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Pattern formation in a suspension of swimming micro- 
organisms : equations and stability theory 

By S. CHILDRESS, 

Courant Institute of Mathematical Sciences, New York University, 
New York 10012 

M. LEVANDOWSKY 

Haskins Laboratories, Pace University, New York 10038 

AND E. A. SPIEGEL 

Department of Astronomy, Columbia University, New York 10027 

(Received 13 August 1974) 

A model for collective movement and pattern formation in layered suspensions of 
negatively geotactic micro-organisms is presented. The motility of the organism 

is described by an average upward swimming speed U and a diffusivity tensor D. 
It is shown that the equilibrium suspension is unstable to infinitesimal perturba- 

tions when either the layer depth or the mean concentration of the organisms 

exceeds a critical value. For deep layers the maximum growth rate determines 
a preferred pattern size explicitly in terms of U and D. The results are compared 

with observations of patterns formed by the ciliated protozoan Tetrahymena 

pyriformis. 

1. Introduction 

From time to  time reports have appeared in the biological literature of 

observations of streaming patterns in liquid suspensions of swimming micro- 

organisms. The phenomenon involves fluid dynamics in that the experiments 

strongly suggest that the visible patterns of high concentrations of the organisms, 

as well as the associated motion of the suspending fluid, arise from a process of 

‘bioconvection’ (to use the term coined by Platt 1961), wherein natural dissipa- 

tive losses (presumably due mainly to the viscosity of the fluid) are compensated 

for by the work done on the fluid by the micro-organisms. Robbins (1952), 

observing Euglenu graciliis, and Loeffer & Mefferd (1952), observing cultures of 

the ciliated protozoan Tetrahymena pyriformis, found that patterns formed 
when the depth of the suspension or the organism number density exceeded 

critical values.? (Figures 1 and 3 a, plates 1 and 3, show the critical-depth effect.) 

The type of pattern apparently depends upon the suspension depth and upon the 

concentration and motility of the organisms. Wille & Ehret (1968), working with 

7 The critical values are given as 2 mm and 150 000 organisms/cm3. However, it is not 
clear whether or not these figures are intended to apply simultaneously at a critical state. 
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dense Tetrahymena cultures, observed two distinct steady-state patterns. The 

polka-dot pattern, in which spherical concentrations of the organism are arranged 
in a regular array, was formed in relatively shallow cultures (see figures 2 and 3 b,  

plates 2 and 3). A reticulate pattern emerged in deeper cultures as at the deep end 
of figure 1. The latter is usually described as consisting of irregular cells (‘regular 

cell’ being used here to mean a unit repeating periodically along the layer of the 

suspension), with the organisms swimming predominantly upwards over the 

interior of the cell, being carried laterally near the top and bottom of the layer, 

and plummeting downwards in thin vertical columns or sheets which mark the 

main visible features of the pattern. The concentration within these descending 

regions can exceed the mean concentration by a factor of 10 or more, and the 

fluid speed there is typically of the order of lmm/s. This speed appreciably 

exceeds the mean vertical swimming speed of the organisms (typically 0-5 mm/s 
in Tetrahymena); thus the organisms in the sheets or columns are swept to the 

bottom of the layer, eventually to swim again to the top and repeat the process. 

The pattern formation time is typically 10-30 s, which is also roughly the cycle 

time of individual organisms within the pattern, and increases as the motility 

(in the present context, the average swimming speed) of the organisms decreases. 
The dynamical explanation of bioconvection that has emerged in recent years 

(Platt 1961; Winet 1969; Winet & Jahn 1972; Plesset & Winet 1974) lies in the 

unstable stratification of the organism suspensions. The stratification is caused 
by the accumulation of organisms near the top of the layer and is a result of the 

swimming of organisms preferentially in the upward direction. We adopt the 

biological term and refer to this phenomenon as ‘negative geotaxis’. The occur- 

rence of negative geotaxis is now well established for Tetrahymena. Since the 

individual organisms are slightly denser than the ambient fluid, the process can 
produce an unstable subsurface layer of heavy material. 

Plesset & Winet (1974; see also Plesset & Whipple 1974) liken the onset of 
bioconvection to Rayleigh-Taylor instability. They model the organism-rich sub- 

layer as a layer of dense fluid overlying a less dense, deeper layer of fluid. They 

study the stability of this system under the influence of viscosity and find that 

the wavelength of the most rapidly growing mode agrees well with the observed 

scale of the reticular pattern. This result provides evidence that the onset of bio- 
convection is indeed due to a density inversion and that growing sedimentation 

fingers represent the formation of descending columns of organisms. 

The model of Plesset & Winet does not directly consider the negative geotaxis 

of the organisms, nor even their motility, except implicitly as a means by which 
the unstable equilibrium could be set up. Although it is possible that the negative 

geotaxib might be inhibited by the formation of the subsurface layer, it  is more 

likely that the mechanism which sets up the layering continues to act as the 
instability develops and influences the formation of a new stable equilibrium 

(should any exist), just as temperature differences remain the driving mechanism 

in nonlinear thermal convection. If the Plesset-Winet model were followed into 

the nonlinear range, the only possible new equilibrium would be one in which all 

or a major fraction of the subsurface fluid falls to the bottom, and which has 

a lighter and therefore stable subsurface layer. 
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BIGURE 2. Pattern formatiori in a 3 inin layer of C. cohnii at a mean coricentration of 
lo6 organisis/cm3. Tirnea: (a )  2 s, ( b )  13 s, (c) 19 s, ( d )  23 s, (e) 28 s ,  (f) 32 s ,  ( 9 )  36 s ,  

( h )  43 s, (i) 2 miri. The siisperision was swirled initially to render it hornogeneoiis arid t lw 
cxarly patterns are forming during tlie decay of the swirl. 

CHlLUHESS, LEVANUOWSKY AND SPlEGEL 
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(b)  
FIGURE 3. Patterns in layers of C. cohwii. (a )  Showing effect of slight \ariation in depth 
with sliallow v r d  at upper right. $“llaincntary structurcs arc in the process of breaking up 
into clumps. ( b )  (%)sc-iip of a polka-dot piittcrn wit11 sonic t o n .  Hliirring towardn ctlges is 

optical distort i o r i .  

CHILDREBS, LEVANDOWSKY AND SPIEGEL 
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The purpose of the present paper is to develop a simple model for pattern 
formation by negatively geotactic micro-organisms, based upon the physical 

picture provided by Winet & Jahn (1972)) but differing from the model of Plesset 

& Whet in this last respect. A system of equations is proposed in which the 

layering may be said to be internally generated as an equilibrium solution. Linear 

and nonlinear stability of this equilibrium solution can then be studied in the 

usual way. Guided by an analogy with solutes, we replace the discrete organism 

distribution by a continuous density and incorporate the negative geotaxis as 

a vertical drift of the organism ‘stuff’ relative to the suspending fluid. We also 

add an anisotropic diffusion. The motility of the organisms is thus parametrized 

by a vertical drift U and a diffusivity tensor D, both generally functions of 
vertical position and the local concentration of the organisms. The production 

of momentum associated with the locomotion of the organisms is averaged, SO 

that the effect of the heavy stuff on the fluid motion is through a negative 

buoyancy term. 

