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Abstract. Turing's model of pattern formation has been extensively studied ana- 
lytically and numerically, and there is recent experimental evidence that it may 
apply in certain chemical systems. The model is based on the assumption that all 
reacting species obey the same type of boundary condition pointwise on the 
boundary. We call these scalar boundary conditions. Here we study mixed or 
nonscalar boundary conditions, under which different species satisfy different 
boundary conditions at any point on the boundary, and show that qualitatively 

new phenomena arise in this case. For  example, we show that there may be 
multiple solutions at arbitrarily small lengths under mixed boundary conditions, 
whereas the solution is unique under homogeneous scalar boundary conditions. 
Moreover, even when the same solution exists under scalar and mixed boundary 

conditions, its stability may be different in the two cases. We also show that mixed 

boundary conditions can reduce the sensitivity of patterns to domain changes. 
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1 Introduction 

It is well known in developmental biology that the fate of a cell in a developing or 
regenerating organism is often determined not only by its genome, but also by its 
location relative to other cells. Thus the orderly specialization of cell structure and 
function and the arrangement of cells into tissues and organs require mechanisms 
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for the spatial and temporal control of cellular activity. The simplest aspect of this 
problem concerns pattern formation in an assemblage of essentially identical cells. 
One of the current hypotheses is that pattern formation results from the response of 
individual cells to an underlying spatial pattern of one or more chemical species 
called morphogens, and a major problem is to discover mechanisms by which the 
spatial pattern of the morphogens can be generated and maintained. Wolpert's 
concept of positional information 1-36] abstracted and formalized from earlier 
theories 1-12, 13, 7] the notion that a cell in a developing or regenerating system 
must "know" where it is relative to other cells in order to adopt the appropriate 
developmental pathway. In this approach, the question of pattern formation 
becomes that of discovering schemes that generate positional information. 

A number of models for pattern formation and regulation are based on the 
hypothesis that a diffusible morphogen supplies positional information that can be 
interpreted by the cells. Such models fall into two main classes: source-sink models 
and Turing models. In source-sink models, specialized cells located at the bound- 
ary of the developmental field maintain the concentration of the morphogen at 
fixed levels. In a one-dimensional system of about 1 mm in length, a linear 
concentration distribution can be established in the time that is normally available 
for commitment to differentiation [37, 9]. Given fixed thresholds between different 
cell types, the tissue can be proportioned into any number of cell types in a perfectly 
scale-invariant way. There are, however, two facts which limit the applicability of 
this type of mechanism. While there are numerous systems that have one 'organ- 
izer' region that could serve as a source (or sink), such as the tip in the slug stage of 
Dictyostelium discoideum or the ZPA in the avian limb bud, the simultaneous 
occurrence of two such regions at opposite ends of a developmental axis is 
apparently rare. Secondly, the homeostatic mechanism that maintains the bound- 
ary concentrations at fixed levels must be able to vary the production or consump- 
tion of morphogen over a wide range. For instance, if the ends are held at Co 
and cl respectively, then the morphogen distribution is given by c (x )=  

(cl - Co)(x/L) + Co, and so the flux through the system must vary as 1/L. 

Turing models [34] involve two or more morphogens that react together and 
diffuse throughout the system. In Turing's original analysis no cells were distin- 
guished a priori; all could serve as sources or sinks of the morphogen. Moreover, 
Turing only considered periodic systems or closed surfaces, in which case no 
boundary conditions are needed. More generally, we call any system of reaction- 
diffusion equations for which the boundary conditions are of the same type for all 
species a Turing system. In certain situations to be discussed in detail later, a spa- 
tially-homogeneous stationary state can, as a result of slow variation in parameters 
such as kinetic coefficients, become unstable with respect to small nonuniform 
disturbances. Such instabilities, which Turing called symmetry-breaking because the 
homogeneous locally-isotropic stationary state becomes unstable and therefore 
physically inaccessible, can lead to either a spatially nonuniform stationary state or 
to more complicated dynamical behavior. Such transitions from uniform stationary 
states to spatially- and/or temporally-ordered states might in turn lead, via an 
unspecified 'interpretation' mechanism, to spatially-ordered differentiation. For 
mathematical simplicity most analyses of Turing models deal with instabilities of 
uniform stationary states, since numerical analysis is generally required for more 
general reference states. However, Turing himself recognized the biological unreality 
of this in stating that 'most of an organism, most of the time is developing from one 
pattern to another, rather than from homogeneity into a pattern' 1-34]. 
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Gradient models and reaction-diffusion models have been proposed to account 
for segmentation patterns along the antero-posterior axis of insects. However there 
are instances in which positional information models based on a simple "reading 
off" of morphogen concentration are clearly not sufficient to describe the results of 
observations. For example, in Oncopeltus, Wright and Lawrence [38] found that if 
cells that were not normally neighbours were juxtaposed by surgical manipulation, 
then a segment boundary would form at the interface when confronting cells came 
from sufficiently disparate positions in the antero-posterior axis of the same 
segment, and otherwise the segment simply regenerated normally. The latter result 
could be explained by the diffusive smoothing of a gradient, but the former requires 
the generation of the extreme positional values that specify the segmental bound- 
ary and these could not arise from a simple gradient mechanism. In Drosophila, 
surgical manipulation 1-15] or gene mutation can lead to deletions and mirror 
symmetrical duplications along the antero-posterior axis on length scales ranging 
from half the egg to within segments (see [16] for review). These results cannot be 
fully explained by a simple gradient model. 

Reaction diffusion systems have been proposed to account for spatial pattern 
formation in several other biological systems and in chemical systems, but in many 
of these cases experimental evidence is lacking. Recently, however, Turing-type 
structures have been found in the chlorite-iodide-malonic acid reaction 
[6, 31, 19, 14]. Aside from the difficulty of identifying morphogens and the reac- 
tions in which they participate in a biological context, there are several general 
properties of Turing systems that limit their applicability. 

• The spatial patterns in a Turing system typically arise via an instability, and thus 
the parameters must be tightly controlled to obtain the onset of the instability at 
the desired point in parameter space. In particular, for a given kinetic mechanism, 
the diffusion coefficients must have the proper relative magnitudes. 

• Because the instabilities result from the interaction of reaction and diffusion, the 
patterns that arise are sensitive to the overall scale of the system. As a result, it is 
difficult to obtain the degree of scale-invariance that is observed in various 
biological systems. However, modifications of Turing's model can circumvent this 
difficulty [29, 32]. 

• Frequently there are multiple stable solutions that coexist in a Turing system 
(examples are given later), which raises the problem of pattern selection. Generally 
tight control of the initial conditions is needed to select the desired pattern. 

In this paper we analyze the spatial pattern formation properties of a two- 
component reaction-diffusion system in which the two species are subject to 
different boundary conditions. For example, one species may be subject to 
Neumann conditions, whereas the other species may satisfy Dirichlet conditions. 
We focus our attention on the size of the parameter domain in which multiple 
solutions are exhibited, the control of the polarity of solutions, and the degree of 
scale-invariance of solutions. 

One of the major points that emerges from our analysis is the following. Fixing 
one (but not both) species at the boundary leads to less sensitive dependence of 
patterns on both the length and the initial conditions. In particular, for certain 
combinations of boundary conditions we find smooth transitions between different 
spatial patterns, and these transitions do not involve bifurcations. For example, we 
find a transition from 1 to 2 to 3 stable pattern elements in a one-parameter family 
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parameterized by the length. Moreover, these solutions are apparently the only 
stable solutions. By contrast, for Turing systems a tortuous path in  parameter 
space would be required, because different stable patterns may coexist under 
certain conditions. 

In the following section we discuss some general properties of reaction-diffusion 

systems and describe some of the standard kinetic schemes that are used in pattern 
formation studies. In particular we point out that the popular terminology that 

labels certain systems as activator-inhibitor systems is not sufficiently precise: any 
two-component system that can lead to diffusive instabilities is an activator- 

inhibitor system. The distinction that should be made is between what we call 
a pure activator-inhibitor system and a cross activator-inhibitor system. Under 
conditions to be made precise later, we show that in the former type the gradients of 

the two species are parallel sufficiently close to a bifurcation point, while in the 
latter they are anti-parallel (both in one space dimension), and this seems to be the 

only significant difference between the two types of systems. We then discuss in 
more detail the parametric behavior of one representative example of a cross 

activator-inhibitor mechanism. 
In Sect. 3 we carry out a qualitative analysis of the solutions for mixed 

boundary conditions, and analyze the existence and stability of solutions in the 

limit L ~ 0. In Sect. 4 we present some numerical results for various combinations 
of boundary conditions. The possible application of our results in the context of 

limb development is discussed in the conclusions section. 

2 General results for Turing systems 

2.1 The standard Turing model 

In the following section we will discuss a specific model reaction mechanism, 
but here we will simply assume that the temporal dynamics in a spatially uni- 
form system are governed by the solution of the system of differential 

equations 

de 
dt  =/~(c, /5) . .  (1) 

Here the vector e = (el, c2 . . . .  , c,,) is the vector of chemical concentrations, and 
is therefore an element of the nonnegative cone C + of an m-dimensional real 

Euclidean vector space. The functions Ri give the net rate of production of the 
i th species and they are usually polynomial or rational functions in the ci's, in 
the latter case having no poles in C + . The vector t5 is a parameter vector, which 
can include the kinetic constants and perhaps species that appear in the kinetic 
mechanism but do not change significantly on the time scale of interest. To be 
well-posed from the physical standpoint, the solution of (1) should exist and 
be nonnegative and bounded for t ~ (0, oe ). Nonnegativity is guaranteed by the 

hypothesis that 

R i ( C l ,  c 2 . . . . .  C i _ l ,  O, . . . , Cm,  f i )  ~ O, (2) 

for cj > 0,j__+ i. The solution through any initial point in Cm + will be unique if the 
functions R~ are locally Lipschitz continuous in c throughout Cm + . 
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Let ~ be a bounded region in 9tq, q < 3 with a smooth boundary and outward 
normal n. Turing's model for pattern formation is described by the system of 

reaction-diffusion equations 

& = DVZc + R(c ,~)  in 
& 

n . O V c = H ( c * - c )  on af2 

c(r, O) = co(r), (3) 

where c* is a fixed concentration and D is usually assumed to be a constant 
diagonal matrix. We assume for the present that all D~ > 0. The matrix H of mass 

transfer coefficients is also diagonal, and when Hi = oo one has Dirichlet data on 
the ith species, whereas if Hi = 0 one has Neumann data. 

Let co- 1 be a time scale characteristic of the reactions, let L be a measure of the 
size of the system, and let C~ be a reference concentration for the ith species. Suppose 
that the species are ordered so that max~{Di} = D1. Define the dimensionless 

quantities u i =  ci/Ci, z =  cot, g)i-= Di/Dt, v-=D1/coL 2, and ( = r / L ,  where 

r - (xl  . . . .  , xq). The dimensionless governing equations are 

Ou 
- - - - v ~ V Z u + R ( u , p )  in f~ 
& 

n .  V u  = P ( u *  - u)  on  ~f~ 

u(~, 0) = Uo((), (4) 

where ~ = diag{1, fia . . . . .  ~"}, Pi = L H J D i ,  and R(u,p)  is the dimensionless 
form of/~(u, p). 

