
1Scientific RepoRts | 5:10840 | DOi: 10.1038/srep10840

www.nature.com/scientificreports

Pattern formation in multiplex 

networks
Nikos E. Kouvaris1, Shigefumi Hata2 & Albert Díaz- Guilera1

The advances in understanding complex networks have generated increasing interest in dynamical 

processes occurring on them. Pattern formation in activator-inhibitor systems has been studied 

in networks, revealing differences from the classical continuous media. Here we study pattern 
formation in a new framework, namely multiplex networks. These are systems where activator and 

inhibitor species occupy separate nodes in different layers. Species react across layers but diffuse 
only within their own layer of distinct network topology. This multiplicity generates heterogeneous 

patterns with significant differences from those observed in single-layer networks. Remarkably, 
diffusion-induced instability can occur even if the two species have the same mobility rates; 
condition which can never destabilize single-layer networks. The instability condition is revealed 

using perturbation theory and expressed by a combination of degrees in the different layers. Our 
theory demonstrates that the existence of such topology-driven instabilities is generic in multiplex 

networks, providing a new mechanism of pattern formation.

Distributed active media support a variety of self-organized patterns, such as stationary and oscillatory 
structures, spiral waves, and turbulence1–3. Such media are o�en described by reaction-di�usion systems 
and consist of elements obeying an activator-inhibitor dynamics with local coupling. In his pioneering 
paper1, Turing showed that a uniform steady state can be spontaneously destabilized, leading to a spon-
taneous formation of a periodic spatial pattern, when reacting species di�use with di�erent mobilities. 
It was later proposed by Gierer and Meinhardt4 that an activator-inhibitor chemical reaction is a typical 
example achieving Turing’s scenario. Turing instability is a classical mechanism of self-organization far 
from equilibrium, and plays an important role in biological morphogenesis. It has been extensively stud-
ied in biological4–6 and chemical7 systems, as well as real ecosystems8,9.

�e active elements can also be coupled in more complicated ways, forming complex networks10,11. 
Complex networks are ubiquitous in nature12; two typical examples are epidemics spreading over trans-
portation systems13 and ecological systems where distinct habitats communicate through dispersal con-
nections14–17. �eoretical studies of reaction-di�usion processes on complex networks have recently 
attracted much attention12,18–21. Othmer and Scriven22,23 developed the general mathematical frame-
work to describe Turing instability in networks, and provided several examples of small regular lattices. 
A�erwards, Turing patterns were explored in small networks of chemical reactors24,25. More recent work 
in this area includes detailed studies of Turing bifurcation and related hysteresis phenomena in large 
complex networks26,27, and oscillatory Turing patterns in multi-species ecological networks28.

In nature, the active elements of a system can communicate through di�erent types of pathways with 
di�erent architecture. Such a system with multiple types of links can be represented as a special type 
of complex network called a multiplex network29. Recent theoretical studies have shown that the spec-
tral properties of multiplex networks are signi�cantly di�erent from those of single-layer networks29–33, 
and that these di�erences a�ect the di�usion processes occurring on the network30,31. Consequently, 
the emergent dynamics can exhibit new kinds of patterns. Examples include the breathing synchro-
nization of cross-connected phase oscillators34 and the emergence of a metacritical point in epidemic 
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networks, where di�usion of awareness is able to prevent infection and control the spreading of a dis-
ease35. Moreover, Asllani et al. studied Turing patterns in the context of multiplex networks36, where it 
was found that an additional inter-layer di�usion process can induce instabilities even if they are pre-
vented in the isolated layers.

It has been reported that many man-made networks and real ecosystems are spatially fragmented in 
such a way that di�erent species can migrate using di�erent paths in separate layers37–41. In studies of 
classical swine fever, for example, it was found that an individual can spread the infection by di�erent 
types of contacts characterized by di�erent infection rates37. Moreover, the role of di�erent but overlap-
ping transportation networks was considered in a study exploring the di�usion pattern of severe acute 
respiratory syndrome near Beijing38.

