

imation or the deterministic equivalent of the probabilistic problem (1). The choice between both could

depend on the specifics of the problem and of the decision-making process and stage.

The proposed approach can be applied in the exact same fashion in the cases when the stochastic

problem (1) includes integer decision variables, contains non-linear constraint(s) and/or objective func-

tion, or when the inequality on which the probabilistic requirement is imposed is nonlinear. Extensions

of the proposed approach could concern probabilistic constraints with a random technology matrix and

two-stage stochastic programming problems.
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[49] Prékopa A., Vizvari B., Badics T. 1998. Programming under Probabilistic Constraint with Discrete Random Variable. In:
New Trends in Mathematical Programming. Eds: Giannessi F., Komlósi S., Rapcsák T. Boston, MA.
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Table 7 Cash Matching Instances - Solution Times and Optimality Gap
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