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Abstract: Eddy Current Pulsed Thermography is a crucial non-destructive testing technology

which has a rapidly increasing range of applications for crack detection on metals. Although the

unsupervised learning method has been widely adopted in thermal sequences processing, the

research on supervised learning in crack detection remains unexplored. In this paper, we propose an

end-to-end pattern, deep region learning structure to achieve precise crack detection and localization.

The proposed structure integrates both time and spatial pattern mining for crack information with

a deep region convolution neural network. Experiments on both artificial and natural cracks have

shown attractive performance and verified the efficacy of the proposed structure.

Keywords: eddy current pulsed thermography; non-destructive testing; supervised learning; pattern

deep region learning

1. Introduction

Non-destructive testing (NDT) plays an essential role in civil industry structures. It has the

ability to evaluate the properties of a material, component or system without causing damage [1–3].

Stress concentration and surface cracks inevitably exist in mechanical infrastructure during the

manufacturing and in-service processes. This leads to considerable hazards in industrial activities.

Therefore, crack detection acts a pivotal part in NDT research field. Traditional techniques of

crack detection include: Magnetic Particle Testing (MT), Penetrant Testing (PT) and electromagnetic

methods [4]. MT is effective for crack detection on the surface and subsurface while its primary

shortcomings are a complicated detecting procedure and pollution [2]. For a MT experiment, the

surface of the sample requires pretreatment and the detection time is relatively long. Moreover, waste

magnetic suspending liquid remains on the surface after the experiment, which causes chronic

pollution. PT can detect open surface cracks [3,5]. Unfortunately, cladding material covering the surface

of the sample adversely affects the detection rate. This leads to ineffective inspection of micro-cracks.

Furthermore, the electromagnetic method has been widely used for the inspection of surface and

subsurface flaws. Eddy Current Testing (ECT) is sensitive to surface cracks on ferromagnetic steel in a

large range of frequency [6]. Alternating Current Field Measurement (ACFM) shows good performance

in detecting surface breaking geometrical defects in any direction under the stimulation study [7].
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In recent years, the infrared thermography (IT) based method has been widely used for composite

crack detection and defect identification due to the rapid development of thermal imaging device.

It has numerous promising merits [8–11] such as: Contactless, high sensitivity and rapid inspection

over a large region.

Eddy Current Pulsed Thermography (ECPT) is a multi-physics coupling method. The combination

of eddy currents heating up and thermal diffusion is conducive to detecting turbulence in conductive

materials by analyzing the thermal patterns [12–14]. ECPT combines the advantages of pulsed eddy

current (transient analysis and eddy current interpretation) and the merits of thermography (fast and

high resolution), which has been widely used for damage detection in metallic alloys [15]. Recently,

ECPT has been used in many defects detection applications such as crack detection of carbon fiber

reinforced plastic materials, compressor blades, and fatigue cracks [16]. In addition, the relevant signal

processing methods have been proposed in ECPT. The time to peak feature has been adopted for wall

thinning assessment and inner defects characterization in ferromagnetic materials [15,17]. However, the

transient response features are always susceptible to noise. To enhance the contrast between the defects

and the noise, patterns-based processing methods have been proposed. These include: Principal

Component Analysis (PCA), Independent Component Analysis (ICA) and sparse decomposition.

PCA was used to extract orthogonal thermography features by compressing the initial video sequences

instead of analyzing each image [18]. A method, based on ICA, was proposed to highlight the

anomalous patterns of ECPT for cracks identification in metallic specimen [19]. To achieve automatic

crack detection and identification for the experimental data from the ECPT system, a blind source

separation algorithm was reported [20]. Methods based on sparse decomposition exhibited their

robustness for both man-made specimens and samples with natural defects [21–24]. These methods

assume that regions with defects are areas with the highest sparsity, while the low-rank matrix, which

is considered as background, is separated to extract sparse components. Anomaly detection algorithms,

developed for hyperspectral data, have been proven to detect both surface and subsurface cracks [25].

Meanwhile, methods inspired by the physical mechanism that cracks pixels own the strongest intensity

are presented. The work puts forward a novel image segmentation algorithm based on the threshold

calculated by first order statistical properties [26].

