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ABSTRACT: 

 

Matching of building polygons with different levels of detail is crucial in the maintenance and quality assessment of multi-

representation databases. Two general problems need to be addressed in the matching process: (1) Which criteria are suitable? (2) 

How to effectively combine different criteria to make decisions? This paper mainly focuses on the second issue and views data 

matching as a supervised pattern classification. Several classifiers (i.e. decision trees, Naive Bayes and support vector machines) are 

evaluated for the matching task. Four criteria (i.e. position, size, shape and orientation) are used to extract information for these 

classifiers. Evidence shows that these classifiers outperformed the weighted average approach. 
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1. INTRODUCTION 

Geospatial data are usually collected for the same geographic 

areas from different sources and/or at different scales, and for 

different purposes. To make best use of different data sources, 

e.g., to carry out advanced spatial analysis based on different 

abstraction levels (Timpf et al., 1992; Lüscher et al., 2009), 

matching between datasets is needed. On the other hand, to 

fulfill the increasing and diverse demand of spatial data at 

various resolutions and scales, detailed spatial databases are 

being built or under construction via generalization in many 

countries, from which smaller scale representations can be 

derived. However, since fully automated generalization is to 

date not available, multiple representation databases (MRDBs) 

became a compromise (Hampe et al., 2003; Sarjakoski, 2007). 

That is, spatial data of different levels of detail are stored 

simultaneously and updates are propagated across scales. In this 

process data matching is key to establishing links between 

corresponding objects for the maintenance (Kilpeläinen, 2000). 

Additionally, to automatically assess the quality of generalized 

objects with respect to initial ones, links between corresponding 

objects are also required (Stoter et al., 2009). 

 

Matching spatial objects from two heterogeneous datasets is a 

complex decision process. To decide which pairs of objects 

match or similar, we need different similarity measures and 

complex reasoning. Two fundamental problems arise. First, 

what are the key criteria (or variables) that help determine the 

matching? Second, how can we make a decision based on the 

multiple criteria?  

 

Previous work has been dedicated to the development of new 

similarity measures. In general, those measures can be divided 

into geometric, semantic and contextual measures. For instance, 

Beeri et al. (2005) developed spatial join algorithms that match 

points only using their locations. To match more complex 

objects (polygons and networks), other geometric information 

such as angles, shapes, topological properties are also used 

(Walter and Fritsch, 1999; Gösseln and Sester, 2004). Some 

other matching approaches also compare the semantics of 

objects, especially names (Raimond and Mustière, 2008), 

provided that the attribute was collected for the datasets. 

 

A remarkable approach, proposed by Samal et al. (2004), 

measures the contextual similarity between two buildings. The 

context (i.e. surrounding landmarks) of an object is captured in 

a proximity graphs, and the contextual similarity is calculated 

between two graphs using displacement vectors. In view of this, 

Kim et al. (2010) represent context (also landmarks) by a 

triangulation structure, where the contextual similarity is 

measured based on areas and perimeters of the triangles 

organized around the building. This method is more reliable in 

case of large discrepancies existing between matching datasets; 

a limitation is that the matching of landmarks relies entirely on 

names, which is less applicable since names are not always 

available in topographic data. Note that, to use context one 

should either match the context, as did in Samal et al. (2004), or 

refer to a unique context to which both datasets refers.  

 

On the other hand, combining various matching criteria into a 

decision is still a challenge. Approaches based on a single 

criterion (e.g. Kim et al., 2010) are free from this issue. 

However, single source of information does not provide enough 

evidence for a reliable decision. Therefore, we claim that data 

matching should combine multiple sources of information as 

evidence to improve the matching.  

 

This paper aims to tackle this multivariate decision problem. A 

straightforward approach to this is weighted average. This 

approach is commonly used (e.g. Walter and Fritsch, 1999; 

Samal et al., 2004) and consists of two steps: (1) normalizing 

measured values, and (2) assigning weights to different 

measures. Clearly, both steps can be problematic. For one thing, 

normalization factors may not always be available. For another, 

manual weighting is usually subjective; even experts may 

sometimes fail to assign appropriate weights. Additionally, as 
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data matching is essentially an uncertain process, crisp 

decisions would inevitably reduce the matching performance. 