�is literature leads us to consider a new class of dynamical systems, multiplex reaction networks, 
where reacting species are transported over their own networks in distinct layers, but can react with 
each other across the inter-layer connections. �is paper provides a general framework for multiplex 
reaction networks and constructs a theory for self-organized pattern formation in such networks. As a 
typical example, we investigate a di�usively-coupled activator-inhibitor system where Turing patterns 
can develop.

Multiplex reaction networks
We consider multiplex networks of activator and inhibitor populations, where the di�erent species 
occupy separate network nodes in distinct layers. Species react across layers according to the mecha-
nism de�ned by the activator-inhibitor dynamics, and di�use to other nodes in their own layer through 
connecting links (see Fig. 1). Such a process can be described by the equations
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where ui and vi are the densities of activator and inhibitor species in nodes i(u) and i(v) of layers G(u) and 
G(v), respectively. �e superscripts (u) and (v) refer to activator and inhibitor. �e activator nodes are 
labeled by indices i =  1, 2…,N in order of decreasing connectivity. �e same index ordering is applied 
to the inhibitor layer. �e functions f(ui,vi) and g(ui,vi) specify the activator-inhibitor dynamics. �e 
Laplacian matrices L(u) and L(v) describe di�usion processes in the two layers, and the constants σ(u) and 
σ(v) are the corresponding mobility rates (see details in the Methods section).

As a particular example we consider the Mimura-Murray ecological model42 on a multiplex network 
consisting of two scale-free layers. In the absence of di�usive coupling, such that σ(u) =  0 and σ(v) =  0, 
the multiplex system relaxes to a uniform state, i.e. (ui,vi) =  (u0,v0) for all i =  1,…,N. �e homogeneous 
densities are determined by f (u0,v0) =  g(u0,v0) =  0 (see Methods). Under certain conditions, which we 
present here, Turing-like patterns can evolve from an instability driven by the multiplex structure.

Figure 1. Activator-inhibitor system organized in multiplex network. Activator and inhibitor species 

occupy nodes in separate layers G(u) and G(v), respectively. �ey react across the layers (blue inter-layer 

links), while they migrate within their own layers (green intra-layer links).
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Linear stability of the uniform state
In simplex networks, where L(u) ≡ L(v), the uniform state may undergo a Turing instability as the ratio 
σ(v)/σ(u) increases and exceeds a certain threshold. �e instability leads to the spontaneous emergence of 
stationary patterns consisting of nodes with high or low densities of activators26. Such di�usion-induced 
instability can also take place in multiplex reaction networks (1)-(2). �is phenomenon can be explained 
through a linear stability analysis with non-uniform perturbations. We introduce small perturbations, δui 
and δv i, to the uniform steady state, as follows: (ui,vi) =  (u0,v0) +  (δui, δvi). We then substitute the per-
turbed state into equations (1)-(2) to obtain a set of coupled linearized di�erential equations. Finally, by 
means of an approximation technique described fully in the Methods section, we obtain a characteristic 
equation for the growth rate λ of the perturbations for each pair of nodes.

�e onset of the instability occurs when Re λ =  0 for some pair of nodes i(u) and i(v). �e instability 
condition is ful�lled when these nodes possess a combination of degrees k(u) and k(v) such that, the 
equation
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is satis�ed. Here, fu, fv, gu and gv are partial derivatives at the uniform steady state. Condition (3) implies 
that a su�ciently large value of σ(v) brings about instability, in the same manner as the Turing instabil-
ity. However, an alternative scenario of the instability is revealed by equation (3). �is can happen by 
increasing k(v), even if the mobilities are equal (σ(u) =  σ(v)). �is instability occurs in a strikingly di�erent 
regime from classical Turing instabilities.

