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Various patterns in the electrohydrodynamic convection of planarly aligned nematic 

liquid crystals are investigated. We give experimental and theoretical results on the onset of 

convection in the conduction regime and the dielectric regime as well. The transition to the 

fluctuating Williams domain (FWD) immediately above the onset of convection in the 

conduction regime is characterized in detail. At this secondary threshold the straight rolls 

become unstable and defects appear. During the temporal development of the FWD, defects 

are continuously created and annihilated, and the defect density behaves rather stochastical 

in time. At even higher values of the applied voltage we investigate the transition between 

the two turbulent states DSMl and DSM2 which has some analogy with TI-TII transition in 

superfiuid Hell. DSM2 turbulence can be characterized by disclination and therefore called 

disclination turbulence. We show that this transition is local via nucleation and that the 

main difference between both states is the vanishing disclination density in the DSMl state 

and its finite value in the DSM2. In the high frequency regime we analyse the secondary 

transition to chevrons and the defect dynamics in this pattern as a periodic defect structure. 

Furthermore, the influence of a superimposingly applied magnetic field on these patterns is 

considered. 

§ 1. Introduction 

A dissipative system driven far from equilibrium by increasing values of an 

external control-parameter may undergo a sequence of transitions (bifurcations).1H 3> 

Often the equilibrium state is spatially and temporally uniform and the subsequent 

bifurcations lead to states of decreasing symmetry. These new states are in general 

theoretically described by highly nonlinear equations. During the last decade great 

progress has been achieved in understanding of the formation and dynamics of many 

patterns in various systems beyond each such a bifurcation point by a huge amount 

of experimental measurements and theoretical activities (in particular, analytical as 

well as large numerical computations). Several of these insights also have impor

tance on the qualitative level far beyond well-defined physical systems, like biology 

and economy. Rayleigh-Benard (R-B) convection and Taylor vortex flow,l)- 4> which 

are well known already about a century, are two of these well-defined physical 

systems where a huge of experimental and theoretical investigations have been done 

and which were a source of the mentioned insights. Both examples provided the 
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Pattern Dynamics in the Electrohydrodynamics of Nematic Liquid Crystals 459 

motivation for many nonlinear theories and also a lot of theoretical considerations 

were tested in these systems. 

The electrohydrodynamic (EHD) instability of nematic liquid crystals (NLCs) 

was discovered more recently--about three decades ago5> and intensively investigat

ed in a first period in the early '70th. This activity was mainly motivated by the 

perspective of potential applicability of EHD convection in commercial displays, 

whereas the recently observable renaissance of investigations of EHD convection is 

mainly induced by the increasing general interest in the formation and dynamics of 

patterns in nonequilibrium systems. Especially the observed Hopf bifurcation to 

supercritical travelling waves7>-9>'14>-17> and defect chaos9>-12>'14>-17> in EHD convection 

are quite fashionable subjects to be understood, whereas the occurrence in this 

systems has several advantages in comparison with other systems. Now EHD 

convection becomes more and more a paradigmatic example for pattern formation 

like R-B convection and Taylor vortex flow. 

NLCs consist of long organic molecules which show in some temperature range 

(often room temperature) a nematic phase. In the nematic phase the molecules orient 

in the mean along a main direction, described by the director n (n=- n). However 

the position-order of the molecules is random as in simple fluids (for more details see 

e.g., Ref. 6)). 

The geometry of most experiments on EHD convection in NLCs is in some 

respect similar to the geometry of the well-known R-B convection. A nematic 

material is brought between two glass plates which are parallel and usually at a 

distance of 5-200 .urn (layer thickness: d). The horizontal extension is mainly some 

centimeters and the inside of the glass plates are evaporated by some conducting 

material like Sn02. By an appropriate surface treatment the molecules of NLC at the 

glass surface can be fixed in a defined orientation. We here consider always the 

situation where the mean orientation, the director (planar orientation), aligns parallel 

to the surface along one fixed direction which we call the x-direction. Then due to 

elastic forces the same orientation is uniformly obtained in the whole sample, if no 

voltage is applied. When a temporally alternating voltage is applied across a thin 

layer of nematic liquid crystal with negative Ea and ionic conductivity, an instability 

occurs at a certain voltage Vc which, under ideal conditions, leads to a periodic 

pattern of convection rolls connected with periodic distortions of the director. This 

is originally called the electrohydrodynamic instability.6> 

In EHD convection, temperature difference between the bottom and the top of a 

fluid layer in R-B convection is replaced by the square of an electric potential V 

(voltage).14> Similarly the frequency f of an applied voltage corresponds to the 

inverse of Prandtl number Pr( = r"/rv) through characteristic timer" for thermal mode 

replaced by one for the space charge mode and a characteristic time rv of viscous 

mode by one of the elastic deformation mode.14>'15> The competition of these two 

modes leads to a critical frequence fc and shows two different regimes for pattern 

formations, i.e., "conduction" and "dielectric" regimes. In accordance with these 

analogues, a very similar phase diagram for fluid patterns to that in R-B convection 

can be obtained as previously reported, where a typical route to turbulence in EHD is 

as follows. 14> 
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460 S. Kai and W. Zimmermann 

v dielectric 

-------------------------

conductive 

fc 

Fig. 1.1. Stability diagram for EHD convection in 

frequency-voltage plane. The solid and dot 

lines show the thresholds above which convec· 

tions take place. 

In the "conduction" regime below lc 
above the threshold one has convection 

rolls (Williams domain: WD) which ori

ent normal or oblique to the undistorted 

director orientation. Here lc is a criti

cal frequency separating the "dielectric" 

and the "conductive" regimes in EHD 

(see Fig. 1.1).6> At a higher voltage one 

finds a secondary bifurcation to the 

fluctuating WD (FWD). In that regime 

one observes defect chaos. Defects are 

continuously created and annihilated, 

the defect number in a unit area 

fluctuates and never becomes stationary.12>'17> Increasing the voltage further one 

observes a transition to Grid-Pattern (GP).16> GP can be stationary or oscillatory. If 

one has a strong dynamics of the defect often the Gird-Pattern is oscillatory.l7) At 

even higher voltages one observes a transition to a turbulent state. The turbulent 

state in EHD convection is called the dynamic scattering mode (DSM) and this mode 

which occurs above the GP, we call DSMl. Increasing the voltage further a transi

tion from DSM1 to another dynamic scattering mode (DSM2) happens (see § 4 in 

detail). Increasing the voltage at higher frequencies but still below /c, at threshold 

often convection sets in via travelling waves. In the "dielectric" regime (above /c) 

immediately above threshold one observes often a short wavelength (several ,urn) 

periodic stripe pattern, where the wavelength is rather independent of the thickness. 

At a second threshold one observes often a transition to a quasi-periodic pattern, the 

so-called chevrons. Sometimes chevrons are already visible immediately at the first 

threshold see below (see § 5). About more different patterns in EHD convection we 

refer to Refs. 15) ~ 19). 

Besides a different stability diagram the EHD convection in nematics has a 

number of properties which distinguish it from others much more investigated systems 

like R-B convection and Taylor vortex flow. In EHD, due to the small thickness of 

the convection layer the relaxation times are much shorter and one can easily produce 

specimens with large aspect ratios r (=ratio of the lateral dimension to the thick

ness) in one or two directions. In addition to the amplitude of the applied voltage one 

has the frequency as an easily accessible external-control-parameter. This, together 

with the facts that the material couples strongly to an additionally applied magnetic 

field and that a vast variety of nematics with different material constants are avail

able, provides for very rich scenarios. However only with one material (MBBA) 

most of the experiments have been done and it is also the only material with a nematic 

phase at room temperature where all material constants are known. As a result of 

the planar orientation of the director at the upper and the lower plate there is an axial 

anisotropy, so that the patterns (WD, GP, etc.) orient with respect to the preferred 

axis (no rotational invariance in the plane of the layer). From symmetry reasons at 

the first threshold only rolls or possibly a rectangular structure is expected to appear 

near threshold. The existence and stability of roll solutions above threshold should 
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Pattern Dynamics in the Electrohydrodynamics of Nematic Liquid Crystals 461 

in this system be considered in terms of two-dimensional wavevector areas20>-22> 

instead of the wavenumber bands adequate for isotropic systems like R-B convection. 

The characteristic features for pattern formation processes of WD have been 

already discussed and three different stages are found during pattern selection proces

ses.15> In the early stage, a uniquely selected linear mode (the most rapidly growing 

mode) grows initially and then nonlinear modes become more stable in the inter

mediate stage.15> In the final stage, as a result of the competitive growth among 

nonlinear modes, defects are formed and a final pattern selection is successful through 

defect motions, i.e., gliding and climbing.15> The spontaneously oscillatory gliding 

and climbing of a single defect are also reported.15>'19>'23> Such an oscillatory behavior 

of a single defect has been never observed in isotropic R-B systems and the amplitude 

equations currently obtained in EHD for anisotropic fluid cannot succeed to describe 

it. Therefore we have suggested that the detailed investigation on a single defect 

motion is important for determining a type of true amplitude equations for EHD.19> 

After the first bifurcation to stationary convection, often at a second threshold 

slightly above Vc, FWD occur.23>'24> This convection is mainly characterized by finite 

defect density as well as continuous nucleation and annihilation of defects and 

complex defect dynamics has been characterized in some extents.19> However the 

origin is not well understood yet.15> Recently great attention is focussed on this 

state; that is, a possibility of theoretical description for it, definition of defect chaos, 

nature of bifurcation and the mechanism of creation of defects. 10>.u> In § 3 of this 

article we will discuss the further progress. 