The equilibrium solution in this model describes the vertical stratification 

induced by the negative geotaxis, and in the present paper we investigate the 

linear stability of this stratified layer. In 3 2.4 we treat a special case satisfying 
the atypical condition that the layer depth is small compared with the virtual 

thickness of the subsurface layer. Some general results concerning the linear 

stability problem are given in § 3. In  3 4 we treat the case-where the layer depth 

greatly exceeds the sublayer thickness. A singular perturbation analysis allows 

us to study the transition from an exact mathematical analogy with BBnard 

convection under the condition of fixed heat flux to a convective instability 

with growth rates like those calculated by Plesset & Winet (1974), as the ratio 

of layer to sublayer thickness is increased. For deep layers we also derive an 

approximate expression in terms of U and D for the horizontal wavenumber 

for which growth is most rapid. Analytical details which are included here for 

completeness but which are not essential to the understanding of results are given 
in appendices. A discussion of the instability in physical terms is given by 

Levandowsky et al. (1975). Nonlinear aspects of the model and the construction 

of steady patterns will be taken up in a separate paper. 

2. The model 2.1. Formulation 

We consider a horizontally infinite, plane layer of homogeneous fluid bounded 

by the surfaces z = - H ,  0 and containing in suspension a large number of 
impermeable micro-organisms. We denote the density of the fluid by p and the 

mean density of an organism by po, and we consider the case po > p .  If the 

fractional volume occupied by organisms is c(r, t ) ,  the suspension has density 

p0c + (1 - c) p = p( 1 + ac),  where a = po/p - 1. For Tetrahymena Winet & Jahn 

(1972) give a = 0.09 while the values of c in the cultures discussed above are 
N This means that density fluctuations in the suspension are small and we 

describe its motion by the Boussinesq equations 

p du/dt + V p  -pV2u = - gp( 1 + O ~ C )  k, (2.1) 

v .u  = 0, (2.2) 
38 F L M  69 
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where u is the suspension velocity, p is the pressure, g k  is the acceleration due to 
gravity and where in view of the smallness of c we have taken the viscosity p to 

be constant. 

To describe the evolution of c we write 

dcldt + V .  J = 0, (2.3) 

where J is the flux of organisms through the fluid. We suppose that this flux 
consists of a part due to random motions, which is describable by diffusion, and 

a second part due to the negatively geotactic drift of organisms. Thus we write 

J = cU(c,z)k-D.Vc, 

D = K ~ ( c ,  x )  ( i . i+ j . j) + K ( c ,  z )  k. k, (2.4) 

where (i, j, k )  are orthogonal unit vectors and U ,  K 'and K~ are functions to be 

specified. 
The boundary conditions to be adopted will depend upon the nature of the 

bounding planes. In  all cases we require (with u = (u, v, w) and J = (J1, J2, J3) 
and suppressing all independent variables but z )  

w(0) = w( - H )  = 0, J3(0) = J3( - H )  = 0, (2.5a, b )  

which state that the vertical fluxes of fluid mass and of organisms vanish a t  both 

boundaries. We shall take the suspension boundary to coincide with the plane 

even when the boundary is free, and consider the cases ff (both free), fr (top free, 

lower rigid) and rr (both rigid), with conditions 

a2wlaz2 = 0 on a free boundary, ( 2 . 5 ~ )  

awl& = 0 on a rigid boundary. (2.5d) 

A final special case will be that of an infinitely deep fluid; there we replace the 
lower conditions by the requirements that u and c vanish as z -+ - 00. 

The central hypothesis of the model, that a continuous function c(r , t )  may 

replace a complex distribution of self-propelled particles, is certainly a crude 

simplification of the phenomenon. In  the densest parts of the pattern we are 

dealing with interparticle distances of the order of 10-2 to lO-3cm, yet we wish 

to resolve pattern structure on the scale of the sublayer thickness, which in 

typical experiments is about I mm. It therefore seems likely that the averaging 

envisaged here is over only 10-100 organisms, and that the vertical resolution in 
determining sublayer distributions (see $2.2) will be a fraction of the sublayer 

thickness. Another difficulty is that the function D(c, z )  is unknown, and for the 

most part we take D to be constant. There are certainly substantial errors in 

such a description of the random component of the organisms' motion. Fortu- 

nately in the linear stability theory (§§3  and 4) we find that certain important 

results (e.g. pattern size) are insensitive to the sublayer concentration profile; 

also, it seems likely that simple diffusion gives a reasonably accurate description 
over the main body of the layer. 
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2.2. The equilibrium solution and dejinition of dimensionless variables 

It is natural to take the basic pattern-free equilibrium to be a solution of (2.1)- 

(2.5) which is independent of x, y and t and has u = 0. For such a solution (2.1) 

determines p for given c and (2.3) and (2.4) integrate (with condition (2.5 b ) )  to 
give 

In this paper we shall refer to two special cases: 

cU(c, z )  - K(C, z )  dc/dz = 0. (2.6) 

(I) U = U,, K = K ~ ,  K~ = 6 ~ ~ ;  U,, K,,, 6 = constants; 

K/U not explicitly dependent on z ;  K~ arbitrary. 

Evidently, case I1 contains case I; we shall frequently specialize to case I for 
specific computations. In  both of these cases we may integrate (2.6) in the form 

(11) 

- dc, K(z)  = equilibrium concentration profile, 

which is an implicit definition of K as a function of z .  Using the non-negativity of 

the integrand we may invert to obtain c = K(z)  explicitly, where K is monotone 

increasing. The positive constant K(0)  is arbitrary and is equal to the maximum 
concentration in the sublayer. Another quantity of interest is the mean concen- 

tration c , .  We define ... 
0 

cO = K(O), c, = '1 Kdz. 
H -TI 

For example, in case I we have - 

K = coexp(UoZ/KO), co = 7 h eA U,H 
- 1crn). =----- 

KO 

TO illustrate case 11, consider the family of profiles generated by the choice 

K/U = zO(k + 1) (c/cO)k, z,, = constant, (2.9) 

where k is a positive number. We have 

--+1] ) -z,(k+l)/k < 2 6 0, 

(2.10) 

k z 

K(x) = co [ ( k  + 1) 20 i 0, z < - xg( k + l) /k,  

c, = cOzo/H if H > zo(k+ l)/k. 

This family includes the exponential profile (2.8) as the limit for small k and 

a rectangular profile as the limit for large k,  and describes tolerably well the 
observed profiles. 

The equilibrium profiles provide convenient length scales for non-dimensionali- 

zation. Evidently, KIU is a local scale height and its surface value is 

h = Ko/Uo, (2.11a) 

where K~ and UO are the values of K and U when z = 0 and c = co. An important 

dimensionless parameter is the ratio of H to h [cf. (2.8)], which we shall denote by 

h = H/h. (2.11 b)  

38-2 
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However, in case 11, where the profile may have a complicated form, it is some- 

times useful to define an equivalent sublayer thickness he by 

h e  = ( C m / C o ) H  (he G H ) ,  (2.12a) 

and to define a corresponding ratio 

A, = H/he (A ,  2 1). (2.12 b )  

If the layer is sufficiently deep, so that K vanishes on the lower boundary or is 

at least very small there, he will be equal to the thickness of a sublayer of constant 

concentration co having the same total number of organisms per unit horizontal 

area as the entire layer. 
For the illustration (2.9) and (2.10) of case I1 we see that he = zo if 

H > x,(k+ l ) /k .  