Since an unsupervised learning method has been widely adopted in thermal sequences processing,

research on a task-driven structure, such as a supervised learning-based method, still remains unexplored

due to insufficient training data. Recent works from object detection have shown that better performance

can be obtained when supervised learning is associated with deep architecture for detection [27–29].

In addition, there exists works on data augment proposed solution to the lack of training data [30].

These works showed us that deep architecture is a potential candidate for crack detection in thermography

NDT. In this study, a task-driven pattern deep region learning structure for crack detection and localization

is proposed. In connecting to the characteristic of the electromagnetic thermography for defects, both time

and spatial pattern maps are deep mined through principle component analysis and a deep convolution

neural network with ROI determination. The proposed method enhances the accuracy of detectability

and achieves precise crack localization. In contrast to the unsupervised method, which has been widely

exploited, the proposed method has shown an exceptional capability on micro-cracks detection. It provides

a potential capability to achieve automatic micro-cracks detection.

This paper is organized as follows: Section 2 introduces ECPT system and presents the proposed

method; Section 3 introduces the experimental setup and analyzes the experiments results; Section 4

concludes the work.

2. Materials and Methods

2.1. Introduction of ECPT System

Figure 1 shows the diagram of the ECPT NDT&E system. According to the theory of the

electromagnetic induction, the induced eddy current is excited in the conductor by an alternating
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current, which is driven into the induction coil. When the eddy current encounters a defect, it is forced

to bypass the defect, which results in the eddy current density increasing or decreasing on the defect

region. Thus, the heat generated in the conductor will appear in a heterogeneous distribution, and the

distribution of the surface temperature is recorded by infrared camera.
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Figure 1. ECPT schematic diagram.

This diagram contains the system integration and data flowing between different modules.

Using Joule’s law to couple the eddy current field and the temperature field [4], the heating power

(internal heat source density or intensity) generated by the induced eddy current in the specimen is

denoted as Q, namely:

Q = 1
σ |

→
J e|

2 = 1
σ |σ

→
E |2 where σ = σ0

1+α(T−T0)
(1)

Current density is proportional to the electric field intensity vector
→
E . σ is dependent on

temperature. σ0 is the conductivity at the reference temperature T0. α refers to the temperature

coefficient of resistivity, which describes how resistivity varies with temperature. In general, by

taking account of heat diffusion and Joule heating, the heat conduction equation of a specimen can be

expressed as:

∂T

∂t
=

k

ρCp
(

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
) +

1

ρCp
q(x, y, z, t) (2)

where T = T(x, y, z, t) is the temperature distribution; k (W/m K) denotes the thermal conductivity of

the material (which is dependent on temperature); ρ is the density (kg/m3); Cp is specific heat (J/kg K);

and q(x, y, z, t) denotes the internal heat generation function per unit volume, which is the result of the

eddy current excitation. From the above analysis, it is apparent that the variation of temperature in the

spatial domain and its transient response, recorded from the IR camera, directly reveals the intrinsic

properties variation of the conductive material.
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The pulse generator transmits synchronous control signals to the induction heater and the IR

camera simultaneously. The induction heater generates an electromagnetic and thermal field on the

conductive specimen. With instruction from the trigger signal, the IR camera records the thermal

video, termed as V ∈ RNx×Ny×N , where: Nx, Ny denote the length and the width of each image

frame in the thermal video, respectively and N denotes the total number of frames for the obtained

thermal sequence.

2.2. Proposed Strategy for Detection

The specific procedure of the proposed detection strategy is shown in Figure 2. Firstly, thermal

video sequences are obtained by the ECPT system. Secondly, thermal sequences are compressed

by the spatial-transient pattern separation of using principle component. Finally, crack areas are

identified through the deep region convolution neural network and visualized with the bounding box.

In particular, the deep region convolution neural network needs to be trained by data labeled with

the crack locations. Frames collected in previous experiments are augmented by data augmentation

methods and then labeled in a VOC2012 format. More training details will be discussed in this section.
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Figure 2. Proposed detection strategy.
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This strategy includes a thermal spatial-transient pattern extraction and region convolutional

crack detector.