Fully developed turbulence occurs at sufficiently strong external fields applied to 

fluid systems.l3l It attracts great interest already more than a century.1> Especially 

in small aspect ratio systems during the last decade there has been considerable 

progress in understanding essential features in the framework of nonlinear dynamical 

systems.4> In large aspect ratio systems the understanding of turbulence is less 

advanced. Different routes to turbulence have been found in both cases, however in 

simple fluids on such a route most of the bifurcations are spatially homogeneous. A 

transition to turbulence in EHD shows quite new aspect. Section 4 is devoted to the 

detail on this spatially inhomogeneous turbulence-turbulence transition. We find 

here similarity with classical crystal growth kinetics and with the turbulence

turbulence (TI-TII) transition in Heii/5>-27> where the analogy between director field 

in EHD and superfluid velocity field in Hell will be pointed out. 

In EHD however even the onset of convection is still not fully understood. In 

particular, it is already known more than a decade that travelling waves (a Hopf 

bifurcation) occur at the first threshold, mainly in the conduction regime near the 

cutoff frequency /c.17>'24> Recently more detailed measurements have confirmed these 

observations.9> However the mechanism which leads to travelling waves at the onset 

of convection is still open. The experimental groups use different sample prepara

tion and obtain also different frequency ranges for the occurrence of travelling waves. 

Theoretically only the threshold problem was solved within various approximations. 

Recently this problem has been solved in the conduction regime by neglecting the 

flexoelectric effecell and later without any further assumption, by solving the 

accepted hydrodynamic equations for EHD convection in the whole frequency range 
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462 S. Kai and W. Zimmermann 

for the first time rigorously.16> However a Hopf-bifurcation was not found for a 

reasonable set of parameters. In§ 5 we discuss the results on the stationary bifurca

tion by solving the full linear set of equations and their consequences, especially in the 

dielectric regime. The chevron pattern28> observed in the dielectric regime can be 

regarded in a sense as a kind of periodic defect orientation19> due to modurated 

potential for defects. A co-dimension-two(CDT)-bifurcation at another critical fre

quency lc *higher than lc is observed experimentally.29> This behavior however is not 

observed by currently available theories. 

Nematic liquid crystals can respond not only to an electric field E but also to a 

magnetic field H.6> The director of NLC aligns parallel to the direction of H since 

Xa >0, contrary to the orientation induced by an electric field. Namely a roll aligns 

with the direction perpendicular to that of H under strong enough H. Here xa= X11 

-X-L is the anisotropic magnetic susceptibility of NLCs, and Xtt and X-L are the 

magnetic susceptibilities parallel and perpendicular to the director. Here two direc

tions of H are distinguished: H;; and H-L, indicating the magnetic fields parallel and 

perpendicular to E, respectively. Most of the presented studies are performed for 

H-L, where the direction of H is only changed in a plane and maintained perpendicular 

to E. This leads to additional variety of phenomena in EHD/9> a part of which will 

be shown in § 6. We already reported that the magnetic field suppresses the defect 

chaos and stabilizes the system, that is, the threshold of the applied electric field for 

the onset of EHD shifts up when the magnetic field increases.19> The magnetic field 

can also change the direction of the roll axis into that perpendicular to the external 

field and leads more easily to zig-zag and oblique patterns.19> Further details on 

magnetic field effects will be given in this section, i.e., particularly thickness depend

ence of Freedericksz transition superimposing EHD.30> 

In the present paper, since the experimental techniques and manners have been 

already described,I5> we concentrate only to describe our results together with recent 

theories for EHD.20H 2> 

§ 2. Theoretical consideration for onset of convection 

and threshold behavior in EHD 

The basic mechanism for the onset of convection has been already understood 

and described for an applied de-voltage by Helfrich.31> By the Orsay group32> this was 

extended to an ac-voltage and it was recognized within the one-dimensional approx

imation that there are two different frequency-regimes, the low frequency conduction 

and the high frequency dielectric regime at the onset of convection (see for example 

Fig. 1.1). In the conduction regime convection rolls have a wavelength of the order 

of the thickness of the fluid layer and the director is mainly stationary in time with 

small modulations, whereas in the dielectric regime the director is mainly oscillating 

with the external frequency and the stationary part is smaller. The wavelength of 

the periodic pattern in the dielectric regime is much smaller than the layer thickness 

and is for large ranges independent of the thickness and the conductivity. This could 

be already roughly understood in the framework of the one-dimensional model (ODM) 

calculation.5>.s> 

Originally it was assumed that the periodic pattern occurs at threshold always 
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Pattern Dynamics in the Electrohydrodynamics of Nematic Liquid Crystals 463 

with the roll axis normal to the undistorted director orientation (normal rolls), which 

was often experimentally confirmed. However more recently Hilsum and Saunders33' 

observed that there is a secondary transition to an oblique roll convection structure. 

Later it was also observed that there can be oblique rolls already at the onset of 

convection, which is also understood in an approximate three-dimensional calcula

tion.20' The transition to oblique rolls at the threshold could be understood in the 

framework of ODM as originally done by the Orsay group, by taking the flexoelectric 

effect into account.34' In the conduction regime the onset of convection via travelling 

waves has been also observed some time ago.17l'24' But unfortunately theoretically 

the occurrence of a Hopf bifurcation could not be predicted, even by a rigorous 

solution of the full linearized-hydrodynamic-equations without further assumptions.35> 

However the rigorous solution of the linear equation by including the flexoelectric 

effect provides a more detailed picture for the stationary bifurcation and other 

interesting and important properties, which will be described below. 

The basic equation for EHD convection considered here is provided by the 

standard hydrodynamic description of NLCs21> and for the same equations including 

the flexoelectric effect.35' They consist of momentum balance (Navier-Stokes equa

tion) together with incompressibility J7 • v=O, which determine the velocity field v, 

and the balance of torque which gives the director n. Moreover, there are electric 

field equations (Maxwell and charge conservation equations) in the quasi-static 

approximation. The complete electric field is the superposition of induced and an 

applied part: E= _:__ J7 ¢+( V(t)/d)z and for the director we use the representation n 

=(cosecos lf!, cosesin lf!, sine). All these equations are coupled and provide a 

highly nonlinear set of equations for the three velocity components, two angles for the 

director and the induced electric potential ¢. 

The threshold for EHD is calculated by assuming that all quantities deviate only 

very slightly from their values in the basic unstructured-state, which is characterized 

by v=O, n=(l, 0, 0) and vanishing induced potential ¢=0 (which is equivalent to 

vanishing charge density). We then write n=(l, lf!, e) and linearize the equations in 

the small deviations.20,_22''35> 

The resulting set of linear partial differential equations (PDE) for u={¢, e, lf!, v} 

is translational invariant with respect to x and y and therefore the solutions are 

harmonic and may be chosen proportional to sin(qx+py) and cos(qx+py); 

wavevector (q, p)=(27r/llx,y) where llx,y are the wavelength of the convective structure 

in the x- and y-directions. For the voltage applied between the plates we only 

assume that it has the periodicity Tin time: V(t)= V · !(t), with /(t)= !(t + T). The 

set of linear equations has then the formal structure, 

(2·1) 

where the 6 X 6 matrices M and k contain derivatives with respect to z and depend on 

q, P and V(t) and they have the periodicity Tin time. Rigid planar anchoring of the 

director and ideal conducting electrodes-which presumably come near to the 

reality--are assumed. Therefore we have the boundary conditions 
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464 S. Kai and W. Zimmermann 

u=O and z=±d/2 (2·2) 

(from Ji'·v=O we also have ozvz=O at z=±d/2). 

For periodic driving voltage V(t) the linear modes are expected to be of the form 

u(z, t)=u'(z, t)exp(ot), a=ar+ia;, (2·3) 

where, according to the Floquet theorem36> u' is periodic in t with period T. For the 

numerical solution of Eq. (2 ·1) we use for each component u' k an expansion into a 

complete set of z-dependent function: 20>-zz> 

(2·3a) 

Equation (2·1) is then transformed into a set of ordinary differential equations (ODE) 

for W=Cw1, ···, WN) (wk=(wkl, ···, wkN)). By integrating the set of ODE" in time from 

t to t+ T and by using the boundary condition W(t)= W(t+ T) the Floquet

exponents a can be determined. The neutral surface Vo(q, p, w) with respect to q and 

P provides the absolute threshold Vc(w) and the critical wavevector (qc, Pc). For a 

Hopf-bifurcation the critical frequency is defined by the Hopf frequency llc(w)=Im 

[6max( Vc(w), qc, Pc)]. The condition o2 Vo(w)/oP2 >O at (qc, Pc=O) is necessary for 

normal rolls (qc, Pc=O) to occur at threshold. Otherwise there exists a lower thresh

old at Pc>O (oblique rolls). If there is continuous transition from normal to oblique 

rolls Pc-+0 at threshold by changing the frequency the transition frequency w· ro is 

then marked by o2 Vo(w)/oP2 =0 at (qc, Pc=O) and we call this frequency the Lifshitz 

point. 