Proposition 1 of Ashkenazi and Othmer [1] shows that for most of the typical 

rate laws used, the condition (2) that guarantees invarianee of C + under the flow of 
(1) also guarantees that classical solutions of the reaction-diffusion system (4) will 
be nonnegative for t > 0 provided that the initial data is nonnegative. Further- 

more, these authors show that the solution of (4) exists and is unique for sufficiently 

small times and that the solution is bounded in Lt  (f~) for t • [0, oo ) under minimal 
smoothness conditions on the vectorfield. If the kinetic vectorfield admits an 

invariant rectangle then one can also show that the solution exists for all time 
pointwise in space [81. Thus the models we use are well-posed from a physical 
standpoint (as well as being well-posed in the standard mathematical sense). 

In the absence of reaction, the solution relaxes exponentially to the average 
concentration set by the initial conditions under Neumann boundary conditions. 
Thus one expects that a system will relax to a uniform state whenever the 

relaxation time for diffusion of each species is sufficiently short compared to that of 
the chemical reactions. The dimensionless quantity co-1/(L2/Di) is the ratio of 

a kinetic relaxation time to a relaxation time for diffusion, and thus one expects 
that when L is small enough the system will relax to a uniform state if all Di > 0. 
This can be shown rigorously using a theorem in [24]. An order of magnitude 
estimate given there shows that for typical values of the diffusion coefficients and 
kinetic relaxation times it can be expected that systems of order two cell diameters 
in size will relax to a uniform state provided that all time-dependent species 
involved in the kinetic terms also diffuse. A similar result holds for the Dirichlet 
problem provided that u* is such that R(u*, p) = 0 [8]. However, Turing showed 
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that diffusion could destabilize a steady state that is stable in the absence of 

diffusion, and when this occurs one calls it a diffusive instability. In order to define 

this precisely, we have to consider the variational system associated with (4). 

Suppose that u s is a time-independent solutio~n of (4). If we linearize (4) around 
u s and let ~ = u - u ~, then we obtain the variational system 

where 

~3¢ v~V2~ + K~ 

n .V~ = - P~ 

~(;, 0) = ~o(0, (5) 

and k~ s = ORi/c~uj(us)(O . This system has solutions of the form ~ = e~'q ~, which 

leads to the spectral problem 

v ~ V 2 W  + (K  - 2I)W = 0 

n .  V t g  = - Pq~.  (6)  

This is generally not a self-adjoint problem, and the eigenfunctions do not have 

a simple form, even if u s is independent of (. Suppose however, that P = p I  for some 

p e 9t +, in which case we say that the boundary conditions are scalar conditions. 1 

If in addition u s is a constant, then the eigenfunctions can be written ~sn = Yj, ¢ . ,  

where ~n is a solution of the scalar eigenvalue problem 

V 2 ~ n  = - - ~ 2 ~ b  n in f~ 

n .  Y e n  = - p C .  o n  0 f / .  (7)  

The vector y~ e 91m is a solution of the algebraic eigenvalue problem 

( K  -- ,u,,~ - 2 I ) y  = 0, (8) 

where/~n - ~ v. In this case the eigenfunctions are complete and the solution of the 

linear variational problem can be written 

~(~, Z) = ~ e(r-~"~)~YnCn(() (9) 
n=0 

where the y, e 91m are determined by the initial data. This case is particularly 

simple, because the eigenfunctions of the variational problem are independent of 

the parameter  L, and one can characterize the solution of the full nonlinear 

problem by specifying its amplitude spectrum relative to a basis comprised of those 
eigenfunctions. When the underlying solution u s is not constant the eigenfunctions 

vary with L. If the eigenfunctions are complete one can still characterize the 
solutions by their amplitude spectrum relative to the eigenfunction basis, but this 

1 In fact, we can allow the possibility that 8t2 has several connected components, on each of 
which the boundary condition is scalar, with a different p for each component  of the boundary 
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cannot be done uniformly in L. However, one can still characterize solutions in 

terms of the number of maxima or minima, and this is adequate if it is only the 
threshold levels of morphogens that are important. For some purposes it is 
appropriate to use a fixed basis, such as trigonometric functions, for the 
solution of the variational problem, and this is done for the linear analysis in 
Appendix A. 

The foregoing shows that stability in an L2(~) sense for the linear equations 
with scalar boundary conditions is governed by the eigenvalues of the family 
{K - #,@ },% o, and it is well-known that the principle of linearized stability holds 
for equations like (5). That is, asymptotic stability or instability for the zero 
solution of the variational equations implies the same properties of the solution u s 
of the nonlinear equations. The spatial variation of any mode is given by ~b.(~), but 
in the case p = 0 (p = oe ) this can be written 

~b,(~) = ~b(~,~) = ~b ( L  r ) ,  (10) 

where ~b solves the problem 

VZ~b= -q~ inf~ 

with homogeneous Neumann (homogeneous Dirichlet) boundary conditions. That 
is, by scaling ~ by e, we obtain a universal pattern function, and the eigenfunctions 
differ from each other only by the dilation e , / L  of the spatial scale. Thus homo- 
geneous Dirichlet and Neumann boundary conditions play a distinguished role in 
the context of Turing instabilities. 

Although { #. } is countable for a reasonable domain, it is convenient at present 
to replace #, with a continuous variable. Then stability of u s is governed by the 
character of the eigenvalues of the one-parameter family of matrices {K - # ~  } for 
# s 9t +, and a diffusive instability is defined as follows. 

Definition 1 Suppose that u s is asymptotically stable as a steady-state solution of 
(1). We say that a zero-amplitude diffusive instability of u] exists if there exist #-+, 
0 < # -  < #+ < oe, such that K - # ~  has at least one eigenvalue with a positive 
real part when # e (#-,  #+). If for some #* e (#- ,  #+), K - #*N has a single real 
positive eigenvalue the instability is stationary at #*, while if K - #*@ has complex 
eigenvalues with a positive real part the instability is oscillatory at #*. 

Of course it is possible that K - #@ has real positive eigenvalues and complex 
eigenvalues with a positive real part at some #*, or there may be several disjoint 
intervals of # in which K - #N has an eigenvalue with a positive real part. Usually 
one is only interested in knowing whether the first eigenvalue to cross from the 
left-half to the right-half plane is real or complex, and for this the above character- 
ization suffices when the eigenvalue having the largest real part is simple. Station- 
ary instabilities generically lead to bifurcation of a stationary solution from u s, 
whereas oscillatory instabilities generically lead to bifurcation of periodic solutions 
from u s . 

Let K s denote the symmetric part of K, let a(K) denote the spectrum of the 

matrix K, let L H P  (LHP)  denote the open (closed) left-half complex plane, and let 
bl ° II denote the Euclidean norm in R". Some general conditions on K and ~ that 
preclude diffusive instabilities are given in the following theorem. In this theorem 
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and the one that follows there is no reference to the type of boundary conditions 
imposed, but it is assumed that the boundary conditions are scalar conditions. 

Theorem 2 [27] Suppose that ~ is diagonal with @i > O. Then each of  the following 

conditions is sufficient to preclude diffusive instabilities. 

• K and ~ are simultaneously triangularizable. 

• There exists a diagonal matrix W with Wi > 0 such that a ( W K )  ~ ~ LHP. 

• K is either row or column quasi-diagonally dominant. 

• m i n i ~ i / m a x i ~ i  > 1 - l /m, where m is such that II exp(Kt) [J < m exp( - ~t), and 

m >  1 , 7 > 0 .  
• The graph (¢(K) associated with K has no cycles of  length greater than one. 

However, it is also well known that a diffusive instability is possible given the 
proper structure in the kinetic mechanism. The following theorem summarizes the 
necessary conditions for stability, and from this one can understand the type of 
kinetic interactions that can give rise to diffusive instabilities. In the theorem, 
K [ i l ,  i 2 . . . .  , ip'] denotes a p x p principal submatrix of K formed from rows and 
columnsi l ,  i 2 , . . . , i  v f o r l < p < n - 1 .  

Theorem 3 [26-] Let ~ be diagonal with @i > O. In order that a (K  - I t~) ~ L H P  

for all such ~ and all # e [0, oo ), it is necessary that 

• a(K)  ~ L H P  

• a (K[ i l , i 2  . . . .  , ip]) c L H P  for all pth-order submatrices of  K, where 

l < p < n - 1 .  

It is clear that scalar boundary conditions greatly simplify the linear analysis, for 
the eigenfunctions have a simple product form. Thus far little is known about (6) 
when the boundary conditions are not scalar conditions. General results on 
selected types of mixed conditions would be useful for understanding pattern 
formation in biological systems that have mixed conditions. 

2.2 Diffusive instabilities in a two-component Turing model 

Since we later restrict attention to two-species systems, we shall briefly review some 
of the known facts about such systems; for further details and generalizations see 
[23, 30, 24, 29, 22]. To simplify the notation, we let (u, v) denote the chemical 
species, we denote the reaction vector field by (f(u,  v, p), g(u, v, p)), and we set 
62 = 6. We write the governing equations as 

Ou 
- -  = v V Z u  + f ( u ,  v, p)  
Or 

in P 
Ov 
- -  = t~I, 'V2u "3 L g ( u ,  U, p )  
~z 

n .  V u  = p ( u *  - u) 
on ~ 

n. Vv = p(v* - v). (i1) 

Then the stability of (u s, v ~) is governed by the character of the eigenvalues of the 
problem 

det(K - # ~  -- A1) = 2 2 + c1(p)2 + c2(#) = 0. (12) 
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Here 

ci(#)  ---/~ trace @ - trace K = #(1 + 6) - (kil + k2z) 

c2(/~) - /~2 det 9 +/~( t race(Kg)  - (trace K)(trace 9 ) )  + det K 

= 1~26 - #(k116 + kz2) + de tK ,  (13) 

and trace A (det A) stand for the trace and determinant, respectively, of any 
matrix A. One is usually interested in how the eigenvalues change as some para- 
meter p is varied, and in particular, in whether or not a diffusive instability is 

possible. 
The solution (u s, v s) is asymptotically stable as a solution of (1) if trace K < 0 

and det K > 0, and we assume that these conditions hold hereafter. Furthermore, it 

follows from the definition of c1(#) that if c1(0) > 0, then an oscillatory diffusive 
instability is impossible provided that the diffusion coefficients are nonnegative. 
Only stationary diffusive instabilities can occur for D~ > 0, and it follows from (8) 

that under the standing conditions on K, c2(p) can vanish only ifku > 0 for i = 1 or 

2. Without loss of generality we can assume that k22 > 0, and then it is necessary 

that ki t  < 0 and that k12k2~ < 0 in order that trace K < 0 and det K > 0. The 
range of dimensionless wave numbers in which c2(/~) < 0 is (p-,/~+), where 

#-+ = (k22 + ~kll _+ x/(k22 + 6kil)  2 - 46detK)/2(5, (14) 

and in this interval K - # 9  has exactly one real positive eigenvalue. In order that 
/~ be > 0, it is necessary that 6 __< 1, and since trace K < 0, there can never be two 
real positive eigenvalues. 

Within an arbitrary relabelling of species, any two-component kinetic mechan- 
ism that can lead to a diffusive instability must give rise to a Jacobian at (u s, v s) with 
one of the following patterns of signs. 

Definition 4 A kinetic mechanism for which the Jacobian at u e C~- is of type 
Kp (type Kc) is said to be a pure (cross) activator-inhibitor mechanism at u. 

Clearly the type of a mechanism may vary with u e C~-, but when it does not we 
call the mechanism a global pure (cross) activator-inhibitor system. Comparison 
theorems can be used to prove existence of the solution of (11) for all time for 

mechanisms whose type is global. In studying zero-amplitude diffusive instabilities 
the interest is in the local behavior near a steady state, and Fig. 1 shows the only 
possibility for the local disposition of the isoclines f = 0 and g = 0 for each of the 

two types. As shown there, for a pure activator-inhibitor system the level sets f =  0 
and g = 0 must lie in the first and third quadrants sufficiently close to the origin in 
a coordinate system centered at (u s, vs), whereas they must lie in the second and 
fourth quadrants for a cross activator-inhibitor system. 

