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Abstract. An efficient way to precisely pattern particles on solid surfaces

is to dispense and evaporate colloidal drops, as for bioassays. The dried

deposits often exhibit complex structures exemplified by the coffee ring pattern,

where most particles have accumulated at the periphery of the deposit. In this

work, the formation of deposits during the drying of nanoliter colloidal drops

on a flat substrate is investigated numerically and experimentally. A finite-

element numerical model is developed that solves the Navier–Stokes, heat

and mass transport equations in a Lagrangian framework. The diffusion of

vapor in the atmosphere is solved numerically, providing an exact boundary

condition for the evaporative flux at the droplet–air interface. Laplace stresses

and thermal Marangoni stresses are accounted for. The particle concentration

is tracked by solving a continuum advection–diffusion equation. Wetting

line motion and the interaction of the free surface of the drop with the

growing deposit are modeled based on criteria on wetting angles. Numerical

results for evaporation times and flow field are in very good agreement

with published experimental and theoretical results. We also performed

transient visualization experiments of water and isopropanol drops loaded

with polystyrene microspheres evaporating on glass and polydimethylsiloxane

substrates, respectively. Measured evaporation times, deposit shapes and sizes

and flow fields are in very good agreement with the numerical results. Different
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flow patterns caused by the competition of Marangoni loops and radial flow

are shown to determine the deposit shape to be either a ring-like pattern or a

homogeneous bump.
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Nomenclature

a speed of sound (m s−1)

c drop liquid vapor concentration (kg m−3)

cp specific heat (J kg−1 K
−1

)

C dimensionless heat capacity (ρcp/(ρLcp,L ))

DAB diffusion coefficient (m2 s−1)

g gravitational acceleration (9.81 ms−2)

H mean surface curvature (m−1), relative humidity (−)

H̄ dimensionless mean surface curvature (Hrmax,0)

j evaporative mass flux (kg m−2 s−1)

J dimensionless evaporative mass flux ( j/(ρv0))

k thermal conductivity (W m−1 K−1)

K dimensionless thermal conductivity (k/kL)

L latent heat of vaporization (J kg−1)

p pressure (Pa)

P dimensionless pressure (p/(v2
0ρL))

n unit normal vector to any boundary considered, n = (nr · nz)

r radial coordinate (m)
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R dimensionless radial coordinate (r/rmax,0)

t time (s)

T temperature (◦C)

T stress tensor

u radial velocity (m s−1)

U dimensionless radial velocity (u/v0)

v axial velocity (m s−1)

V dimensionless axial velocity (v/v0), volume of the drop (m3)

v velocity vector, v = (u, v)

V dimensionless velocity vector V = (U, V )

X concentration of particles (kg of particles (kg of solution) −1)

z axial coordinate (m)

Z dimensionless axial coordinate (z/rmax,0)

Dimensionless numbers

Fr Froude number (v2
0/(rmax,0g))

M Mach number (v0/a)

Pr Prandtl number (µcp,L/kL)

Re Reynolds number (ρv0rmax,0/µ)

We Weber number (ρv2
0rmax,0/γ )

Greek letters

γ surface energy (J m−2)

φ wetting angle of the drop (−)

µ dynamic viscosity (Pa s)

θ dimensionless temperature [{Ti − min(T1,0, (T2,0)}/|T1,0 − T2,0|]

ρ density (kg m−3)

σ stress (Pa)

τ dimensionless time (tv0/rmax,0)

Subscripts

0 initial

1 droplet

2 substrate

CL wetting line

f final

int liquid–gas interface

L liquid

max maximum value

r radial direction

rec receding, depinning

ref reference value

vap vapor

z axial direction

∞ ambient
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1. Introduction

In biology, the evaporation of colloidal drops is used for depositing or organizing biological

materials such as proteins and DNA [1]–[7]. Colloidal deposition and crystallization [8]–[14]

can also be used to manufacture micro- and nanowires [15, 16], nanocrystals [17] and explosive

crystalline layers [18]. Figure 1 shows that the patterns left by an evaporating colloidal drop can

exhibit a ring-like structure [19] or more complex features such as a network of polygons [20],

hexagonal arrays [17] or a uniform deposit [21, 22]. The pattern variety echoes the complex,

coupled and multi-scale transport phenomena occurring during the evaporation of a colloidal

drop: fluid dynamics is transient and can be influenced by the impact and associated interfacial

deformation by Marangoni stresses, by wetting and the shrinking free surface; heat transfer

occurs by convection inside the drop and conduction in the substrate, with a latent heat

contribution at the evaporating free surface; mass transfer occurs through diffusion of liquid

vapor in the atmosphere, advection–diffusion of particles in the drop and short-range forces

between the particles and the substrate.

In 1997, Deegan et al explained the ring deposit formation [19, 23, 24] by a strong

radial flow carrying particles toward the pinned wetting line, where evaporative flux is the

highest due to the wedge geometry. Their theory [19, 23, 24] was based on the lubrication

approximation. For thin drops with spherical cap shapes, they provided an analytical expression

for the local evaporative flux. Maenosono et al [25] observed that the growth of a nanoparticle

ring occurs in two stages, a ring buildup stage with a pinned contact line, followed by a

stage where the wetting line recedes. They predicted the ring growth dynamics analytically

and found a reasonable agreement with experiments in terms of ring growth rate and final

width. Onoda and Somasundaran [26] showed that the chemical or physical heterogeneities

of the substrate influence the final deposition pattern. Also, Marangoni convection inside the

drop due to the variation of surface tension along the free surface can affect the deposit

formation and the flow fields, as shown by Truskett and Stebe [20]. In 2006, Hu and Larson [22]

observed that thermal Marangoni convection induces preferential deposition at the center of

the droplet rather than at the periphery, for the case of microliter octane drops evaporating

on glass coated with perfluorolauric acid (PFLA). Very recently, Ristenpart et al [27] showed

analytically that the ratio between substrate and droplet thermal conductivities controls the

direction of Marangoni convection inside an evaporating drop. They also showed experimentally

that deposit patterns depend on the Marangoni flow direction. The formation of multiple

rings has been investigated by Shmulyovich et al [28] during the drying of 1–70 µl water

droplets containing 0.88 and 3.15 µm latex particles. The ring formation occurred as a

succession of wetting line pinning, ring formation and depinning events. Deegan observed

experimentally [23] that the time at which the wetting line of a colloidal drop depins (defined

as depinning time) from the deposit corresponds to about 40–80% of the total evaporation

time. In a very recent article, Zheng [29] showed theoretically that depinning occurs at about

50% of the total evaporation time, independently of the initial concentration of the particles

in the drop.