For a vanishing fiexoelectric effect and a driving voltage with the property V(t 

+ T/2)=- V(t), we now consider the symmetry behavior of the solutions of Eq. (2 ·1) 

in more detail. The symmetry of u' with respect to z is 

((}), 8, 1Jf, Vx, Vy, Vz)(-z)=±((}), 8, -1[!, -vx, -vy, -vz)(z) (2·4) 

( +sign="type I", -sign="type II") and the symmetry with respect to the translation 

t-+ t+ T/2 is 

Fig. 2.1. Thresholds of four branches for solutions described in text; (a) minima of neutral curve as 

a function of frequency (b) neutral curves at frequency slightly below /c. 
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Pattern Dynamics in the Electrohydrodynamics of Nematic Liquid Crystals 465 

(qj, 8, lJf, v)(t+T/2)=±(-qj, 8, lJf, v)(t) (2·5) 

( +sign="type A", -sign="type B"). Type A is the well-known "conduction" mode 

and type B the "dielectric" mode. The symmetry (2 · 5) expresses also the fact that 

without the fiexoelectric effect the polarity of the electric field E does not affect the 

director orientation n and the velocity v. In each symmetry class one obtains a 

lowest threshold Vc(cv). 

The thresholds Vc(cv) for these four solutions are shown in Fig. 2.1(a). They 

have been calculated for the material parameters of MBBA with O"l_d2 =80·10-8 o-1 

m - 1(.um)2 and a harmonic driving voltage. Here 0"1. is the conductivity perpen

dicular to the director. The type IA solutions describe the lowest threshold in the 

low-frequency "conduction" regime whereas the type IB solutions provide the lowest 

threshold in the high-frequency "dielectric" regime. At these lowest thresholds one 

has always normal rolls (Pc=O). Type liA and liB solutions describe modes with 

higher thresholds. For the IA mode the threshold curve turns over to the upper 

restabilization branch at the so-called cutoff angular frequency eve. The liA mode 

shows the analogous behavior. The two dielectric modes IB and liB have different 

z-symmetry but the threshold-difference between both is relatively small, which is 

quite remarkable. 

The threshold difference in-between the first two z-dependent modes (one symmet

ric and another anti-symmetric with respect to the thickness d of a layer) in conven

tional R-B convection in simple fluids and also the threshold-difference between the 

modes IA and liA is of the order of the first threshold value. Therefore an interac

tion of these two simple modes could only be expected far away from the threshold 

but then already also higher harmonics in the z-direction are excited and the non

linear solution becomes complicated. However the small difference in the threshold 

between the IB and liB modes can be considered as an unfolding of a codimension-two 

(CDT)-bifurcation where a simple interaction of both modes is possible. The behav

ior is perhaps reasonable for the occurrence of the chevron structure discussed in § 5. 

The associated critical wavenumbers for the IB and liB modes are also similar and 

are both nearly proportional to 0"1. at a fixed frequency cvro. The critical wavenum

bers of the conduction modes are nearly insensitive to the change of 0"1. ·d. The 

detailed behavior of the neutral curves is discussed elsewhere.35> 

In order to look in a different prospect on the four modes we have plotted the 

neutral curves for the frequency cv· ro=0.8 (ro=eoeJ./0"1. is the charge relaxation time 

where eo is the dielectric constant of the vacuum)20>-22> in Fig. 2.l(b). The neutral 

curves of the branches IA and liA are closed loops in the frequency range with 

restabilization. The growth rates are positive inside the loops. The neutral curves 

for the branches IA and IB and also liA and liB respectively are in general not 

allowed to intersect each other. This explains the deformation of the neutral curve 

in IB. By intersecting 0"1.d the threshold of the dielectric mode increases strongly and 

then this deformation can be removed. 

The intersection point of the lowest threshold curves Vc(cv) in Fig. 2.1(a) corre

sponds to the situation where in Fig. 2.1(b) the minima of two lowest curves (IA and 

IB) lie at the same voltage. This is the situation of a CDT-bifurcation of two 
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466 S. Kai and W. Zimmermann 

bifurcations with different wavenumbers. At this CDT-point the wavenumber ratio 

q//q/ of the dielectric and the conduction mode can vary over a large range ( ~1-20) 

depending on the parameters, especially the dielectric anisotropy, the conductivity 

and thickness and the externally changeable magnetic field. By an appropriate 

choice of CJ.Ld and an additional easily-adjustable-stabilizing-magnetic-field in the x

direction the ratio Qcd/q/ can be also brought to the resonance value 2 to 3. Near 

such a CDT-point various interesting secondary bifurcations are expected.37) The 

detailed character of the CDT-point, however, also depends on whether the threshold 

Vc(w) of the dielectric mode intersects the conduction threshold at the lowest branch 

or at the restabilization branch or at the turn-over point (see Figs. 2.1 and 5.4 on 

typical threshold as a function of w). The differences between these last three 

possibilities become stronger for a nematic material with large negative dielectric 
anisotropy ea=e;;-e:.l_.38) 

Taking the fl.exoelectric effect into account the separate symmetries (2·4) and 

(2·5) are destroyed, but the combined symmetries z~ -z and V ~- V remain. That 

means for driving voltages with the symmetry V(t + T/2)=- V(t) one still has two 

separate modes: The superposition of type IA and liB solutions provides the threshold 

for the conduction regime and the superposition of the type IB and IIA solutions gives 

the threshold for the dielectric regime. Using a driving voltage without the above 

symmetry a superposition of all four types is necessary to solve the linear problem 

and therefore no further a priori distinction between the conduction and the dielectric 

mode is possible. 

The calculations of the threshold behavior obtained from the full set of 

hydrodynamic equations can be also extended to stochastic excitations. Due to the 

stochastic excitations the described independent linear threshold modes are coupled. 

It is an open question whether this leads for example to a Hopf bifurcation or to a 

multiple bifurcation point, where the real parts of several eigenvalues pass simultane

ously through zero. In an experiment it has been found that by a stochastic excita

tion it is possible to induce a direct transitions from nonconvective to turbulence.39>'57> 

§ 3. Defect turbulence (fluctuating Williams domain) 

At a first instability point Vc, WD appears which shows stationary stripe pat
terns.15>'16> For slightly larger voltage-step than Vc from V=O, typically e:~0.2, a 

defect can be observed. Here e: is the normalized deviation from Vc, i.e., e:=( V 2 - Vc2) 

/Vc2• It is very important to investigate a single defect motion for construction of 

model equations in amplitude and phase as described previously.19> In this section we 

will discuss on this state called FWD. Figure 3.1 shows a series of its spatial power 

spectra in the x-direction parallel to the original director orientation (rubbing direc

tion). These are plotted after averaged over 400 spectra taken along they-direction. 

Two sharp peaks (one is harmonics of another) is due to unequal brightness of roll 

convections for up- and down-flows. (This could be adjustable experimentally.) The 

structure change in the spectra is clearly observed here. There is hysteresis at the 

transition from WD to FWD in small aspect ratio (F) systems.19> To quantize the 

hysteresis, the similarity intensity factor (SI) is calculated with the relation, 
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Fig. 3.1. A series of power spectra in WD to FWD 

increasing (1, 2) and decreasing (3, 4) in 

voltage. 1 and 4 are the same value of V (see 

Fig. 3.2(b): the location is marked). The 

power spectra for 2 and 4 show a clear hyster-

esis in their structures. 

(3·1) 

for both ways of increase (Pu) and 

decrease (Pd) of the electric voltage, 

which is originally used in order to 

characterize turbulence by difference be

tween power spectra for two different 

directions, along x and y.40>·41> Here N 

is the summation number of wavenum· 

ber q;. The integral intensity "2,P(q;) 

over twenty wavenumbers around a 

maximum peak-wavenumber with the 

resolution 36.4 cm-1 is also calculated. 

This value therefore means the broad· 

ness of the spectrum peak. These are 

shown in Fig. 3.2(a) for SI and Fig. 3.2(b) 

for the integral intensity. The larger 

the SI, the more similar the power spec

trum. Namely it suggests no hysteresis 

when SI is always very large. The result clearly shows the hysteresis of which width 

in this sample was about IV (L1.:~0.2). To determine the width, a slow enough ramp 

rate is needed since it depends on a ramp rate effectively and also on r. In FWD 

regime, spatia-temporally complicated defect motions can be observed. Such spatia

temporal motions are shown in Fig. 3.3 for large r and for different e. Here gray 

level of a video image is plotted taking one scanning line perpendicular to the original 

roll axis against time. For small c:, still periodic structures can be recognized. As 

increasing c:, however, the spatio-temporal pattern of defect motions becomes compli

cated and no periodic pattern can be observed for .:=1.23.19> 

Figure 3.4 shows the temporal variation of the number of defects in FWD. It 

• 
• • 

•• 
•• 

• • • .. .. , ... , ........... . 
0 7 8 

V ( V) 

(a) 

5 r-----T-----~----~-----. 