Currently the terminology 'activator-inhibitor' is primarily used to describe 
a global pure activator-inhibitor mechanism [20]. However it is clear (and well 
known) that any two-component system that leads to a zero-amplitude diffusive 
instability must contain both self-activation and mutual or cross activation and 
inhibition. The distinction between the two generic types hinges on whether the 
self-activating species activates or inhibits the other species. The major qualitative 
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Fig. 1.a, b A schematic of the local behavior of the nullclines for the two generic types of 
two-component systems that support diffusive instabilities, a a cross activator-inhibitor system, 
b a pure activator-inhibitor system 

difference in the concentration profiles for the two types of mechanism under 

homogenous Neumann  conditions is stated in the following proposition. 

Proposition 5 Suppose that p = 0 in (11). I f  the kinetic mechanism is of global pure 

(cross) type and q = 1, then non-constant solutions that bifurcate from the uniform 

steady state have the property that sgn(u~) = sgn(vg) (sgn(u~) = - sgn(v~)) in some 

neighborhood of the bifurcation point. In other words, the gradients are locally 

antiparallel (parallel). 

Proof By differentiating the one-dimensional, time-independent version of (11) 

one finds that 

v(u~)~ + Lu~ + f~v~ = 0 (16) 

3v(v0, ~ + g.u: + g~v c = O. (17) 

It  suffices to prove the result for either of the cases, for if one is proved the other 

follows after the transformation v¢ w-~ - v¢. The conclusion is easily established 

near a bifurcation point on the uniform steady state, whether or not the corres- 

ponding eigenvalue is simple. This is done by solving the system at the bifurcation 

point, where it has constant coefficients, and then applying a perturbation argu- 

ment. 

As we shall see later, the numerical results suggest that the conclusion is true on 
all pr imary bifurcating branches, not only near the bifurcation point, but it is not 
true on the secondary bifurcating branches. This result implies that to a first 

approximation,  the only admissible phase differences between the two species are 
0 and ~ in a one-dimensional system. 

Next we analyze in more detail how the intervals of unstable wave numbers 

depend on the linearized kinetic parameters and on the ratio of diffusion coeffic- 

ients. It follows from the definition of c2(#) that #-+ > 0 only if 5 < - k22/k11. 
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Furthermore, for fixed kij the discriminant of (13) is a quadratic in 6, the roots of 

which are 

6 + - =  

It can be shown that 

d e t K  - k12k21 _ 2 x / - k 1 2 k 2 1  d e tK  

kh  

--  k22 < 
0 < 6 - <  kll  6+' 

and therefore the maximum allowable 6 for which a zero-amplitude diffusive 

instability occurs at some p > 0 is 6 ¢ - 6 -.  Note that if trace K = det K = 0, then 
6 +- --* 1, which means that a diffusive instability can occur when the ratio of the 

diffusion coefficients is arbitrarily close to one, provided that both eigenvalues of 
the Jacobian for the kinetics are sufficiently close to zero. This conclusion carries 
over to n-component systems as well [33] .  

At the critical value of 6 

# +  = # -  ~ /Z ¢ = k22 + 6¢kll (18) 
26 ¢ 

The corresponding critical wave number is 

L = X/ /)1 \ ; '  (19) 

This is a natural or intrinsic wavelength at marginal instability, which Turing [34] 
called the chemical wavelength. In a one-dimensional system of length L 
with homogeneous Neumann boundary conditions, ~, = mz, n = 0, 1 . . . .  and 

d p , = c o s ( n ~ / L ) ( ,  while under homogeneous Dirichlet conditions ~ , =  
n~, n = 1 . . . .  and ~b. = sin ( m z / L ) ( .  In either case the critical wave number is 
indexed by the integer n closest to [29-1 

If the entries of K and ~ are such that there is a positive real eigenvalue of K - # ~  

for/~ e [ p - ,  #+], then the mode qS, is unstable whenever 

L e [ L 2 ,  L~ + ] = n~  , n~  . (20) 

Thus the intervals of instability of the successive modes are disjoint if and only if 

n - 1  # ~ +  
- - <  

n 

i.e., if and only if 

1 
n < n * ~  
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As L increases from zero the uniform steady state always loses stability with respect 
to q~l first and is linearly unstable with respect to q~l over the range 

A L l  =- L [  - L ~  = rc 
V a ~  

The foregoing results can also be applied to systems with scalar boundary 
conditions of the third type (i.e., when p ~: 0), and to arbitrary domains. In the 
former case one simply replaces nrc by ~, in (20). In the latter case one regards L as 
some measure of the size of the system, and one replaces nrc by the n th eigenvalue of 
the Laplacian for the domain in question in (20). Of course real two- or three- 
dimensional growth can rarely be described by a single size parameter since 
proportions usually change during growth. The same sort of analysis that was done 
for two-component systems can be done for n-component systems as well, although 
the critical quantities cannot be computed explicitly in general [23, 30]. Further- 
more, when n > 3 there may be more than one turning point on the curve 
det(K - / ~ )  in the p versus 6 i plane. 

A simple measure of the range of invariance of pattern formation in Turing's 
model with scalar homogeneous Neumann or Dirichlet conditions is the interval of 
instability for the n trt mode, which is given by 

AL. 

This criterion is similar to the one used in [18]. Clearly it depends on the mode 
number in question. Furthermore, when the intervals overlap, as they always do for 
large enough n or sufficiently small 6, the uniform state is unstable with respect to 
more than one mode and it is possible that more than one solution is stable or that 
the spatial distribution of the morphogens in the stable solution bears little 
resemblance to the spatial variation of the eigenfunctions. Thus the foregoing linear 
analysis gives little information about scale-invariance in the full nonlinear model 
in these cases. However, one can certainly conclude already that Turing's model 
does not show perfect scale-invariance (a conclusion reached by others 
[29, 32, 2, 17] and one that does not rest on any of the foregoing analysis). It is of 
course very difficult to say anything analytically about the behavior of the 
solutions of the full nonlinear equations, except near certain degenerate points 
corresponding to coincidence of an L f  and an L~- (cf. Fig. 4b). However some 
insight into the changes in the spatial distributions that must occur as the para- 
meter L varies can be gotten as follows. Time-independent solutions of (4) exist 
when the diffusion rate is balanced by the reaction rate at each point in space. As 
L increases the relaxation time for diffusion increases and at least one of three 
possible changes in the profiles must occur. Firstly, the local curvature of the 
distributions could increase so as to maintain a constant diffusion rate. Secondly, 
the local diffusion rate could decrease and the reaction rate could change corres- 
pondingly. Finally, the local amplitude of the solution could increase, again so as to 
maintain the diffusion rate constant. The last of these is only possible if the reaction 
rates are insensitive to changes in concentration, which can occur for enzymatic 
reactions only when the rate is saturated at maximal velocity. Of course a combina- 
tion of the foregoing changes is generally what occurs, but under any of them 
the spatial profile varies with L and in particular, the spatial location of fixed 
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concentration thresholds that are used to trigger differentiation into different 
types of cells will generally move about in space. The precise amount of this drift 

can only be determined on a case-by-case basis, but some general conclusions can 
be derived from studies of model systems. In the following sections we study the 
effect of nonscalar boundary conditions on the intervals of instability and on the 
types of stable patterns that can arise. 

3 Systems with mixed boundary conditions 

3.1 Quali tative analysis 

We saw in the previous section how the intervals of instability for a linear Turing 
system depend on the parameters, and in particular, we determined when these 
intervals overlap as a function of the length. When the intervals are disjoint a single 
real eigenvalue crosses the imaginary axis at L 2 ,  and the uniform steady state 
becomes unstable to a spatial pattern given by ~b(~) (cf. (10)). In general, a noncon- 
stant solution bifurcates at L, under a nondegeneracy condition on the nonlin- 
earity (specific examples are given later). These conclusions hold in any number of 
spatial dimensions, but hereafter we restrict attention to one-dimensional systems. 
For Neumann boundary conditions the spatial variation of the unstable mode is 
~b, = cos ( (n~ /L)x ) .  As we observed earlier, in the linear approximation the spatial 
phase difference between the two components is either 0 ° or 180 °, according as the 
mechanism is locally of pure or cross activator-inhibitor type. This phase relation- 
ship is not precisely preserved in the solution of the full nonlinear problem, but 
results from bifurcation theory show that spatial variation of the solution near the 
bifurcation point is dominated by the unstable eigenfunction near the bifurcation 
point, and numerical results given later show that the phase relations do not 
change significantly, even far from the bifurcation point. 

To gain some insight into the effects on time-independent spatial patterns of 
changing the boundary conditions, we will consider different combinations of 
Neumann and Dirichlet conditions on the two components. In the following 
analysis we only consider the cases in which (u*, v*) = (0, 0) and (u*, v*) = (u s, vS), 
but in the next section we allow a more general nonhomogeneous term. The steady 
state equations are 

vu~ + f (u ,  v, p) = 0 
in (0, 1) (21) 

6vv~; + g(u, v, p) = O. 

The boundary conditions will be written in the form 

~u 
01 ~nn = p(1 - 01)(03 us - u) 

for ~ = 0, 1 (22) 
#v 

602 ~n = 6p(1 - 02)(03v s - v), 

where 0i e [0, 1], i = 1, 2, 3, are homotopy parameters. Our strategy in the numer- 
ical computations described in the following section will be to do a homotopy 
between various types of boundary conditions by varying the parameters 01. To 
facilitate reference to various limiting cases of the homotopies, we first introduce 
some terminology. 
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e2 

D°D° ~ Os 
NDo ~ ND1 

01 

Fig. 2. A schematic showing the relationship 
of various combinations of boundary condi- 
tions to the homotopy parameters 

When (0x, 02,  03)  = (1, 1, ° ) the governing Eqs. (21) and (22) reduce to the pure 
homogeneous Neumann problem, which we denote NN. If (01, 0z, 03) = (1, 0, 0), 
then the problem has a homogeneous Neumann condition on u and a homogene- 
ous Dirichlet condition on v. We denote this case by NDo. If (01, Oz, 03) = (0, 1, 0) 
we have the mixed boundary problem DoN, and if (01, 02, 03) = (0, 0, 0) we have 
the pure homogeneous Dirichlet problem DoDo. Similarly, if we fix 
(01, 02, 03) = (1, 0, 1) then (21) and (22) reduce to the mixed boundary problem 
with a homogeneous Neumann condition on u and a nonhomogeneous Dirichlet 
condition on v, denoted ND1. Finally, for (01,02, 03) = (0, 1, 1) we have the mixed 
boundary problem D1N, while for (01,02, 03) = (0, 0, 1) we have the pure non- 
homogeneous Dirichlet problem D1D1. Figure 2 illustrates the relationship be- 
tween the various problems. We will expand on this figure later to summarize how 
the solutions change as various edges are traversed. 

Equation (21) defines adynamical  system in 9~ 4, and the solution of (21) sub- 
j~ct to (22) defines a curve F:  [0, i] ~ C~ × 9~ 2. In the case D1D1 the endpoints of 
F lie in the two-dimensional manifold (u s, v'~ × ~R 2, while in the case NN the 
endpoints lie in C ]  × (0, 0). The projection of F into 9~ 2 shows how the gradients 
vary along the solution, and the projection of F into C ~-, which we call F, reflects 
the variation of (u, v). For example, consider the case NN. By integrating both 
equations in (21) over [0, 1] we find that 

and 

f j  f(u, v, p)d~ = 0 (23) 

f] g(u, v, p)d~ = (24) O. 