Figure 2a shows the linear stability of system (1)-(2) for varying k(v), holding k(u) �xed. We clearly see 
that the uniform steady state is always a solution of the multiplex system. It is linearly stable (green line) 
for small values of k(v). But at some critical value of k(v) which satis�es equation (3), the system under-
goes a transcritical bifurcation (red point) and becomes unstable (magenta line). Two new branches 
of solutions arise from the transcritical bifurcation. �e unstable branch (magenta line) undergoes a 
second bifurcation (blue point), this time a saddle-node, giving rise to a new branch of stable solutions 
(green line) di�erent from the uniform steady state. Figure 2b shows the transcritical (red line) and the 
saddle-node bifurcation (blue line) in the k(v)-k(u) plane. �e curve of the transcritical bifurcation is given 
by equation (3), while the curve of the saddle-node bifurcation has been derived by numerical continua-
tion. One can see from equation (3) that by increasing k(v), the boundary curve (red line) asymptotically 
approaches k(u) =  fu/σ(u). �is indicates that the instability can be observed if a node has su�ciently 
large k(v), while its cunterpart has degree k(u) less than the value mentioned above. �is fact reveals an 
important di�erence from the classical Turing instability, which always takes place by increasing σ(v) 
irrespective of σ(u)26.

�e di�usion-induced instability occurs on the transcritical bifurcation. However, Turing patterns can 
also develop a�er the saddle-node bifurcation. In other words, we �nd that multiplex systems exhibit 
multistability in the area between these two bifurcations (cyan), where a branch of stable solutions coex-
ists with the uniform steady state.

Figure 2. Bifurcation diagram. (a), Stationary solutions of system (1)-(2) for k(u) =  4. Green curves indicate 

stable solutions while magenta curves correspond to unstable solutions of the linearized system. Red point 

indicates the transcritical bifurcation where the uniform steady state (u0,v0) =  (5,10) becomes unstable. Blue 

point corresponds to a saddle-node bifurcation of a solution (u,v) which originates from the transcritical 

bifurcation. (b), Transcritical bifurcation (red curve) given by equation (3), is shown together with the 

continuation of the saddle-node bifurcation (blue curve) in the plane k(v)-k(u).
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Pattern formation arising from the instability
Suppose that the multiplex system starts almost in the uniform steady state with small perturbations. 
Equation (3) allows us to identify pairs of nodes (i(v), i(u)) where the small perturbations will be ampli�ed, 
so that these nodes leave the uniform state, triggering the formation of a non-uniform stationary pattern. 
Such a pattern cannot develop from pairs of nodes possessing degrees in the grey area of Fig. 2b, where 
only the uniform state exists. However, pairs of nodes with degrees in the yellow area, beyond the tran-
scritical bifurcation, are unstable. Under small perturbations they can leave the uniform state, yielding 
the formation of a stationary non-uniform pattern. �e cyan area between the two bifurcations indicates 
that the system exhibits multistability, where the uniform steady state coexists with a branch of solutions 
corresponding to non-uniform patterns.

We verify this scenario for a multiplex network where both layers, G(v) and G(u), are scale-free. 
Figure 3a displays the actual degree combination (k(v), k(u)) for each pair of nodes i(v), i(u) (orange points) 
of this network in the k(v)-k(u) plane, together with the bifurcation curves. �ree pairs of nodes, the criti-
cal ones, denoted by stars, have degrees exceeding the instability threshold. �us, a non-uniform pattern 
starts to grow from these nodes. �e critical node denoted by the red star is the �rst to spontaneously 
leave the uniform state, as shown in Fig. 3b. Next, Fig. 3c,d show that the critical nodes denoted by the 
green and blue stars rapidly di�erentiate from the uniform state. Finally, triggered by these growing 
perturbations, other nodes leave the steady state to establish a non-uniform pattern (Fig.  3e, see also 
Supplementary Movie S1).

Multistability corresponding to the cyan area of Fig. 2b has been studied via numerical simulations. 
Figure 4a shows the amplitude A of the observed patterns (see Methods section), averaged over di�erent 
simulations. Each point of the diagram is the average of ten di�erent implementations of G(v) with the 

same mean degree ( )k v ; G(u) is �xed. We clearly see that the amplitude is zero; i.e., the uniform state is 

the only stable attractor of the system, for ( )k v  smaller than a critical threshold ( )k v

c
. However, a more 

detailed look in the vicinity of this transition reveals that a number of di�erent stationary patterns could 
be identi�ed for the same parameter values. As an example, Fig. 4b shows the amplitudes in three sim-
ulations where di�erent perturbations have been applied to the same sequence of multiplex networks. 
Starting from the uniform state with small perturbations, the instability occurs at some critical threshold, 
resulting in a small abrupt increase of amplitude. Di�erent perturbations result in di�erent values for the 
instability threshold.