~ 4 

~ 3 

! 
a. 2 
~ 

® 
l •••••• 

••• ••••••••••• •• f 0 ® .... .. 
0 

•••••• • ...•. ············ f t 
G) ® 

0 0.2 0.4 0.6 0.8 £ 
~--~----~----~----~--

6.56 7.0 7.5 

(b) 

8.0 8.5 
V(V) 

Fig. 3.2. Quantitative estimation for hysteresis in FWD by SI (a) and by the integrated power 

spectrum (b). The ramprate is 5mV/s and all image are recorded onto a magnetic disk and a 
tape simultaneously. 
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0 0 

100 100 

....... ....... 
u u 
3! 200 ...... !200 - -

300 300 

400 400 
0 0.2 0.4 0 0.2 0.4 0.6 

x(mm) x(mm} 

(a) (b) 

Fig. 3.3. Spatio-temporal map in FWD (d=50 {.lm and F=l20X120). (a) .:=0.36, (b) .:=1.23. 

C/) 

0 16 
Q) -~ 12 -0 
.... 
Q) 

.0 
E 
::3 
c:: 

8 

0 1500 3000 4500 6000 

t (sec) 
Fig. 3.4. Nonperiodic change in time for the number of defects (.:=0.60, /=10Hz, lc=61 Hz, F=lO 

X15, d=100{.lm). 

changes nonperiodically and shows the 1//-type spectrum, which has been already 

discussed in detail. 19> In small r samples, 1//-type spectrum is always observed 

whereas in larger ones it is often white except at very small s (where it is 1//-type). 

This suggests that 1//-spectrum may originate from boundary effects. A sequence 

of such nonperiodic signals always changes when several runs are done by repeating 

an application of a constant voltage V > Vc in a step-like fashion from a non

convective state (Fig. 3.5). In Fig. 3.5 four different runs are displayed, where the 

initial numbers of defects are, for example, No=6, 4, 1 and 5 for (a), (b), (c) and (d) for 

s=0.50 (left figure) respectively. Two cases were odd numbers of No, but odd number 

is not stable and the even number state is preferred. In order to obtain a dimen

sionality of nonlinear behavior, the correlation integral C(rx) is calculated by use of 

the relation, 
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2 

t ( 103 sec} 

3 

a 

12 

8 

4 

0~~==~==~==~==~==~ 

12 

8 

4 

OL-ill~--~--~--~--~L_--~ 

1 2 3 

t ( 103 sec} 

Fig. 3.5. Temporal changes of defect number for different runs. The same sample as in Fig. 3.4. 

(c:=0.50 (left) and 0.55 (right)) 

(3·2) 

where N is the total number of vector X; which is the n-component-vector with an 

embedding dimension n created by the embedding procedure,42> Hv(/;) the Heviside 

function, rx the distance between the corresponding vectors and v the correlation 

1.0 

0.5 
o: n = 2 

~ 

~ o:n=4 

0 

0.2 

0.1 
2 5 10 

Fig. 3.6. Correlation integral C(rx) calculated for 

the data at c:=0.55 in Fig. 3.5. 

dimension of nonlinear dynamical sys

tems considered here. The elements of 

the vector x; consist of a set of defect 

numbers obtained from repetition of 

time shifts with a constant time-delay in 

the nonperiodic change of the defect 

number.42> 

The calculated result is shown in 

Fig. 3.6. Unfortunately, no determina

tion of dimensionality was possible from 

this result because of the low resolution, 

but probably it is expected to be around 

4 to 6 from it. Thus the defect chaos 

(FWD) may have a relatively low dimen-

a 

b 
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Table I. Mean interval of event for change in defect numbers 

(measured for entire area of samples). 

total time number mean interval mean number 

of observation of event of event of defects 

1.0 

0.5 -
0 

1.0 

0.5 -:::J 0 z -- 1.0 0 

0.5 

0 -

1.0 

0.5 

0 

€ T,(sec) Nev 

0.45 3066 189 

0.50 22710 1447 

0.55 15330 1480 

0.60 6294 651 

- (a) 

- (b) 

- (c) 

,....-.(~ 

r-- (d) 

n 
2345678 

Nu 
Fig. 3.7. Histogram of defect number changing in 

one event. The distributions are normalized 

by the maximum number Nmax. c=0.45 (Nmax 

=116), 0.50 (Nmax=1213), 0.55 (Nmax=1050) and 

0.6 (Nmax=505) from the above. The each 

time gap of events in the measurements was 6 s. 

Tm(sec) Nd 

16.2 3.14 

15.7 4.07 

10.4 6.33 

9.7 7.80 

50 

...... 
v 

~ 20 
E 
~ 

~ 10 

0.05 0.1 0.2 0.5 

& 

Fig. 3.8. Front propagation velocity VF in WD and 

FWD as a function of € (d=100 f.lm, F=14X9). 

The slope changes from 0.5 to 1 at €~0.5 where 

FWD is observed in the steady state. 

sional attractor for small F.12J The better resolution and the larger number of 

defects can be obtained for the larger r. However the dimension of attractor in that 

case would be different from that for small r. 
In order to understand defect chaos more detailedly, a statistical analysis for 

defect numbers has been done. The total number Nev of events of defect change and 

distribution of the number of changing defects at each event are evaluated. The 

mean interval Tm ( = Tt!Nev) for the events changing a defect number is shown in 

Table I, where Tt is a total observation time. Obviously, Tm decreases with increase 

of e, that means the event of defect-number-change happens more frequently for 

larger e. The more detailed content of the events is shown in Fig. 3.7 as a frequency 
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distribution of the defect number which changes simultaneously at each one event. 

As seen from this, increasing e the number of pairs for nucleation and annihilation 

happening at the same time increases. The distribution for nucleation shows similar 

profile with one for annihilation. Annihilation and nucleation tend to happen with 

pairs whose number increases with e (see Fig. 3.7). 

The velocity VF of front propagation of roll convections in FWD (s>0.5) has 

s-dependence like VF ~ e different from that ( VF ~ e0"5) in WD region (Fig. 3.8). This 

suggests that the amplitude equations in FWD must have different forms from those in 

WD. Similar behavior was observed in growth time and other dynamical factors. 23>·43> 

§ 4. Local transition between turbulent states DSMl and DSM2 

If the voltage is increased further, after a sequence of transitions, the turbulence, 

the dynamic scattering mode (DSM), appears.6>'15>'43> Visual observations have 

already shown in early time that there are two different kinds of DSM in planar 

orientation as well as homeotropic NLC, the DSMl and the DSM2 states. DSM2 

occurs at the higher voltage (above the threshold voltage Vz). Both states have been 

characterized in planar orientation more quantitatively by measuring the spatial 

power spectra of the transmitted light through a sample parallel (P") and perpen

dicular (PJ_) to the original undistorted-director orientation. P;; and PJ. have different 

structures in the DSMl state and become similar in the DSM2 state. Therefore we 

used the notion, anisotropic (DSMl) and isotropic turbulence (DSM2).41> According 

to the early studies achieved by us24>'43> and others,44H 7> a large jump in the light 

transmittance (LT) at V2 has been called traditionally the DSM1-DSM2 transition. 

Such large changes in L T can be observed only at two different voltages, Vc and Vi. 

1. 0 

0 

- 0.5 -

0 

-....... 

t l 

10 20 

V(volt) 

30 40 

Fig. 4.1. Light transmittance L T( = I/Io) through sample for increasing and decreasing applied voltage 

with the ramp-rate r=0.025 V /s. Io is the light intensity in the absence of convection. 
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4.17 mV/ s 