Thus the average reaction rate must vanish. In the case NDi and DiN, for i = 0, 1, 
the corresponding average rate must still vanish for the species that satisfies 
a Neumann condition, irrespective of the boundary condition imposed on the other 
species. To see how these elementary facts enable us to get some insight into the 
behavior of the curve F as the boundary conditions are changed, we must consider 
a specific reaction mechanism. In the previous section we showed that there are 
only two generic types of two-component systems when viewed in the linear 
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approximat ion,  and in the remainder  of the paper  we focus on one of these. We 

consider a simplified version of  a model  for glycolysis, which is obtained from the 

general model  in the limiting case in which the enzymes are far f rom saturat ion 

[28, 13. 

The vectorfield is 

f ( u ,  v, p) = B - -  tcu - -  uv a 

g(bl, V, p )  = KU "~ UV 2 - -  V, 

(25) 

where/~ are ~ are parameters  that  we set to 1.0 and 0.001, respectively. A sketch of 

the nullclines for this mechanism is shown in Fig. 3. 2 This system is a cross 

act ivator-inhibitor  mechanism whenever 2uv  > 1, and in particular, this is true at 

the steady state whenever/~2 > ~c. For  these values of/~ and ~, 6c ~ 0.172, and #+- 

are as shown in Fig. 4a. If  we also choose D1 = 10 _5 cm2/sec and co = 0.01 sec -1, 

then we can compute  the range of unstable lengths for the various modes. The 

results for the first four modes  are shown as a function of  6 in Fig. 4b (cf. also Table 

1). Figures 4a, b bo th  apply to homogeneous  N e u m a n n  condit ions and to homo-  

geneous Dirichlet conditions. 

To  see how the boundary  condit ions affect F, we sketch the possibilities as 

(01, 0z, 03) varies using the glycolytic vectorfield. When  (01, 02, 03) = (1, 1,.), the 

locat ion of  F is constrained only by the integral condit ions given by (23) and (24), 

which imply that  F cannot  lie entirely on one side of either f = 0 or 9 = 0. One 

feasible curve is shown in Fig. 5a. 

When  (05, 02, 03) = (1, 0, 0) (case N D o ) ,  F must  cross f - -  0 at least once, and it 

must  terminate on the u-axis. One possibility that  satisfies these condit ions is 

Fig. 3. The nullclines for the model of glycolysis 

2 It is easy to see that there is no invariant rectangle in C2 for the flow in 9t 2 defined by (1) when 
/~ is given by (25). Therefore one cannot assert a priori that all solutions of the reaction-diffusion 
system are bounded. In fact, one can see from Fig. 3 that g > 0 for fixed u sufficiently large, and 
large v, and this suggests that there may be solutions for which v is unbounded. However, this is an 
artifact that arises from the simplification of the original model. If the positive feedback term uv 2 is 
replaced by a function such as yuvZ/(K + v 2) that saturates at large v, then it is easy to show that 
the local dynamics has an invariant rectangle, and that all solutions of the reaction-diffusion 
system are bounded. Our interest here is in solutions of moderate amplitude, and solutions of (21) 
and (22) are small perturbations of the solutions of the more complete equations in this range. 
Therefore whether or not there are also large-amplitude solutions is irrelevant for our purposes 
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Fig. 4. a The locus of marginal 
stability for the glycolytic reactions 
in 3- wave number space, b The 
intervals of instability for the first 
four modes in 6-L space 

Table 1. Numerical and analytical values of the endpoints of the instability intervals [L~-, L~ + ] 
(in cm) for the i da mode in case NN. The analytic values are obtained using (20); the numerical 
procedures will be discussed in the following section 

NN L; L~ L] L + L~ L; L; L + L; 

Computed 0.047 0.080 0 . 0 9 3  0.159 0.140 0 . 2 3 8  0.186 0.317 0.232 
Analytic 0.0465 0.0793 0 .093  0 . 1 5 9  0.140 0 . 2 3 8  0.186 0.317 0.233 

shown in Fig. 5b. Since g > 0 when v = 0, v;~ < 0 near  0 and  1. If  F crosses f = 0 

an  odd  n u m b e r  of  t imes there are an o d d  n u m b e r  of inflection poin ts  in the g raph  

of  u(O, and  sgn(u~) mus t  be the same near  0 and  1. I t  follows tha t  sgn(u~) = sgn(v~) 

in some interval  in [0, 1], even for this cross ac t iva to r - inh ib i to r  system. This  is in 

cons t ras t  with the case of N e u m a n n  data .  W h e n  (01, 02, 0~) = (0, 1, 0) (case DON), 
there  a re  several  possibi l i t ies  for the d ispos i t ion  of  F,  as  shown in Fig. 5c. In  

par t icu la r ,  one sees tha t  there  are two dis t inct  possibi l i t ies  as L ~ 0, one in which 

bo th  u and  v a p p r o a c h  zero t h r o u g h o u t  [0, 1], and  ano the r  in which u tends to zero 
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U 

V 

• r ¢ 

U 

Fig. 5, The disposition of F in the phase plane for 
the glycolytic reaction under various combinations 
of boundary conditions. (a) (0x, 02, 03) = (1, 1,.), 
(b) (01, 0 z, 03) = (1, 0, 0), (c) (01, 0 z, 03) = (0, 1, 0) 

but  v tends to infinity. (As we r emarked  earlier, the latter possibili ty is of  no 

interest.) The  sketches for the cases Da N and ND1 can be got ten f rom (b) (respec- 
tively, (c)) by t ranslat ing F to the line u = u ~ (respectively, v = v~). 

3.2 Existence and stability for small L 

As we observed in Sect. 2, in cases NN and D1D1 all solutions converge to 

a spat ia l ly-uniform solut ion at  sufficiently small L. However ,  this is not  true in 

general for mixed b o u n d a r y  conditions,  as we now show. We first establish the 

existence of solutions at small L, and then we analyze their stability. In  the cases 

NDI and D 1 N  there is a spat ia l ly-uniform steady state solution. This is not  true in 

the cases NDo, DoN and DoDo. 

First  consider the cases NDi, with i equal  to zero or one. Recall that  
v - D~/coL 2 and let $2 ~ p-1.  Equat ions  (21) and (22) then become 

u;: + e2f (u, v, p) = 0 

~v~ + eZg(u, v, p) = O, 

in (0, 1) (26) 
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and 

~u = 0 
~ 0 , 1  

(27) 
V[0, 1 ~ CO, 

where Co is either zero or v s. As L ~ 0,/3 ~ 0, and for classical solutions this is 

a regular perturbation problem. Thus we may assume solutions of the form 

U = U o W / 3 g u ~  + • " "  
(28) 

/) = /30 "{- /32/31 "}- " " " 

At lowest order one finds that Uo(~) = cl, Vo(O = Co, where cl is to be determined. 
The solvability condition at (9(/32) reduces to the condition that f(uo, Vo, p)= O, 
which yields c~, and the components a t  order (9(/32) are 

U 1 ~ C 2 

g(Uo, Vo, p) 
Vl = (~ _ ~z) 

26 

(29) 

where c 2 is a constant. The solvability condition at (9(e4) implies that 

L ( U o ,  P) 
f~ vl (0  d~. (30) 

VO, 

c2 - fu(Uo, Vo, p) 

One finds that at (9(/3 ~) the u component of the solution has nontrivial dependence 

o n  ~. 

It follows that as L ~ 0 the solution converges to (u, v) = ( f -  1 (0), 0) if Co = 0 
(case NDo), while if co = v s (case ND1) it converges to (u, v) = (u s, v s) (cf. Fig. 5b, c). 

In the former case the solution is clearly not constant, but in the latter case it is easy 
to show that (u(/3z), v(/32))- (u s, v s) for sufficiently small ~. Note that the only 

property of the glycolytic model that is essential here is that f =  0 intersects the 

u-axis once (it cannot intersect more than once). Thus the conclusions hold for 

a more general class of mechanisms. 
A similar kind of analysis can be done in the cases DoN and D1N. However, in 

these cases there are two branches of solutions that exist at L = 0, because the 
vertical lines u = constant intersect #(u, v, p) = 0 at two points. These intersections 
are at (u, v) = (0, 0) and (0, oo ) in the case DoN. We leave it to the reader to derive 

the leading order terms in these cases. 
Next we shall determine the stability of the solutions that exist at small L. First 

consider the cases ND1 and D1 N, for which there is the constant solution (u ~, v~). In 
both cases the variational problem relative to this solution consists of the first 
equation of (5), and the appropriate boundary conditions. The spectral problem is 

O2~p 
v ~ - ~ -  + (K - 2I)W = 0 (31) 

- - ~ - - - 0  

dff at ~ = 0, 1 (32) 

u? 2 = 0  
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for ND1, and (31) plus the bounda ry  condit ions 

q~l = 0 
at ( = 0,1 (33) 

OqJ2 
- 0  

a(  

for D1N. We assume that  6 > 0 and define e: - v -1 as before. Then  (31) becomes 

6J c3~ 2 + (e2K - ;~I)W = 0 (34) 

where ,~---- e22. At/3 = 0 (L = 0) the kinetic contr ibut ion vanishes, and it is easy to 
see that  the eigenvalues and eigenfunctions for ND1 are 

(I) ,~= - -  ( r iTZ) 2 ~rlL=(COS; 7z( ) n = O, 1 , . . .  

(cos 
(II) )~= - (nTt)2 q~ = \ s i n  nn~ J n = 1, 2 . . . .  3 

(°) (III) 2 =  - 6 ( m e )  2 ~P= s inn~(  n = l , 2 , . . . .  

The  zero eigenvalue is simple and the corresponding eigenfunction is (1, 0) r. In the 

D1N case the two components  are reversed in the preceding eigenfunctions. 
Since 2 =/322, all but  the zero eigenvalue have a pole of order  two at/3 = 0 

(L = 0), and therefore the per turbed eigenfunctions corresponding to these eigen- 
values lead to decaying solutions for/3 sufficiently small. Thus we only have to 

determine how the zero eigenvalue perturbs for small L Since the problem is 
invariant  under  the t ransformat ion L ~ - L ,  the zero eigenvalue cannot  pass 
through zero transversally, and there is no change in stability at L = 0. 

Because the zero eigenvalue is simple it perturbs smoothly,  and we may write 

= /3221 -q- B422 q- . . . 

~-/ = KI/0 -~  /32ki-/1 --~ • . • 

where qJo = (1, 0) 7, (respectively, qJo -- (0, 1) r) for the case ND1 (respectively, D1 N). 

One easily finds that  21 = k l l  for ND1, and 21 = k22 for D1N. Since kl1 < 0 and 
k22 > 0, it follows that  the solution (u s, v s) is stable for small L in case NDI and 
unstable for small L in case D1N. 