The occasional advantage of (2.12) over (2.11) as a unit of length will be apparent 

in $4.4.  We refer to a layer having small h (equivalently A, close to 1) as shallow, 

and one for which A, E h 

If Uo is taken as a characteristic speed in the problem, a set of dimensionless 

variables appropriate to the analysis of the stability of the equilibrium K(z) can 

be obtained by introducing h as the unit of length: 

1 as deep. 

r* = h-lr, t* = U0h-lt, U* = U ~ l u ,  p*  = ( h ~ U o ) ( p + p g z ) , }  (2.13) 

C* = CG'C,  K* = K/KO,  K: = K1/KO, u* = Ug1 u. 
The scaling of c, which is already dimensionless, is included for convenience. 

In  the starred variables (2.13) the equations become 

v-l du*/dt* + V*p* - V*'U* = - RG*k, 

dc* /d t*+V* . [c"U*k-D* .V*~*]  = 0 

(2.14 a )  

(2.14b) 

and the flux condition is 

c * ~ * - K * a c * / a Z *  = o (2" = 0, - A ) .  (2.14 c) 

Here a = ./KO (2.15) 

is a Schmidt number for vertical diffusion and 

R = gat, h 3 / v ~ ,  = gaC, K i / V  ut (2.16) 

is a parameter which measures the magnitude of the Archimedean force. We shall 

refer to R as the 'Rayleigh number' although the parameter of the BBnard 

problem is m o e  closely analogous to the parameter A4R [cf. (2.22)]. The experi- 
mental data discussed in $ 5  suggest that typical values of a exceed 1 and that 

values of R are usually in the range 1-100. 

2.3.  Linear equations 

We henceforth drop stars whenever the dimensionless variables (2.13) are used. 

The dynamical stability of the equilibrium will be studied in the usual way by 

linearizing (2.14) and separating out time and horizontal space variables. We set 
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c = K(z)  + #(x, y, z ,  t ) ,  where q5 is a perturbation, and eliminate the horizontal 

velocit'y components and pressure by applying the curl operator twice to the 

linearized momentum equation and ta,king the z component of the result. On 
substituting 

we obtain the equations 

($, w) = eYtf(x, y) (Wz), W(z) ) ,  vy = -a% 

(?/a) (D2 - a') W -  (0'- a')' JV = GRQ, (2.17) 

~@++WDK+D~=+CL~K~@ = 0, (2.18) 

where D = d/dz and 

As is shown in appendix A, this last formula can be rewritten as 

9 = K(DK) D[@/(DK)].  (2.19) 

The flux boundary conditions are 

P ( 0 )  = 9=( - A )  = 0. (2.20) 

We show in appendix A that for cases I and I1 (see $2.2) y is necessarily real 
for solutions of (2.17)-(2.20) with conditions from (2.5). The neutral-stability 

boundary will therefore be given by a function R(h, a) determined by the condi- 

tion y = 0. The critical values of R and a, denoted by R, and a,, are determined by 

minjmizing R for fixed h over all branches and all non-negative a. 

2.4. The shallow-layer limit 

It appears that bioconvection can only occur when asublayer can in some sense 

be defined, so the limiting case considered in the present subsection is mainly of 
formal interest. The stability problem obtained for shallow layers may be used 

to illustrate the nature of the eigenvalue problem and the method of solution. 

To avoid inessential complications we consider only case I .  If we rescale the 
(now dimensionless) vertical co-ordinate by A, z = xh (which in effect makes H 
the unit of length), the equation for K becomes 

DK = hK,  D = a/&, (2.21) 

and for small h we have 

This switch in length scale from h to H suggests the change of variables 

K = 1 +h.Z+O(h'). 

h'y= 7, h2W= W ,  ha = ii, 

R4 = h4R = g ~ c , , U a H 4 / ~ ~ ~  

in which case (2.17) indicates that the parameter 

(2.22) 

will replace R. If we now combine (2.18) and (2.19) and allow h to approach zero 

with barred quantities fixed, we obtain the following problem for shallow layers: 

(TI..) (DZ- 3) W- (D2- i i 2 ) 2  w = iF'R,(D, (2.23) 

pD+V-D'@+iF28@ = 0, (2.24) 

D(D = 0, x = - 1,o.  (2.25) 
- 
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If 6 = 1 equations (2.23)-(2.25) are identical to the linearized stability equa- 

tions for a Boussinesq fluid a t  a Rayleigh number R, and Prandtl number CT, but 
with the boundary condition (2.25) on the heat flux replacing the conventional 

condition CD = 0 corresponding to fixed wall temperature. In  this analogue - @ 
replaces the temperature perturbation, K~ the thermal diffusivity, a the coefficient 

of thermal expansion and co U,/K~ the equilibrium temperature gradient. 

Some calculations for this linear BBnard problem were included in a paper by 

Hurle, Jakeman & Pike (1967; see also Nield 1968), who showed that a treatment 

similar to the classical one is possible. As R, is increased, the mode which is first 

unstable is even in X+ 4, and Hurle et al. found that R4, is 120 for case8 and 720 

for case rr,  and that the critical wavenumber is zero in each case. Using estimates 

derived from two variational principles (Chandrasekhar 1961; see also $3) we 

find that case f r  is similar, with R4, = 320 and ii, = 0. 

The analysis of the onset of instability is t,hus simpler here in cases f r  and rr 

than in the BBnard problem with conventional boundary conditions, since expan- 

sions with respect to CC may be used to study the critical point. To see how these 

expansions proceed, we first note that (2.24) may be integrated, using (2.25), to 

dbtain 0 so CDdS(7+6Z2)+/ -1 V d Z  = 0. (2.26) 

Since we are interested in solutions for small 7 and a, (2.26) suggests that both 

7 and should be taken to be O(CC2); (2.23) then suggests that R4 is O(1). We 

(7, V )  = a2n+yyn, Wn), a) = c a2nan. (2.27) 

-1 

thus try CO co 

n=O n=O 

Substitution gives a sequence of equations starting with 

and continuing with systems of the form 

mD0 = 0 (2.28) 

(2.29) 

D2Qn+1 = Yn@o+gn(Wn, ..., w,; Qn-l, ... 7@0; Yn-l, .'.,YO), (2.30) 

where fo = 0 and go = Wo + 60,. The boundary conditions follow from (2.5) and 

(2.25). 

Because of the linearity and (2.25) we may take Q0 = I and CDn(0) = 0, 

n = 1,2, ... . The solutions are obtained a t  each stage by computing W,, then 

7% and finally CDn+l. Since (2.30) with the boundary condition (2.25) is a self- 

adjoint problem, the solvability condition for (2.30) is 

The resulting, expression for yn is identical to that obtained by substituting 

(2.27) into (2.26). The series formally determines 7 as a function of R, and a. 
The calculations are simple and we shall note only the expressions for yo and yl: 
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Case ff fr rr 

Rlc 120 320 720 
ac 0 0 0 

Y1(Rdc) - 0.0301 - 0.0340 - 0.0368 

TABLE 1. Critical parameters for the shallow layer, 6 = 1. yo(&) = 0. 