S. Kai and W. Zimmermann 

I ~o 
I o o :6. \:.• 
I --, .o 
I 
I 
I 

6.25mVts :AV 

~L~-
~~~ 1,. 0 '4'\ 

I o qp 

20.0mV/s l "' ~.::9.. 
I o 

I 
I 

'"'I'IIIIS.:,~o.c 0 i 

.2~I :::::o 

28 30 32 

VCvoltl 

34 36 

Fig. 4.2. Hysteresis in 1/Io near the DSM1-DSM2 transition for various ramp rates r (mV /sec). We 

choose two different hysteresis gaps L1 V and L1 V*( = Vi- VK ). 

In some our previous publications,l4l'17l'40J'41 J we called the latter point the DSM like

DSM1 transition. As this makes large confusing, we obey the conventional naming, 

the DSM1-DSM2 transition, hereafter.48l 

Figure 4.1 shows the light transmittance L T ( = 1/Io) through the sample as a 

function of an increasing and decreasing applied voltage, where the ramp rate 

r=0.025 V /s has been used. Io is the light intensity passing through the sample in the 

absence of the convection. There are two clear jumps (accompanied by hysteresis) 

in LT, as already shown in early studies.41 l'43 l The hysteresis which depends on r is 

shown for the latter transition enlarged in Fig. 4.2 for different r. It can be uniquely 

recognized that the hysteresis gap L1 V shrinks with decreasing r and shows a square 

root dependence on r (see Fig. 4.3),48l 

(4·1) 

The solid line in Fig. 4.3 is calculated from Eq. (4 ·1) with the constant Ch = 1.780 x 103 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.9

9
.4

5
8
/1

8
8
2
0
3
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Pattern Dynamics in the Electrohydrodynamics of Nematic Liquid Crystals 473 

10 

8 

-> - 6 
* > 
<I 

> 4 
<I 

2 

-----------
0 -----

----- AV* 
0 ---- IJ . ..,.---............... 

...... 0 
........ 0 

,'o 

0 

0 5 10 15 20 25 

r ( 10-3 VIs) 

Fig. 4.3. Dependence of hysteresis-gaps L1V and L1V* in LT (as defined in Fig. 4.2) on ramp-rate r 

(mV /s). The solid curve shows Eq. (4·1) for L1V with Ch=l.78 X 103 and the dotted curve for L1V* 

with Ch = 1.09 X 103 V s. 

1mm 1mm 

Fig. 4.4. (continued) (a) E2=l.04 
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1mm 

(b) e.=s.o 

Fig. 4.4. A set of photographs for growth process 

of DSM2-nuclei at different times after apply

ing a voltage larger than DSM2 threshold 

voltage l/2. In (a) e•=l.04, (i) t=15s, (ii) 35s, 

(iii) 65s, (iv) lOOs and in (b) e2=8.0, (i) t=ls, 

(ii) 3s, (iii) 6s. 

in units of volt-second. Figures 4.2 and 

4.3 indicate that the DSM1-DSM2 transi

tion is of second order (forward bifurca

tion) unlike our conclusion in a previous 

publication where we used only one 

finite ramp rate.41J The threshold volt

age Vz for the DSM1-DSM2 transition is 

determined by crossing of L T curves in 

Fig. 4.2 at the lower voltage (see Fig. 

4.2), which is nearly independent of r 

and we find Vz=31V ( Vz/Vc~4.6). 

A set of photographs for the growin

g nuclei is shown in Fig. 4.4 in two typi

cal cases for c2= 1.04 and for 8.0, where c2 

=( V 2 - Vz2)/Vz2 measuring the distance 

from the threshold Vz for the DSM2 

state. For the value 8.0 a large number 

of nuclei can be seen in contrast to the 

case for 1.04. A very similar type of 

growth processes has been already re

ported in polarization reversal domains 

of ferroelectric LCs,49J which is a non

convective system (there is no contradic

tion between no hysteresis (supercritical 

bifurcation) and occurrence of nuclea

tion because nucleation always happens 

at deep quench in any case). 

According to the fact that our tran

sition is local, we look in more detail on 

the similarities with common nucleation 

phenomena. In Fig. 4.5 we show the 

nucleation rate ] of the DSM2 turbulent 

nuclei, which we obtain by counting 

these spontaneous nuclei at a few sec

onds after jumping from V=O to volt

ages above Vz. The solid line is 

obtained from a common expres
sion,4BJ,SOJ 

J=]<»exp(-A/(l+c-2))+B, (4·2) 

where the values of ]<»=920 mm-2, A=50 and B=1.4mm-2 for 27 OC and 800,25 and 0.9 

for 32 OC respectively, have been obtained for the best fit of Eq. (4 · 2) to the data in Fig. 

4.5. Here A corresponds to the potential difference between DSMl and DSM2 states. 

B is probably related to the contribution from a heterogeneous nucleation, induced, 
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10 

J 

5 

0 2 3 4 5 6 7 8 9 10 

Fig. 4.5. Nucleation rate f for DSM2-turbulent 

nuclei as a function of E2 at two different tem

peratures. o: 27 ·c, •: 32 ·c. The solid and 

the dotted curves are due to Eq. (4·2). 

e.g., by big nucleation sites on the surface 

electrodes. /oo=920 mm - 2 gives a 

corresponding value 33 x 33 p.m2 to the 

minimum area for one nucleation phe

nomenon. This size 33 p.m coincides 

with the value d/ .fi, which probably 

suggests the absolutely minimum size 

for a critical nucleus of disclination 

domain. This will be restricted by the 

elastic deformation energy in director 

field. The homogeneous nucleation 

occurs rather stochastically when the 

experiments are repeated after long 

enough relaxation time. Figure 4.6 

shows the scaling property of DSM2 
area summed over all nuclei by use of the Kolmogorov-Avrami equation.49> There is 
clear scaling of growth kinetics of nuclei. The index 2.5 in t means that the nuclea
tion rate is not constant in time and gradually decreases because the growth velocity 
is experimentally constant in time. In the present transition phenomenon, a statisti
cal theory for crystal growth can be suitably used. 

The main difference between the DSMl and the DSM2 states is the density of 
disclinations in the director field, which is much higher in the DSM2.48> To visualize 
this, we use the fact that both relaxations of the velocity field and the simple director 
distortions are much faster than the relaxation of disclinations.24> Switching off the 
applied voltage V > Vz at a time when the DSM2 state has already filled considerable 
space (Fig. 4.7(a)), then the disclinations can be clearly observed in the area of the 
DSM2 before, as shown in Fig. 4.7(b) and enlarged in Fig. 4.7(d). Switching on again 
the voltage to above Vz, before the disclinations have been vanished, then the dis
clinations serve as nucleation centers for the DSM2 state (Fig. 4.7(c)). The disclination 
density itself increases with c2. 

The DSM2-nuclei grow self-similarly until fusion with other nuclei. During the 
growth of the DSM2 nuclei continuously new disclinations are created. The disclina-

1.0 

0.8 

~ 0.6 

~ 
ell 0.4 

0.2 

0 0.2 0.4 0.6 

t/2tv2 

• £2= 0.5 
• £2 = 2.0 
• £2 = 5.0 

0.8 1.0 

Fig. 4.6. Scaled temporal evolution of total area 

of DSM2. t"2 is the time at which half the 

area is covered by DSM2 state. Here S and 

Smax show total area of DSM2 and total observ

ed area, respectively. The solid line shows the 

equation, 

S/Smax= 1-exp[-KtN2"5] , 

assuming constant nucleation rate, constant 

growth velocity and a two dimensional growth 

in Kolmogorov-Avrami theory.'9> Here the 

index 2.5 of tN means that nucleation rate 

should not be constant and decreases with time. 

K is constant due to constant growth velocity 

and nucleation rate, and tN=t/t112. 
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1mm 

Fig. 4.7. Retriggering process of the DSM2 state 

by disclinations. Photographs (a), (b) and (c) 

are taken times after jumping with the applied 

voltage above the DSM2 threshold V.; c2=1.04. 

(a): t=24s after application of the voltage. 

(b): t=26s immediately after the field is swit

ched off. (c): t=28s immediately after the 

field is applied again. (d) is an enlargement of 

a disclination domain. In photograph (b), a 

large number of disclinations can be seen in the 

domain where the DSM2 flow existed before. 

It can be recognized from (c) that disclinations 

serve as nucleation centers for the DSM2 

domains. 

tion density inside the nuclei keeps roughly constant. By measuring the diameters in 

both main directions of the elliptical nuclei as a function of time, we always deter

mined the growth velocity in a range where it was rather independent of the diameter. 

The c2·dependence of the velocity parallel (v;;: open circles) and perpendicular (v_j_: 

solid circles) to the original director-orientation is shown in Fig. 4.8 for the tempera

tures 27 ·c and 32 ·c. The solid lines show the expression v= r- c2°'7, whereas r has 

been chosen for the best fit with the values: r=54 f.J.m/s (v;; at 27 ·c), 29 f.J.m/s (v_j_ at 

27 ·c), 65 f.J.m/s (v;; at 32 ·c), 35 f.J.m/s (v_j_ at 32 ·c). The velocity ratio v;;/v_j_ =1.85 is 

rather independent of c2 and is equal to the ratio of the diameters along the long and 

the short axes of the elliptical nuclei. The growth velocity becomes slow as decreas

ing c2 and tends to zero as c2 goes to zero. This tendency well agrees with that of the 
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Fig. 4.8. Growth velocity of DSM2 nuclei parallel v11 (solid lines) and perpendicular V.L (dots) to the 

original orientation of director as a function of c2 for 27 ·c (a) and 32 "C (b). The given curves are 

due to rc2°·7, with r=54 f.lm/s (v11, 27 "C), 29 f.lm/s (v.L, 27 "C), 65 f.lmls (v11, 32 "C) and 35 f.lm/s (v.L, 

32 "C). 

He D- turbulence 

disclination turbulence 

Fig. 4.9. Schematic drawing of analogy between 

disclination in EHD and vortex filament in 

Hell turbulence. It can be said that the direc· 

tor deformation field around DL in EHD corre

sponds to the vortex field of superfiuid around 

VF in the present analogy. 

DL: disclination line, n: director field, Vno: 

velocity field of normal fluid, Vsp: velocity field 

of superfiuid, VF: vortex filament. 

growth and the relaxation times of DSM 

2 as has been already reported in Ref. 14) 

where both times have divergent ten

dency in proportion to c2 -o.ss±o.1• 

It is not possible to reverse the 

growth velocity of the nuclei by decreas

ing t:2 below zero, instead the DSM2 

state disperses globally away. In that 

respect the motion of the DSM1-DSM2 

interface of the nuclei resembles 

propagating fronts in other systems 

above a supercritical bifurcation,5ll 

which would be in agreement with our 

