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ABSTRACT: The application of an electric field to a suspension of
charged particles can lead to the formation of patterns due to
electrohydrodynamic instabilities which remain poorly understood.
We elucidate this behavior by visualizing the dynamics of charged
carbon black particles suspended in a nonpolar solvent in response to
an electric field. As the particles are transported across a microfluidic
channel, an instability occurs in which the initially uniform, rapidly
advancing particle front develops fingers. Furthermore, when the
direction of the applied field is repeatedly switched, the particles
localize into a remarkably well-defined periodic pattern which reflects
an interplay between the fingering instability and particle diffusion.

■ INTRODUCTION

In nonpolar solvents, charge-induced effects are typically
expected to be insignificant due to a high electrostatic barrier
to charge dissociation. Nevertheless, charge can be stabilized in
nonpolar solvents upon the addition of suitable surfactants;1−4

this provides a mechanism to charge and electrostatically
stabilize particle dispersions.2−11 This effect is utilized in a
variety of applications;11,12 for example, in electrophoretic
displays, the charging of pigment particles in a nonpolar solvent
enables them to be transported by an electric field to form an
image.13 However, achieving the requisite level of control over
the trajectories of charged particles is still a major challenge.
Upon the application of an electric field, particles in an initially
homogeneous dispersion commonly form patterns composed
of ordered structures or clusters on the electrode surface;14−17

this behavior degrades the performance of electrophoretic
displays by limiting image contrast and resolution. Patterns can
be modified or even avoided by tuning the strength and
frequency of the applied field, the confinement geometry, and
the chemical and charge properties of the particle suspension;
however, the origin of these patterns remains unclear, making
the elimination of their effects and full control over the display
difficult. Pattern formation is often attributed to the interplay
between electrokinetic and hydrodynamic effects: field-induced
electrohydrodynamic flow results in complex particle dynamics,
ultimately leading to the aggregation of the particles into
pattern-forming structures.18 Patterns are visualized after the
particles have been deposited on a transparent electrode
surface,16,17 whereas the particle dynamics are never directly
observed. Direct visualization of particle motion through the
fluid would help elucidate the relationship between particle
dynamics and the formation of patterns. Such knowledge is

essential for fully understanding electric-field-induced behavior
of charged particles in nonpolar solvents.
Here, we investigate the dynamics and formation of patterns

of charged particles in a nonpolar solvent in response to an
applied electric field. We use a microfluidic device that allows us
to apply an electric field across a suspension of carbon black
particles confined within a channel; by combining this device
with high-speed imaging, we directly monitor the full motion of
the charged particles. Upon being repeatedly driven back and
forth across the channel, the particles do form a well-defined
pattern. We show that this pattern is due to an instability that
occurs when the particles are transported across the channel by
a switch in the applied field: as the rapidly advancing particle
front is transported across the channel, it breaks into
pronounced fingers separated by a well-defined wavelength.
This instability is similar to the Rayleigh−Taylor instability for
immiscible fluids, but the characteristic wavelength is defined
by transverse diffusion of the particles which sets the lower
bound on the length scale.

■ EXPERIMENTAL SECTION

To investigate charged particle behavior, we use a suspension of 0.5 wt
% carbon black particles dispersed in Isopar G, a nonpolar solvent. To
solubilize charge in the solution, 0.5 wt % surfactant is added as a
charge control agent. The surfactant increases the conductivity of the
solution to 15 000 pS/m; this is more than 4 orders of magnitude
higher than the conductivity of pure Isopar G. The carbon black
particles have a characteristic size of 140 nm; their surfaces are
chemically modified, with polymer brushes that are 3−5 nm, to be
positively charged when the charge control agent is added. We
fabricate a microfluidic device that allows us to observe the motion of

Received: August 24, 2013
Published: September 17, 2014

Article

pubs.acs.org/Langmuir

© 2014 American Chemical Society 12119 dx.doi.org/10.1021/la503580p | Langmuir 2014, 30, 12119−12123

pubs.acs.org/Langmuir


the particles within a microfluidic channel in response to an electric
field applied across this channel. The device is fabricated from Norland
Optical Adhesive (NOA81)19 and consists of three parallel channels:
the center channel is 50 μm wide, and the two outer channels are 100
μm wide; all of the channels are 25 μm high. These channels are
separated by a wall that is 10 μm wide. The outer channels are filled
with a low-temperature solder (Indium Corporation); these form two
parallel electrodes through which we can apply an electric field across
the center channel. A cross-sectional schematic of the device is shown
in Figure 1a. We sonicate the particle suspension to ensure a

homogeneous dispersion. The suspension is injected into the center
channel of the device. This channel is then sealed with epoxy. The
electrodes are connected in series to a function generator (Agilent
33250A) and a high-voltage amplifier (Trek 2210). Particle motion is
imaged with a high-speed camera (Phantom V7) at frame rates of up
to 10 kHz with a resolution of 800 × 200 pixels.