 

To address these issues, we fit the data matching into a pattern 

classification framework, which are particularly effective in 

solving multivariate decision problems. One advantage is that 

the model parameters can be learned from available data, and 

the subjective weighting can hence be avoided. Moreover, some 

of the classification methods (e.g. probabilistic ones) can handle 

uncertainties, which may help to improve decisions in 

ambiguous situations. 

 

The remainder of this paper is organized as follows. Section 2.1 

formalizes the data matching into a pattern classification 

problem; then basic geometric criteria and supervised classifiers 

are briefly described in Sections 2.2 and 2.3. An extension is 

presented in Section 2.4 which integrates soft classification and 

domain knowledge to improve the matching. The classifiers are 

evaluated and discussed in Section 3. This paper ends with 

conclusions in Section 4. 

 

 

2. DATA MATCHING AS PATTERN CLASSIFICATION 

2.1 Problem Formalization 

Data matching aims to find all possible correspondence pairs 

from two datasets based on several criteria. Each criterion 

compares a specific characteristic (e.g. shape or orientation) 

between a pair of objects and yields a measured value. Based on 

the measured values a decision can be made as to whether this 

pair of object matches or not. In the following, we formalize 

this problem as a pattern classification problem. 

 

Let rij = (di, gj)  D×G be a relation or pair of objects, where 

di  D and gj  G are objects in detailed and generalized data. 

Data matching can then be viewed as a two-category pattern 

classification problem with category C = {‘Matched’, 

‘UnMatched’}. In other words, rij can be classified into a 

category ck  C, depending on the feature vector or measured 

characteristics (f | f1, ..., fn).  

 

Formally, there exists an unknown function g  D×GC that 

maps an input pattern (rij; f) to a category label ck. However, 

since such an ideal function is not available for real applications, 

most classification approaches learn from training patterns TP = 

{(f1, c1), ..., (fn, cn)} and produce a function h that approximate 

g as closely as possible (supervised learning). 

 

2.2 Basic Criteria 

Four criteria, i.e., position, size, shape, and orientation 

similarity, are used based on commonsense knowledge to show 

the potential of classification based matching. These criteria are 

measured from pairs of buildings (i.e. di and gj from detailed 

and generalized datasets). 

 

First, position similarity is measured based on distance between 

building centroids. Second, we define size similarity based on 

the following size ratio:  
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where di and gj represent buildings in different datasets. This 

size similarity is interpreted as follows: when SizeSim() more 

approaches to 1, the two buildings are more similar in size. 

 

Shape of buildings is characterized by shape index (Peter, 2001) 

which is formally defined: 
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where pi is a polygon. Shape index measures the complexity 

(compactness) of shapes with respect to circle. The ratio of 

shape index is used to compare the relative complexity of two 

shapes: 
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The measure of building orientation is based on wall statistical 

weighting (WSW) described in Duchêne et al. (2003). The 

resulting orientation is wall direction α in [0, /2]. The result 

also comes with a confidence value (numbers indicated in 

Figure 1a), which is calculated by counting the proportion of 

length of the edges that orient to α  σ (a tolerance). Typical 

buildings have two perpendicular wall directions (α and α + 

/2). The walls of direction α + /2 also add to the confidence 

value of the resulting WSW orientation α (e.g. confidence 

values of A - E in Figure 1a approach to 1). 

 

 
Figure 1: Building orientation measures: (a) wall statistical 

weighting; (b) adaptation in this approach (output orientations 

are in bold lines with confidence values numbered upper-right) 

 