The three remaining cases are NDo, DoN, and the branch of solutions of D1 N 
that  terminates at (u s, ~), where z3 given by 

~3 = 1 - x/1 - 4to(uS) 2 

2u s 

In these cases the basic solution is not  constant,  and the variat ional problem has 
space-dependent  coefficients. In particular,  the matr ix  K - K(e 2, ~) in (34) is 

I - -  K, - -  1) 2 - -  2uv ] 
K = Ko +/3ZK1 + . . . .  

tc + v 2 2uv - 1 ' 

3 These solutions exist only for 6 = I 
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Table 2. The stability characteristics of solutions that exist 
at small L 

Case Basic Solution Stability Characteristics 

ND o (/~/~:, 0) Stable 
N D 1 (u s, v ~ ) Stable 
D O N (13, 0) Stable 
D 1N (u s, v s ) Unstable 
D a N (u s, ~) Stable 

R. Dillon et al. 

wherein u and v have the expansions given in (28). In all cases the expansion at 
order (9(e 2) leads to the equation 

+ (Ko - 21I)tPo = 0 (35) 

and therefore 21 is given by 

( ~ o ,  KoWo) 
~'1 = (36) 

(q%, ~t'o) 

In the case NDo, ~Po = (1, 0) r and (Uo, Vo) = (/~/x, 0), and one finds that 21 = - x. 
Since ~c > 0, NDo is stable at small L. For  DoN, ~o = (0, 1) r, (Uo, Vo) = (0, 0), and 
21 = - 1. Thus D o N  is also stable near L = 0. Finally, on the nonuniform branch 
which terminates at (u ,v)=(uS,  f) in the case D1N, W o = ( 0 , 1 )  r and 

(Uo, v0) = (u s, ~). It follows that 21 = 2uS~3 - 1, which, from the expression above for 
~3, is negative. Thus the solutions on this branch are stable for small L. 

The conclusions concerning existence and stability of solutions at small L are 
summarized in Table 2. The interested reader can gain further insight into these 
results by a direct qualitative analysis of the evolution equations in this limit. 

One sees from this table that there are both similarities and differences between 

scalar and mixed boundary conditions. It follows from the results in [24] and [8] 
that under homogeneous scalar Neumann conditions the solution (u, v) = (u s, v s) of 

(26) is unique and stable for sufficiently small L, and this is also true for the mixed 
case ND1. However, the same solution is unstable (and not unique) in the mixed 

case D1N. One can also show that this solution is stable in the scalar case D1D1, 

(this follows from the results in [8]), and thus there are several eigenvalue crossings 
(and possibly bifurcations) as one homotops the boundary conditions around the 
edges of the face ®3 = 1 in Fig. 2. Other differences will emerge from the numerical 
results described in the following section. 

3.3 Linear analysis for  general L 

As we pointed out in Sect. 2, when the boundary conditions are not scalar 
conditions, the linear analysis is much more difficult because the eigenfunctions do 
not have the simple product form. In Appendix A we consider the linear evolution 
equations associated with (21) for the case D1N. We show that in this case each 
eigenfunction is an infinite sum of trignometric functions and that the growth rate 
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of each eigenfunction (given by the dispersion relation) is the solution of a general- 
ized eigenvalue problem involving infinite-dimensional matrices. To solve this we 
consider finite dimensional approximations (FDA) to this infinite dimensional 
system. We present some examples in A.1 to illustrate the procedure. The conver- 
gence properties of the FDA are studied numerically and it appears that for simple 
types of spatial patterns a low order FDA gives accurate approximations to the full 
solution. We also show that the spatial eigenfunctions thus calculated agree very 
closely with the corresponding solution to the steady state problem of the full 
nonlinear problem as calculated by AUTO (see Sect. 4 and Appendix B). 

In A.2 we relate the eigenfunctions of the mixed boundary problem to those of 
the NN case and in A.3 we illustrate how the FDA procedure can be adapted to 
locate bifurcation points. 

4 Numerical results 

In the preceding section we establish the existence of various branches of solutions 
of the steady-state Eqs. (21) at small L, and determined their stability. In this 
section we present a more complete picture of the solution set as a function of L, 
obtained by using numerical continuation and bifurcation techniques. We first 
present the solutions at six of the eight nodes in the homotopy cube shown in Fig. 
2, and compare the properties of the solutions as L varies under the different types 
of boundary conditions. We then discuss some results obtained by solving the 
corresponding evolution equations. 

The numerical results on steady-state solutions were obtained by discretizing 
the differential equations using finite differences, and then solving the resulting 
nonlinear algebraic system using the software package AUTO [11]. The details of 
the numerical methods used are given in Appendix B. 

4.1 Steady state solutions 

Figure 6 shows a schematic summary of the primary bifurcation structure as 
a function of L for various combinations of boundary conditions. For simplicity 
not all of the solutions are shown in the case D 1N. Some of the similarities and 
differences that emerge from this figure are as follows. 

• The structure of the solution set is quite similar in the cases N N  and DIDo, 
which are the standard Turing cases. In both cases there is a basic constant solution 
(u, v) = (u s, vs), and the bifurcation points on these branches are identical. As we 
shall see later, the solutions on the primary bifurcating branches are dominated by 
the mode that changes stability at the corresponding primary bifurcation point. 
This fact accounts for the principle difference in the spatial distribution of the two 
components in these cases, for in the NN case the eigenfunctions of the variational 
problem relative to the basic solution are cosines, whereas in the D~D~ case they 
are sines. 

• In four of the six cases shown in this figure, the constant solution (u, v) -- (u s, v s) 
exists for all L, and the structure of the solution set is significantly more complex 
than in the remaining cases. In particular, in the latter cases there are large intervals 
in which there are no bifurcation points, but as we will see later, the nodal structure 
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Fig. 6. Schematic illustration of homotopy relationships and a summary of the primary bifurca- 
tion structure for different sets of boundary conditions. The detailed bifurcation diagrams and 
solution profiles for the different cases are presented in the following figures: NN (Figs. 7a and 8); 
D1D 1 (Figs. 7b and 9); NDI (Figs. 10 and 11); DIN (Figs. 12 and 13); DoN (Figs. 14 and 15); ND o 
(Figs. 16 and 17). Here and hereafter we use the following notltion. For bifurcation diagrams the 
horizontal axis is length, L (cm), and the vertical axis is the Euclidean norm, II (u, v) 115, of the 
solution vector, where (u, v)~ R s2. denotes a stable branch, - -  -denotes an unstable 
branch. For concentration profiles - - d e n o t e s  u and ---denotes v 

of the solutions can change nonetheless. Thus the imposition of zero boundary 
conditions on either of the species greatly reduces the admissible types of spatial 
profiles for the two components.  In particular, it will become clear from a later 
diagram that the solution structure in case DoN is essentially that of  case D1 N, 
minus the solutions associated with bifurcations from the basic branch. 

The detailed bifurcation diagrams and the spatial profiles of selected solutions 
associated with the summary given in Fig. 6 are given in Figs. 7-17. These are 
discussed in the following subsection, but some readers may wish to skip the details 
and go directly to the summary Sect. 4.3. 

4.2 A comparison of the results 

As we indicated earlier, the bifurcation points in the NN and D1D1 cases can be 

computed analytically and Table 1 shows a comparison between the analytical and 

numerical values in these cases. It  is clear from the table that the bifurcation points 
can be located accurately numerically. One can show analytically that the bifurca- 
tions are either subcritical or supercritical, i.e., they are all pitchfork bifurcations. In 
both the NN and DD cases the nonconstant component  of solutions on the jm 
primary bifurcation branch (the branch that bifurcates from the constant solution 
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Fig. 7. Bifurcation diagrams for N N  

(a) and for DiD 1 (b). Solution pro- 
files at selected points on the bifurca- 
tion diagrams are shown in Fig. 8 for 
N N  and in Fig. 9 for D1D 1. The 
bifurcation diagram for N N  is com- 
plete for the first three modes. The 
horizontal line is the uniform steady 
state and all other solutions shown 
bifurcate from it. There is no second- 
ary bifurcation from the first mode; 
the change in stability on this branch 
is a turning point. There is a second- 
ary branch connecting modes 2 and 
3, and one connecting modes 3 and 4. 
Note that there is an interval in 
which stable solutions on the second 
and third branch coexist, and sim- 
ilarly for the third and fourth branch. 
There is also a small interval near 
L = 0.22 in which three stable solu- 
tions coexist. In the case of D1D 1 

there is a large interval around 
L = 0.15 in which three stable solu- 
tions coexist 

at  L/+- ) is d o m i n a t e d  by t h e f  h mode.  This  follows f rom an a sympto t i c  analysis  near  
the b i furca t ion  points ,  bu t  ho lds  far f rom these poin ts  as well. To  i l lustrate  this, 
Tab le  3 shows the ampl i tudes  of the F o u r i e r  cosine componen t s  for the solu t ions  
whose spa t ia l  profiles are given in Fig. 8. 

In  view of  this d o m i n a n c e  of  the uns tab le  mode,  it  is easy to charac ter ize  the 
noda l  s t ructure  for each c o m p o n e n t  at  a given L, as long as the ins tabi l i ty  intervals  
do  no t  over lap.  However ,  one sees in Fig. 7 tha t  the intervals  over lap  at  larger  L, as 
p red ic ted  earlier,  and  tha t  there  m a y  be secondary  branches  of so lu t ions  tha t  
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Fig. 8. Panels a~l show the spatial profiles of the solutions at the points labeled a~l in Fig. 7(a). 
The corresponding L values are 0.05, 0.1, 0.1482, and 0.2, respectively. Solutions on primary 
bifurcation branches corresponding to even modes are approximately symmetric about ~ = 0.5, 
and solutions on branches corresponding to odd modes are approximately anti-symmetric about 

= 0.5. The solution in panel c, which is a mixed-mode solution on a secondary branch, cannot 
be characterized as having a uniform phase difference of 0 or 

connect primary branches. On such branches the solution is typically a mix of the 

dominant modes that characterize the primary branches. An example is given by 

the solution labelled (c) in Fig. 7, which lies on an unstable secondary branch 

connecting the second and third primary branches. On the primary branches the 

spatial gradients are opposed, i.e., sgn(u~)= - sgn(v~) ,  but this is not true on 

secondary branches. Similar statements apply to the other standard Turing case, 

namely D1D1, and we do not elaborate on this further. 

Each of the branches for j odd in Fig. 7 corresponds to two solutions, one of 

which is transformed into the other under reflection across ~ = 1/2. Of course both 

of these have the same norm. The two solutions corresponding to j even can be 

obtained by concatenating solutions for j / 2  in two combinations. In the continuous 

problem the L2 norms of these solutions coincide, but that is not true for the 

discrete norm used here, because the number of mesh points is fixed. As a result, 

there is another branch of solutions for j even that is not shown in Fig. 7. In any 

case, the isotropy group of the solutions on these branches (i.e., the group of 

symmetry transformations that leaves the solutions invariant), is constant on any 

connected component  of a branch that contains no bifurcation points [25]. 

The number of primary bifurcation points is significantly reduced if instead of 

a homogeneous  Neumann condition on v one sets v = v S on the boundary. This is 

the case ND1, for which the bifurcation diagram is shown in Fig. 10. In this case 

there are only four bifurcation points on the basic solution for L e [t3, 0.5], 
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Fig. 10. The bifurcation diagram 
for N D  1. There are 2 bifurcation 

points from the uniform steady 

state for L e(0.04, 0.36), one at 
L = 0 . 2 1 6  and the other at 

L = 0.226. The bifurcation branch 

at L = 0.216 is a closed loop that 
intersects the uniform steady state 
at only one point. In this profile the 
branch folds back on itself and re- 
turns to the bifurcation point. 
Solutions for this case at the 
labeled points are shown in Fig. 11 
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Fig. 11. Panels a--d show the spatial profiles of the solutions for ND t at the points labeled a-d in 
Fig. 10. In panel a L = 0.219, in b L = 0.228, and in c and d L = 0.25 

compared with sixteen in either case N N  or case D1 D 1. Furthermore, the global 

structure of the solution set is much simpler in this range of L than it is in either of 

the standard Turing cases. Thus two effects of these mixed conditions are that the 

uniform steady state is stable over a larger L interval, and the solution set is 

simplified. 