LT measurements. The front velocity 

at a supercritical bifurcation vs= rt:2°"5 

/t;c (where r is a characteristic time 

and /;cis the coherence length) however, 

does not fit our experimental data 

although many tries have been done. 

This is also the case for the front veloc

ities from other deterministic equations 

related to the subcritical or transcritical 

bifurcations (as discussed in Ref. 51)) 

and simple extensions of those. At the 

DSM1-DSM2 bifurcation, mainly the 

disclination density is changed, indicat

ing that it is the relevant order

parameter. The flow field in both DSM 

regions is turbulent and due to our observations the disclinations are presumably by 

strong short range fluctuations through viscous coupling between the director and the 

flow field. The relevant control parameter in this picture would be the flow field, 
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which works rather stochastically for the disclinations. Therefore a realistic model 

for the DSM1-DSM2 interface motion must at least include a stochastic part in the 

control parameter or some additive noise components,52> in contrast to the available 

deterministic models, if not an ab initio approach, starting from the basic equations 

of EHD will be necessary.21> 

The reported local transition (nucleation type) between the two turbulent states 

DSMl and DSM2 is rather uncommon for convective systems.53>'54> In the early stage 

of the bifurcation there is surprising similarity to other well-known nucleation 

processes in nonconvective systems, whereas, besides the mentioned difference, the 

late stage of the growing nuclei is more comparable with propagating fronts in other 

nonequilibrium systems. The main feature due to the DSM1-DSM2 transition is the 

change of the disclination-density in the director field. This property, addition to the 

previously reported facts; the divergence in the relaxation time14> and the drastic 

increase in the fluctuation amplitude55> at the DSM1-DSM2 bifurcation point, is quite 

similar to the properties of the TI-Til transition in superfluid Hell, where the vortex 

filament density is changed due to the bifurcation.25> In this respect, the disclination 

density in EHD will correspond to the density of quantized vortex filaments in Hell 

turbulence (see Fig. 4.9), that is the field for superfluid is replaced by the director field. 

The vortex of superfluid and the vortex-filament in Hell correspond to the rotation of 

director and the disclination line in EHD respectively. We can call therefore DSM2 

the disclination turbulence. We hope that the presented transition stimulates further 

investigations, which can be complementary as well as extending to the studies of 

superfiuid turbulence in Hell. Especially the influence of multiplicative noise of the 

transition seems promising,56>'57> because it can be applied also in our system in a 

well-controlled manner.57l 

§ 5. Chevron pattern: Periodic defect orientation in the dielectiric regime 

The main difference between the dielectric regime and the conduction regime in 

EHD convection is that the director and the velocity field should be roughly stationary 

in the conduction regime (low frequency), besides some modulation, and oscillatory 

with the external frequency in the dielectric regime. The opposite should be the case 

for the charge density.31)'32>.ss> Often in the dielectric regime at threshold one observes 

a short-wavelength stripe pattern which aligns normal to the undistorted director 

orientation.6> The oscillatory behavior of the director in this pattern has been shown 

by observing the temporal behavior of the transmitted light signal as described in Ref. 

58). Above the primary instability a secondary transition to a herringbone structure, 

the so-called chevrons, occurs. The transition behavior from the stripe to the chev

ron pattern will be considered in the following. 

The pictures of Fig. 5.1 give an example how the pattern changes to chevrons.19) 

Immediately above threshold the periodic pattern looks as shown in Fig. 5.1(a). 

Experimentally it was observed that the convection accompanying this periodic 

structure takes place in a skin layer.m'28> The bifurcation from the unstructured 

state is supercritical and also the bifurcation to the chevrons. Just above threshold 

one observes very narrow WD and a finite defect density with similar behavior as 
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(e) 

A 

B 

Fig. 5.1. Formation process of the chevron pat

tern. Applied voltage of I> lc is increased 

from (a) to (d). (e): schematic drawing of 

defect orientation for (c). The arrows in (d) 

indicate the macroscopic defects in new scale. 

A: defects in for example FWD. B: chevron 

structure (periodic-defect orientation). 

described above for FWD. Here defects glide very fast and over a wide range (Fig. 

5.1(a)). This density is changing in time and one observes always a dynamic behav

ior of the defects. By increasing the applied voltage in a steady manner beyond the 

threshold, the total defect number increases and the defect-density becomes locally 
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0 
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Fig. 5.2. Wavelengths w of rolls, L of periodic 

defect line, and maximum inclination angle Bm 

(a), and propagating velocities of PWD and 

chevron (b) as a function of applied voltage. 

(c) definition of w, L, Bm and Vp. Vpu and VpJ.. 

are the velocities parallel and perpendicular to 

the original director orientation. In (b) the 

frequency of an applied voltage is different 

from in (a). 

t 
chevron pattern 

(c) 

higher on large-scale straight lines as 

shown in Fig. 5.l(b). Namely, with 

increasing £, this motion becomes more 

localized. At even higher voltages one 

has a quasi-periodic structure, where the 

originally straight lines are alternat

ingly bended and the areas of different 

orientations of the stripes are separated 

by defect streets (Fig. 5.1(c)). Then 

finally defects become stationary and 

well ordered. The rolls, however, are 

inclined with respect to the original WD 

and propagate, maintaining stationary 

defect pattern. This herringbone pat

terns are called chevrons. Thus, the 

chevron pattern can be said to be peri

odic defect orientation pattern, because 

one can regard it as a large number of 

defect pairs aligned along one-dimension 

in a regular spatial sequence (see for 

example Figs. 5.1(d) and (e)). The scale 

of the chevron pattern is about d/10 to d/20. By further increasing the field, these 

periodic defect-orientations produce again a large-scale defect as marked by arrows 

in Fig. 5.l(d). For a voltage above this, the flow state becomes turbulence. This is 

a typical hierarchy in the route to turbulence (DSM) in the dielectric regime. 

Three parameters characterizing chevron patterns, i.e., inclination angle Om, the 

long wavelength L of defect orientation line and the propagating velocities Vp, are 
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Fig. 5.3. The difference between two bifurcation 

points as a function of /. Vc and Vc* are 

defined from anomalies, e.g., as shown in Fig. 

5.2. The sample is different from that in Fig. 

5.2. 

shown as a function of a voltage in Fig. 

5.2 where their definitions are also sche

matically drawn (Fig. 5.2(c)). At the 

first bifurcation point Vc=81V, PWD 

can be observed whose wavelength w is 

about 5.6 J.lm with the propagating veloc

ity Vpff ~ 1 J.tm/s (Fig. 5.2(a)). The 

propagating mode in EHD was first ob

served by the present author (SK) and 

has been called a propagating WD. 14>·17> 

This velocity gradually decreases with 

increase in the voltage and PWD 

becomes easier to be trapped by defects 

(Fig. 5.2(b)). On the other hand Om 

increases continuously (roughly linear) 

from zero at Vc to about 60 degree at 

Vc *=89.3V which is defined by the change of the slope of Om( V). Then it almost 

saturates near 75 degrees at high V. Here Vc * is the chevron threshold and at this 

value the defects aline along the defect streets with the wavelength 2L=160 J.lm. 

Here L decreases upto roughly 50% as the voltage increases (Fig. 5.2(a)) and 

saturates for sufficiently high voltage below DSM point. The typical value of L at 

Vc* nearly corresponds to d//i. Above Vc*, the inclined WD located between two 

defect lines travels in the direction along the defect line, that is in the direction 

perpendicular to the original director orientation (rubbing direction). Thus one can 

define two propagating velocities VP!I and Vp.1_ due to this inclination of rolls, of which 

voltage dependences are shown in Fig. 5.2(b). As seen in this, the velocity drastically 

changes at Vc * showing more than three times faster than that of below. The 

difference between Vc and Vc *becomes narrower with increase of an applied frequency 

as shown in Fig. 5.3. Finally both thresholds come together and no difference can be 

observed at /=/c*=450 Hz. This is a kind of co-dimension two bifurcation point 

25 

20 
~ 17 
; 

2: ~ 15 

~ E 
210 ~ 

I s 

&q-+ 

0 
0 100 200 300 0 100 300 400 500 

f (Hz) f(Hz) 

(a) (b) 

Fig. 5.4. Comparisons between experimental ( o, ~: Vc; D: Vc *) and theoretical (solid lines) thresh· 

olds (a) both in the conduction and dielectric regimes and experimental plots and theoretical curves 

(solid lines) for critical wavenumbers (b) as a function of frequency. 

r/ 
I 

rf 
II 
17 .. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.9

9
.4

5
8
/1

8
8
2
0
3
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



482 S. Kai and W. Zimmermann 

(CDT). Below Vc* the defects move more or less without definite order. 

The threshold curve over the whole frequency range (conduction and dielectric 

regime) is shown in Fig. 5.4(a) and the associated critical wavenumbers at threshold 

in Fig. 5.4(b). The solid lines in Figs. 5.4(a) and (b) are obtained from the threshold 

calculation (described in § 2) in the conduction regime and for the two threshold 