The critical Rayleigh number RdC is thus obtained by solving the simple 

boundary-value problem for Wo, and y1 can be found once 0, has been obtained. 

The results for 6 = 1 are given in table 1. Since Y ~ ( R , ~ )  is negative, the point ?i = 0 

is a relative minimum of the neutral-stability boundary, and when R, exceeds 

R,, slightly the growth rate has a local maximum a t  the positive wavenumber 

( -  BrolY1P. 

3. General results 3.1. Estimates of R(h, a )  

It  is shown in appendix A that whenever U / K  has no z dependence (case 11) the 
growth rate y in (2.17) and (2.18) is necessarily real. The analogous statement for 

the shallow layer was proved by Hurle et al. (1967). Since y then vanishes on the 

neutral curve, variational principles can be used to eskmate R(h, a )  (Chandra- 

sekhar 1961); it  is known from other similar problems that these approximations 

(which are upper bounds) can be accurate to within a few per cent for the simplest 
trial functions. We shall use this method to test the hypothesis that ac = 0 for 

arbitrary h in case I. 
The two variational principles can be stat,ed in term; of real functionals I ( @ )  

and Q( W )  defined by 

Here Q is a dimensionless viscous dissipation per unit horizontal area and the 

functions r(z) and g(z)  are defined in terms of K(z) ,  K and I C ~  in appendix A. Then 

R is given by either of 

a2R = min(I(CD)/Q(W)), (D2-a2)2W = --a, Wsatisfies ( 2 . 5 c , d ) ,  (3.3) 
rg 

a2R = min (Q(W)/I(CD)), CD satisfies (2.18)-(2.20); (3.4) 
W 

the minimum being over all functions satisfying the boundary conditions, and 

the dependent function ( W and CD in (3.3) and (3.4) respectively) being defined 

for each trial function as indicated. 

In table 2 we show results of calculations with constant U ,  K ,  6 = 1 using @ = 4 

in (3.3) and W = sin(nz/h) in (3.4) respectively. Both calculations are for free 

boundaries. In all cases R had its minimum a t  a = 0 and for small h the tabulated 
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(a) 

h ... 0.5 1 

a= 0 2459 195-9 
0.1 2461 196.3 
0.2 2465 197.5 
0.3 2471 199.4 
0.4 2479 202.2 
0.5 2491 205.9 
1.0 2585 237.1 
2.0 2981 385.3 

r - A -  7 
2 

19-55 
19-7 
20.2 
21.0 
22.1 
23.7 
41.6 

128.2 

( b )  
w-7 

0.5 1 2 

2465 197.0 19.9 
2467 197.3 20.1 
2470 198.5 20.5 
2476 200.5 21.3 
2485 203.2 22.4 
2496 206.7 23.9 
2588 237.4 38.2 
2973 380.2 126.0 

TABLE 2. Estimates of R for marginal stability in case I, freefree, 6 = 1. 

(a) (3.3) used with @ = ez. (b) (3.4) used with W = sinlrzfh. 

values bear out the very slow increase of R which is predicted by the values of 

y1 in table 1.  

Estimates of R(h, a )  when h is large but hR is of order unity are given in $4. 

When h = co, i.e. when the layer is semi-infinite, with free or rigid top surface, 
the eigenvalue problem may be solved exactly by the series method used in 9 3.3 

below. The neutral-stability boundary is shown in tabIe 3, along with estimates 

of R derived from (3.3) with 0 = ez. For each value of a in the table, wavenumbers 
smaller than a correspond to growing modeswhen R exceeds the tabulated 

values. 

3.2. Approximate expressions for y 

The accuracy of (3.3) rests on the fact that the equation for W is solved exactly. 
A similar approach can be used to compute'y approximately. Given a trial 

function @we solve [cf. (2.17)] 

(D2 - a2) ( 0 2 -  a2q2) W = - a2R@, p2 = 1 + y/a2c. (3.5) 

As in the shallow-layer analysis an expression relating y to @ and W can be , 

obtainedbyintegrating (2.18)from - A  tooandusing (2.20) (seealso 93.3 below): 

A simple choice for @ in case I1 is 
@ = D K  (3.7) 

since 9 then vanishes identically. In  case I (with K~ = 6 and @ = eZ)  the com- 
putation is straightforward and gives, in the limit h-too, an implicit equation 

for y :  

-6u2 ( A  = 00, free surface). (3.8) 1 2+a( l  + q )  

(1 +q)  ( 1  +a)2 ( 1  

This equation was solved numerically and y as a function of a always showed 

a unique maximum ym (at a wavenumber am). In  figure 4 we show ym and am as 

functions of R, v and 6, or more explicitly, y,/c and am are shown as functions 
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1.0 

a m  

0 

0.5 

5 

R b  

FIGURE 4. The solid curves indicate (a )  the predicted pattern wavenumber a, and ( b )  the 
maximum growth rate divided by u as functions of RIG, for &/a = 0 and 0.25, h = co. 
The curves for the profile parameter k [cf. (2.10)] were obtained from (3.8) for k = 0 and 
from (3.1 1) for k = a. The plotted points are exact values for k = 0 computed as described 
in 33.3 for the following parameter values: 0, 8/fa = 0, u = 1 ;  0 ,  &/a = 0, u = 4;  

m, &/g = 0.25, G = 4. 

of Ro and S / g .  Note that the estimates in table 3 for the free-surface case can be 

obtained by setting y = 0 and 6 = 1 in (3.8). 

If the horizontal diffusion term in (2.18) is neglected, the approximation 

(3.5)-(3.7) can be given a simple physical interpretation. In  neglecting diffusion 

we nevertheless retain the sublayer thickness h as a parameter and regard K as 

an arbitrary prescribed concentration profile. Then CD as defined by (3.7) deter- 

mines an infinitesimal vertical shift of K(z)  as the inktability develops,? and (3.6) 

(3.9) 

Viewed in this way y is the growth rate for a prescribed concentration profile, the 

process by which the stratification was established having disappeared from the 

problem. This provides a way of looking at the model studied by Plesset & Winet 

is replaced by 0 1 ( y+  W ) D K d z  = 0. 
- A  

(3.10) 

With (3.10) substituked in (3.9), y = - W(1) and (3.5) can be solved to obtain the 

following equation for infinite depth: 

y 2 + a 2 a y ( l + q )  = Rag/(l+cotha) ( A  = 8, free surface). (3.11) 

This expression agrees with that given by Plesset & Winet if the q appearing on 

the left is replaced by 1. Curves based on (3.11) are shown in figure 4. Note that 
(3.11) is in fact an exact result when all diffusion and the negative geotaxis are 

neglected. This is because (3.9) with (3.10) is then equivalent to (y + W )  DK = 0. 

t Physically, 0 = DK corresponds to a modulated vertical shift of the equilibrium 
concentration, and can be generated by K ( z + f e Y t )  for smallf(z, y). 
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Rigid 

a Computed 2( 1 +a)* 

0 2.00 2.00 
0.05 2.41 2.43 
0.10 2.83 2.93 
0-15 3.29 3.50 
0.20 3.80 4.15 

0.40 6.53 7.68 
0.60 10.83 13.11 
0.80 17.23 21.00 
1.00 26.26 32.00 

Free - 
Computed 2 4  1 + a)3 

0.00 0.00 

0.12 0.12 
0.26 0.27 
0.45 0.46 
0.67 0.69 
2.07 2.20 
4.60 4.92 
8.69 9.33 

14.85 16.00 

TABLE 3. Computed and estimated values of R for a fluid of infinite depth, case I, 8 = 1, 
for the upper surface rigid and free. The formulae follow from (3.3) with CD = ez. 