Solutions on the first nonuniform branch are approximately, but not  pre- 

cisely, anti-symmetric about'~ = 0.5, whereas on the second branch, solutions are 

approximately symmetric. If the two equations at (21) were not coupled via 

the kinetic vectorfield, the eigenfunctions of the variational problem relative to 

(u s, v ~) would be of the form (cos(nn~), sin(mn~)), and thus it is natural to character- 

ize the nonconstant  solutions shown in Fig. 11 in terms of this basis. The results 

of this representation are shown in Table 4. Solutions (b) and (d), which lie on 

the same branch, have a similar amplitude spectrum, but those of (a) and (c), which 

lie on different branches, are quite different. Of  course one expects that all these 

solutions can be characterized in terms of a dominant mode, and in essence the 

results in the table show which trigonometric functions appear in those modes. As 

we remarked earlier, one has to solve the coupled system directly to obtain these 

modes. Several examples of  the procedure are given in Appendix A for the case 

D i N .  

Since the case N D  t can be obtained from the case N N  by a homotopy  of one 

boundary condition, one may ask about the correspondence between bifurcation 

points and nontrivial solutions in these cases. A generic perturbation of the 

boundary conditions for a Neumann problem would remove some or all of  the 
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Fig. 12. Bifurcation diagrams for case D1N. Panel a shows solutions that bifurcate from the 

spatially-uniform steady state, panel b shows the continuation of the branch discussed in Sect. 3. 

bifurcation points, but here they persist locally in a two-parameter family under 
a small decrease in the homotopy parameter 02, because the basic solution (u% v ') 
persists under this homotopy. In Fig. 18 we show the loci traced out in the (L, 02) 
plane by fixed small amplitude solutions that lie near each of the bifurcation points 
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Fig. 17. Panels a--d show the spatial profiles of the solutions for N D  o at the points labeled a--d in 
Fig. 16 (at L = 0.05, 0.1, 0.2, and 0.4, respectively) 



02 

1.00_ 

0 . 8 0 _  

0 . 6 0 _  

0,40 

0.20 

0 . 0 0  

0 . 0 0  
I '  I I 1 I 

O . l O  0 . 2 0  

Pattern formation in generalized Turing systems. I 377 

0 . 3 0  

LENGTH (cm) 

Fig. 18. The locus of bifurcation 
points on the uniform steady state in 
the two-parameter L - 02 plane. 
Note that several pairs of bifurcation 
points that exist in the NN case 
coalesce as 02 is decreased, which 
leads to a much simpler bifurcation 
diagram for ND 1 (cf. Figs. 7a and 10) 

at 02 = 1. To obtain these loci, we augment the algebraic equations obtained by 
discretizing the partial differential equations with the functional 

p3 - { [ u ( O  - ¢ ] 2  + [v(~) - v ' ]  2} a~. 
0 

We then pick a solution near the bifurcation point (with P3 "" (9(10-'°)), and 
continue this solution in the two parameters (L, 02). We follow this procedure, 
rather than augment the equations to find zeroes of the determinant of the 

algebraic system, because following the zeroes of the determinant is numerically 

very sensitive. Given the above choice of P3, the results should be indistinguishable 
in the two approaches, and this was verified by a separate computation at 02 = 1. 

One sees from Fig. 18 that only two bifurcation points continue from case N N  to 

case N D  t; the remainder disappear pairwise at intermediate values of 02. Further- 
more, in the range of L shown there are no other bifurcation points at 02 = 0. In 
case N N  these points correspond to modes three and four, and while these modes 
are present in the solutions for ND~, other modes are present aswell. Thus there is 
little connection between the solutions in these cases. 

By contrast with the case ND~, in which the mixed condition simplifies the 

solution set as a function of L, imposing the Dirichlet condition on u has the 
opposite effect. One sees in Fig. 12 that there are two disjoint components of the 
solution set, one comprising solutions connected with the uniform steady state, and 
another comprising solutions that are connected with the stable non-constant 
solution that was discussed in Sect. 3. The second set is more interesting than the 
first, because there are stable solutions for all L > 0 on it. One may again 
investigate the correspondence between these solutions and those in case N N ,  and 
the results are shown in Fig. 19. The procedure for the continuation is the same as 
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used previously, and it succeeds for the same reason as before. One sees that in the 

range L e (0, 0.4) only three of the fourteen bifurcation points that exist in case NN 
continue to case DaN. In addition, there are two bifurcation points on the basic 

solution for D I N  that are not connected to bifurcation points for NN. 
Spatial profiles of the solutions labelled (a)-(d) in Fig. 12 are shown in Fig. 13, 

and the amplitude spectrum of these solutions relative to the basis {(sin(mzc~), 

cos(nn~))} is given in Table 5. The solutions labelled (a) and (b) have v ~ 0, and 

u g k sin n~ for some constant k. Solutions such as (c) and (d) are characterized by 

a few cosine modes in u and a few sine modes in v. Generally speaking, u is 

dominated by a few even cosine modes whereas v is dominated by a few odd sine 

modes in case DIN. 
The transition from DaN to DoN involves a homotopy  in 03. One sees from 

a comparison of Figs. 12 and 14 that this transition prunes off all solutions 
connected with the basic solution (u s, vS). The profiles along the remaining branch 

are remarkably similar at the same L values, except that in case DoN u is pinned at 
zero at the endpoints, rather than at u ~ (cf. Figs. 13 and 15). 

The last case considered is NDo, which can be gotten from case NN via 

a homotopy  in 02. One sees from the bifurcation diagram for this case (cf. Fig. 16) 

that there is no apparent  connection between the structure of the solution set in this 

case and that in any of the other cases. The main branch shown in Fig. 16 begins at 

the point (u, v) = (fl/x), at L = 0, as was shown in Sect. 3 (cf. Fig. 5b). There are 
Hopf  bifurcation points on this branch at L = 0.00614 and L = 0.0812, and 
periodic solutions bifurcate at these points. The periodic solutions are nearly 
synchronized in space and are qualitatively similar to the periodic solutions that 

exist in the local dynamics at a slightly larger value of fl (cf. [1]). Aside from the 
short secondary branch which shortcuts the turn in the main branch at about 
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L = 0.3, there is in fact a single branch of time-independent solutions in the range 
of L shown. Solutions on this branch can change their nodal structure without 
passing through a bifurcation point. We can characterize the "mode" for solutions 
of NDo, by the number of connected components in [0, 1] in which v > u. In this 
way the "mode" numbers increase with L. The solution at L = 0.05 is "mode" 0, the 
solution at L = 0.1 is "mode" 1, the solution at L = 0.2 is "mode" 2, while that at 
L = 0.4 is "mode" 3. Except for a short interval at about L = 0.3, the "modes" do 
not overlap, i.e., over a large range of L there is only one stable solution. In 
comparison with the NN case, the problem of multiple stable solutions for a given 
L is greatly reduced. 

4.3 Summary 

Several important conclusions can be drawn from these results, and we summarize 
them as follows. 

(i) Nodal structure of solutions: Tables 4-7, for the cases ND1, D1N, DoN and 
NDo, respectively, show that the spatial distribution of the species which satisfies 
Neumann conditions is dominated by cosine modes, while the species which 
satisfies Dirichlet conditions is dominated by sine modes. Imposing Dirichlet 
conditions on one species appears, in many cases, to reduce the anti-symmetric 
(odd cosine) mode components of the species which satisfies a Neumann condition 
(see Tables 4-7). The concentration profiles are not precisely symmetric about 

= 0.5 due to the higher order modes of the nonlinear problem and to the presence 
of the anti-symmetric modes. Comparison with linear analysis for some typical 
cases is made in Appendix A. I, Examples 4 and 5, and the relationship with the NN 
case is discussed in Appendix A.2. The linear analysis done in Appendix A predicts 
that eigenfunctions containing odd (even) sine components in the Dirichlet species 
are coupled with those in the Neumann species that contain even (odd) cosine 

components. 

(ii) Symmetry properties: In Sect. 2 (Proposition 5) we proved that for a kinetic 
mechanism of global cross activator-inhibitor type with Neumann boundary 
conditions on both species the nonconstant solution profiles are out of phase, at 
least in the vicinity of a primary bifurcation point. Our numerical solutions confirm 
this, but Fig. 8c shows that this does not necessarily hold on secondary bifurcation 

branches. 

(iii) In the case of mixed boundary conditions it becomes meaningless to talk of 
phase differences, since one is then comparing the several dominant cosine modes 
of the Neumann species with the several dominant sine modes of the Dirichlet 
species (see for example, Figs. 13, 15, and 17). However, in this case, a maximum of 
one species almost coincides with a minimum of the other species. This is also true 
for the NN case and appears to be a general property of a kinetic mechanism of 
global cross activator-inhibitor type that holds regardless of the boundary condi- 
tions imposed. 

(iv) Complexity of the bifurcation diagram: The complexity of the bifurcation 
behavior of the system can be greatly reduced by changing the boundary condi- 
tions. For example, over the interval L ~ (0, 0.5) there are sixteen bifurcation points 
from the uniform steady state for the NN case (Fig. 7) but only four bifurcation 
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points for the ND1 case (Fig. 10). The reduction in the number of primary bifurca- 
tion points as 02 homotopies from N N  to ND 1 is illustrated in Fig. 18, which shows 
that as 02 decreases some pairs of bifurcation points coalesce into a single point, 
which then disappears. Others drift to the right with L. Hence fixing v = v s at the 
boundary increases the range in L over which the uniform steady state is stable. 
Figure 19 shows that the number of primary bifurcation points also decreases as 
one homotopies from N N  to DtN. Along with the reduction in the number of 
bifurcation points, changing the boundary conditions to mixed type can reduce the 
multiplicity of stable solutions. For example, in the NDo case there is only one 
stable solution over a large range of L. Furthermore, there is only a very short 
range of L over which multiple solutions exist, and these are not stable. This is 
graphically illustrated in Fig. 20. 

(v) Behavior at small L: In the NN case, a minimum domain length is required for 
a nonconstant steady state solution to exist (Sect. 2.2 and Fig. 7). However, for the 
mixed boundary problem D1 N, we showed in Sect. 3 that the constant solution is 
unstable at arbitrarily small L, and that there is a stable nonconstant solution at 
small L (cf. Fig. 13). In cases DoN and NDo there is no constant solution, but in 
each case there is a stable nonconstant solution at sufficiently small L. 

5 Discussion 

Since the seminal paper of Turing in 1952, a large number of Turing-type models 
have been proposed for spatial pattern formation. It has been shown that such 
models exhibit a great variety of spatially patterned solutions and their properties 
have been widely studied mathematically, while the mechanisms have been exten- 
sively proposed to account for spatial pattern formation in a number of developmen- 
tal contexts. Although these models exhibit a bewildering range and complexity of 
patterns, nature appears to select only a relatively small number of these patterns. 
Therefore the essential feature of any realistic model for development is not so much 
that of pattern generation but that of carefully selecting a small number of patterns in 
a robust and controlled manner. It is already well-known that in Turing models, the 
pattern selection process is very sensitive to initial conditions, scale, geometry, and 
parameter variation. As they stand, therefore, Turing models are inadequate to 
account for robust patterning mechanisms such as those that underlie, for example, 
the development of skeletal patterns in the tetrapod limb. 