Recently, numerical studies have been reported that study the evaporation of a sessile drop

of pure liquid on a solid substrate. Hu and Larson [30, 31] developed a finite-element model

using the lubrication approximation for the evaporation of a sessile drop on a glass substrate

with a pinned wetting line. They assumed that the free surface of the drop remains a spherical

cap throughout the evaporation. In an extension of this model [32], the same authors reported

New Journal of Physics 11 (2009) 075020 (http://www.njp.org/)
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1 mm

1 mm

(a) (b)
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(c)

(e)

100 µm

1mm

Figure 1. A multiplicity of deposits can be obtained after the drying of a colloidal

drop: (a) ring-like pattern from an aqueous drop containing 60 nm polystyrene

spheres on titanium substrate [90] (with permission from ACS); (b) multiple

rings from a µl water drop containing 1 µm polystyrene microspheres on

glass (our work); (c) fingering at wetting line obtained from a µl isopropanol

drop with 1 µm polystyrene microspheres on glass (our work); (d) uniform

deposition pattern of 60 nm hydroxyapatite particles from an aqueous drop

on a titanium disk [91] (with permission from ACS); (e) hexagonal cells

from surfactant-laden aqueous drop containing polystyrene microspheres on

hydrophobic octadecyltricholorosilane (OTS) substrate [20] (with permission

from ACS).
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that Marangoni convection changes the internal flow pattern from radially outward to counter-

clockwise. Also, a detailed numerical model for the evaporation of pure microliter water drops

was presented by Ruiz and Black [33]. They solved the Navier–Stokes and energy equations

with consideration of thermocapillary stresses. In this model, the wetting line was pinned and

the evaporative flux was assumed to depend on the substrate temperature but not on the radial

distance. Studies by Mollaret et al [34], Girard et al [35] and Widjaja et al [36] followed a

similar approach assuming a pinned wetting line but solved the vapor diffusion equation to

obtain an accurate evaporative flux.

Regarding colloidal drop evaporation, fewer numerical studies have been reported. Within

the framework of the lubrication theory, Fischer [37] studied the advection of particles in

an evaporating drop, and numerically found transient and local particle distributions within

the droplet. Hu and Larson [22] computed the deposition of PMMA particles based on the

Brownian dynamics simulations for a microliter octane droplet evaporating on glass. The

velocities used in this model were found using the lubrication approximation and neglecting

convective heat transfer inside the droplet [32]. Using the commercial CFD package CFD-

ACE+, Dyreby et al [38] simulated the particle transport in the early stages of the evaporation

of a nanoliter drop. This model assumed that the droplet shape is a spherical cap with pinned

contact line throughout the evaporation, and that heat transfer and Marangoni convection can

be neglected. Also, Dietzel and Poulikakos [39] simulated the coagulation of particles in

a drop heated by a laser beam, a phenomenon that takes place so fast that the mass loss

through evaporation is negligible. Finally, in 2008, Widjaja and Harris [40] simulated the

transport of particles inside an evaporating droplet by solving a continuum advection–diffusion

equation.

Due to the complex, coupled physics involved during colloidal drop evaporation, most

theoretical and numerical models reported so far are based on assumptions such as fluid flow

with negligible inertia [24, 30, 31, 41], small wetting angle [19, 24], spherical cap shape of the

free surface [19, 24, 30, 31, 34, 38, 41, 42], pinned wetting line throughout the evaporation [24],

[30]–[35], [40, 41, 43], negligible heat transfer between the drop and the substrate [19, 23, 24,

30, 40, 43] and negligible Marangoni convection [36, 40, 43]. Also, to the best of our knowledge,

no published numerical study has considered the receding of the wetting line during colloidal

drop evaporation, or the interaction of the free surface and the growing peripheral deposit,

which can involve depinning, i.e. the separation of the drop from the deposit. Thus, a numerical

modeling involving all these effects would provide a tool to predict deposit growth and final

pattern shapes.

Our paper describes a numerical model that simulates the evaporation of a colloidal

droplet with full consideration of the Navier–Stokes equations, convection and conduction

heat transfer equations, Marangoni convection and receding of the wetting line. A

detailed treatment is proposed for the interaction of the free surface with the peripheral

deposit and eventual depinning. The diffusion of vapor in the atmosphere is solved

numerically, providing an exact boundary condition for the evaporative flux at the droplet–air

interface. The particle concentration is tracked by solving a continuum advection–diffusion

equation. The model is validated against published data and used to simulate the

formation of deposits during the evaporation of a nanoliter colloidal drop. Finally, the

formation of different deposit patterns obtained in our laboratory is explained by our

simulations.

New Journal of Physics 11 (2009) 075020 (http://www.njp.org/)
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2. Numerical model

The mathematical model developed in this study is based on a finite-element code for droplet

impact and heat transfer developed by Poulikakos and co-workers [44]–[46] and Bhardwaj

et al [47]. This model has been extensively validated for studies involving impact and heat

transfer of molten metal [44, 48] and water droplets [49]. It is extended here for the case of

an evaporating colloidal droplet. The flow inside the droplet is assumed to be laminar and

axisymmetric. All equations are expressed in a Lagrangian framework that provides accurate

modeling of free surface deformations and the associated Laplace stresses [50]. Our extension

of this model for the evaporation of colloidal drops involves the modeling of evaporative flux

at the drop free surface, the modeling of thermocapillary stresses and the Marangoni flow, the

modeling of the convection and advection of particles inside the drop and the modeling of the

wetting line motion in the presence of agglomerating particles. We also propose a criterion to

determine if separation of the free surface from the deposit (i.e. depinning) occurs during ring

formation. Finally, we have solved the challenge to handle multiple timescales, which range

from nanoseconds for capillary waves to several seconds for an entire evaporation process at

ambient temperature. The various components of the modeling are presented hereafter.

2.1. Fluid dynamics

The radial and axial components of the momentum equation (equation (1)) are considered along

with the continuity equation. An artificial compressibility method is employed to transform the

continuity equation into a pressure evolution equation (equation (2)), as in [51, 52], and a small

Mach number M = 0.001 is used. Only the dimensionless form is given below, since the full

derivation is available in [44].

DV

Dτ
− ∇ · T +

nz

Fr
= 0 (momentum), (1)

DP

Dτ
+

∇ · V

M2
= 0 (continuity). (2)

In the above equations, M , Fr, P , τ and V are the respective Mach number, Froude number,

the dimensionless pressure, dimensionless time and velocity vector, as per definitions in the

nomenclature. The definitions of the dimensionless numbers are based on rmax,0 = initial wetted

radius of the drop and v0 = 1.0 m s−1 as the respective reference length and velocity. The unit

vector n = nR + nZ is normal to any boundary considered; nr and nz are the radial and axial

components of the vector n, respectively, and T is the stress tensor:

T =





σ̄ RR σ̄ RZ 0

σ̄ RZ σ̄ ZZ 0

0 0 σ̄ θθ .



 . (3)

The dimensionless stress tensor terms are:

σ̄ RR = −P +
2

Re

∂U

∂ R
, σ̄ θθ = −P +

2

Re

U

R
,

σ̄ RZ = σ̄ ZR =
1

Re

(

∂U

∂ Z
+

∂V

∂ R

)

, σ̄ ZZ = −P +
2

Re

∂V

∂ Z
,

(4)

New Journal of Physics 11 (2009) 075020 (http://www.njp.org/)
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No convection and radiation losses (equation (12)

Balance of pressure, surface tension forces and viscous 

stresses (equation (7))

Hydrodynamic and thermodynamic vapor–liquid jump 

conditions (equation (18) and (19)

Axisymmetry 

No slip (equation (6)

Perfect thermal contact

Constant temperature

No convection and radiation losses (equation (12)

No penetration for vapor concentration

Constant vapor concentration 

Wetting line model (section 2.5)

Drop

Substrate

A B

CD

Figure 2. Boundary conditions used in the mathematical model. A typical mesh

used in this study.

where Re is the Reynolds number defined in the nomenclature. It is worth mentioning that due

to the Lagrangian formulation the mesh moves with the fluid velocity and advective terms do

not appear in the momentum conservation equations, although they are physically considered.