3.3. Solution for inJinite depth, case I 

To solve the eigenvalue problem exactly for h = co, we write 

w = A1 W1-k A2 j< + A3 1r39 

where the are solutions of 

(y + 6a2 + D - D2) (D2 - a2 ) ( 0 2  - a2q2) W = a2Re2: W 

We take 
rn 

n=O 

p l  = a, p 2  = aq, p 3  = +{I + [i + 4(Sa2 + y ) ] i ) .  

The boundary conditions are 

W = D 2 W =  ( D - 1 ) ( D 2 - a ~ ) ( D 2 - a 2 q 2 ) W = 0 ,  z = O .  

Thus y can be found by applying Newton’s method to a 3 x 3 determinant. 
Numerical results show the expected dependence on (T when a, and ym/g are 

expressed as functions of R/(T and S/g. The exact values of a, and y,/v agree 

reasonably we11 with the approximate values calculated as in $3.2, the largest 

discrepancy in a, occurring for 6 = 0, where the error is 7 % for (T = 4. Errors in 

y,/a are less than 3 % for (T = 0, but for 81.- = 0.25 the exact value is larger than 

the approximate one by 15% a t  R = 8, (T = 2 (see figure 4). We recall that 

exponential and square profiles are two extreme cases within the family (2.10) of 

concentration profiles which might be considered representative in this problem. 

3.4. Computation of R,(h) 

We turn now to the h dependence of the critical Rayleigh number. In view of the 

estimates in $3.1 the conjecture a, = 0 appears to be reasonable in case I. We 

have not been able to show that this is true generally, but we shall show here that 

quite generally R(h, 0) is finite and positive. Assuming that the conjecture holds 

and R,(h) = R(h,O), our sufficient condition for instability gives the critical 

Rayleigh number. 
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h 

0.5 

1.0 
1.5 
2.0 

2.5 
3.0 

4.0 

5.0 

7.0 

10.0 
00 

ff 
2 459.0 

195.9 
49.04 

19.55 
10.03 

6.017 
2.883 

1-734 

0.892 
0.492 
0.000 

f r  

6213.0 
470.2 
122.2 

42.82 
21.09 

12.19 
5.481 

3.132 
1.494 

0.771 

0.000 

r r  

14 790.0 

1185.0 
300.0 

121.3 
63.37 

38-82 
19.54 

12.44 

7.244 
4.808 
2.000 

TABLE 4. R,(h)/c? for case I, with two free surfaces, one rigid and one free or both rigid. 

The analysis follows the scheme outlined in $2.4. Expansions of the form 

a3 a3 

(7) W )  = a2n+2(yn, K), 0 = 2: a2Qn 

n=O n=O 

are substituted into (2.17)-(2.20)) and R(h, 0) is obtained by setting yo = 0. One 
analytical point requiring comment concerns the form of the solvability condi- 

tion. The problem for 0% is now 

D.Fm = - ~ ~ @ ~ + g ~ ,  gn = -K(DK)D(@/DK),  (3.12a)b) 

Sn = 0) 2 = --h)O) ( 3 . 1 2 ~ )  

QO(O) = 1) CD,(O) = 0, n 3 1. (3.13) 

The boundary-value problem which is adjoint to tbe homogeneous version of 

D[K(DK)DY] = 0) (3.14 a )  
(3.12) is 

D Y  = 0,  z = -h,O. (3.14b) 

The solution for this problem is Y = constant. The solvability condition is there- 

fore again obtained a t  each stage simply by integrating the equation for Qn 
[cf. (2.26) and (3.6)]. 

The remainder of the calculation is straightforward and there results 

y , , [ l -X( -h)] -R/o  - A  (DzTl(,)zdz+/o - A  K ~ D K ~ z  = 0, ( 3 . 1 5 ~ )  

where D4WO = DK with Wo = 0, OWo or DzWo = 0 for z = -h,O. (3.15b) 

For case I the values for &(A) are given in table 4. We find 

3, q 4 p 4 )  A + 0, 

where Dl = (120, 320, 720) in cases (#)ff,r) rr) in agreement with the shallow-layer 

theory. We also note that for a free upper surface 

R, WZlh, + a, (3.16) 

where pz = (3 ,4)  for a (free, rigid) lower boundary. Thus a free sublayer on 

a sufficiently deep layer is always unstable. If R is fixed and the upper surface is 
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free, there is, moreover, a value of h (and hence a value of H )  below which the 

layer is stable. For fixed A, there is correspondingly a value of R (hence eo) below 
which the layer is stable. The last statement remains true if the reference con- 

centration in (2.14) is taken to be the mean concentration e, rather than co; this 

change in effect multiplies the tabulated values of R, by (1 - e-h)/h. 

4. Singular perturbation for deep layers 

4.1. Remarks 

The calculations given in ss3.2 and 3.3 describe the nature of the linear stability 
in deep layers when R is O( 1) (that is, when R is significantly greater than R,); 
there the maximum growth rate presumably gives an indication of pattern size. 

At the critical boundary, on the other hand, the onset of instability resembles 

a typical convective instability but with the unusual property that a, = 0. Our 
aim in the present section is to study the transition between these two distinct 

regimes in a parameter range for which a perturbation analysis is feasible. 

Such an analysis is motivated by observations of pattern formation in slightly 

tilted containers (see figure 1). Since the layer depth then varies linearly and 

rather slowly, one would expect to see rather large-scale structures near the 
critical depth (where a, is very small), followed by a gradual reduction of pattern 
size until the value appropriate to infinite depth-is reached. What is in fact 

observed is an abrupt appearance of a well-defined horizontal scale (determined 
by the spacing of polka dots or columns) with no noticeable transition through 

small wavenumbers. 

The key to a study of the transition region in deep layers is the introduction of 
the limit process 

h-tm with B = h R ,  & = h a ,  $7=h2yfixed (4.1) 

in place of the expansion for small a. In particular the horizontal wavelength will 
be of the order of the layer depth in the transition region. The justification for the 

choice (4.1) is the following: for h >> 1 the behaviour of R, is given by (3.16), 

suggesting that 8 is the proper O(1) Rayleigh number in the transition region. 