In this paper we have shown that in one space dimension the properties of the 
solutions of a reaction-diffusion system can be profoundly affected by the nature of 
the boundary conditions. In particular, we have shown that imposing nonscalar 
boundary conditions can lead, in a robust and controlled manner, to a sequence of 
transitions that closely resembles those observed in skeletal patterning in the 
developing limb, as shown in Fig. 20. We took the domain length L as the 
bifurcation parameter in this study. However, as this parameter occurs in a dimen- 
sionless group that involves diffusion coefficients and a characteristic reaction time, 
the sequence of transitions shown in Fig. 20 could be generated in other ways. For 
example, it could arise from a change in the permeability of gap junctions between 
the cells [5], which in a continuum description is reflected in a change in the 
diffusion coefficients [29]. This possibility has recently been incorporated in 
a two-dimensional model of limb development [10]. 
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Fig. 20. a, b Shown here are the subintervals of (0, 1) in which the v-component of the solution 
exceeds a fixed threshold, as a function of the length L. a Case N N ,  b Case N D  o. In a only one of 
the pairs of solutions which exist at each L is shown. It is clear from b that a simple threshold 
mechanism can reliably produce the sequence 1, 2 . . . .  of pattern elements as the length increases, 
whereas this is impossible for the standard Turing model, as shown in a 

Note that our model solutions capture neither the anterior-posterior spatial 
asymmetries observed in the skeletal elements of the limb nor their temporal 
sequence of development along this axis. Recently, Benson et al. [3, 4] have shown 

that a spatially varying diffflsion coefficient can produce such spatial asymmetry. 
The temporal sequence of pattern formation may be due to cells responding to the 
spatial pattern in a time-specific fashion. 

Computations not reported here show that nonscalar boundary conditions also 

lead to pattern formation for a much larger ratio of diffusion coefficients than in the 
scalar case, thereby enlarging the parameter domain over which certain patterns 

exist and hence lowering pattern sensitivity to small changes in the environment. 
A further consequence of nonscalar boundary conditions is that, depending on the 
exact form of the conditions, the model can exhibit stable, spatially nonuniform 

patterns at very small lengths. This is in contrast to the Turing model, which only 
exhibits the spatially uniform steady state in this limit. 

In summary, boundary conditions have a marked affect on the patterns exhib- 
ited by reaction-diffusion models in one space dimension. We would expect this 
effect to be even more pronounced in two- and three-dimensions, because in these 
cases one has an even wider choice of different types of boundary conditions. 

A Appendix 

A.1 Linear stability analysis 

In this appendix we consider the variational equation associated with (l 1) in more 
detail. We write it in the form 

0~1 0241 

~ 2  e 0 2 4 2  ..~ k 2 1 ~  1 "l- k 2 2 ~ 2  , ~Z = OV 

( ~ (0, 1) (37) 
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and we first consider the boundary conditions 

¢ ~ = 0 ,  0 ~ 2 = 0 ,  a t e = 0 , 1  (38) 

which correspond to case DiN.  Recall that we know from Sect. 3 that the 
spatially-uniform steady state (u s, v9 is unstable at small L in this case. (Recall that 
there is also a nonconstant, stable solution in this case.) 

Since the boundary conditions are not scalar conditions, the eigenfunctions do 
not have a simple product form. However, functions that vanish at the endpoints 
have a sine expansion and those with a vanishing derivative at the endpoints have 
a cosine expansion. Therefore, (37) and (38) have solutions of the form 

( ~ )  = e z ~ @ ~ 2  

where 

@ 1 Am sin(rare() 

= . (39) 

\.~=o B,,cos(n~) / 
By contrast, in the classical linear problem with scalar homogeneous Neumann 
conditions, the n th eigenfunction is of the form 

( A " )  cos(nrc~). (40) 
@ =  B, 

Substituting (39) into (37) we obtain 

[2 + v(mrc) 2 -- k i l l  Am sin(rmz¢)= ~ klzB.cos(nrc() 

m=i .=o (41) 
o o  0 o  

[2 + v6(nrc) 2 - k22] B.cos(nrc;) = E k2i A.,sin(mn;). 
n = 0  m = l  

Multiplying through by sin(rare() and integrating over [0, 1] leads to 

[2 + v(mTr) 2 - k l i ]  Am = ~ ki2B, e,m 

.=o (42) 
o o  

kzlAm = Z E2 + v6(nT"c) 2 - kzz]Bn~nm 
n=O 

where 

(cos(nrc(), sin(mrc~)) I.i 
e.m = (sin(trot(), sin(mrc~)) and ( f ,  0 )  = ou f(~)O(~)d(. 

System (42) is an infinite system of linear equations for the infinite number of 
unknowns Am, B., m = 1, 2, 3 . . . . .  n = 0, 1, 2, 3 . . . . .  To solve this system we 
make a finite dimensional approximation (FDA) to it by considering only values of 
m up to M and truncating the sums at n = M - 1. This leads to a system of 2M 
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equations for the 2M unknowns (A1, A 2 ,  • • • , AM, Bo, B 1 ,  • • • ,  BM-1). We may 
rewrite the truncated system as the generalized eigenvalue problem 

Px = 2Qx (43) 

where x = (A1, Az, • • • ,  AM, B1, • • • ", B M - 1 )  and P and Q are 2M x 2M matrices 
which have the block structure 

I'°7 P -  Pa P,* ' Q=- 0 Q4 " 

Here Pi and Qi are M x M matrices given by 

0 i f / : # j  

(P1)ij = v(m~) 2 - kl l  i f / = j  

(P2)ii = - k l2ai- l , i  Pa = k l z I  

(P4)ij = ( v 6 ( j  -- 1)2n 2 -- k22)aj- 1,i 

(Q4)/j  = a i -1 ,~  

where i, j -- 1, 2 . . . .  , M, and I is the M x M unit matrix. 
The solution of (43) leads to 2M eigenvalues 2i with corresponding eigenvectors 

xi. Thus the M-dimensional approximation to the solution of (37) and (38) is 

Ami sin ( m n ( ) t  e ~ (44) 

where ( A u ,  Azl  . . . . .  AMi, Bo~,BI~ . . . .  , B (M-I~)  is the eigenvector with eigen- 

value 2i. 
As the dimension of the FDA is increased, the values of the previously cal- 

culated eigenvalues and eigenvectors will change and more eigenvalues and corres- 
ponding eigenvectors will be generated. We use the following criteria as stopping 

tests. 

( i)  The approximation for a chosen 2~ and its corresponding eigenvector must 
converge as the dimension of the FDA is increased. In the case of the eigenvectors 
this also means that higher order terms are insignificant. For any given 2 there is an 
Mc such that the computed eigenvalue and eigenvector are sufficiently accurate 

for M = Me. 

(ii)  The eigenvalues introduced for M > Mc have real part negative, and thus 
correspond to temporally decaying solutions of (37). 

If both these criteria are satisfied, then we are assured that the FDA only ignores 
exponentially decaying terms in time and insignificantly small terms in the trigon- 
ometric expansion of the spatial component of the solution to (37). Furthermore, if 
some of the eigenvalues obtained by the FDA have positive real part, then the 
uniform steady state of (37) is unstable and we postulate that the solution will 
evolve to a spatially varying solution of the form (44) with temporal growth rates 
given by the real part of the positive eigenvalues. 



Pattern formation in generalized Turing systems. I 387 

To solve the generalized eigenvalue problem (43) we use the NAG library 
routine F02BJF which essentially reduces both matrices to triangular form by 
a coordinate transformation, solves the eigenvalue problem in the new coordinate 
system, then transforms the eigenvectors thus obtained back to the original 
coordinate system (see [21, 35]). We can test the accuracy of our analytic approx- 
imation in several ways. 

1. We can solve the linear partial differential equation system (37) with the 
boundary conditions (38) using the NAG library routine D03PGF (which is based 
on a method of lines procedure and uses Gear's method to integrate the resulting 
system of ordinary differential equations) to obtain the actual values of 41 and ~2. 
We can then calculate the Fourier sine and cosine series for ¢1 and 42 respectively 
and compare them to the predictions made above. Furthermore, we can calculate 
the linear growth rate of solutions and compare them with the positive eigenvalues 
from the FDA. We carried this test out on a large number of examples and, in every 
case, we found very good agreement between the analytical predictions and the 
corresponding numerical solutions. 

2. Since (37) is the linearization about a uniform steady state of the nonlinear system 
(4), the FDA scheme gives a linear approximation to the full nonlinear problem. 
Whenever the linear analysis predicts exponentially growing solutions we cannot 
compare growth rates of the two solutions, but we can compare the eigenfunctions of 
the positive (unstable) eigenvalues with Fourier sine and cosine decomposition of the 
solution to the nonlinear steady state problem as calculated from AUTO. 

We illustrate the FDA procedure with two examples for the glycolysis model (25) 
with 6 = 0.14 and the other parameter values fixed as stated: 

Example 1. With boundary condition (38) (the D~N case in Sect. 4) and L = 0.052, 
there are two growing modes and the linear analysis predicts the solution 

( ¢ t ) =  C~ ( sin ~ + 0.06 sin 3 ~  )eXl ' 

~2 - 1.09 - 0.02 cos 2 ~  + 0.01 cos 4rc~ 

s in2z~+0.10  sin47z~+0.03sin6rc( ~eX2 ~ 

+ C2 - 9.5 cos re( - 0.1 cos 3~( - 0.01 cos 5rc(] 

to within terms of (9(10-2). Here 21 = 0.70, 22 = 0.39, and C~ = 0.42, C2 = 0.11, all 
to the same order. On the other hand, the steady state solution to the full nonlinear 
system is 

) = C 1  - 1 . 2 3 - 0 . 0 8 c o s 2 ~  + C 2  -11.79cosrc~ 

to the same order. 

Example 2. Suppose that the boundary conditions are ~¢1/~ = 0 = ~2 at ~ = 0, 1, 
which correspond to the ND 1 case of Sect. 4. We consider different values of L. 

(a) L = 0.219. The solution of the linear problem to leading order is 

( ~ l )  = C1 ( - 0"13 c°s 7r~ + c°s 3rc~ - 0"36 c°s 5 ~  - 0"16 c°s 77z~ ~e~l~ 

42 \0.65 sin 2zc~ - 1.67 sin 4rc~ + 0.33 sin 6zc~ + 0.07 sin 8~z~] ' 
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where /~1 = 2.17 × 10 -4 and C1 = 0.47. The corresponding solution to the steady 
state problem of the full nonlinear system, as calculated using AUTO, is 

( ~ )  ( cos3~r ( -0 .36cos5zc(  ) ( 0 ) 

= C1 0.65 sin 2re( - 1.67 sin 4zc( + 0.31 sin 6zc( + C2 sin 5zc( 

to leading order. 

(b) L = 0.228:Linear analysis yields the solution 

( ~ 1 )  = C1 ~ /0.11 + cos 2 ~ ( -  1.37 cos ere( + 0,25 cos 6re( + 0.04 cos 8~z(']e~: 

~2 ,, 0.05 sin re( - 2.06 sin 3re( + 2.29 sin 57r( + 0.05 sin 7~( J 

/ - 0.05 cos n( + cos 3~( - 0.42 cos 5~( - 0.01 cos 7re( "~ 
/ e22~ + C2 / 

~0.57 sin 2~( - 1.67 sin 41r( - 0.43 sin 6~( + 0.08 sin 8~(J  

where 21 = 4.62 x 10- 5, 22 = 4.95 x 10 -3, and C1 = 0.28, C2 = - 0.47. The steady 
state solution of the nonlinear system is 

= C1 - 2.11 sin 3~( + 2.53 sin 5 ~  

to leading order. 