2.2.1. Thermal Spatial-Transient Patterns

In Figure 1, the current in the coil subsequently induces eddy currents and generate resistive heat

in the conductive material [31]. The heat will diffuse over time until it reaches an equilibrium state in

the material. If a defect (e.g., a crack) is present in the conductive material, the eddy current distribution

or the heat diffusion process will vary (as be interpreted in Figure 1 bottom panel). Consequently,

the spatial distribution of temperature on the surface of the material and the temperature transient

response will show the variation. This is captured by an infrared camera as it records both the spatial

and the transient response of the temperature variation on the specimen. Mathematically, this can

be represented as a spatial-transient tensor Y which has dimensions Nx × Ny
︸ ︷︷ ︸

Spatial

× N
︸︷︷︸

Transient

. To avoid the

influences of arbitrary selection of the image frame from the transient thermal videos, the task of the

pattern mining is to blindly separate the observed Y′ into different characteristic patterns, X′ and X f ,

and automatically identify the one which relates to the defect.

Principle Component Analysis (PCA) [19] is a multivariate analysis technique that uses an

orthogonal transformation to convert measured data into new, uncorrelated variables, termed as

Principal Components (PC). PCA has the capability to automatically extract valuable spatial and time

patterns in accordance with the whole transient response behavior. Here, the principle component of

the thermal sequences is separated from original data by PCA.

To facilitate the calculation of PCA, three-dimensional tensors will be transformed into a

two-dimensional matrix. The whole thermal video V ∈ RNx×Ny×N is processed by a vectorization

operation, frame by frame. The result of vectorization is denoted as Y(t) ∈ RD×N , where: D = Nx × Ny;

Y(t) is regarded as a mixing observation; And Xm(t) is considered as a thermal pattern, which has

the regions of features with different spatial and time distributions, namely the principle components.

The term m = 1, 2, · · · , M stands for the feature serial number separated by PCA while wm refers to

the mixing parameter. Y(t) can be considered as a linear instantaneous mixing model given by:

Y(t) =
M

∑
m=1

wmXm(t) (3)

where X′
m(t) = [vec(X1(t)), vec(X2(t)), · · · , vec(XM(t))]T . The PCA learning algorithm is aimed at

searching for the linear transformation that makes the components as statistically uncorrelated as

possible. This can be performed by using singular value decomposition, the specific steps of approach

for thermal pattern separation by using PCA can be found in Reference [12].

2.2.2. Faster-RCNN for Cracks Identification

Faster-Region Convolution Neural Network (Faster-RCNN) is a real-time object detection

structure which achieved excellent detection accuracy when used on Pascal VOC datasets [28].

Furthermore, computational cost was drastically reduced due to a novel strategy of region proposal.

Using the Region Proposal Network (RPN), instead of conventional selective search method, for region

proposal led to real-time performance. RPN is a neural network which takes a feature map as an input

and outputs a set of rectangular object proposals. Because the principle component of the time domain

has been extracted from thermal sequences, it is necessary to extract spatial features which contain

the most defected information. Thus, Faster-RCNN is exploited for features extraction and defect

localization. This is shown in Figure 3.
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Figure 3. Structure of Faster-RCNN.

The final goal is to precisely detect and localize the crack area. To achieve this, it is required

to highlight possible regions and make the decision whether cracks exist. To avoid redundant

computation on feature extraction for each region, Faster-RCNN conducts feature map extraction at the

beginning. Regions of interest (ROI) are obtained through RPN from the feature map. Spatial features

after ROI pooling are put into a fully connected network to get the location of the bounding box and

feed data into the softmax unit to calculate the confidence probability.

A core tenet of the proposed detection strategy is to extract the special crack patterns from the

principle components of thermal sequences. Because significant distinction exists in patterns from

different regions, the final softmax unit calculates decision vectors from these patterns. The convolution

network, especially with deep architecture, has been chosen to enforce this task due to its powerful

pattern extraction ability. Deep architecture [32,33] makes it possible to distinguish crack regions

from regions on edges or other easily confused areas by thermal patterns extracted from principle

component of thermal sequences.