Obviously, di�erent ( )k v  values lead to patterns of di�erent amplitudes. Figure  3e shows a pattern 

for =( )k 152v , close to the transition. However, patterns where more nodes leave the uniform state can 
also develop far from the transition. Figure 5a–f show the evolution of small perturbations in the uni-
form state and the formation of a non-uniform pattern in a multiplex network with scale-free layers of 

N =  1,000 nodes, and mean degrees =( )k 500v  and =( )k 20u . Under the in�uence of small pertur-
bations, some critical nodes di�erentiate rapidly from the uniform steady state. A�erwards, nonlinear 

Figure 3. Multiplex di�usion-induced instability. (a), Degree combination for pairs of nodes i(v) and i(u) is 

shown in plane k(v)-k(u) together with the curves of saddle-node (blue) and transcritical (red) bifurcations. 

Snapshots of the activator pattern for t =  50 (b), t =  63 ( c), t =  70 (d) and the fully developed pattern for 

t =  500 (e) are shown for the Mimura-Murray model with σ(v) =  σ(u) =  0.12 on a multiplex network with 

scale-free layers of N =  1,000 nodes and mean degrees =( )k 152v  and =( )k 20u  (see also Supplementary 

Movie S1). Nodes are ordered according to decreasing degrees k(u).
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e�ects (which are not described by our theory) drive the multiplex system to self-organize into a station-
ary pattern with two separate group of nodes (see also Supplementary Movie S2). �e separation between 
nodes of low and high activator densities is more pronounced in nodes with small degrees k(u), while 
nodes with large k(u) tend to sustain their initial state. Figure 6a,b show this pattern in the activator and 
inhibitor layers respectively, whereas Figure 6c shows the actual multiplex pattern.

Discussion
We have proposed a new class of dynamical systems, multiplex reaction networks, where each reacting 
species occupies its own network layer and reacts with the other species using cross-layer contacts. As 
a demonstration of this new reaction scheme, we investigate pattern formation induced by di�usive 
transport in a multiplex network with two reacting species. Our theory, based on linear stability analysis 
with perturbations around the uniform steady state, correctly predicts the instability threshold observed 
in numerical simulations of the multiplex network.

If the di�erent layers have the same architecture, i.e. L(u) =  L(v), then this multiplex di�usion-induced 
instability reduces to the well-known Turing instability which may occur when the inhibitor di�uses 
much faster than the activator. Our theory (3) predicts that the analogous instability can also appear in 
multiplex reaction networks by increasing the inhibitor di�usion rate. However, a signi�cantly di�erent 
mechanism can trigger the formation of Turing patterns in multiplex reaction networks, even if the two 
species have the same mobilities (σ(u) =  σ(v)). �is new instability mechanism is related to the degree 
combination (k(v), k(u)) of a pair of nodes. �e basic condition for any given pair of nodes i(v), i(u) to 
undergo instability is that their degrees k(v) and k(u) must satisfy equation (3). Indeed, this Turing-like 
instability always takes place for any k(u) which is less or equal to the value calculated from equation (3), 
for a given large k(v).

Similar to simplex networks, multiplex systems exhibit multistability. �e onset of pattern formation 
can occur even before the instability described by equation (3). �e minimal condition for developing 
non-uniform Turing patterns is that in a pair of nodes i(v), i(u) the degree k(u) is less than or equal to 
the value on the saddle-node bifurcation curve that corresponds to k(v). In the multistability regime, 
di�erent stationary patterns can coexist with the uniform steady state for the same parameter values. 
However, multistability can be eliminated if the degrees of nodes in both layers are very large, so that 
the saddle-node and the transcritical bifurcation merge together (see Fig. 2b).