The boundary conditions for the fluid dynamics are described in figure 2.

Symmetry along the z-axis implies:

at R = 0, U = 0,
∂V

∂ R
= 0. (5)

The no-slip and no-penetration boundary conditions are applied at the z = 0 plane, except at the

wetting line:

at Z = 0, R 6= RCL, U = 0, V = 0. (6)

Boundary conditions at the wetting line (RCL, 0) are discussed in section 2.5 because they also

depend on the evaporation model.

At the free surface, a stress balance is considered including forces due to surface tension,

viscous stresses and thermocapillary stresses [39, 53, 54]:

(T)T · n = −2
H̄

We
n +

∇γ

ρv2
0rmax,0

, (7)

New Journal of Physics 11 (2009) 075020 (http://www.njp.org/)
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where We is the Weber number defined in the nomenclature. In the above equation, H̄ is the

dimensionless free surface curvature. The temperature dependence of the surface tension γ is

assumed to be linear as γ = γ0 + (∂γ /∂T )(T − T1,0), where subscript ‘1, 0’ represents the initial

drop temperature. The Weber number is modified to take into account the variation of surface

tension with temperature:

1

We
=

1

We0

(

1 +
∂γ

∂T

(T − T1,0)

γ0

)

. (8)

The initial conditions are that the initial shape of the drop is a sessile spherical cap with a slight

overpressure due to Laplace stresses [55]:

U = 0, V = 0, P =
8 sin φ0

We
, (9)

where φ0 is the initial wetting angle of the drop.

2.2. Heat transfer

The energy equation is solved in both the droplet and the substrate, according to the formulation

in [44, 46, 47]. Thermal convection and radiation heat transfer from the droplet free surface

are neglected. A perfect thermal contact between the drop and the substrate is assumed. The

dimensionless energy equations for the drop (i = 1) and the substrate (i = 2) are given by

Ci

Dθi

Dτ
−

1

Pr Re
∇

2θi = 0, (10)

where Ci is the dimensionless heat capacity and Pr is the Prandtl number. The symbol θi is the

dimensionless temperature defined as

θi =
Ti − min(T1,0, T2,0)

∣

∣T1,0 − T2,0

∣

∣

, (11)

where T1,0 and T2,0 are the initial dimensional temperature of the drop and the substrate,

respectively. In the isothermal case, a reference value of 0 ◦C replaces T2,0 in the above equation.

Note that this heat transfer model accounts for both conduction and convection in the drop

because of the Lagrangian approach.

The boundary conditions for the heat transfer are also given in figure 2. At the substrate

horizontal surface exposed to air, we neglect convection. Also, by symmetry the gradient of the

temperature perpendicular to the R = 0 axis is zero. Both conditions are expressed as

∂θi

∂ R
nr +

∂θi

∂ Z
nz = 0 at R = 0 or at R > Rmax, Z = 0. (12)

Along the side and bottom of the substrate (shown as BC and CD, respectively, in figure 2),

a constant temperature boundary condition is applied: θ2(R, Z , τ ) = 1. The substrate is a

square of 4 × 4 non-dimensional size, which corresponds to a dimensional value of about

1 mm × 1 mm.

The initial conditions for the droplet and substrate are

θ1(r, z, 0) = 0, θ2(r, z, 0) = 1 for T1,0 < T2,0 (heated substrate case),
(13)

θ1(r, z, 0) = 1, θ2(r, z, 0) = 1 for T1,0 = T2,0 (isothermal substrate).

New Journal of Physics 11 (2009) 075020 (http://www.njp.org/)
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2.3. Evaporation model

Since the evaporation model is part of the novel material presented in this paper, it is fully

derived below. The evaporative mass flux j at the free surface of the evaporating drop is obtained

by solving the diffusion equation for the vapor concentration c (kg m−3) [30, 31, 41]:

∂c

∂t
= DAB∇

2c, (14)

where DAB is the vapor-phase diffusivity of the droplet fluid in air (for water drop, DAB =

2.6e − 5 m2 s−1 at 25 ◦C [56]). Importantly, the time required for the vapor concentration to

adjust to changes of the droplet shape and surface temperature is of the order of r 2
max,0/DAB [30],

which is three orders of magnitude smaller than the total evaporation time of the nanoliter drops

considered in this study. Therefore, the vapor concentration evolves in a quasi-steady manner

with respect to the drop evaporation and we neglect the first term of the above equation.

The boundary conditions for equation (14) are also described in figure 2:

∂c

∂z
= 0 at r > rmax,

z = 0 (no penetration of the vapor concentration into substrate surface)

∂c

∂r
= 0 at z > hmax, r = 0 (axisymmetry),

(15)

c = Hc∞ at r = ∞,

z = ∞ (constant vapor concentration in the far-field),

c = cvap at the drop–air interface (constant vapor concentration at the drop–air interface),

where rmax and zmax are the wetted radius and the height of the drop, respectively. In the

above equation, cvap is the saturated concentration (kg m−3) of the vapor and c∞ = Hcvap is the

concentration in the far-field corresponding to the ambient relative humidity H. The saturated

concentrations are fitted from the data in [57, 58]:

cvap = [9.99e − 7T 3 − 6.94e − 5T 2 + 3.20e − 3T − 2.87e − 2] (for water),
(16)

cvap = [5.12e − 6T 3 − 2.51e − 4T 2 + 1.12e − 2T − 5.463e − 2] (for isopropanol),

where T is the temperature in ◦C. We found sufficient to consider the far field (r = ∞, z = ∞)

at r = 20rmax,0, z = 20rmax,0 (figure 2).

The evaporative mass flux j at the free surface can be expressed as in [31, 41]:

j(r, T ) = DAB(T )

[

∂c

∂r
nr +

∂c

∂z
nz

]
∣

∣

∣

∣

int

. (17)

At the free surface of the drop, the hydrodynamic and thermodynamic vapour–liquid jump

conditions [34, 53] are applied:

j · n = ρ(1 −Xint)(v − vint) · n, (18)

j L = −k∇T · n, (19)

New Journal of Physics 11 (2009) 075020 (http://www.njp.org/)
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where v is the velocity of the liquid at the free surface and vint denotes the velocity of the free

surface. The symbol n is the outward normal unit vector at the liquid–air interface and ρ is

the density of the drop liquid. Also, X int is the volume concentration of the particles at the free

surface and L is the latent heat of evaporation of the liquid (J kg−1).

2.4. Particle transport

The governing equation for the particles transport is given by [1, 6, 59]:

DX

Dt
= DPL∇

2 X, (20)

where X is the concentration of the particles (kg of particles (kg of solution)−1) and DPL

is the diffusion coefficient of the particles in the drop liquid (m2 s−1). The values of the

diffusion coefficient for 100 nm particles in water, 1 µm particles in water and 1 µm particles

in isopropanol are calculated using the Stokes–Einstein equation [60] as 4e − 12, 4e − 13 and

2e − 13 m2 s−1, respectively. Boundary conditions are given as in figure 2:

at r = 0, ∂ X/∂r = 0 (axisymmetry).

at z = 0, ∂ X/∂z = 0 (no penetration of the particles into the substrate).

We neglect any attraction force between the substrate and the colloidal particles because in all

the systems considered here, the substrate and colloidal particles repel each other, having zeta

potentials of the same polarity. We also assume that the particles do not affect the viscosity of

the droplet liquid.