Moreover, near a = 0 on the neutral-stability boundary we expect to have 

R - R, = O(a), and in order to be able to resolve the transition we shall therefore 

want a - A-l. Finally, the definition of p is suggested by (3.6) when tilde variables 

are substituted. (Physically we expect the maximum growth rate to be estab- 
lished by the effect of horizontal diffusion, which is O(a2) in (3.6).) If the quantities 

(4.1) are introduced into (3.8) we obtain in the limit (v is fixed and O(1))  

p = d R / (  1 + q )  - 6E2, q 2  = 1 + y/&. ( 4 4  

We shall show that (4.2) is an asymptotic result provided that 8 and 6 are 
numerically large, with B/& = O(1). Thus in a sense (4.2) is the asymptotic (for 

large 8) form of a certain equation we wish to determine, the latter equation 
providing the dependence of $7, upon a right up to the critical value A, (note 

that B, = 4 for case fr). 
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4.2.  Construction of matched expansions 

The analysis is facilitated by the use of matched asymptotic expansions, since 

the sublayer (or inner) region requires special attention, while the flow in the 

main body of the layer (the outer region) has an especially simple structure. The 

correct choice of outer variable is suggested by the momentum equation (2.17) 

written in the variables (4 .  I) : 

0 4  W = A-2a"2( 1 + q2) 0 2  W - A-3G2BO - h-4cX4q2W. ( 4 . 3 ~ )  

The corresponding equation obtained from (2 .18)  is, in case I, 

D 2 0  - DO = ez W + h-2(j7 + &cX2) O. (4 .3  b )  

For (4 .3  a )  there is a simple limit as h-tco, namely 

D4W = 0.  

However, it is clear that this limit is not valid uniformly over the layer and we 

introduce an outer variable which makes D2 formally of order 

z" = x/h = O(1) (outer region). (4 .4)  

The fact that limits with z" fixed are clearly non-trivial provides additional 
evidence that d is the correct O( 1 )  wavenumber in the transition region. 

If (4 .3a )  is written in terms of the outer variable we have 

( D - 5 2 )  ( D 2 - 6 2 q 2 )  w = -hd2R07 D = d/dz". (4.5) 

In  view of (4 .3  b )  it is reasonable to expect that, in case I, O is exponentially small 

in the outer region (a fact already suggested by the expansions in a),  so that 

(4 .5 )  reduces to 

We shall apply a particular ordering of W and O formally and show that the 
required matching can be carried out using standard methods (Cole 1968, chap. 1). 

We consider case I first. 

( D ' 2 4 2 )  (D2-62q2) w = 0. (4 .6)  

Inner expansions having the forms 

W = h-2Wo + k3W,  + h-4W2 + . . . , 
O = @,+h-1O1+h-2O2+... 

(4.7 a )  

(4.7 b )  

are introduced, and we consider an outer solution of (4 .6):  

@ = h-l[A(h)sinhbz"+B(h) coshBx"+C(h)sinhdqz" 

+ D(h)  C O S ~  a"@] - + + . . . . (4 .8 )  

The boundary conditions on the lower wall require 

r n ( - 1 ) = o ,  BVn(-l) or D2Rn(-1)=o.  (4 .9 )  

Substitution of (4 .7 )  into (4 .3  a, b )  with the help of the conditions on z = 0 gives 

a series of easily solvable problems and we have for the first two terms 

W, = ~ r , z + , 8 ~ 2 ~ ,  

1~ = d 2 W ( i + ~ 2 2 - e z ) + ~ r ~ 2 + , 8 ~ 2 3 .  

(4.10) I 
Oo = eB, 

O~ = 0, 
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Here a, and P, are arbitrary constants. To indicate how these constants are 

determined by matching, we consider the outer expansion of the inner partial 

sum of W up to terms of order h-3, obtained simply by discarding exponentially 
small terms: 

h-Z%+h-3K = h ~ , X ” 3 + ~ 1 & 3 + h - ~ ( a 0 & + g d ~ ~ & 2 )  +O(h-2). (4.11) 

The addition of the term h-4W2 to the left side would add a polynomial to the 

right side, but it is apparent that only multiples of Z5, E4 and Z3 respectively could 

thereby be introduced into terms of order A ,  I and h-l, with even higher powers 

coming from subsequent terms. Thus the terms on the right side of (4.11) must 
coincide with terms of these orders in the power series for m. Now since (4.9) must 

be satisfied, the term of leading order in (4.11) cannot be a multiple of Z3. Hence 

Po = PI = 0. The last term on the right side of (3.11) gives the three conditions 

(withA = A,+h-lA,+..., etc.) 

B,+D, = 0, Bo+q2D, = R, (4.12 a) 

A,  + qc, = a&. (4.126) 

The first two of these, along with two Conditions from (4.9), determine mo 
uniquely, while the last determines the remaining constant a,. To complete the 

calculation, the equation for 9, valid to order 1, folIows from integration of 
( 4 . 3 ~ )  with H i  = a,z: 

7 = a, - 662. 

Solving for A,, ..., Do using (4.6) and ( 4 . 1 2 ~ ) )  and evaluating a, from (4.12b) we 

obtain 

7 = dRQ(d ,  q)  - 662, (4.13) 

where, for case f r ,  

1. (4.14) 
sinh d sinh dq  - 2q cosh d cosh dq + 29 

q sinh a” Gosh d q  - cosh d sinh dq 
G(d ,q )  = - 

This is the desired equation for the growth rate, valid through the transition 

region as discussed in 5 4.1. 

Before considering (4.13) in detail we indicate how the higher-order terms can 
be found. In  order to determine the equation for 7 to terms of order h-n inclusive, 

inner terms up to W,,, must be obtained. (Actually for the last term only D2W,+, 
need be known.) Each of these can be written as a finite sum of the form 
po(z) + ezpl(z) + . . . + emap,(z), where the pi are polynomials. Only p, enters the 

matching: If we now suppose that a,, ..., a,-,, Po, ..., P, are known, then the 

coefficients of zo and z2 in the outer expansion of ... +h-(n+3)Wn+, are 

known up to terms of order h-Cn+l). The corresponding matching conditions, along 

with the two conditions (4.9) on the lower wall, are then sufficient to determine 

m,, and czn can be found by matching the term in 2. Finally P,,, is obtained by 

matching with the Z3 term in Fn-,. We have carried out these calculations for 

n = 2 and record the results in appendix B. 
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0 4 

A 

FIGURE 5. Normalized pattern wavenumber and growth rate as functions of A = (R - R,)/R, 
for a deep layer. a: and y: are the asymptotic values of a, and ym for h -+ m, R < 1, and 
can be found from (4.2). 

4.3. Discussion of (4.13) 

Wefirstnotethat,ifBandiiare bothlargewithqandBl6 bothO(l), theexpression 

(4.14) reduces to G = 1/(1 +q) and (4.13) is then identical to (4.2). To determine 

yrn (the maximum of j7) and Zm when 2 is O(1) we first suppose that cr >> I so that 

q -N 1. We then may use 

(case f r ) .  
sinh2 6 - 1.2 

limG(6,q) = - 
q-1 

With this simplification f r n  and a“, are shown in figure 5 as functions of 

A = (R - Rc)/Rc. It is found that once R exceeds Re by 10 yo the pattern wave- 

number remains within 25 yo of the asymptotic value 

a: = $RS (R < I ,  h = CO). (4.15) 

This is the value of a which maximizes y in (4.2) and it is therefore appropriate 

to a layer of infinite depth when R is small compared with unity. Thus the 

transition from a ‘stable’ to a ‘deep’ layer is found to be remarkably abrupt for 

the weakly unstable situation considered here. We are led to conjecture that this 
abrupt transition will also occur when R has more realistic values in the range 

1-10. 