In this paper, we adapted the original WSW, in which we 

distinguish wall direction α from α + /2. The output orientation 

is the direction (in [0, ]) in which lengths of walls accumulate 

most; in most cases this is the dominant one (i.e. major wall 

direction) of the two perpendicular directions. After adaptation 

the output orientations adjust better to their major wall 

directions (e.g. A, B, C in Figure 1b). Confidence value 

decreases accordingly in our adaption since walls of direction α 

+ /2 do not add to walls of α (e.g. A - E, H in Figure 1b). The 

adapted confidence value is now correlated with the degree of 

elongation (strength of major wall direction). A square (E) with 

a weak major wall direction has a low confidence (0.5); an oval 

(F) with a strong major wall direction has a relatively higher 

confidence (0.57). Note that this adaption is by no means to 

describe a general orientation, but to choose from among the 

wall directions the most significant one (in [0, ]). However, 

except for round shapes (G) the adapted WSW is sufficient for 

measuring the similarity of building orientations even in the 

case of stair-like shapes (D). After generalization, stair-like 

shapes should remain their wall directions to keep their 

characteristics, but their general orientations may change. 
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In Equation (4), we define similarity by orientation deviation 

between two buildings. The smaller the deviation is the two 

buildings are more similar. 

 

 
Figure 2: Initial and correspondence buildings with strong and 

weak major directions 

 

Considering the fact that some buildings have very strong major 

wall directions (e.g. the initial building in Figure 2) and others 

may have very weak ones (e.g. the target building in Figure 2), 

calculation based on Equation (4) may result in an orientation 

deviation ≥ /2, indicating that the two are very different in 

orientation. This is however not true as shown in Figure 2.  

 

To better account for this, we use a confidence threshold TC to 

distinguish between strong and weak major wall directions. If 

the confidence value is less than TC the building is regarded as 

having weak major wall direction, and vice versa. Further, if at 

least one of the matching candidates has a weak major wall 

direction, the orientation difference between these two should 

not exceed /4; only if both buildings in the pair have strong 

major wall directions, the orientation difference is based on 

Equation (4). The new function is defined as follows: 
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Con() is the confidence value of object orientation. In this 

study, TC = 0.55 was empirically determined from training data. 

 

2.3 Supervised Classifiers 

In this section, we briefly describe the supervised classifiers we 

tested in this research. These are classification and regression 

tree (CART) (Breiman et al., 1984), C4.5 algorithms (Quinlan, 

1993), Naive Bayes classifier (a probabilistic model) and 

Support Vector Machines (SVM). Detailed treatments can be 

found in Duda et al. (2001). 

 

Different parameters that are used to tune the above-mentioned 

classifiers are briefly introduced here. First, for decision trees, 

we used a rule for CART to stop splitting when the majority 

class rate reaches MR(%). So we use CARTMR to denote its 

different versions, with CART* denoting no stopping rule 

applied. Then, a Radial Basis Function (RBF) kernel is used for 

SVM, where the best combination of C > 0 (penalty parameter 

of classification error) and the kernel parameter  should be 

found for an optimal classification. The optimal combination 

was automatically learnt from training data using LIBSVM 1  

package with a 10-fold cross-validation. Hence, we use SVMC, 

to denote different combinations of parameter values. 

 

2.4 Incorporating Domain Knowledge 

The generalization knowledge can be used to improve the 

classification results. Note that the knowledge can only be 

integrated with classifiers that can handle uncertainties (e.g. 

Naive Bayes). There are two basic rules: 

- Rule 1: any generalized object should link to at least one 

initial object; 

- Rule 2: any initial object should link to one most probable 

generalized object. 

 

 
Figure 3: links between initial (white nodes) and generalized 

(dark nodes) objects 

 

We further distinguish between three ambiguous situations 

(Figure 3) where the above-mentioned rules are violated:  

A. No initial buildings is linked to the generalized building 

(this building is called isolated node);  

B. In a cluster (group of objects connected by the links), 

initial buildings have more than one link to generalized 

buildings; 

C. Similar to case B; but differently, only one initial building 

is linked to the generalized building, creating a singularity.  

 

These situations can be improved by the following step-by-step 

refinement: 

1. Link every isolated node (Figure 4a) with the most 

probable candidate; 

2. For each cluster, if there is no singularity (Figure 4b), 

select the most probable link from initial buildings and 

remove less probable ones; 

3. Otherwise, for each identified singularity si, cut all links 

from initial building di except for the link between (di, si) 

and update the cluster; 

4. Repeat step 2 and 3 until none of the above tree situations 

can be found. 