The respective non-dimensional expressions for the hydrodynamic and thermodynamic

vapour–liquid jump conditions (equations (18) and (19)) are: j · n = (V − Vint) · n and J Re Pr

Ja = −K1∇θ · n, where J = j/ρlv0 and the Jacob number Ja = L(T )/[cp,l |T1,0 − T2,0|].

In the isothermal case, a reference value of 0 ◦C replaces T2,0 in the denominator.

The non-dimensional particle transport equation can be formulated as DX/Dτ = D∗
PL∇

2 X ,

where D∗
PL = DPL/(rmax,0v0).

2.5. Boundary conditions at the wetting line and criterion for depinning

As shown in figure 3 in our model, the drop is sessile and the wetting line is allowed to recede

only if the following two conditions are simultaneously verified:

• the wetting angle is smaller than the receding wetting angle (φrec), and

• the concentration of particles at the interface (XCL) is lower than the maximum packing

concentration (0.7 for spherical particles [61]).

Otherwise, the wetting line does not move: it is pinned. In the pinned case, the Laplace stresses

(equation (7)) are extrapolated to the wetting line (natural boundary condition) and the wetting

line velocity v · n = vint · n + j · n/ρ(1 − X int), is an essential boundary condition obtained from

equation (18), with vint = 0 at the pinned point.

In the case where the wetting line is receding, the Laplace stresses (equation (7)) are

extrapolated to the wetting line (natural boundary condition) and the wetting line velocity v

is obtained as an essential boundary condition from equation (18), v · n = vint · n + j · n/ρ(1 −

X int), where vint is calculated using the fact that the wetting angle is constant (φ = φrec).
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Figure 3. Depinning mechanism for the evaporation of a pure liquid drop.

Receding starts when the wetting angle reaches a given receding value φrec and

then proceeds at constant wetting angle.

Figure 3 explains the depinning or receding of the wetting line during the evaporation of

a pure liquid drop. According to the Young–Dupre equation [29, 55], depinning starts when

the wetting angle of the drop φ becomes equals to φrec (critical value of the receding angle,

usually determined experimentally). As shown in figure 3, during the early stages of the drop

evaporation, the wetted radius remains constant and the wetting angle φ decreases until φrec is

reached at t = t2. After that, depinning occurs and the wetted radius decreases while the wetting

angle remains constant at its receding value (φ = φrec), until complete evaporation of the drop.

In the case of a colloidal drop, a particle concentration X corresponding to the maximum

packing (X = 0.7) might be reached at the wetting line so that a ring starts growing as in

figure 4. As the wetting line becomes cluttered by the assembling particles, we propose in

figure 4 to describe the interaction of the free surface of the drops with the growing deposit

as follows. First, we consider that once a closely packed ring starts forming, the wetting line

shifts from its natural location (along the edge of the drop and on the substrate, at point C in

figure 4) to a different location: the intersection of the ring and the free surface of the drop

(point (I) in figure 4). In figure 4, the boundary of the growing ring is determined by the iso-

concentration front of 0.7 shown as a thick red line inside the drop in figure 4. To propose a

mechanism for depinning of the free surface from the growing particle ring, we will use the

receding wetting angle φrec (left column of figure 4) of the pure liquid drop on a substrate

made of closely packed colloidal particles. This angle φrec can be obtained experimentally and

is needed to explain the interaction of the colloidal drop free surface with the growing ring

(right column of figure 4), during evaporation on a smooth solid substrate. The top frames in

figure 4(a) show how depinning occurs at point (I). At t = t1, the wetting angle φ at point (I) is

greater than φrec. As evaporation proceeds, the wetting angle φ decreases until reaching at t = t2

the depinning value φ = φrec. At that instant, depinning occurs and the depinning line slides

along the 0.7 concentration front with φ = φrec. The bottom frames in figure 4(b) show that a

smaller wetting angle (φ′
rec) for the (pure liquid)–air–particles system leads to a situation where
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Figure 4. A proposed mechanism for depinning of the free surface from a

growing ring made of colloidal particles. We first define a wetting angle φrec

(left) as the receding angle of the pure liquid drop on a substrate made of

closely packed colloidal particle material (measured on the left side). The

frames on the right describe two possible evolutions of the system considered

in this study: a colloidal liquid drop, a smooth solid substrate and air. The

red wedge with spheres represents the ring as it forms by accumulation of

particles, so its volume and angle change over time and the spheres in the

wedge are the particles accumulating in the ring. The top frames (a) show

that depinning at point (I) occurs during drying of the colloidal drop on a

smooth solid substrate when φrec is reached at point (I). The bottom frames

(b) show that a smaller wetting angle (φ′
rec) for the pure liquid–air–particles

substrate leads to a situation where the ring forms without depinning.

the colloidal ring forms without depinning because the wetting angle φ at point (I) is always

larger than φ′
rec. Obviously, our model relies on measuring the wetting angle φrec for the pure

liquid drop on a substrate made of closely packed colloidal particle material, the value of which

might be influenced by the surface roughness, of the order of the particle diameter. Note that

at the interface between the drop liquid and the ring, a horizontal velocity boundary condition

is applied with a magnitude matched to the evaporation rate at the surface of the ring. Also,

mesh elements of which all the nodes have reached 0.7 are removed from the fluid dynamics

calculation, according to the scheme defined in [62].

2.6. Numerical scheme

The mathematical model presented in the previous sections is solved using the Galerkin finite-

element method [63] with a fluid dynamics scheme from Bach and Hassager [64], as described

in [44]. That scheme is, however, specifically suited for transient drop impact problems, with

a time step constrained to the smallest timescale of the problem, which happens to be the

oscillation of parasitic capillary waves on the droplet free surface. This timescale of 1x/a

is about 15 ns, with 1x the grid size (∼2 µm) and a is the speed of sound. However, the entire

evaporation process takes about 2 min for a 20 nl water drop at ambient temperature: this would
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Table 1. Thermophysical properties used in the simulations at 25 ◦C [27, 56, 58,

88, 89].

Gradient of

Thermal Specific Surface surface tension Latent

Density conductivity heat Viscosity energy with temperature heat

Substance (kg m−3) (W m−1 K−1) (J kg−1 K−1) (Pa s) (J m−2) (N m−1 K−1) (J kg−1)

Water 997 0.607 4180 9.0e − 4 7.2e − 2 −1.68e − 4 2445e3

Isopropanol 780 0.13 2560 2.04e − 3 2.09e − 2 −7.89e − 5 768e3

Glass 2200 1.38 740 – – – –

PDMS 1030 0.23 1460 – – – –

involve 8 billion time steps and a prohibitive computing time. To resolve this issue, we have

developed a two-step temporal integration scheme. Firstly, a converged, instantaneous solution

of the fluid flow and the evaporation flux (equations (1)–(9) and (14)–(18)) is obtained using a

short time step (1τshort, order of 15 ns) with the Bach and Hassager scheme [64], and we account

for evaporation with equation (18) to determine the shrinking of the free surface. Secondly,

we perform a quasi-steady Lagrangian integration with a long time-step, about two orders of

magnitude larger (1τlong, order of 1 µs), using the converged velocities from the previous, short

time step. The computation proceeds by alternating between the two time steps. This two-step

approach is justified because the fluid flow and the evaporation flux can be considered steady for

the duration of the long time step because 1τlong ≪ τevaporation. To compensate for the artificial

loss of particles due to the shrinking of the free surface, a source term S = X jδA/ρδV is

added to the diffusion equation (equation (20)) for the elements touching the free surface of

the drop, where X is the particles concentration, ρ is the density of the drop liquid, j is the

evaporative mass flux and δA and δV are the free surface area and volume of the element,

respectively. Boundary conditions at the wetting line and on the ring are applied as described in

section 2.5.