Although the observed properties of the stationary patterns are similar to those found in simplex 
networks26,27, the cause of destabilization of the uniform steady state is di�erent. �is cause is only 
characteristic of multiplex networks and lies in the relationship between k(v) and k(u) for a pair of nodes. 
�erefore, the purposeful design of nonequilibrium patterns should be possible by tuning the architec-
ture of the multiplex structure. Recently, new algorithms for building multiplex networks with positive 
or negative degree correlations across the layers have been proposed43–46. Using these algorithms, we can 
design multiplex networks where the onset of instability is controlled by tuning the degrees k(v) and k(u), 
and the source of instability can be located at any desired pair of nodes i(v), i(u).

Multiplex networks can be used to represent di�erent types of interaction35,37,41 or di�erent transpor-
tation lines38,40,47 between discrete nodes. In ecological multiplex networks, for example, pairs of nodes 
might represent separate habitat patches which communicate through dispersal connections. However, 
prey and predators may use di�erent connections (such as forest paths, rivers and tributaries or various 
transportation systems) to move among the fragmented habitats. O�en, predators have more choices to 

Figure 4. Amplitude of non-uniform patterns. (a), Average amplitude of non-uniform pattern is shown as 

a function of ( )k v  for =( )k 20u  and σ(u) =  σ(v) =  0.12. Average is taken over ten numerical simulations for 

di�erent implementation of G(v) with the same mean degree ( )k v . (b), Amplitude in the vicinity of 

transition for three numerical simulations where di�erent perturbations were applied to the same sequence 

of networks G(v).
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move; in our representation their layer is more densely connected than the prey’s layer. �is is exactly the 
sort of situation that favors the Turing-like instability and the subsequent establishment of Turing pat-
terns. Considering that self-organized patterns can be found in real ecosystems8,9 it is possible that such 
patterns can also be observed in natural ecological systems for which the multiplex structure is innate.

Methods
Layer architecture. In the numerical simulations, each layer is a scale-free network constructed by the 
preferential attachment algorithm48. �e network structure is determined by a symmetric adjacency  
matrix A, whose elements Aij are 1 if there is a link connecting nodes i and j, and 0 otherwise. �e degree, 
i.e. number of links, of node i is de�ned as = ∑ =k Ai j

N
ij1 . �e network Laplacian matrix L is given by the 

expression δ= −L A kij ij i ij.

�e activator’s network G(u) was constructed with mean degree =( )k 20u . �e same network was 
used throughout all numerical simulations. Each simulation uses a di�erent realization of the inhibitor’s 

network G(v), whose mean degree ( )k v  is varied between simulations. �e superscripts (u) and (v) refer 
to activator and inhibitor. For convenience, the indices i(u) of nodes in the layer G(u) are assigned in order 

of decreasing degrees ( )k i
u : that is, ≥ ≥ ≥( ) ( ) ( )k k ku u

N
u

1 2 . �e nodes i(v) in the layer G(v) follow the 
ordering of their counterpart in G(u), so for example node 1 in the inhibitor network (the most highly 
connected node) always corresponds to node 1 in the activator network, but the latter may or may not 
be highly connected.

Multiplex networks. �e multiplex networks used in our numerical simulations consist of two sepa-
rate layers and two di�erent types of links, intra-layer and inter-layer links. Intra-layer links are described 
by the adjacency matrices and limit the di�usional mobility of the species. Inter-layer links connect every 
node i(u) of layer G(u) to its counterpart i(v) in layer G(v). �ey represent the reaction dynamics de�ned in 
the functions f(ui,vi) and g(ui,vi).