 

 

3. EXPERIMENTS AND DISCUSSION 

We implemented the described work as follows. First, the four 

measures were implemented based on GenTool – an interactive 

generalization and evaluation system developed by a group of 

colleagues at Wuhan University, China. Training samples were 

generated in GenTool and exported to classifiers. The classifiers 

were implemented using third party software packages. 

Specifically, Naive Bayes classifier and CART were realized in 

MATLAB® software 2 ; C4.5 was implemented based on the 

code provided by Dr. Ross Quinlan 3  (inventor of C4.5); 

                                                                 
1 LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
2 MATLAB 7.8 (R2009a): http://www.mathworks.com/ 
3 http://www.rulequest.com/Personal/ 
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LIBSVM package was used for SVM implementation. 

Additionally, an interactive matching toolbox and a weighted 

average approach were implemented to help human operators 

generate training data and to compare the performance of the 

classifiers with respect to the weighted average approach. 

 

3.1 Training Data 

The datasets to be matched are Dutch topographic datasets at 

1:10k and 1:50k (i.e. TOP10NL and TOP50vector, Kadaster). 

Four datasets were used here, i.e., TOP10NL and TOP50vector 

at study area A and B, respectively. Study area A represents an 

area which is characterized by suburbs and rural settlements 

mixed with a small portion of towns; whereas study area B 

shows a rather pure characteristic which is dominated by small 

towns. Another aim is to show whether different characteristics 

of data influence the matching accuracy. The training samples 

were generated by experts and are summarized in Table 1. 

 

 No. of building 

 
Scale 

1:10k 

Scale 

1:50k 

Training sample 

No. of pairs 

(Matched | UnMatched) 

Area A 4272 1720 8934 (1678 | 7256) 

Area B 2646 1637 9445 (1774 | 7671) 

Table 1: Overview of topographic data and training samples 

 

 

3.2 Evaluation Procedure and Criteria 

The following experiments were carried out. First, the 

classifiers were trained with one training set (either A or B), 

and tested with the same set or using a 10-fold cross-validation 

(results are not shown due to limited space). Second, to show 

how well the trained classifiers can be applied to classify novel 

patterns (unknown data), we trained the classifiers with sample 

A and tested with B, and then reverse. This way we also get 

insight into whether the prediction power of the classifiers relies 

on spatial characteristics. To classify unknown data, for each 

source object at the target scale we select candidates in the 

initial data that falls into some radius (R) of the source; R was 

empirically determined to cover potential candidates for a given 

dataset. Multiple matched candidates are conditionally regarded 

as n-to-1 matching (see Section 3.4). Different versions of the 

classifiers were evaluated, including CART, CART95%, 

CART85%, SVM0.5,2 (see Section 2.3). The criteria used to 

evaluate the performance of these classifiers are precision and 

recall. Besides, tree size is used to evaluate decision trees. 

 

3.3 Classification Accuracy 

To summarize, training a classifier and testing it with the same 

data obtained higher precision and recall than train it with one 

and predict on another. For example, C4.5 obtained 87.7% 

precision and 88% recall, which is better than its performance 

shown in Table 2, to name but a few. CART*, in particular, 

obtained about 94% precision and 96% recall when trained and 

tested with the same data. This probably means an over-fitted 

model. 

 

 Setting 1: classifier trained with A and tested with B

Classifier Precision [%] Recall [%] Tree size [leaf no.] 

CART 37.5 78.8 242 

CART95% 85.9 75.7 128 

CART85% 83.9 80.1 45 

C4.5 84.9 81.0 19 

NB 84.9 82.0 N/A 

SVM0.5,2 85.3 79.0 N/A 

 Setting 2: classifier trained with B and tested with A

Classifier Precision [%] Recall [%] Tree size [leaf no.] 