The typical computational domain is shown in figure 2 and involves a spatial discretization

of 650 nodes in the drop of linear, triangular elements, refined near the wetting line, to

ensure grid and time step independency. The influence of grid size and time step have been

extensively checked for heat transfer and fluid dynamics case in [44, 65] for the evaporation

of pure liquids. The typical computational time was about two days on an Intel dual core

processor.

2.7. Thermophysical properties and dimensionless numbers

The thermophysical properties used in the simulations for water, isopropanol, glass and

polydimethylsiloxane (PDMS) are given in table 1, with values taken from [56, 57, 66, 67].

The temperature dependence of the dynamic viscosity µ, vapor-phase diffusivity of the droplet

fluid in air DAB and latent heat L is taken into account. All quantities are defined in SI units,

as shown in the nomenclature. For this purpose, the following curves are fitted on the data

in [56, 58].
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For water [56]

µ(T ) = (−0.0026T 3 + 0.5874T 2 − 47.598T + 1763.4)1e − 6 Pa s,

DAB(T ) = (2.5e − 4) exp

(

−
684.15

(T + 273.15)

)

m2 s−1,

L(T ) = (−2.5314T + 2508.6)1e3 J kg−1.

(21)

For isopropanol [56, 58]

µ(T ) = (−1.80e − 5T 3 + 2.0672e − 3T 2 − 1.4817e − 1T + 4.619)1e − 3 Pa s,

DAB(T ) = (1.0e − 4) exp

(

−
690.0

(T + 273.15)

)

m2 s−1,

L(T ) = (−1.8286T + 813.43)1e3 J kg−1,

where the temperature T is in ◦C.

2.8. Code validation

While several aspects of our numerical modeling have been extensively validated, such as the

fluid dynamics [68, 69] and associated heat transfer [44], we evaluate below the ability of the

present modeling to simulate the evaporation of colloidal drops. First, we apply our model to

the evaporation of pure liquids and compare the results with published data. Then, we test the

conservation of mass and energy during colloidal drop evaporation. Finally, we compare the

simulated transient drop volume and accumulated mass in the ring with published analytical

models of evaporating colloidal drops.

2.8.1. Evaporation of a pure liquid drop with constant receding angle. Many published

experiments describe the drying of millimeter-size drops [70]–[73] of pure liquids, but fewer

describe the drying of smaller drops, which is the focus of the present study. In [74], Erbil

et al recorded the evaporation of a 480 nl toluene drop on a Teflon substrate: the process

started with a wetted radius of 895 µm and proceeded with a constant receding wetting angle

of 44◦. The ambient temperature and relative humidity were 22.1 ◦C and 54%, respectively.

Our simulation results for this case are presented in figure 5. Thermophysical properties such

as ∂γ /∂T = −1.19e − 4 Nm−1 K−1 are taken from [75]. Figure 5(a) compares the numerical

and experimental transient evolution of the liquid volume and drop radius. The agreement

between experiments and simulations is excellent. Also, the nonlinear evolution of the wetted

radius during the receding phase is compared with a simple analytical model available in the

literature [76]–[82], which can be described as follows: during a receding phase with constant

wetting angle φrec, the wetted radius for the spherical cap evolves as rmax ∝ (tf − t)a, where tf

is the total evaporation time. The exponent a depends weakly on the nature of the fluid, being

slightly less than 0.5 for alkanes [76, 80, 81] but close to 0.6 for water [23, 24, 76]. Based

on this analysis, figure 5(a) shows that an analytical fit Rmax = 0.077(168 − t)0.5 is indeed

in excellent agreement with numerical results. Numerical results are plotted in figure 5(b) as
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Figure 5. Comparison of results of our numerical code with published data [74]

for the case of a pure 480 nl toluene drop evaporating on a Teflon substrate.

Initial substrate temperature, initial wetting angle and initial wetted radius of the

drop are 22.1 ◦C, 44◦ and 895 µm, respectively. (a) Comparison of experimental

and numerical results for the evolution of volume and wetted radius of the drop,

normalized with respect to their values at t = 0; (b) numerical results showing

temperature distributions (left) and the Marangoni flow loop (right) at t = 30 s.

dimensionless isotherms, streamlines and velocity magnitudes at t = 30 s. In the simulations,

the fluid is warmer near the wetting line than at the top of the drop. As a consequence, a surface

tension gradient along the free surface generates an upward Marangoni flow, which combines

with the radial flow needed to replenish the evaporating region near the contact line and results

in a counterclockwise flow loop visible in figure 5(b).

2.8.2. Conservation of thermal energy and mass of particles. The conservation of thermal

energy by the numerical simulation has been verified for the typical case of a 20 nl pure water

drop with 45◦ initial wetting angle evaporating on an insulated glass substrate initially at 100 ◦C,
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Glass substrate

Water drop

Figure 6. Conservation of thermal energy and particle mass during the

evaporation of a 20 nl colloidal water drop on a heated glass surface.

as plotted in figure 6. Energy is conserved over time if E1,0 + E2,0 = E1(t) + E2(t) + Eloss(t),

where E1,0 and E2,0 are the initial thermal energies of the drop and the substrate, respectively,

and E1 and E2 are the thermal energies of the drop and the substrate, each expressed as Ei(t) =
∫

V i
ρiC p,i(Ti(t) − Tref) dV . The thermal loss due to phase change at the evaporating free surface

is Eloss(t) =
∫ t

0

∫

Aint
j (r)(L(r) + C p(Tint(r) − Tref)) dA dt , with Tref = 0 ◦C. Figure 6 plots the

drop volume and the relative value of the thermal energy (E1 + E2 + Eloss) × 100/(E1,0 + E2,0) as

a function of time. Our results show that thermal energy is conserved within 1%. Also, the mass

conservation is verified by plotting the mass of the colloidal particles at any time with respect to

the initial particle loading (1% v/v concentration of 100 nm particles). We observe that the mass

of the particles is also conserved within 1% and conclude that the modeling conserves mass and

energy very well.

2.8.3. Evaporation of a pinned colloidal drop. In figure 7, the temporal evolution of the

particle mass in the ring obtained through the numerical model is compared with the analytical

expression by Deegan et al [24], an expression valid for thin drops evaporating at ambient

temperature:

m = m0

[

1 −

(

1 −
t

tf

)(1+λ)/2
]2/(1+λ)

. (22)

In equation (22), m0 is the initial mass of particles in the drop, tf is the total evaporation time

and λ = (π − 2φ0)/(2π − 2φ0) a function of the initial contact angle. We consider two drops,

20 nl and 2 nl water drops evaporating on glass with a low value for the initial wetting angle

(12◦) and a pinned contact line, because Deegan’s analysis is based on lubrication theory and

is valid only for thin drops with pinned contact line. The drop and the substrate are at ambient

temperature (25 ◦C). The comparisons of the evolution of the non-dimensional mass of the ring
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Figure 7. Comparison of our numerical results and analytical results for the

evolution of the drop volume [41] and ring mass [24] for a 20 and 2 nl water drop

evaporating isothermally on a glass substrate with initial wetting angle of 12◦.

given by analytical theory and by the simulation are shown in figure 7. The trend of the ring

mass given by the numerical results and the analytical theory are in good agreement, although

the numerical growth of the ring mass for the 2 nl drop appears delayed.