Activator-inhibitor dynamics. We choose the Mimura-Murray model42 as an example of an 
activator-inhibitor system. In this model the dynamics are given by the functions 

( , ) = ( + − )/ −f u v a bu u c v u[ ]2  and g(u,v) =  (u −  dv −  1)v, where u,v correspond to the densities 
of activator and inhibitor respectively. �e chosen parameters are a =  35, b =  16, c =  9, d =  0.4, yielding 
the linearly stable �xed point (u0, v0) =  (5,10). �is requires the networks to satisfy tr(J(u0, v0))< 0 and det 

Figure 5. Development of non-uniform pattern. �e Mimura-Murray model with mobilities 

σ(v) =  σ(u) =  0.12 on a multiplex network with scale-free layers of N =  1,000 nodes, and mean degrees 

=( )k 500v  and =( )k 20u . Small perturbations are added to the uniform steady state and nodes that 

satisfy condition (3) loose their stability and leave the uniform state. Snapshots of the activator pattern at 

time t =  11.5 (a), t =  13.5 (b), t =  15 (c), t =  16 (d), t =  18 (e) and t =  500 (f) are shown (see also 

Supplementary Movie S2). Nodes are ordered according to decreasing degrees k(u).
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(J(u0,v0))> 0, where J is the Jacobian matrix =
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Linear stability analysis. �e linear stability analysis is performed using a perturbation  
method. We introduce small perturbations δ δ( , )u vi i  to the uniform steady state  
(u0,v0), as δ δ( , ) = ( , ) + ( , )u v u v u vi i i i0 0 . Substituting into equations (1–2), we obtain the  
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; I is the N× N identity matrix. For the linear 

stability analysis, the perturbation vector w should be expanded over the set of eigenvectors of the matrix 
Q =  I +  L. It is, however, di�cult to calculate them for di�erent network topologies, i.e. di�erent 

Laplacian matrices ( )L u  and ( )L v . Here we propose an approximation technique to analyze the linear 

stability of the system. Matrix L is split into L =  Q0 −  D, where Q0 =  σ

σ
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. �e matrices A(u) and A(v) are the adjacency matrices of layers G(u) and G(v), 

respectively. �e matrices D(u) and D(v) are the corresponding degree matrices, which have the nodes 
degrees in the main diagonal and are zero elsewhere. �en, matrix Q can be rewritten as Q =  Q0 +  Q1, 

where Q1 =  
σ

σ
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. Examining matrices Q0 and Q1, the �rst has elements 

Figure 6. Actual multiplex pattern. �e Mimura-Murray model with mobilities σ(v) =  σ(u) =  0.12 on a 

multiplex network with scale-free layers of N =  1,000 nodes, and mean degrees =( )k 500v  and =( )k 20u . 

Non-uniform stationary pattern is shown in the activator layer G(u) (a) as well as in the inhibitor layer G(v) 

(b). Nodes in activator layer are ordered according to decreasing degree; nodes in the inhibitor layer are 

ordered correspondingly. c, Same pattern is shown in the actual multiplex network. Nodes in G(u) are plotted 

using a spring algorithm, so that, those having high degrees are placed in the center and those with small 

degrees in the periphery. Nodes in G(v) follow the same indexing. For convenience, intra-layer links are not 

shown, while from inter-layer links only few are chosen to be shown.
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with values of order  ( σ (u)) or  ( σ (v)), while the second has elements with values of order  σ( )
( ) ( )ku u

 

or  σ( )( ) ( )kv v
. If both layers are dense enough that ( ) k 1u  and ( ) k 1v , we can clearly see that 

the elements of matrix Q1 have larger values than those of matrix Q0, so that Q0 can be neglected. �is 
approximation yields the approximate linearized equation dw/dt =  Q1w. �e characteristic equation for 

the eigenvalues λ is then given by 
σ λ

σ λ







− −

− −






= ,
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f k f

g g k
det 0u

u u

v

u v

v v
 and is the same 

for each pair of nodes i(v), i(u).
�is approximation neglects entirely the matrix Q0, which is associated with the precise architectures 

of the layers. Instead, each node is characterized only by its degree. �is is quite similar to the powerful 
mean-�eld methods used for analyzing Turing patterns in single-layer networks26,27, and is always valid 
for multiplex networks consisting of layers with large mean degrees.

Amplitude of non-uniform patterns. �e amplitude of a non-uniform pattern is quanti�ed as 

= ∑ ( − ) + ( − )=

/
A u u v v[ { }]i

N
i i1 0

2
0

2 1 2
.
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