CART 75.8 83.3 325 

CART95% 82.1 82.4 186 

CART85% 80.1 86.3 94 

C4.5 85.9 82.9 11 

NB 79.0 87.7 N/A 

SVM0.5,2 81.5 88.2 N/A 

Table 2: Performance of different classifiers and for two 

settings 

 

 Precision  Recall  

Weighted average 61.7% 61.7% 

Table 3: Performance of weighted average approach on study 

area A with normalized and equally weighted measures 

 

The prediction capability of the trained classifiers on new data 

is shown in Table 2. Table 2 shows that most classifiers worked 

satisfactorily for both settings and outperformed the weighted 

average approach (Table 3), expect for CART*. In general, 

decision trees provide more interpretable results (i.e. rules) than 

numerical learning. In addition, Table 2 confirms that higher 

performance in classifying new data is correlated to relatively 

smaller sizes of generated trees. Among other decision trees, 

C4.5 appears to be the most promising in this matching task due 

to its better performance, its stability in reversing training and 

test sample and its more tractable tree sizes. CART* performed 

poorly because it over fitted the training samples (see also our 

discussion in the previous paragraph) and generated over 

complicated trees, which not only makes the resulting rules 

more difficult to interpret but also reduces their performance in 

classifying novel patterns. Concerning C4.5, NB and SVM (C = 

0.5,  = 2 automatically computed for training samples), no 

persistent conclusion can be drawn as to the difference in their 

performance. It is however known that classification accuracy 

of NB classifier can be further improved (Section 3.4). 

 

Besides, higher precisions and lower recalls can be observed for 

the classifiers trained with dataset A (characterized by a 

mixture of towns, suburb and rural settlements) and tested with 

dataset B (characterized mainly by towns) compared with the 

reverse setting. Note that both training sets were carefully 

prepared to gain the same positive class rate (Table 1). This 

ensures that such a difference was not caused by different 

positive class rates of the training samples. This suggests that 

spatial characteristics of the data have an impact on 

classification performance but not too big. However, how 

different characteristics may affect the matching accuracy needs 

to be further investigated.  

 

3.4 Improvement by domain knowledge 

(a) C4.5 (b) Naive Bayes (c) SVM0.5, 2 

Figure 4: Matching examples predicted for sample set A by 

training from set B (links are shown in red between initial and 

generalized buildings) 
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A closer look at the matching results gets insight into where and 

why misclassifications occurred. Several typical poor matching 

was identified: 

- Some pairs of buildings (should be matched) were 

unmatched because their shapes are drastically different 

given that they are very close (e.g. A in Figure 4a and 4b);  

- Some pairs (should not matched) were mismatched 

because their shape, orientation and position are too 

similar (e.g. B in Figure 4b);  

- Incorrect matching between groups of buildings where 

n:m relations are likely to happen (e.g. C in Figure 4a-c); 

in this case, contextual information should improve the 

matching. 

 

Some of the above misclassifications can be improved by 

incorporating the generalization knowledge as described in 

Section 2.4. For example, the poor situations A, B, C in Figure 

4b) by Naive Bayes are improved in the following way. 

 

Case A: Two related pairs are searched in the probability table 

(Figure 5); the generalized object (#2985), with two potential 

links that were labeled by NB as UnMatched. According to 

Rule 1, a link with relatively higher positive probability is 

selected as best fitted link. The selected building (#8682) 

proves to be the correct correspondence. 

 

 
Figure 5: Probability table for case A 

 

Case B: One initial building (#10450) has two correspondences 

in generalized dataset, which violates Rule 2. Since no 

singularity is found in this cluster, Rule 2 can be applied 

directly by removing one of the links and the most probable 

link is selected (Figure 6). The selected correspondence (#2984) 

is the upper one in the cluster B in Figure 4b, which is a more 

reasonable result. 

 

 
Figure 6: Probability table for case B 

 

Case C: It is more complex as a singularity is detected (the 

right most one in cluster C in Figure 4b). The detected 

singularity (#3008) links to the building (#10805) in initial 

dataset (Figure 7a), therefore this link has to be kept. 

Meanwhile, the other outgoing link from #10805 should be 

removed according to Rule 2, though it appears to be a more 

probable link for #10805. After this, the matching result is as 

follows (Figure 7b), and surprisingly this is exactly what the 

manual matching was like, even without the use of contextual 

information. 