■ RESULTS AND DISCUSSION

In the absence of an applied electric field, the particles diffuse
freely within the channel and are homogeneously distributed, as
shown in Figure 1b,i. When an external field with a magnitude
of 2 V/μm is applied for the first time, the particles are
transported toward the negative electrode. Most of the particles
are packed against the wall; however, a small subpopulation of
particles remains in the central region of the microfluidic
channel, as shown in Figure 1b,ii. When the direction of the
field is switched, all of the particles are transported completely
across the channel and are packed at the opposite wall; this
time, in contrast with the initial application of the field, very few
particles remain in the bulk, as shown in Figure 1b,iii. This
effect likely occurs because a switch in the applied field has a
stronger effect on the particles than the initial application of the
field: the initial applied field separates charges in the solution;
when the applied field is switched, particle motion is driven by
both the applied field and the field induced by these separated

charges.20 Immediately following the switch, the thickness of
the particle-rich layer packed against the wall is approximately l
= 4 μm. In all subsequent switches, all the particles are
transported across the entire channel and packed at the
opposite channel wall.
We periodically alternate the applied field and thereby drive

the particles back and forth between the channel walls. The
time between consecutive switches, ts, is 1 s. To probe the full
details of particle motion, we acquire a sequence of images as
the particles are transported across the channel in response to a
switch. Initially, the particles are packed homogeneously at the
wall. When the field is switched, the particles do not all move
simultaneously across the channel; instead of remaining
uniform, the particle front develops finger-shaped protrusions
that grow longer as the front advances, as shown in the left
panel of Figure 2. Within 50 ms of the switch, all of the particles

are packed at the opposite wall. The change in the shape of the
particle front from being initially flat to developing fingers
during transport occurs for every subsequent switch in the
applied field. By contrast, dramatically different behavior occurs
when ts is increased to 5 s. After several switches, the particles
are no longer packed homogeneously at the wall following each
switch; instead, they become localized in a well-defined,
periodic pattern along the wall. The particles in each localized
region of higher concentration form plumelike structures as
they are transported across the channel, as shown in the right
panel of Figure 2; the particles deposit on the opposite wall at
locations corresponding to these plumes. Thus, the pattern is
maintained through continued switches.
To analyze the fingering instability observed for ts = 1 s, we

use the images to track the time evolution of the particle front
as it moves across the channel. By thresholding each image, we
determine the profile of the front within the channel at different
times, t, as shown in Figure 3a. Each of these profiles can be
represented by an ensemble of modes with different wave-
numbers, k. By calculating the fast Fourier transform of each
profile, we measure the amplitude of each mode, A(k,t), and
determine its temporal evolution. Immediately following the
switch, there is little change in A(k,t); however, approximately
0.5 ms after the switch, A(k,t) grows linearly, as shown in
Figure 3b. Within the time frame of linear growth, we fit the
time-dependence of A(k,t) to A(k,t) = σ(k)t; we thereby obtain
a growth rate, σ(k), of every mode. We find that σ(k) initially
increases with increasing k, reaching a maximum at km ≈ 0.04
μm−1, then decreases for larger k. The growth rate curve is

Figure 1. (a) Cross-sectional schematic of microfluidic device. (b)
Top view of a channel containing carbon black particles. The particles
are initially distributed homogeneously within the channel in the
absence of an applied field (i), partially transported to the bottom wall
when a field of magnitude 2 V/μm is first applied across the channel
(in the picture, pointing downward) (ii), and completely packed at the
top wall when the direction of the field is switched (in the picture,
pointing upward) (iii). The particles are transported completely across
the channel and packed at the wall after all subsequent switches. Scale
bar is 25 μm.