There remains the question of the possible effect of finite cr on these conclusions, 

(4.15) and figure 5 being formally valid only for large cr. An indication is given 

by the Prandtl-number dependence of the asymptotes 7% and 6:. We write (4.2) 

in the form 
(4.16) B/GS = 0 = ( q +  1)  [y(q2- 1) + 11 (y = +). 
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Differentiating (4.16) with respect to B and setting dyldG = 0 we obtain a second 
equation in q and 8: 

Eliminating q from the last two equations produces a quadratic equation for ~ ( 0 ) :  

g ( e - p ) 7 2 + ( -  2e3+ 1002- ioe- i )r  + 1 = 0. (4.17) 

Examination of the real roots of (4.17) shows that when 7 > 3j (on the basis of 
estimates given in $5, 8 is a satisfactory lower bound) the parameter 8 varies 

between 2 + 4 3  and 4, the latter corresponding to cr = co [cf. (4.15)]. Thus a; is 

within 8 % of the value at  CT = co when cr exceeds $8. The quantity yz21R2 varies 

from 0-041 to 0.0625 as crlS increases from $ to a. Consequently, in the limit 
considered here the effect of (r on the development of the instability is not very 

significant. 

42+( i -o )q++e  = 0. 

4.4. Case I1 

We now consider the effect of the choice of U and D upon the first-order expression 

(4.13) for the growth rate. We shall show that, if we define (still in the dimension- 

8 = 1 K 1 ( K ,  z )  DKdz 

and use the equivalent sublayer thickness defined by (2.12a) in place of h in the 
definition (2.13) of the starred variables, then (4.13) holds also in case 11. 

The proof hinges on the fact that the exact form of K(z)  enters into the com- 

putation of a0 only through the term z2 in the outer expansion of the inner W,; 
this term contributes the only inhomogeneous matching condition at  that order. 

Now in case I1 we have @, = DK and therefore 

less variables (2.13)) 0 

--A* 

D2JK = - d z 2 I z  K ( z ) d z + d 2 R I 0  - -A# K(i )dz ,  

which immediately gives the coeEcient of 3 in the outer expansion of W,. If  
(4.13) is to be unchanged we must have 

--A, 

0 

K(2)d.z = 1. (4.18) 

But (4.18) follows from the choice of he as the unit of length, since (4.18) and 

( 2 . 1 2 ~ )  are then equivalent. The above definition of 8 follows easily from the 

integral of (2.18) with W = W, and @ = Do = DK, with @,(O) taken as unity. 

S- -Ae 

5. Discussion 

The measurements of Winet & Jahn (1972) and the data reported by Plesset 

& Winet (1974) (see table 5 below), both for Tetruhymenu pyriformis, provide 

estimates of the values of the dimensionless parameters in typical Tetruhymena 

cultures. The variable c should be regarded as the volume density of only those 

organisms which actively participate in the pattern (here, the negatively geo- 

tactic organisms). A proper determination of c,  U ,  K and K~ would presumably 
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Pattern wavenumber, a, 

r 

0.15 1.21 x 5.9 1.5 0.94 0.92 0.73 (8 = 0, U = 1) 
0.05 1.1 x 6.0 4.4 0.57 0.70 0.69 (8 = 0, = 4) 

TABLE 5. Data from Plesset & Winet (1974) compared with theoretical values of a, 
obtained from the values shown in figure 4 (a).  The theoretical values given by Plesset & 

Winet are 0.86 (h = 0.15) and 0.65 (h = 0.05), and were obtained from (3.11) with q = 1. 

The parameter k is defined in (2.9). 

h > 

h (-1 agco R u Measured k = co k = O  

require a statistical average which accounts for the variability of organisms; as 
a rough approximation we shall simply regard c as the difference between the 

actual volume density and the (constant) value usually observed in deep cultures 

well outside the sublayer. We take a = 0.09 and U, = 0-045cm/s and assume 

throughout that v = 0.01 cm2/s. We are not aware of any direct measurement of 

effective diffusivities for the random component of the organisms’ motion, and 
we shall therefore infer a value of K, from the estimates of the sublayer thickness 

using K, = U,h. For a typical organism density of 105cm-3 and an organism 

volume of 1-8 x 10-Scm3 we estimate co as 1.8 x With h = 0.1 cm we obtain 

R = 3.5. The two measurements in table 5 are for R = 6 and CT in the range 1-5. 

We take R = 5, CT = 2 and h = 0.1 cm as typical of pattern-forming cultures of 
Tetrahymena pyriformis. 

Wille & Ehret (1968) report a critical depth of 2 mm, and if we assume that 
this critical depth applies to  our hypothetical culture with R = 5 we see from 

table 4 that R/S would be about 45, implying that Sis about 0.1. Another estimate 

of 6 can be obtained from the measurements of pattern size in table 5 .  These were 

calculated from the distribution of internodal distadces when the pattern is 
reticulate. Although these data are not sufficient for detailed comparison of 
various choices of U ,  K and K ~ ,  the indication is that 6 is small compared with 

unity and, if the functions (2.9) are adopted, that the profile parameter k should 
be positive. As a final check, we note that a simple random walk on a cubic lattice 

of side L would lead to isotropic diffusion with K~ = QL2/At = QUO L, and therefore 

6 = K , / K ~  = QL/h. If the mean free path of horizontal diffusion is of the order of h 

a value of S of about 0.1 is not unreasonable. 

The apparent difference between the effective vertical and horizontal diffusion 

prompts us to rewrite the diffusivity tensor as 

D = Kuk+K1l (5.1) 

and to conjecture that the parameter K~ = K - K~ vanishes when no gravity field 
is present. Thus K~ represents the effect of the random vertical movements which 

are involved in the organisms’ response to the gravitational field (and conceivably 
are involved in the mechanism by which the organisms sense the direction of the 

field). The isotropic term K~ I in (5.1) presumably accounts for the homogeneity 

of cultures which are not negatively geotactic. At present we do not know any 

way of obtaining K~ independently so that a comparison with the observed sub- 

layer thickness might be made. Roberts (1970) computes what is effectively 
39 F L M  69 
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a sublayer thickness for negative geotaxis of Paramecium, basing his calculation 

on the idea that the preferred orientation of the body is induced by its shape and 

density distribution. This is a restrictive assumption but Roberts’ result is com- 

patible with (5.1), in the sense that it shows one way of relating vertical diffusion 
directly to the response of the organism to the gravitational field. In  any case, 

even for non-identical organisms, dispersion in the motility can be modelled in 

terms of these diffusion constants. 
A related example of the combined effect of random and directed motion of 

organisms, leading to the formation of macroscopic structures, was studied in 

a continuum model by Keller & Segel (1970). In  their work an equation similar 

to (2.4), involving a chemotactically induced flux of organisms, was coupled with 
diffusion-reaction equations. Their chemotactic flux, proportional to the gradient 

of concentration of a chemical, corresponds to our geotactic flux kcU. The 

analogy suggests that the latter term may also be best regarded as proportional 

to a gradient, in particular to the pressure gradient. In  the dilute limit c < 1 this 

altered form would be equivalent to (2.4), but in general there would arise new 

physical effects, such as horizontally directed ‘ barotactic swimming ’. Advan- 

tages of using the pressure-gradient form may appear, even in the dilute case, if 

centrifugal acceleration is important. (Some very preliminary observations of 

pattern formation on a rotating turntable indicate that patterns may be modified 
by rotation.) In  addition, it is not impossible that actual chemotaxis is sometimes 

involved in pattern formation by swimming micro-organisms (Brinkman 1968). 