Figure 7 also plots the temporal evolution of the drop volume, which can be found from an

analytical theory by Popov [41]:

V =
πr 3

max,0φ0

4

(

1 −
t

tf

)

. (23)

In the above equation [41, 83], the drying time of the drop is proportional to the square of the

value of the initial wetted radius:

tf =
πρlr

2
max,0φ0

16DAB(cint − c∞)
. (24)

In equation (24), ρl is the density of liquid (kg m−3), rmax,0 is the initial wetted radius of the

drop, DAB is the vapor-phase diffusivity of the droplet fluid in air (m2 s−1), cint and c∞ are the

vapor concentrations (kg m−3), respectively, near the interface and in the ambient air.

Figure 7 shows good agreement between our simulations and the analytical formulae above

for both the mass in the ring and the drop volume evolution. However, in the later stages of

the evaporation, the numerical volume decreases slightly faster than predicted analytically. A

possible explanation is that our simulations were made with 5% volume of particles, whereas

the correlations [24, 41, 83] do not specifically consider the concentration of particles. Also,

results in figure 7 only show the first two-thirds of the evaporation process, corresponding to a

total computation time of about two days.
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3. Experimental details

Nanoliter water and isopropanol drops were spotted on glass and PDMS substrates, using a

375 µm diameter stainless steel pin, as routinely done to prepare bioarrays [84]. Using the same

standard pin, deposited water drops were smaller (3–5 nl) than isopropanol drops (30–40 nl)

probably because of higher wettability of steel by the solvent [84]. Evaporating droplets were

visualized from the side using a digital camera (Pixelink, PLA 741, 1.3 megapixel up to

100 frames s−1) and an Optem long-distance zoom objective. Typical time and spatial resolution

were 4 frames s−1 and 1 µm per pixel, respectively. We also used an Olympus IX-71 inverted

microscope to qualitatively assess the structure of the flow inside the drop: the motion of

fluorescent particles (1 µm or 100 nm polystyrene particles from Duke scientific Inc., CA) was

recorded at frame rates of 25 frames s−1, and resulted in figures such as figure 16 and the

associated movie (available from stacks.iop.org/NJP/11/075020/mmedia). After evaporation,

profiles of the deposits were measured using an atomic force microscope (Digital Instruments

Dimension 3000 with Si3N4 tip) in contact mode, as in figure 13. While this method worked well

for deposits on glass, measurements on PDMS substrates failed: the AFM tips broke possibly

because of the sticky PDMS. Therefore, the profile of deposits on PDMS was measured by the

following imprinting method [85]: firstly, the PDMS substrate (Dow corning Inc.) was coated

with a thick PDMS slab having a different ratio of base and curing agent, this is to facilitate

subsequent removal. After curing, the thick PDMS slab was removed and washed to remove

particles from the ring imprint. Then, epoxy (Loctite Inc., quick set no. 81502) was poured and

cured on the PDMS slab. The positive imprint of the deposit was finally measured on the epoxy

with a surface profilometer (Dektak3), as in figure 18.

4. Results and discussions

First, we describe two purely numerical results related to the Marangoni flow during

evaporation. The first result relates the direction of the Marangoni flow loop to the ratio of

substrate and droplet thermal conductivities, as per an analytical criterion (section 4.1). The

second numerical result describes the effect of the intensity of Marangoni convection on the

deposit shape (section 4.2). Then, we compare numerical and experimental results for two

specific colloidal evaporating cases that form different patterns:

1. Evaporation of a 3.7 nl water drop on a glass substrate with 1% volume fraction polystyrene

particles having 100 nm or 1 µm diameter. The result is a peripheral ring (section 4.3).

2. Evaporation of a 38 nl isopropanol drop on a PDMS substrate with 0.1% volume fraction

polystyrene particles having 1 µm diameter. The result is a homogeneous central bump

(section 4.4).

Simulations were performed at ambient temperatures using the same parameters as in the

experiments, with thermophysical properties and simulation parameters as in tables 1 and 2.

4.1. Direction of the Marangoni loop

Using asymptotic analysis and experiments, Ristenpart et al [27] showed that the direction of the

Marangoni loop is controlled by the ratio k2/k1 of substrate versus liquid thermal conductivities
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Table 2. Parameters used in the simulations reproducing experiments.

Case rcap,i hcap Vd T1,0 T2,0 H

(µm) µm (nl) φi φrec (◦C) (◦C) γ = f (T ) µ = f (T ) (%)

Water–glass 231 44 3.7 22◦ — 25 25 No Yes 50

Isopropanol–PDMS 437 125 38 32◦ 27◦ 25 25 Yes Yes 48

as shown in figure 8 (right column). An interesting question is therefore to determine if our

numerical loops also obey the criterion in [27], and results are shown in figure 8. The idea

behind the criterion in [27] is as follows. For small values of k2/k1 (such as 0.6 in figure 8), the

heat supplied to the wetting line (where evaporation is the highest) comes preferentially from

the liquid drop. This creates a thermal gradient along the free surface that points toward the top

of the drop, and results in a clockwise Marangoni flow, as in figure 8 (left column, D). Note that

we name the rotation direction of the flow in reference to our figures, where the streamlines are

plotted right from the axial symmetry axis. In reality, a ‘clockwise’ Marangoni flow is a flow

where streamlines ascend along the axis of symmetry to the top of the drop, radially descend

along the free surface toward the wetting line and come back to the center along the substrate.

A ‘counterclockwise’ flow is in the exact opposite direction. For large values of k2/k1 (such

as 1.8 or 10 as in figure 8), the heat supplied to the wetting line comes preferentially from

the substrate resulting in an inversion of the thermal gradient along the drop free surface so

that the Marangoni loop becomes counterclockwise. In figure 8 (left), we consider a system

of 38 nl isopropanol drop on PDMS substrate with an initial wetted radius and wetting angle

of 437 µm and 32◦, respectively. For this system, Ristenpart et al [27] found the critical ratio

for k2/k1 (when the Marangoni loop switches direction) to be 1.57. Isotherms and streamlines

in figure 8 (left) show that this switching is successfully reproduced by our code, as shown

by the different rotation direction for k2/k1 of 1.77 and 0.6, respectively. Note that a similar

reasoning can explain the counterclockwise nature of the flow in the toluene drop reported

in the section 2.8.1, for which k2/k1 = 2.05 is larger than a critical value of about 1.6 (see

figure 5(b), right). Interestingly the numerical simulations predict a more complex flow pattern

for k2/k1 = 1.2 with two loops, which might occur to the proximity of the transition region. In

figure 8 (left), the thermal conductivity of the substrate was the only parameter varied, all other

drop and substrate properties being kept constant.