Table 1 shows the specific hyper-parameters from Faster-RCNN after fine tuning. These hyper-

parameters can be exploited directly to reproduce the results. Besides, it has a high reference value

for retrain a network based on other datasets as the size of samples in the training-sets is similar to

ours. When the size of samples in the training-sets is an order of magnitude greater, hyper-parameters

of the model, especially the batch size and learning rate, need to be finely tuned to achieve optimal

performance. To avoid the overfitting problem caused by few-shot learning, data augmentation

techniques such as stretch, rotation and adding-noise are considered for expansion of training-sets.

Table 1. The hyper-parameters from Faster-RCNN.

Hyper-Parameters Value

Batch size 256
Overlap threshold for ROI 0.5

Learning Rate 0.001
Momentum for SGD 0.9

Weight decay for regularization 0.0001
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3. Results and Discussion

3.1. Sample Preparation and Experiments Setup

To evaluate the robustness of the proposed method, a large number of experimental tests were

conducted. The experiments contain a variety of test samples including ferromagnetic material

(45# steel) samples with artificial cracks, non-ferromagnetic material (316# stainless steel) samples

with artificial cracks, non-ferromagnetic material (316# stainless steel) samples with natural cracks and

non-ferromagnetic material (welding line) samples with natural cracks. Table 2 gives a comprehensive

description of the samples. These samples are all metal specimens with different types of cracks.

In thermal sequences, different kinds of cracks have different pixel sizes. For example, the artificial

cracks such as samples (a)–(c) have a 30-pixel length and a 5-pixel width. However natural cracks,

especially micro natural cracks, have fifteen pixels length with only a single pixel width.

Table 2. The description of different samples.

Sample Indication Dimension Defect Information Picture
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–
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The experimental set-up is shown in Figure 4. An Easyheat 224 from the Cheltenham Induction

Heating (Sheffield, UK) is used for coil excitation. The Easyheat has a maximum excitation power of

2.4 kW, a maximum current of 400 Arms, and an excitation frequency range of 150–400 kHz (380 Arms

and 256 kHz are used in this study). Water cooling of the coil was implemented to construct direct

heating of the coil. The IR camera, A655SC (FLIR, Wilsonville, OR, USA), is a Stirling un-cooled camera

with InSb detectors of 640 × 480 array, which has a sensitivity of ≤50 mK. In the experiment, only one

edge of the rectangular coil was used to stimulate the eddy current for the underneath sample and it

was placed in the middle of the crack. In addition, the frame rate of 100 Hz was chosen, and thermal

videos, including the 200-millisecond heating process and the 1800-millisecond cooling process are

recorded in the experiments.
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Figure 4. Experiment setup.

3.2. Results Analysis

In this section, the significance of the proposed detection method needed to be verified. The main

significance of the proposed method over the unsupervised method can be drawn as follows:

(1) Boundary information of experiment component impacts the output of the unsupervised method,

owing to the similarity of the thermal pattern during the process of thermal diffusion;

(2) The unsupervised method pays more attention on data with specific properties such as

non-negativity or sparsity, in order to denoise or separate the distinctive data from the

original data sequence, which shows an unsatisfied performance on data localization when

multi-properties exists in crack information;

(3) Projecting data into a high dimension space by a deep convolution neural network, in order

to extract special feature structure from the spatial domain, has been proven to be essential to

differentiate crack area from other, easily confused, areas.

Taking sample (a) as an example, both the classical thermal based methods and the latest

unsupervised detection algorithms were chosen to compare with the proposed detection strategy.

Classical, thermal based, defect feature extraction methods include thermal signal reconstruction

(TSR) [34] and pulsed phase thermography (PPT) [35]. TSR is a thermal processing technique used to

enhance the spatial and temporal resolution of a thermography sequence. The PPT algorithm, based

on the Fourier Transform (FT), provides both phase and amplitude information which can enhance

defect detectability and reduce noise. On the other hand, ARDVB [23], EVBTF [24] and SVD-RARX [25]

have been selected from the state-of-the-art unsupervised detection algorithms. It can be seen from

Figure 5, EVBTF and the proposed method shows reasonable results by processing original thermal

sequences. In Figure 5a,b, crack information is extracted while thermal noises are as distinct as cracks.