Returning to the present results, we see on comparing table 4 and figure 5 that 

we can estimate the width of the transition from a marginally stable to a ‘deep’ 
culture as H changes slowly with x. We assume that R is constant and that the 

small R theory can be applied to the transition even though R, is not small. For 
the culture with R = 5, a critical depth of 2h and 6 = O-l:we see that once the 

depth has increased to 3h the value of R, has dropped to about 1.2, making A in 
figure 4 about 1. This suggests that the critical depth is marked by a transition 

region in which the depth changes by no more than 0.5 mm. In some of our typical 
experiments with Tetrahymena we observed critical depths of about 4.5 mm, 

which, if S is again assumed to be 0.1, would indicate an R of only about 0.4, but 

nevertheless a value A = 0.25 was reached a t  a depth of 5mm. 

The linear stability problem considered in this paper is an idealization which 

cannot be completely realized in experiments, whether in tilted layers or in 
initially stirred, deep cultures. The sublayer forms in a time of the order of 
HIU, - 30 s, and if R is between 1 and 5 the equilibrium envisaged here presum- 
ably never has a chance to form completely. The transient nature of the con- 

vective instability is emphasized by the description of column formation given 
by Winet & Jshn (1972). 

A related thermal instability has been analysed and observed by Foster (1965, 

1969). He considered BBnard convection in a layer cooled from its top boundary. 

The formation of a cool zone at the top is clearly analogous to  sublayer formation, 

and the onset of what Poster called “manifest convection”, involving the abrupt 
falling away of thin sheets of cool fluid from the top layer, is similar to the rapid 

transition in a tilted layer envisaged in 54.3, the horizontal co-ordinate there 
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taking the place of the time variable in the thermal instability. In  detail the two 

problems are different, but in a broad sense the physical description of the 

instability is the 5ame.t Other dynamical analogies are suggested by observations 

of sedimentation of swarms of inert particles in a viscous fluid and by the 

behaviour of fluidized beds operating a t  small particle Reynolds number, but 
owing to differences in the boundary conditions neither of these analogies is exact. 

The structure of bioconvection patterns following the initial instability con- 

sidered above is likely to be a complex and nonlinear process since the Reynolds 

number based on U, and H is typically in the range 1-5 and any new steady 

equilibria are quite different from a simple vertically stratified layer. The 

application of the present model to this problem, and to the construction of 
steady solutions similar to the polka-dot patterns discussed in $ 1 ,  will be taken 

up in a separate paper. 
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Appendix A. Integral identities of linear theory 

and integrate with respect to z from - h to 0 to obtain 

Multiply (2.17) by W* (where * means 'complex conjugate' in this appendix) 

Now differentiate condition (2.6) and evaluate the result for c = K(z): 

] D K - K ( K , z ) D ~ K  = 0.  (A 2) 
au a K  au a K D K  

Note that the first bracketed term in (A 2) vanishes for both case I and case I1 
since 

With the help of (A 2) and (A 3), note that (2.19) can be rewritten as 

Using this expression and (2.20), we multiply @/DK by the complex conjugate 

of (2.18) and integrate to obtain 

%= -K(DK)  D(@/DK). 

t (Note added in proof.) Other methods of generating a relatively heavy sublayer as 
a model for the initial bioconvective instability were considered by H. Wager (191 1).  

39-2 
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If we subtract a2R times (A 4) from (A 1) and take the imaginary part we find 

8. Childress, M .  Levandowsky and E. A .  Spiegel 

Im(y) [u2R/' - A  (DK) -1 (@12dz+n-1 /o  - A  ( ~ D W [ 2 + u 2 1 W ~ z ) d z ]  = 0, (A 5) 

which establishes that y is real. 

A partial integration of (A 4) yields 

where I(@) is given by (3.2) with 

The variational principles (3.3) and (3.4) follow from (A 1) and (A6) with y = 0 

by computing the first variation and essentially reversing the steps in the above 

derivation. 

Appendix B. Matched asymptotic expansions for a deep layer, case I, 
,ff',,fr;a = Xa,B = AR,? = A2y, A-+m 

Inner expansions 

42 = i + y / i ~ g ,  = @, + A-w, + o(A-~) ,  
w = A-2( w, + A-lW, + A-ZW, + A-3W3) + O(A--6), 

W, = a,z, W, = a2Bp + $ z 2 - e ~ ] ,  W, aZz+pzz3, 

(Do = ez, QZ = &zoz2ez, 

W3 = G4R( 1 + q2) (32' +&z4 - ez) - a,62~ez(&2 - 42 + 10) 

+ 1 O a , 6 ~ B + $ i ~ ~ a 0 z ~ + c g z .  

Outer expansions 

r, = A ,  sinh dz" + B, cosh 62 + C, sinh Cqx" + 0, Gosh dqz". 

x" = Z/A, w = h-l[Vo + A-~TTQ + o(A-~) ,  

The constants in the above are given by the following expressions: 

a0 = dRG(d,q) ,  a2 = d(Az+pCz) ,  p2 = $d2(Ao+~3CO).  

a3 is determined by matching at the next stage. In  the expression for a, the 
function B is given by (4.14) for casefr and by 

1 q sinh d cosh dq - cosh a" sinh dq 

sinh 6 sinh dq  
G(d,q) = - 

92- l [  1 

for case 8. We give the coefficients in the outer expansion for case f r  onIy: 

A ,  = [I'B/(qz- I)] [qcoshdcoshdq-sinhdsinhdq-q], 

I' = [cosh d sinh dq - q sinh d cosh dq]--l, 
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C, = [I'B/(q2 - I)] [cosh a" cosh a"q - q sinh a" sinh n"q - 11, 

A ,  = (3a, + d2q2) A,  + d21'R[sinh a" sinh 6q - q cosh a" cosh Bq], 
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D, = -B, = B/(q2- I),  

c, = (301, + ~ 2 )  c, + 6r8, D, = (3a, + ~ 2 )  D,, B, = 622 - D,. 

The equation for 7 up to terms of order h-, is found to be 

7 = iiRG(6, q)  - 662 - h-I(ga"2B) 

+ P [ ( q 2  - 6)63fiG(a", q)  + 3a"2w2G2(a", q)  + ii3RG1(a", q)]  + O(h-3), 

coth(d), case f f7  

-I'(q2- I)sinha"sinh6:q+G(a",q), casefr. 
where 
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