modes in the dielectic regime. In our numerical calculations the material parameters 

of MBBA at 30 OC have been used. In addition the conductivity-anisotropy was 

adjusted to 6tt!a1. =1.38 for approximating the cutoff frequency and the threshold in 

the dielectric regime as well as the critical wavenumbers (especially for low fre

quencies). Theoretically we never found the case where both dielectric thresholds 

cross each other. In Fig. 5.4(b) we also have plotted the wavenumber-difference Llq 

= qr- qz between the two critical modes in the dielecectric regime. 

The curves in Fig. 5.4 show the typical behavior that the threshold voltages and 

the critical wavenumber depend roughly like a square root on the frequency I of the 

external applied voltage. We show here the thresholds Vc and Vc * in the dielectric 

regime in an extended frequency range. We find that the chevron threshold comes 

down to the first threshold at approximately lc * ~ 3/c. The threshold difference L1 V 

= Vc *- Vc shows roughly a linear behavior at some distance from lc and goes to zero 

at !c* (see also Fig. 5.3). This decreasing tendency of LJV is the first measurement, 

although we reported the existence of a second threshold for the chevron.l7)'24> 

The normalized wavenumber of the chevron pattern 2d/2L=50 fJ.m/94 fJ.m~0.54 

(see Fig. 5.2) is similar to the calculated wavenumber-difference (qr- qz) ~ 0.6 of both 

dielectric modes. This similarity gives an indication that the chevrons are the result 

of the nonlinear interaction of both linear modes, favoring coexistence and this 

similarity is also the starting point for some qualitative considerations about the 

origin of the chevrons in the following. 

In the case where for both dielectric modes normal rolls have the lowest threshold 

the superposition of the linear modes has the form, 

U=Aexp(iqrx)uA(z, mt)+ Bexp(iqzx)uB(z, mt)+c.c., (5·1) 

where qr and qz are the critical wavenumbers related to the two dielectric modes. 

The components of u;(z, mt) describe the induced potential, angles of the director and 

the velocities, as mentioned in § 2. Here qz corresponds to the higher threshold and 

is smaller than qr (see Fig. 5.4(b)). A and B are in the simplest case (no defect) 

complex constants A=Frexp(i¢r) and B=Fzexp(i¢z), then the linear solution can be 

brought into the form, 

U =[2FruAcos{((qr + qz)x + ¢r + ¢z)/2}cos{((qr- qz)x + ¢r- ¢z)/2}] 

+(FzuB- FruA)cos(qzx+ ¢z). (5·2) 

This solution is periodic and displays a beating behavior for finite values of Fr and Fz. 

By assuming a eDT-bifurcation (that means that the threshold difference between 

two linear instabilities is small) and assuming that both dielectric modes bifurcate 

supercritically, then the amplitudes would obey the following coupled amplitude 

equations by symmetry reasons, 
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notA=sA +.;12ox2A -IAI2A-rliBI2A, 

rzoJ3=(s-D)B+62 ox2B-IBI2B-rziAI2B. 

(5 · 3a) 

(5·3b) 

The assumption of a CDT-bifurcation is justified by the small difference of the two 

thresholds in the dielectric regime, whereas the assumption of the supercritical 

bifurcation must in principle be proven by a rigorous perturbation calculation starting 

from the full hydrodynamic equations as demonstrated in Ref. 21). By such a 

calculation also the coupling coefficients YI.z could be determined. However the 

experimental observations provide strong evidence that the first and the secondary 

bifurcations are supercritical, which is some justification of our assumption above. 

In Eq. (5·3) e measures the distance from the first threshold and D (D>O) measures 

the difference of the thresholds for both modes. 6.z, the coherent lengths for both 

modes are proportional to the curvature of the neutral curve near the minimum. 

Here they are quite similar and r1,2 are the relaxation times. The threshold for both 

modes are in that description eA=O and eB=D. 

Now we look on constant solutions of Eq. (5·3). There are two single mode 

solutions A=F1, B=O or A=O and B=Fz with F12 =e and Fz2=s-D. In addition 

there is a coexisting solution, 

(5·4) 

with ttA=e(1-rl)+Dn and ttB=e(1-rz)-D. By a simple stability analysis one can 

see that the single mode F1 or Fz is stable if AA or AB is negative and for the case 

1- r1 rz > 0 the coexisting solution exists and is stable, when both single modes are 

unstable. Now depending on the interaction coefficients r1 and rz the threshold for 

coexistence can also be in between the linear threshold s=O and s=D. This is for 

example the case for r1, rz< 0 and 1- r1 rz >0. Choosing e.g., II rzll~1 and let decrease 
rz< 0 more and more, the threshold for coexistence then comes down to that of the 

mode A. When one wants to make the analogy between the threshold for the 

chevrons then rz< 0 must decrease with frequency to explain the observation in Fig. 

5.4(a). This shows the possibility that chevrons can have as the origin the interaction 

of both linear modes. 

Now the following picture for the formation of the chevrons is imaginable. 

Immediately above the first threshold defects are created by the mechanism which is 

perhaps similar to that which induces also the defects in FWD. By increasing the 

voltage the coexistence becomes possible and due to the beating of the solution in Eq. 

(5 · 2) the defects order along the lines where the envelope has the smallest value. The 

reason for this ordering of the defects would be, that in the defect core the amplitude 

tends to zero therefore the undistorted amplitude must be less reduced in a region 

where the defectless state has a smaller amplitude than in the areas with a larger 

amplitude. This effect is especially important when the beating wavelength is larger 

than the length over which the amplitude in the defect core is varying. Otherwise the 

pinning of the defect with respect to such an argument can be neglected. 

In accordance with our observation/6J,l?J,zsJ as further details, the chevron pattern 

is a skin convection near electrodes. The director oscillation following the frequency 
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484 S. Kai and W. Zimmermann 

of an applied field is observed in the bulk of a cell.58' In this situation, the bulk 

oscillation could influence the macroscopic convection as a background disturbance. 

This is probably important and must be taken into account as well as a fl.exoelectric 

effect. Such quite different temporal scales (characteristic times; the order of second 

for the convection near surface and milisecond for an oscillation of the director in the 

bulk) and spatial scale may be an origin for a Hopf-bifurcation. 

The important fact observed in defect motions for both conductive and dielectric 

regimes is following. If gliding motion is more actively oscillatory and widely 

happens, the temporal order like oscillatory patterns (PWD, chevrons and oscillatory 

grid pattern (GP)) will be more favourably formed via new bifurcation when increas

ing a voltage. In contrast to this if it is inactive the stationary patterns like perfect 

GP16''17''23' will be observed. Thus defect motions indicate in some sense the charac

teristics of newly appearing patterns 

through further bifurcation. 

§ 6. Magnetic field effects for EHD 

The threshold Vc for the onset of 

EHD and the nonlinear stable-wave

number strongly depend on a mag

netic field H as already reported in 

detail. 19' On the magnetic field effects 

there are two physically quite different 

directions of a magnetic field against an 

electric field E, i.e., H J.E and H II E 

(namely H is applied in the z-direction: 

H,:).19'·60 ' We indicate simply H (i.e. Hx 

and Hy) for the former case and H;; for 

the latter and here mainly study for HJ.. 

H1. is rotated in the plane parallel to the 

10 

> 

ct 

5 

0 

4 2 

H, 

6 = 1.4 

4 

Fig. 6.1. Pattern of homeotropically changed 

orientation by H"=3900 Oe in EHD ( V=20V 

and /=50 Hz). 

60 

N 
:I: 

50 
..!' 

40 

ot I 1 
4 2 0 2 4 

H, (103 0el Hx 

Fig.6.2. Normalized threshold voltage A(= Vc(l- (f/fc) 8 )) and !c as a function of intensity of magnetic 

field for two different directions. 
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electrodes.19>.eo> Then again different situations can be realized, i.e., applying Hx 

perpendicular to the roll axis (parallel to the director) and HY parallel to the roll axis. 

Hx stabilizes the director orientation but Hy induces Freedericksz transition in a 

planar orientation which leads to inclination of a roll for H >He and even make it 

perpendicular to the original direction for a sufficiently high intensity. Here He is a 

critical field for the onset of Freedericksz transition. On the other hand, H11 can lead 

homeotropic orientation by the Freedericksz transition above a certain threshold 

value Hth different from He, and typical patterns due to the transition to homeotropic 

orientation are shown in Fig. 6.1. 

Figure 6.2 shows H-dependences of Ve and lefor two different H-directions, Hx 

and H11 (i.e., Hz). Here A is a normalized threshold voltage obtained from the best 

fit due to the equation, 

(6·1) 

where o= 1 for closed circles ( •: mainly for Hx) and o > 1 ranging from 1.4 to 12 for 

open circles ( o: for H11 ). For the region of H -value indicated by closed circles, 

ordinary WD was seen at thresholds. But for the region of open circles the pattern 

shown in Fig. 6.1 was observed, where no WD appeared even by increase of voltage 

and the route to DSM was completely different. For H11, thus, both thresholds Ve and 

le increase very steeply as the strength of H increases. This indicates that H 11 

induces a homeotropic orientation by which EHD can be suppressed. In contrast, the 

dependence of both Ve and le on the intensity of Hx is not strong. A and le are 

proportional to Hx and to Hx112 respectively. These are due to competition between 

the stabilizing effect of Hx and the destabilizing effect due to the EHD instability. 

The frequency dependence of Ve is shown in Fig. 6.3 for Hx=1000 Oe and H11=3900 