Figure 2. Time series of images of particle transport across the channel
in response to a switch in the direction of the applied electric field, for
ts = 1 s (left) and ts = 5 s (right). From top to bottom, the images are
at times 0, 0.5, 1.0, 1.5, and 50 ms after the switch. Scale bar is 25 μm.
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broad, reflecting the rapid growth of a wide range of modes.
The fastest-growing mode, km, corresponds to a fastest-growing
wavelength, λm, of λm = km

−1 = 25 μm, as shown in Figure 3c.
At k ≈ 0.15 μm−1, σ(k) levels off to a relative minimum. The
ratio between this cutoff wavenumber and km is approximately
3.8.
This fingering behavior is reminiscent of the Rayleigh−

Taylor instability, which occurs for a system of two layers of
fluid, in which the denser fluid is above the less dense fluid.21

As gravity drives the heavier fluid downward, the interface
between the fluids is unstable and perturbations in the interface
grow and develop into fingers, similar to that observed in our
system. Within the framework of the classical Rayleigh−Taylor
instability, the growth of perturbations is rapid for a wide range
of wavenumbers and is reduced at higher wavenumbers because
of surface tension: for two immiscible fluids, surface tension
suppresses the growth of smaller-wavelength perturbations by
minimizing the surface area of the fluid−fluid interface.
However, in our system, particles may move freely from the
particle-rich region to the particle-free region; thus, the two
fluids are miscible and there is no surface tension to serve as the
cutoff mechanism. Therefore, there must be another mecha-
nism that causes the large-wavenumber cutoff in our system.
A clue to the cause of the large-wavenumber cutoff comes

from the behavior of the particles during the time between
switches. After the particles have been transported across the
channel and packed at the wall by the constant applied field,
they appear to diffuse and the thickness of the particle-rich
region grows with time, as shown in Figure 4a; the field remains
on during this time. We measure this thickness by measuring
the distance between the edge of the particle-rich region and
the wall and find that its growth is characteristic of diffusion,
exhibiting t1/2 scaling and behaving as 5.9t1/2, as shown in
Figure 4b; noting that the characteristic length for diffusion in
one dimension grows as (2Dt)1/2, where D is the diffusion
constant, this corresponds to D = 17.5 μm2/s. For comparison,
we use the Stokes−Einstein relation to calculate the single
particle diffusion constant for carbon black particles in Isopar

and find D ≈ 1.4 μm2/s, which is smaller than the measured
value. This suggests that the diffusion we observe is not the
simple self-diffusion given by the Stokes−Einstein relation, but
is instead a collective diffusion due to the repulsive interparticle
interactions from the surface charges, which is typically much
faster. Additionally, by measuring the progression of the
particles at the edge of the particle-rich region, we are tracking
the behavior of the fastest particles. The particles not only
diffuse normal to the wall, but they also diffuse transverse to the
wall. This is the likely cause for the decrease in σ(k) at large k:
transverse particle diffusion washes out the smaller-wavelength
perturbations; therefore the growth of these perturbations is
minimized. A longer diffusion time would wash out increasingly
larger wavelengths, thus shifting the large-k cutoff, and
therefore km, to smaller values.
To test this idea, we vary the amount of time between

switches and analyze the fingering instability during particle
transport; we find that increasing ts indeed corresponds to a
decrease in km, as shown in Figure 3d. When ts > 2 s, we
observe the formation of a well-defined pattern along the wall
during the time between switches; below this critical ts, the
particle distribution between switches appears homogeneous.
The well-defined pattern consists of a distribution of particles
along the wall in which the areas of higher particle
concentration are periodically spaced. This effect is due to
the nature of particle deposition: the fastest-growing fingers
during particle transport reach the wall first, suggesting that
particles are deposited in higher amounts at locations
corresponding to the fastest-growing fingers. At lower ts,
where λm is smaller, the distance between neighboring fingers is
small; therefore, the distance between areas of higher
deposition is also small. This distance is small enough such
that the overall deposition on the wall is nearly homogeneous.
By contrast, at higher ts, λm is larger; this results in a more
heterogeneous deposition of particles. Thus, for the next
switch, the distribution of particles along the wall is

Figure 3. (a) Evolution of the profile of the particle front for a typical
example, for ts = 1 s. The first trace, the nearly flat solid line, is taken at
the moment the direction of the field is switched, at t = 0. The interval
between each trace is 0.3 ms. (b) A(k,t) vs time for k = 0.037 (△),
0.030 (○), and 0.076 μm−1 (□); ts = 1 s. The solid lines are linear fits.
(c) Growth rate vs wavenumber for ts = 1 s. (d) Fastest-growing
wavenumber decreases with increasing ts.