Crack information is submerged by thermal noise induced near the coil which leads to difficulty

in locating the crack precisely. In Figure 5c, coil information and boundary information has been

extracted as the strongest information from original data because the ARDVB model focuses more on
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sparsity of input data. It would achieve optimal performance when data from cracks region is sparse

in theory. However, information collected from coil region and other origins of noise contains sparse

characteristics in real industrial practice. This may result in a disastrous effect on decision making.

In Figure 5d, the output of EVBTF model contains all the crack information as the proposed method,

whereas a little bit boundary information has been contained in the final output. The cracks location

can be simply found by person with experience of detection. Nonetheless, the boundary information

contained in final output may cause little confusion on non-professionals. In Figure 5e, effective

pixels can be observed on cracks region, but noise pixels from boundary areas especially highlighted

points on the right-hand edge of the sample are also extracted by SVD-RARX model. SVD-RARX

model adapts anomaly detection algorithm originally developed for hyperspectral data on thermal

sequences after dimensionality reduction. Nevertheless, the detection algorithm fails when input

thermal spatial information has noise pixels like pixels from boundary and other noise hot-spots which

have similarities with crack pixels in physical properties. In Figure 5f, the proposed method detects all

the cracks precisely as well as locates them with bounding box so as to simplify the decision-making

process to a remarkable extent.
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Figure 5. Detection results provided by different algorithms on sample (a): (a) TSR; (b) PPT; (c) ARDVB;

(d) EVBTF; (e) SVD-RARX; (f) proposed method.

To verify the robustness of the proposed strategy, defects on complicate shape sample of welding

line are used for validation. In this study, the welding line samples are fabricated by two pieces of

stainless steel through welding procedure. The defects existing on the welding line generate during
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the welding process or grow with natural fatigue damage mechanism. There is an enormous challenge

on detecting the flaws on welding line as the flaws lurk beneath the complex surface conditions.

The penetration testing (PT) result of micro-defect on the welding line from sample (e) is shown

in Figure 6 to indicate the specific location of the target. The principle component of the thermal

sequences obtained by experiment based on ECPT system is shown in Figure 7. It can be obviously

found in Figure 7 that numerous origins of noise lie in the principle component extracted from

thermal sequences. The sources of noise can be concluded as coil influence, boundary information,

narrow chutes on the welding line and inhomogeneous heat distribution on the rough stainless steel

surface. These disgusting noise factors lead to failure provided by state-of-the-art micro-defects

detection method.
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Figure 6. Penetration testing result on welding line sample (e).
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Figure 7. Principle components calculated from thermal sequences of welding line sample (e).

As illustrated in Figure 8, the proposed method gives a particularly satisfactory performance

for the data from the welding line sample (e). The region including defect information has been

successfully annotated out by the proposed method. In Figure 8a,b, little information can be observed

on the crack area while TSR extracts hot-spots caused by rough surface and PPT highlights the region

on the whole eddy current excited part. In Figure 8c, the perturbation of the rough surface of stainless

steel, caused by thermal diffusion process and the thermal pattern variation of the coil, are extracted

by the ARDVB model. The ARDVB model makes the hypothesis that hot spots have the strongest

sparse characteristics, which benefits the quantitative detection for small defects. The model is based

on robust-PCA which decomposes the input matrix into sparse pattern (hot spots), low-rank pattern

(background) and noise (thermal noise). Nevertheless, the noise information described above was the

component with the highest sparsity in thermal sequences obtained by welding line. In Figure 8d,

components extracted by hierarchical structure contained most features from the boundary information
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of the whole specimen and slopes information of welding line, whereas micro defect information is

drowned out by highly intensive noise. In Figure 8e, pixels on the welding line and right-hand edge

of sample were evaluated as flaws, by mistake, through the SVD-RARX model. The model is based

on the assumption that defect pixels can be evaluated as anomalies using a hyperspectral anomaly

detection algorithm and that hyperspectral data sequences are generated by dimensionality reduction.