4.2. Influence of the Marangoni flow on pattern formation

Figure 9 investigates how the magnitude of the thermocapillary flow controls the regimes of ring

formation or uniform deposit pattern, for the case of a 38 nl isopropanol drop with 1% of 1 µm

polystyrene particles evaporating on a PDMS substrate. Two simulations are performed where

the value of ∂γ /∂T is arbitrarily varied by one order of magnitude. The initial value of the drop

wetted radius and wetting angle are 437 µm and 32◦, respectively. The drop and the substrate

are initially at ambient temperature (25 ◦C). The simulation with the stronger thermocapillary

effect (on the right column of figure 9) shows a vigorous Marangoni loop that prevents particles

to accumulate at the wetting line. The simulation with the weaker thermocapillary effect (on the

left column of figure 9) shows a weaker Marangoni loop that does not fully prevent the radial

flow to carry particles toward the wetting line, where evaporation is the highest. Therefore at
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Figure 8. Influence of k2/k1, the ratio of substrate and liquid thermal

conductivities on the direction of the Marangoni loop for the evaporation of a

38 nl isopropanol drop on a PDMS substrate, with initial substrate temperature,

wetting angle and wetted radius of 25 ◦C, 32◦ and 437 µm, respectively. The

present numerical modeling (left column) shows temperature contours (left).

Streamlines superposed on the velocity amplitude contours (right) show a

transition in the loop direction, which confirms analytical results (right column)

from [27] (reprinted with permission of the first author).

about 16 s, the wetting line pins and starts forming a ring visible as an inset in figure 9 (left

column). Figure 9 (right column), however, does not exhibit any ring. This numerical result

shows that by reducing the intensity of Marangoni convection inside the drop, it is possible to

change the final deposit pattern.

4.3. Evaporation of a 3.7 nl water drop on glass

Figure 10 and the associated movie (available from stacks.iop.org/NJP/11/075020/mmedia)

describe our numerical results for the evaporation of a 3.7 nl colloidal water drop on a glass

substrate at ambient temperature, with an initial 1% (v/v) concentration of 100 nm polystyrene

particles. Time goes from top to bottom. It shows streamlines and velocity amplitude (right) as

well as isoconcentrations of particles (left, labelled X). The initial value of the drop wetted

radius and wetting angle obtained from experiments are 231 µm and 22◦, respectively. As

in simulations from other groups involving water [32, 86], Marangoni stresses are neglected

because the high surface tension of water favors the deposition of contaminants at the water/air

interface, a process that inhibits Marangoni convection. The parameters used in the simulation
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Figure 9. Intensity of Marangoni convection as controlling parameter for

the occurence of a ring or a uniform deposit. Left column shows results

for ∂γ /∂T = −7.89e − 6 Nm−1 K−1, while the right column corresponds to

∂γ /∂T = −7.89e − 5 Nm−1 K−1. Isoconcentration of the particles (left) and

streamlines superposed to velocity amplitude (right) are shown in each frame

inside the drop at different times.

are given in table 2, with a receding angle (φrec) around 2–4◦ [30]. As a consequence of this

low receding angle, the wetting line is pinned during the whole evaporation of the drop as

described in section 2.5. Inspection of our results in figure 10 reveals that at 8 and 10 s, the

internal fluid flow develops as radially outward, advecting particles toward the wetting line.

This flow pattern arises because of pinning and maximum evaporation flux at the wetting

line, as explained by Deegan et al [19] and Hu and Larson [31]. In relation to that we

plot in figure 11 the evaporation flux, obtained numerically at t = 0 s, with respect to the

radial distance along the substrate. Our flux results agree extremely well with the correlation

of Hu and Larson [31], with both approaches showing the strongest evaporation at the

wetting line.

In figure 10, the advected particles accumulate near the wetting line and start forming

a ring as soon as the particle concentration reaches the 0.7 limit corresponding to maximum

particle packing, visible in red color from t = 8 s. A magnified view of the growing polystyrene

particles ring is visible at the bottom of figure 10, from t = 11.7 s. At that point, the drop has

flattened into a film and we have skewed the vertical scale. Since the receding wetting angle

of water on polystyrene is about 80◦ [87], depinning of the drop free surface from the ring

might occur according to the modeling in figure 4(a), and described in section 2.5. However,

our simulation in figure 10 assumes a receding angle of water on polystyrene of 45◦ to account

for the roughness of the ring. This prevents depinning as in figure 4(b). As a result, depinning

does not occur and the ring is formed by the drying of the central film. While it is difficult to

assess how the depinning angle varies with the particle diameter and associated ring roughness,

we show in figure 13 that for the colloidal system considered in figure 10 numerical simulations

where depinning did not occur produced a ring shape closer to the experimental ring shape.

Figure 12 compares the experimentally measured and simulated evolution of the volume,

wetted radius and wetting angle during the evaporation of the same colloidal water drop on
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Figure 10. Simulation of the evaporation of a 3.7 nl colloidal water drop on

glass with ring formation. Particle concentration contours (left) and streamlines

superposed to velocity amplitude (right) are shown. A ring starts forming at the

wetting line when the concentration reaches 0.7 (in red, 8 s). Note that the aspect

ratio is increased toward the vertical axis from t = 11.7 to 16.2 s. See also the

associated movie available from stacks.iop.org/NJP/11/075020/mmedia.
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Figure 11. Comparison of numerical and analytical profile of evaporative flux

for a pure 3.7 nl water drop on glass at t = 0 s. The drop and the substrate are

at ambient temperature (25 ◦C). Initial wetting angle and initial wetted radius of

drop are 22◦ and 231 µm, respectively.

glass. In both numerical and experimental results, the wetted radius is approximately constant

during the evaporation of the drop (from t = 0 to 11.7 s). This is explained by the pinning of

the wetting line, as described above. The numerical results for the evolution of the drop volume

show a linear decrease from t = 0 to 11.7 s, and a similar trend can be noticed in the experiment.

A linear decrease in the evolution of the wetting angle can also be noticed in numerical and

experimental results. The final evaporation time of the drop is around 12 s, slightly faster in the

experiment than in the simulation.

Figure 13 compares the profiles of the ring measured by atomic force microscopy (AFM)

with the simulation result. Three AFM measurements of deposits generated under the same

conditions as in figure 10 are quite similar. They show that the ring has the profile of a dome,

about 1.7 µm high and 35 µm wide. Two profiles are obtained numerically, each corresponding

to a different value of the depinning angle for water on the ring material, as described in

figure 4 and above. The numerical profile corresponding to the lower value of the depinning

angle (φrec = 45◦, as in simulation in figure 10) appears to match the experiments quite well,

better than the profile with the larger depinning angle (φrec = 85◦) where depinning seems to

have occurred too abruptly. While both numerical simulations match the outer slope of the ring

very well, the inner slope suggests that the model with φrec = 45◦ is more appropriate, and this

might be explained by the fact that the roughness due to the particles assembling in the ring

reduces the value of the depinning angle of the water drop.

An interesting question regarding the numerical modeling presented in this paper is to

determine how large the particles can be before the continuum modeling for particle transport

becomes inadequate. Therefore, numerical and experimental results are shown in figure 14

for the same case as figure 13, except that 1 µm particles are used (10 times larger than the

100 nm particles in figure 13). AFM measurements in figure 14 show a ring with a rectangular
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Figure 12. Time evolution of numerical and experimental volume, wetted

radius and wetting angle for the evaporation of a 3.7 nl water drop on glass.

Initial values of substrate temperature, wetting angle and wetted radius of

drop are 25◦C, 22◦ and 231 µm, respectively. Comparison of the evolution of

volume, wetted radius and wetting angle is shown. These values are normalized

with respect to their initial values (at t = 0). Error bars are also shown for

experimental results.