 

 
(a) (b) 

Figure 7: Probability table for case C (a) and the result after 

domain knowledge is considered (b) 

 

The pair-wise matching allows for n-to-1 and n-to-m 

relationship to be implicitly modeled (e.g. {{a1,b1}, {a2,b1}, 

{a2,b2}, {a3,b2}} forms a 3-to-2 relationship). However, 

current use of domain knowledge (Rule 2) as a post-process is 

to detect and remove incorrect relationship such as the group C 

in Figure 4b, which naturally disallows n-to-m relationships 

(although n-to-1 is still allowed). Better rules are required to 

replace Rule 2 in order to distinguish incorrect correspondence 

and potential n-to-m relationships. A prior matching of building 

groups as described in Zhang et al. (2010) may be helpful. 

  

In summary, classifiers with probability structures and soft 

decisions are more promising in the matching as domain 

knowledge can be incorporated to improve the performance. As 

described above, the matching results obtained from Naive 

Bayes can be improved by further analyzing the probabilities 

using the domain knowledge (Section 2.4). Traditional SVM as 

used here only provides crisp decisions. However, if a 

probabilistic SVM (Platt, 1999) is used, the domain knowledge 

can also be incorporated to improve the SVM-based matching.  

 

3.5 Reflection on the matching criteria 

This paper presents a first attempt into the classification-based 

approach to data matching where multivariate decision is 

important. So the selection of optimal criteria (and measures) to 

achieve the best possible matching results was not the focus. 

Four categories of criteria (position, size, shape and orientation) 

were used based on commonsense knowledge. A correlation 

analysis (as in Werder et al., 2010) was later carried out which 

shows no significant correlation between the four measures. 

However, one should note that the categories are by no means 

complete and the measures used to evaluate the criteria may not 

be the optimal ones. 

 

For example, it is questionable whether to use the size ratio for 

the matching because different size ratios can be caused by 

enlarging smaller objects, though a distribution of size ratios 

can be learnt which may facilitate the classification. To get 

more insights, we carried out parallel experiments where the 

size criterion was removed. For setting 1 we found that for C4.5, 

NB and SVM precision decreases and recall increases, 

indicating that while more true positives (correct links) were 

found, even more false positives were also produced, which is 

arguably undesirable. For CART of different versions both 

precision and recall decrease. Similar results were obtained for 

setting 2. This suggests that the size criterion adds more or less 

to the matching. However, a redesign of size criterion in the 

future taking into account the possible change ratio in relation 

to initial sizes may give more discriminating power. 

 

Likewise, by removing shape respective orientation criteria, 

obvious decrease in both precision and recall occurs for the 

classifiers. This suggests that the used measures are relevant for 

building matching though better performance can be anticipated 

by designing measures that differentiate special cases (e.g. oval 

shapes). 

 

By iteratively removing and adding matching criteria and 

measures we get an impression of their relative contributions to 

the matching. Our experiment shows that distance criterion was 

the dominant parameter for all classifiers, while the contribution 

of e.g. size and shape varied for different classifiers. However, 

it is unknown yet whether it is justified to use this approach to 

study the relative weighting of model parameters. Also as we 
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argue previously, explicit weighing by designer should not be a 

problem in the supervised classification approach. 

 

In future research, more measures should be analyzed for 

different criterion categories, the optimal one or combination of 

ones can be chosen using techniques such as principal 

component analysis (Burghardt and Steiniger, 2005). Further, 

other criterion categories such as semantic and contextual ones 

can be integrated to improve the data matching. 

 

 

4. CONCLUSION 

Fitting data matching process into a pattern classification 

framework aims to provide a more generic approach to the 

matching of spatial objects (polygons, linear features, networks, 

etc.). In this framework, combining multiple criteria into final 

decisions is more effective and adaptive: rather than arbitrary 

normalization and weighting, model parameters can be learned 

from training data. 

 

Four classifiers (CART, C4.5, Naive Bayes and SVM) with 

different parameter values were tested to show their 

possibilities in matching building polygons. They outperformed 

weighted average in terms of classification accuracy. Generally, 

the accuracy (both precision and recall) reached approximately 

80% and higher, based on four simple similarity measures (i.e. 

position, size, shape and orientation). To further improve the 

matching result, advanced measures like semantic and 

contextual similarity should be considered. Moreover, 

classifiers that can handle uncertainties could be further 

improved by integrating domain knowledge.   
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