Oe. The large difference between them can be seen. For Hx, the smooth change of 

200 ,-------.----, 

150 

~ 100 

u 
> 

50 

(a) 

Hx = 1000 Oe ,/ 

50 100 
f (Hz) 

200 ,----~----, 

(b) 

H., =3900 Oe 

150 

~ 100 

u 
> 

50 

0 L..._ __ __, ___ __, 

0 50 100 
f(Hz) 

Fig. 6.3. Frequency dependence of threshold voltage Vc of WD for two different magnetic fields H:r 

=1000 Oe (a) and H,,=3900 Oe (b). 
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1 5 

0 10 
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5 

(a) 

Rest State 
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!::: 
0 10 
> 
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0 4 

(b) 

Rest State 

0~-~--~-~----~ 
0 4 

Fig. 6.4. Pattern diagram relatively near thresh

old. (a) d = 100 Jtm, r ,, = 14, rJ.= 10 (b) d = 50 

Jlm, ru=rl. =120. 

Fig. 6.5. Photographs from normal to oblique rolls 

in Fig. 6.4(a). 

H,=970 Oe, V=8.1 to 10.4 V. (from the up to 

the bottom pictures) 
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30 

(b) 

20 20 

~ 

.... 
0 

.... 
0 

> > 

> > 
10 10 

Rest State 

Rest State 

0 0 
0 20 40 0 40 80 

f(Hz) f(Hz) 

Fig. 6.6. Pattern diagram under magnetic field H=1000 Oe (a) for d=100 t-tm and F=14 X 10, and 2000 

Oe (b) for d=50 t-tm and F=120 X 120. 

Vc is observed but for H11 it is discrete and shows a jump with very large gap to the 

dielectric regime. For I <!c, Vc is almost constant with relatively large threshold 

about 15-20V for Htt, which is twice to three times larger than a common value for Hx. 

For both cases however the chevron pattern is observed in the dielectric regime. 

Figure 6.4 shows the typical phase diagram of patterns as a function of Hx in 

relatively small V for two different thickness d=IOO ,urn (a) and 50 ,urn (b) at fixed 

frequency. Both are quite different and the reason is unknown at this moment. 

Typical change of patterns from normal to oblique rolls is given in Fig. 6.5. Figure 

6.6 on the other hand shows the phase diagram of patterns as a function of frequency 

under fixed Hx ( =1000 Oe (a) and 2000 Oe (b)) in the conduction regime (!<!c). 

Lifshitz point can be observed at I ~36Hz in Fig. 6.6(a), which will be described in 

anisotropic fluids like NLCs by the equation,2°H2>'61> 

90 90 
• . • • . • A:d=25).1m (a) • • • (b) 

• • •:d=50).1m ••• • 
60 •• •:d=75).1m 60 ••• 

"' ••• •• A o:d=100).1m 
"' "' .. A "' "0 • A "0 

• 
<I> 30 

• 
. A <I> 30 

A:d=25).1m 

•:d=50).1m 

o:d=75).1m 

o:d=100).1m 

J. A . A •• 
}A 

H t.• 
0 

,-~c • 
0 

0 2 
Hy ( 103 Oe) 

4 0 

Fig. 6.7. Inclination angle of rolls to original direction as a function of a magnetic field HY for samples 

with various thickness d. He is the critical field for the Freedericksz transition. The universal 

curve proportional to tan-'(H/He-1)19' can be observed independently of din (b). (a) raw data (b) 

normalized data by each He. 
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5.0 11!111!0.----,-----,.---,.------, 

.. 
0 

~~ 2.5 

u 
:X: 

0 ~.,..dc=S.O )Jm 

0 100 

d(10-6m) 

200 

Fig. 6.8. Threshold magnetic field He as a function 

of d. The solid line due to He= a/(d- de) 

with a=3.53 Oe·m. 

8 

Cl 6 
Ill 
'0 

Cl> " 

2 

200 400 600 
Hx ( Oe) 

Fig. 6.9. Inclination angle B as a function of Hx. 

This data is measured along Hx-axis at fixed V 

=7.4V (.:(Hx=O)=O.l8) in Fig. 6.4(a). 

(6·2) 

containing the magnetic field effect. Here k1 =2 and kz=O for R-B convection in 

isotropic fluids. Details will be elsewhere.29> 

The magnetic field effect is closely related to the competition among surface 

anchoring, elastic and magnetic forces. The surface anchoring force penetrates into 

the bulk and therefore the H-response of bulk depends on sample thickness d. The 

bulk in a sample with small d is more influenced from glass surfaces by anchoring 

force. Such a behavior is tested for various d and shown in Fig. 6.7. In this figure, 

the inclination angle fJ of a roll axis to the original direction is plotted as a function 

of HY at the threshold; s(Hy)=O. A roll starts to incline from the threshold He which 

increases with decrease of d. Such a behavior is given by the relation, 

He=a/(d -de) (6·3) 

as shown in Fig. 6.8 by the solid line. Here de=9 ,um, a=3.53 Oe·m and Heo~390 Oe 

(=a/de). Physically, de corresponds to the thickness of the surface layer. 

The inclination angle f) of a zig-zag roll changes with a strength of Hx. The 

dependence of fJ on Hx is shown in Fig. 6.9. For Hx=O, the roll has a small fJ. 

Increasing Hx, f) increases. After it shows the maximum value fJ=9 degrees at 440 

Oe, fJ sharply decreases with increase of Hx. This behavior is understandable from 

the phase diagram shown in Fig. 6.4(a). Namely, it is probably due to the neighbor

hood of Lifshitz point. Other magnetic field effects have been already discussed in 

detail. 19> 

§ 7. Summary 

FWD is a kind of weak turbulence and shows nonperiodic feature in time and in 

space. We showed spatia-temporally nonperiodic motions of defects in § 3. We 

called this the defect chaos (topological chaos). Coullet et al. tried to understand 

such complicated motions in isotropic systems numerically by use of complex TDGL 

equations.10>.n> The description on defect turbulence by these model equations was 
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not yet fully successful and the bifurcation mechanism to FWD is still unknown. In 

R-B case it is considered that nucleation and annihilation of defects will be due to a 

mean flow. In EHD however both long-range space change interaction and elastic 

interaction seem to be more important from the fact that the transient motions of a 

single defect show oscillatory tendency of climbing and gliding velocities in WD, 

which has never been observed in shear flow of NLCs. These two interactions 

therefore must be explicitly taken into account in full amplitude equations. Then 

properties of bifurcation to FWD may be discussed. It is also worth noting that the 

state with more oscillatory defect motions changes into one with a temporal order 

after next bifurcation. In the case of less oscillatory motions, it changes rather into 

the stationary state after next bifurcation. Thus the precise investigation for motion 

of a single defect is very important.19>·62>·63> 

We are interested in the shape of an attractor for nonperiodic motion of defects 

in FWD and in its dimensionality with respect to model constructions. We tried to 

obtain the correlation dimension of the nonperiodic defect motions but did not well 

succeed. We have still an open question about types of intermittency in FWD. It 

might be a new type different from three types already observed.64> In FWD 1// type 

power spectrum has been observed due to intermittent change of the number of defects 

with temporal nonperiodicity.u> 1// spectrum for resistance fluctuations associated 

with defect interactions in metalic nanoconstrictions has recently been reported.65> 

The similarity between its origin of 1// noise and one in the present system is very 

interesting and might be universal in a sense of a connection with defect motions. 

We have also reported in detail the transition kinetics between the turbulent 

states DSM1 and DSM2. We found that the transition is local. This local transition 

also shares similarities with classical nucleation phenomena, however there is an 

essential difference in the growth process of the nuclei: Its velocity cannot be reversed. 

It has been revealed that, during the transition to the DSM2-state, disclinations are 

created--presumably by eddies in the velocity field which are already present in the 

DSM1 state. In a sense the DSM2 state can be called as "disclination turbulence". 

In that respect the DSM1-DSM2 transition has a great similarity to the transition 

between the two turbulent states in superfluid Hell, where one has a change in the 

vortex filament density. We have demonstrated in the present article the analogy 

between disclination in EHD and vortex-filament in superfluid turbulence of Hell. It 

is very difficult to check whether this transition in Hell however is spatially homoge

neous (homogeneous bifurcation) or starts from nucleation like the present case 

because of difficulty of direct visualization. In this sense, EHD has a great advantage 

for studying such topological instabilities. 

The dynamic behavior of the chevron is strongly related to the defect motions 

which become more active and widely moving with oscillatory tendency in space as 

I is approached to !c. We showed that the chevron pattern was formed by the 

periodic defect orientation via a second bifurcation point. The propagating velocity 

and width of the defect orientation were considerably changed via that point. We 

also found co-dimension-two bifurcation point at lc * where the first and the second 

bifurcations occurred at the same threshold. There is no quantitative theoretical 

work in this region, except linear theory done by Bayreuth group.20>-22>·35> Most will 
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be in the future study. 

In magnetic field effects, we mainly discussed on the static aspects. The charac

teristic changes of Vc and lc were shown for both of which strongly depend on the 

strength of a magnetic field. The Freedericksz transition in convective state was 

observed. The thickness dependence of He was described and evaluated. The 

magnetic-field-induced Lifshitz point was also observed. Theoretical works on this 

will be in the future. 

We have presented many new aspects observed in EHD in this article most of 

which should be understood more precisely. We could explain some of threshold 

effects theoretically. However it is not fully satisfactory yet. We hope that our 

work will give valuable hints for the future theoretical works in particular on highly 

nonlinear aspects, e.g., on nucleation and annihilation of defects, their motions, defect 

chaos, turbulent-domain nucleation, and its front propagation. 
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