Figure 13. Comparison of AFM measurements and numerical results for the

ring profile formed after the drying of a 3.7 nl water drop on glass substrate at

ambient temperature for 100 nm particles. Initial concentration of the particles

is 1%. Numerical results are shown for two values of the depinning angle (φrec):

85◦ and 45◦.
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Figure 14. Comparison of AFM measurements and numerical results for the

profile of the ring formed after the drying of a 3.7 nl water drop on glass substrate

at ambient temperature for 1 µm particles. Initial concentration of the particles

is 1%. Numerical results are shown for two values of the depinning angle (φrec):

85◦ and 45◦.

cross-section corresponding exactly to one monolayer of particles. While the ring width is

comparable to the width obtained with 100 nm particles (figure 13), the height does not compare

well with the simulation results in figure 14, for the reason postulated directly above.

4.4. Evaporation of a 38 nl isopropanol drop on PDMS

Figure 15 and the associated movie (available from stacks.iop.org/NJP/11/075020/mmedia)

describe our numerical results for a situation where the outcome is not a ring shape but a

homogeneous deposit. The system corresponds to a 38 nl isopropanol drop evaporating on a

PDMS substrate at ambient temperature. The drop is initially loaded with 0.1% concentration

of 1 µm polystyrene particles. Figure 15 shows streamlines and velocity amplitude (right) as

well as isoconcentrations of particles (left, labelled X). The initial value of the drop wetted

radius and wetting angle are obtained from our experiments as 437 µm and 32◦, respectively.

Marangoni stresses are taken into account with ∂γ /∂T = −7.89e − 5 N m−1K−1 and the

physical parameters used in the simulation are given in table 2. Since the ratio of substrate

and liquid thermal conductivities k2/k1 = 1.77 > 1.57, we expect the Marangoni loop to turn in

counterclockwise direction, according to the criterion in section 4.1. This is verified in figure 15,

for t = 3–12 s. The receding angle (φrec) obtained experimentally is around 27◦, slightly smaller

than the initial wetting angle, so that the wetting line is initially pinned and the wetting angle

gradually decreases. At t = 2 s, the wetting angle hits its receding value and the wetting line

recedes with a constant receding wetting angle of 27◦, according to the mechanism explained

in section 2.5. Figure 15 also shows that evaporation increases the concentration in the vicinity

of the free surface. This phenomenon, together with the Marangoni convection drags particles

along the free surface toward a stagnation point visible on the top surface of the drop from t = 3
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Figure 15. Simulation of the evaporation of a 38 nl colloidal isopropanol drop on

PDMS for homogeneous bump formation. Particle concentration contours (left)

and streamlines superposed to velocity amplitude (right) are shown. Note that

the aspect ratio is increased toward the vertical axis from t = 0 to 12 s. See also

the associated movie available from stacks.iop.org/NJP/11/075020/mmedia.

to 12 s. As time evolves, more and more particles are advected to the top of the drop where they

accumulate (t = 12 s).

This accumulation of particles on the top of the drop agrees well with experiments in

figure 16 and the associated movie (available from stacks.iop.org/NJP/11/075020/mmedia),

using the same conditions as in figure 15. We visualize the flow inside the drop using

fluorescence microscopy: by carefully adjusting the height of the focal plane we were able

to see the radial component of the velocities at different levels in the drop, as done in [27]. The

blurred image of the off-focus bead (t = 3.8 s) indicates that the circulation is counterclockwise,

in agreement with our numerical result in figures 15 and 16(b). An interesting fact we

noticed from our experiments is that once the drop was spotted on the substrate, the particles

moved in a chaotic manner for the first 15% of the evaporation time (3 s), until a slow and

axisymmetric flow took place. This phenomenon is consistent with observations made for a

2 µl isopropanol drop on PDMS substrate by Ristenpart et al [27]. The initial chaotic flow

could come from oscillations that are caused by the deposition process from the pin. However,

Ristenpart et al [27] speculated that this initial chaotic flow is due to the Benard–Marangoni

instability.

Figure 17 compares the experimental and numerical evolution of the volume, wetted radius

and wetting angle for the same 38 nl colloidal isopropanol evaporating on a PDMS substrate.

Experiments show that the receding of the wetting line starts at 2.5 s. The numerical results also

show that a pinned phase precedes a receding phase. Also, simulations show that the wetting

angle decreases linearly during the first stage of the evaporation, whereas it is constant during

the second stage of the evaporation (from t = 2 to 15 s). The final evaporation time of the drop

is 15 s according to the simulations, close to the measured value of 18 s.

The profile of the pattern obtained experimentally and numerically is shown in figure 18

The large oscillations and poor reproducibility of the measurement probably stem from the

indirect stamping process explained in section 3. However, the general shape, volume and
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Figure 16. Particle visualization in the evaporating 38 nl isopropanol drop

on PDMS using fluorescent microscopy. Initial substrate temperature, initial

wetting angle and initial wetted radius of the drop are 25 ◦C, 32◦ and 437 µm,

respectively. (a) A fluorescent particle is tracked at different positions 1, 2, 3

and 4 at different times. (b) Corresponding positions of the particle in the drop

as seen from the side of the drop. See also the associated movie available from

stacks.iop.org/NJP/11/075020/mmedia.

dimensions of the measured deposits are in good agreement with our simulation results: they

show a single central bump that differs radically from the peripheral ring seen in the water–glass

case of section 4.3. Our numerical results explain this difference by the change of flow pattern

due to Marangoni convection, as described in figure 15.
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Figure 17. Time evolution of numerical and experimental volume, wetted radius

and wetting angle for the evaporation of a 38 nl isopropanol drop on PDMS.

Initial values of substrate temperature, wetting angle and wetted radius of

drop are 25 ◦C, 32◦ and 437 µm, respectively. Comparison of the evolution of

volume, wetted radius and wetting angle is shown. These values are normalized

with respect to their initial values (at t = 0). Error bars are also shown for

experimental results.

Figure 18. Numerical and experimental (using surface profilometer) results for

the deposit profile obtained after the drying of a 38 nl isopropanol drop on PDMS

at ambient temperature. Initial substrate temperature, initial wetting angle and

initial wetted radius of drop are 25 ◦C, 32◦, 437µm respectively.
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5. Conclusions

In this work, the formation of deposits during the drying of nanoliter colloidal drops on a

flat substrate has been investigated numerically and experimentally. A finite-element numerical

model has been developed that solves the Navier–Stokes, heat and mass transport equations in

a Lagrangian framework. The diffusion of vapor in the atmosphere is resolved numerically,

providing an exact boundary condition for the evaporative flux at the droplet–air interface.

Laplace stresses and thermal Marangoni stresses are accounted for. The particle concentration

is tracked by solving a continuum advection–diffusion equation. For the first time, the receding

of the wetting line and the interaction of the free surface of the drop with the growing

deposit have been modeled using wetting angle criteria. Evaporation times and flow field

calculated numerically are in very good agreement with published experimental and theoretical

results, as well as with in-house experiments. For instance, numerical comparisons with

experiments involving water and isopropanol drops loaded with polystyrene microspheres show

the importance of Marangoni convection in controlling the internal flow and final deposit

pattern, either a ring-like pattern or a single central bump. Numerical results are found to be

in very good agreement with the measured deposit shapes and sizes.
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