(c) L = 0.230:Linear analysis predicts that 

~ \ 0.03 sin zc~ - 2.1 sin 3re( + 2.0 sin 5rc~ + 0.04 sin 7zc~ e~: 

( - 0.04 cos zc~ + cos 3rc~ - 0.43 cos 5rc~ - 0.01 cos 7rc~ )e~2 ~ 

+ C2 0.55 sin 27c( - 1.68 sin 4zc( + 0.47 sin 6re( + 0.09 sin 8re( + 0.04 sin 10re( 

where 2a = 2.71 × 10 -3, 22 = 6.00 × 10 -3, and C1 = 0.27, C2 = 0.47. The steady 
state solution of the nonlinear system is 

( ~ ) = C 1 (  cos 2zc~ --1.52 cos 4~( 'X 
- 2.2 sin3~r( + 2.6 sin 5rc() + C2(0.55 cos3rc( -- 0.40cos5rc( 

sin 2re( -- 1.6 sin 4re( + 0.34 sin 6rc(J 

to leading order. 
These two examples show that linear analysis provides a reasonable approxima- 

tion to the spatial variation of the solution of the full nonlinear system. The above 
examples have at most two eigenvalues with positive real parts. The method, however, 
also works in cases where there are more than two eigenvalues with positive real parts. 
The analysis then predicts a superposition of several modes. We have compared the 
predictions of the analysis with the numerical solution of the corresponding linear 
reaction diffusion system for several cases of this type and found them to be in very 
good agreement. This study, however, also highlights the shortcoming of linear 
analysis in that if more than one eigenfunction grows the analysis cannot determine if 
the final pattern of the full nonlinear system will be a combination of eigenfunctions or 
dominated by one eigenfunction. 
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Example 3. If we take the lowest order FDA (M = 1) we find from (42) that the 
temporal growth rate 2 is given by 

22 -- kll d- k22 - vg 2 +__ [(kl i d- k22 - vg2) 2 - 4(klik22 - ki2k21 - k22vrc2)] 1/2. 

(45) 

The condition kil-F k22 < 0  (from Sect. 2) implies that kil + k22-vrc 2 <0 ,  
but the condition klik22-k12k2i>0 does not necessarily imply that 
kllk22 - ki2k21 - k22v~ 2 > 0, unless k22 < 0. If k22 > 0, then for large enough v, 
kil k22 - ki2k2i - k22v~z 2 < 0 and the larger of the two roots (45) is positive. It may 
thus be possible for a uniform steady state which is stable in the standard case of zero 
flux boundary conditions on both species to be driven linearly unstable by boundary 
conditions of the form (38). This may be illustrated for the glycolysis model for the D1N 
case at L = 0.045. For these parameter values the linear analysis predicts that the 
standard Turing system (with zero flux boundary conditions on both species) is stable, 
a result confirmed by numerically solving the partial differential equation system but 
that the case with boundary conditions (38) should have a growing eigenfunction 
which at FDA of dimension 1 is 

( ~ : ) =  Ct ( -  0"38: sin ~Z~)e °'694~. (46) 

At the two-dimensional approximation another positive eigenvalue appears and the 
FDA is now 

( ~ : ) =  C 1 ( -  0"387 sin ~)e°'696~ + C 2 ( -  0.082 sin 
1 cos re( 2~(/e°219~" (47) 

At the 16-dimensional approximation these solutions have converged to 

( )41 = C1( - 0"376sin~(-0"020sin3~z~- 0"004sin57z(+ (9(10-4)~e°75z~ 

~2 1 + 0.057 cos(2~) + 0.004 cos(4rc~) + (9(10 -4) J 

C2( - 0.081 sin(27t~) - 0.009 sin(4rc~) + (9(10-4)~ o.z42~ + (48) 
cos To( + 0.006 cos 3re( + (9(10 -4) ) e  

o 

\ 

Equation (45) also predicts that the value of the positive ,~ will increase as v decreases. 
This is borne out by solving the generalized eigenvalue problem and also the linear 
partial differential equation system. 

This example shows that boundary conditions can drive a reaction-diffusion 
system, which would otherwise be stable, to become unstable and exhibit spatial 
pattern. This is to be expected intuitively because u is the inhibitor, thus setting it to 
zero on the boundary will tend to allow the activator to grow unbounded in a linear 
system. 

The above examples show that even very crude, low dimensional, finite dimen- 
sional approximations provide a reasonably accurate solution to the infinite dimen- 
sional generalized eigenvalue problem (42). If we choose parameters which predict the 
growth of higher modes for the standard Turing system with zero flux boundary 
conditions on both species we find that higher dimensional FDA need to be used in 
order to obtain sufficient accuracy. 

All the above analysis could have been carried out by taking the inner product with 
cosine in (42). The results are in good agreement with the above. 
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A.2 Further analysis 

We can gain some insight into the connection with the Neumann problem as follows. 
Note that the system (42) may be reduced by eliminating A,, to 

~ [ ( 2  + v(mrc) 2 - k11)(2 + vb(nff) 2 - k22) - kl2k21]o~n,nBn = 0 (49) 
n = 0  

f o r m =  1,2,3 . . . .  
This may be written as 

~ { 2 2  + [v(mn) z + 6v(nrc) 2 - trace K]2  + 3v2(mrc)2(nn) 2 - [k l l  v(m~) 2 
n=O 

+ k22v(nrc) 2] + d e t K } B , a , m  = O, 

which shows the connection with the Neumann problem more clearly, for in that case 

(9), 
v(mn) 2 + 6v(nz)  2 ~ (mrc) 2 trace D. 

As an,, = 0 for n + m = 2p, the infinite system represented by (49) can be written as 

Here Be = (Bo, B 2  • • • ) T  and Bo = (B~, B3 • • • )r. Thus det f~(2) = det f~l (2) det f~2(2) 
and the eigenvectors decompose into those with only Bj ~e 0 for j even and those with 
only B~ + 0 for j odd. This explains the form of the eigenfunctions in Examples 1-3. 

A.3 Location o f  bifurcation points 

The above analysis can be used to locate bifurcation points as a certain parameter p is 

varied using the method of bisection as follows: we choose a low dimensional FDA, 
a value of the parameter p say, Pl at which all eigenvalues have real part negative and 

another value P2 at which at least one eigenvalue has positive real part. Assume, 
without loss of generality, that P2 > Pl. Clearly, an odd number of eigenvalues must 
cross the axis in (pl, P2)- By examining the signs of the eigenvalues at the midpoint 
(p~ + p2)/2 of the interval we can easily determine in which half of the interval the 
bifurcation point lies. We can continue this procedure to find the bifurcation point to 

the required degree of accuracy. By going to a higher dimensional FDA we may obtain 
a more accurate value of the parameter at the bifurcation point. The results of this 
method agree closely with those from the package AUTO. For example, in Fig. 10 
bifurcation points occur at L = 0.216 and L = 0.226. The above procedure predicts 

bifurcation at L = 0.219 and 0.228. 

B Appendix 

B.1 Numerical  methods 

To investigate the steady state solutions of (21) we discretise the system using central 
differences: 



Pattern formation in generalized Turing systems. I 391 

D1 
h2-~L z (uj+l - 2u s + u~-l) + f ( u  s, v s) = 0 

6D1 , 
- - .  tvj+l - 2v s + vs-1) + g(v s, vs) = 0 

h2o~L ~ 

(50) 

where Nh = 1, N ~ N,  uj = u(jh), and v s = v(jh) j = 1, 2 . . . . .  N - 1. This is a system 

of 2N - 2 equations with 2N + 2 unknowns.  To  get the remaining four equations, we 

use central differences for the first derivatives at the boundary  and introduce the 

'fictitious' points (_ 1 = - h, and (N+ 1 = (N + l)h, in order to write the discretised 

boundary  conditions as 

01 
2-~ (u-1 - ul)  + (1 - 01)Uo - 0 3  Ns) = 0 

02 
2-h (v-1 - vl) + (1 - O2)(Vo - 03 vs) = 0 

2~(UN+ 1 - -  UN-1) + (1 - -  01)(U N - -  03 us) = 0 

(5i) 

02(v~+1 vN-1)+(1--G)(vN 03v9 O. 
2h 

By substituting (51) into (50) w i t h j  = 0 a n d j  = N, we get 

201 D1 2D1 
h2 ~ (ul - Uo) - ~ (1 - 01)(Uo - 03u s) + Olf(uo, Vo) = 0 

202D2 2D2 (1 
h2coL2 (vl - Vo) - ho)L 2 - 02)(vo - O~v s) + 02g(Uo, Vo) = 0 

201 D1 , 2D1 
t u N - 1  - uN)  - ~ (1 - 01)(uu - 03u') + Oxf(uN, vN) = 0 

(52)  

202D2 2D2 
h2o)L2 (VN-1 --  VN) --  ~ (1 -- 02)(/) N -- 03 vs) --~ 02g(UN, ON) : 0. 

We solved the discretized steady state problem (50) and (52) with A U T O  [6J. This 

p rogram detects bifurcation from a given steady state as the bifurcation parameter  is 

varied and can calculate solutions and their stability by continuation along bifurcating 
branches. Throughout  we fixed D i = l O - S c m Z / s e c ,  c o = 0 . 0 1 s e c  -1, 6 = 0 . 1 4 ,  

fl = 1.0, ~: = 0.001, and N = 40. As a check on the solutions, we computed several 
solutions to the evolution equations corresponding to (21), with appropriate  boundary  
conditions, using the method of lines and Gear 's  method.  In  all cases, the steady state 

solutions obtained by A U T O  and those obtained from the evolution equations were 
similar. 

In  the cases N N  and D 1 D 1, the uniform steady state of the full system is simply 

(u s, v~). However,  for the cases NDo, DoN, DoDo the problem of initially specifying 
a steady state for A U T O  is more  difficult. The starting solutions were determined by 
one of the following methods. 
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(i) Solve the corresponding time evolution problem and use the resulting steady state 
solution as a starting point for AUTO.  For  example, we used such a method to obtain 

the solution to the DoN case at L = 0.1 and then continued the solution with AUTO.  

The bifurcation diagram thus derived is shown in Fig. 15. 

(ii) Use a homotopy  from a known solution for a different set of  boundary  condi- 

tions. This may  be done in several ways. Fo r  example, to find an initial steady state for 

the NDo case we used two different homotopy  methods. For  both  methods, 01, was set 

to 1 so that  u satisfied homogeneous  Neumann  conditions. In the first method we 

introduced a parameter  p and set the boundary  values of  v, namely v(0) and v(N), equal 

to p for a fixed value of L. The parameter  p was initially set equal to v ~ and then used as 

the continuation parameter.  When p reaches zero, we have a steady state solution to 

the NDo problem. This solution may  then be continued in L to investigate its 

bifurcation structure under these boundary  conditions. 

The second method used 0z as the homotopy  parameter  in Eq. (22). The parameter  

was initially set to 1 with the starting solution set at (u s, vS). Continuing in 02 with 

A U T O  until 02 = 0 gives a homotopy  between the homogeneous Neumann  and 

homogeneous  Dirichlet conditions for v. 

Note  that  the starting solution for the homotopy  in the second method need not 

necessarily be (u s, vs). One m a y  start with a spatially heterogeneous steady state 

obtained from the NN case. Several cross checks were carried out with these different 

homotopy  procedures and the solutions were found to agree. 
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