Figure 4. (a) Images of the channel after the particles are packed at
the wall by a switch in the applied field at times 0.5 (top), 2 (middle),
and 10 s (bottom) after the switch. Scale bar is 25 μm. (b) Thickness
of particle-rich region vs time; the field is switched at time = 0. (c)
Images of the channel after many switches, for ts = 3.33 (top), 5
(middle), and 10 s (bottom). The particles have formed a pattern at
the wall. Scale bar is 25 μm. (d) λm scales as the square root of time
between consecutive switches. The solid line is a linear fit.
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nonuniform. This time, the areas of higher particle concen-
tration form larger fingers during particle transport; moreover,
they absorb smaller fingers that form nearby. This process
repeats for subsequent switches: each switch further reinforces
the localization of particles in these larger fingers. Eventually,
the system reaches a steady state in which the particles are in a
well-defined pattern along the wall and form thick, periodically-
spaced fingers which resemble plumes during transport, as seen
in the right panel of Figure 2. Because the pattern forms from
the fastest-growing fingers, the characteristic wavelength of the
periodic pattern matches λm.
For ts > 2 s, we determine λm by measuring the wavelength of

the pattern, which we measure as the average distance between
peaks in the particle distribution. The wavelength increases
with increasing ts, as shown in Figure 4c. Moreover, we find that
λm scales with ts

1/2, as shown in Figure 4d; thus, it scales as a
function of time in the same way as diffusion. By fitting the
data, we find that λm grows as 22.4ts

1/2; if we compare this
coefficient with the measured ratio between λm and the cutoff
wavelength, we obtain a prediction for the cutoff wavelength:
6ts

1/2. This coefficient is consistent with our measurement of
particle diffusion during the time between switches. Thus, our
results are consistent with particle diffusion causing the large-
wavenumber cutoff in the growth rate curve.
The growth of fingers during particle transport can be

compared to the Rayleigh−Taylor instability; similar behavior is
also observed for a colloidal suspension sedimenting through a
fluid.22 In our system, the positively charged particles are in a
stable configuration when they are packed against the wall
adjacent to the negative electrode by the applied field. When
the direction of the field is switched, the system becomes
unstable, as the particles must move through the particle-free
fluid to reach their new stable state at the opposite wall. This is
analogous to the sedimentation of colloids through a fluid,
suggesting that the behavior of our system can be described by
similar physics and also exhibits the Rayleigh−Taylor
instability. At early times of the Rayleigh−Taylor instability,
perturbations in the interface between the fluids are described
by a linear stability criterium and are expected to grow
exponentially in time; the linear stability regime is valid only
when the amplitudes of the perturbations are much smaller
than their wavelengths. However, in the time frame in which we
observe our instability, the amplitudes of the fingers are large
compared to their wavelengths; moreover, we measure the
temporal growth of the modes to be linear, not exponential.
Therefore, our instability has progressed beyond the linear to
the nonlinear stability regime. Within the nonlinear regime of
the Rayleigh−Taylor instability, the length scale of the fingers
scales with the initial thickness of the unstable layer.23 Indeed,
we find that, in our system, both the fastest-growing wavelength
of the fingers and the thickness of the unstable particle layer
increase with the time between consecutive switches. Thus,
similar to the nonlinear Rayleigh−Taylor instability, an increase
in the thickness of the particle layer corresponds to an increase
in the fastest-growing wavelength of fingers during particle
transport.

■ CONCLUSIONS

Here, we have used direct visualization of the dynamics of
charged particles suspended in a nonpolar solvent to under-
stand the origin of pattern formation in an applied electric field.
We find that repeated switches in the direction of the applied
field results in the localization of particles into a well-defined,

periodic pattern. The pattern results from a fingering instability
which occurs as the particles are transported across the channel.
This fingering instability can be compared to the Rayleigh−
Taylor instability; however, determining the origin of the field-
driven fingering instability requires further study. For example,
one possibility for future exploration is the Rayleigh−Bernard
instability, which also leads to similar pattern-formation
results.24,25 Our findings provide a basis for explaining the
formation of patterns in electric-field-driven particle suspen-
sions and for developing methods to reduce unwanted
behaviors in electrophoretic displays, which is essential for
the continued improvement of display technology.

■ ASSOCIATED CONTENT
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Videos of particle transport across the microfluidic channel in
response to a switch in the direction of the applied electric
field; frame rate is 10kHz. This material is available free of
charge via the Internet at http://pubs.acs.org/.
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