However, hot spots caused by narrow chutes on the welding line and right-hand edge of the sample,

rather than defects on the welding line, are the most typical anomalies of the compressed sequences.

This directly leads to the failure of SVD-RARX method. The reasonable explanation for why the

proposed method outperforms the state-of-the-art algorithms is given as follow:

(1) Task-driven model with deep architecture gets prior knowledge through the training process and

fuses the prior knowledge into parameters of the network in order to extract specific features

through the convolution process to obtain the feature map;

(2) The model with deep architecture obtains feature from multi-properties while unsupervised

method based on limited properties assumed to be contained in defect information. The flaw

detection on the welding line sample faced the primary problem that the flaw regions showed

similar physical properties with some origins of the noise discussed above. The performance

provided by the unsupervised method, based on limited properties or features, is more likely to

be restricted, owing to feature extraction only from low-dimension space.
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Figure 8. Flaws detection results provided by different algorithms on welding line sample (e): (a) TSR;

(b) PPT; (c) ARDVB; (d) EVBTF; (e) SVD-RARX; (f) proposed method.
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The Probability of Detection (POD) [13] of defect is defined as:

POD =
TP

TP + FN
(4)

where: TP refers to a true positive, which represents the situation where the sample contains a defect

and the method indicates a defect is present; and FN refers to false negative, which represents the

situation where the sample does not contain a defect and the method does not indicate a defect

is present.

The results from different samples supported by the POD evaluation are shown in Table 3.

The performance is compared through thermal sequences collected from experiments on every sample.

It is obvious that on samples (a)–(d), the EVBTF and SVD-RARX model show comparable results

with the proposed method, while the other three methods give mediocre performance. Because of the

hierarchical structure which is similar to the deep architecture in the proposed method, the EVBTF

model has a strong ability to separate low-rank background information from thermal sequences and

remain in defects information. It is worth mentioning that the EVBTF and SVD-RARX model fails

when it encounters a complex surface situation, just like sample (e), while the proposed method still

keeps high performance in POD evaluation.

Table 3. Results of different detection methods evaluated by different samples.

Methods
POD of Different Samples

Sample (a) Sample (b) Sample (c) Sample (d) Sample (e)

TSR 0.42 0.40 0.29 0.10 0.00
PPT 0.33 0.30 0.43 0.10 0.00

ARDVB 0.17 0.40 0.43 0.05 0.00
EVBTF 1.00 0.60 0.71 0.80 0.00

SVD-RARX 1.00 1.00 0.90 0.60 0.00
Proposed Method 1.00 1.00 1.00 0.95 0.92

The results evaluated in the whole dataset can be seen in Table 4. The POD study is the comparison

result between the referenced annotation and the cracks regions extracted out by methods discussed

above. With the task-driven model based on deep architecture, the proposed model achieves the

highest result over the state-of-the-art detection methods. The inspiring performance is closely related

to the ability, owned by deep architecture, to extract the feature from multi hierarchy.

Table 4. Results of different detection methods evaluated in the whole dataset.

Methods
Evaluation Index

TP FN POD

TSR 17 58 0.23
PPT 18 57 0.24

ARDVB 16 59 0.21
EVBTF 49 26 0.65

SVD-RARX 53 22 0.71
Proposed Method 73 2 0.97

4. Conclusions and Future Work

In this paper, a task-driven method, based on deep architecture, has been proposed to deal

with the problem of accurate crack detection and localization. Both the ECPT system and algorithm

have been validated. Through PCA for spatial-transient pattern extraction, as well as Faster-RCNN,

the defects locations as well as the confidence probability can be precisely calculated. Finally, the
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location of the defects is automatically visualized through a bounding box in order to simplify decision

making process even to a person without professional knowledge. The POD is introduced to verify the

robustness of the results. The proposed method has been tested on both artificial and natural cracks

from industry. Future work will focus on combining information extracted from the time domain with

a decision made by the proposed method in order to conceive a time-spatial fusion system to achieve

precise crack detection and defect pixels segmentation.
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