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Pattern Masking Estimation in Image with

Structural Uncertainty
Jinjian Wu, Weisi Lin, Senior Member, IEEE, Guangming Shi, Senior Member, IEEE, Xiaotian Wang and Fu Li

Abstract—A model of visual masking, which reveals the vis-
ibility of stimuli in the human visual system (HVS), is useful
in perceptual based image/video processing. The existing visual
masking function mainly takes luminance contrast into account,
which always overestimates the visibility threshold of the edge
region and underestimates that of the texture region. Recent re-
search on visual perception indicates that the HVS is sensitive to
orderly regions which possess regular structures, and insensitive
to disorderly regions which possess uncertain structures. There-
fore, structural uncertainty is another determining factor on
visual masking. In this paper, we introduce a novel pattern mask-
ing function based on both luminance contrast and structural
uncertainty. By mimicking the internal generative mechanism
of the HVS, a prediction model is firstly employed to separate
out the unpredictable uncertainty from an input image. And
then, an improved local binary pattern is introduced to compute
the structural uncertainty. Finally, combining luminance contrast
with structural uncertainty, the pattern masking function is
deduced. Experimental result demonstrates that the proposed
pattern masking function outperforms the existing visual masking
function. Furthermore, we extend the pattern masking function
to just noticeable difference (JND) estimation and introduce a
novel pixel domain JND model. Subjective viewing test confirms
that the proposed JND model is more consistent with the HVS
than the existing JND models.

Index Terms—Pattern Masking, Internal Generative Mech-
anism, Structural Uncertainty, Local Binary Pattern, Human
Perception, Just Noticeable Difference

I. INTRODUCTION

The last two decades have witnessed the tremendous growth

of digital image/video processing techniques, by which signals

are processed, transmitted, stored, and reconstructed for vari-

ous applications. Since the human eye is the ultimate reviewer

of digital signals, researchers hope to improve the processing

techniques by considering the characters of the human visual

system (HVS). Visual masking [1], which reveals the visi-

bility of stimuli in the HVS, is useful in perceptual based

image/video compression [2], scene enhancement [3], quality

assessment [4], and so on.

Visual masking is caused by interaction or interference

among stimuli [1], [5]. It is a complicated visual perceptual
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mechanism, which describes a broad range of phenomena [6].

Here we mainly focus on pattern masking, which appears at

static images. Pattern masking refers to that one pattern will

mask another one. As shown in Fig. 1, the detection and

identification of the text (target) will be strongly impaired

when it is followed by the hatching background (pattern) [7].

In addition, the pattern masking effect on a uniform back-

ground is very weak, on which a spatial target is most easily

seen; however, when the background becomes much complex

with spatial patterns, the pattern masking effect will be much

stronger [8], which will inhibit the target detection obviously.

Therefore, pattern masking relies on the visual content of an

input scene [9].

As the HVS is highly sensitive to the luminance change of

an input scene, researchers always intend to estimate the pat-

tern masking effect based on luminance contrast [5], [10] for

simplicity. In [11], a psychophysical experiment is designed to

investigate the relationship between luminance edge height and

the visibility threshold. Moreover, according to the recording

data from [11], a well-accepted contrast masking function is

deduced in [12]. However, the contrast masking function only

takes the luminance edge height into account, which always

overestimates the visibility thresholds of edge regions and

underestimates that of texture regions [13]. Some other image

features, such as the spatial frequency [14], orientation [8],

contours [15], and shapes [16], are further investigated, and

experimental results indicate that the visibility threshold is

much higher when the content becomes more complex. There-

fore, we should not only take luminance contrast into account

for visual masking estimation. In [17] and [18], image blocks

are firstly classified into three types (i.e., plain, edge, and

texture), and then three different weights are set for the three

types on visual masking estimation. With the help of a big

weight, the texture region is highlighted on the computation

of visibility threshold. However, the HVS is highly sensitive

to the orderly texture regions [19], and these orderly regions

will be overestimated with [17] and [18].

Since the HVS is highly adapted to extract structural in-

Fig. 1: Example of pattern masking effect.
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formation for image understanding [20], we try to estimate

pattern masking by taking image structures into account.

Empirical studies show that disorderly texture regions con-

tain more uncertain information and present more disorderly

structures than edge regions [21]. Furthermore, recent research

on brain theory [22] indicates that the HVS actively predicts

the orderly contents of the input visual information and tries

to avoid some uncertainties for image perception. As a result,

the HVS is less sensitive to disorderly regions (e.g., some

texture regions) which possess uncertain structures [21], and

the pattern masking effects in these regions are strong [23].

Therefore, pattern masking is related to not only luminance

contrast but also structural uncertainty, and we suggest to take

both factors into account to create a novel pattern masking

function.

However, the computation of structural uncertainty is still

an open problem. Images represent various structures due to

variations in orientation, scale, frequency, and other visual

appearance [24]. By considering these features, a famous

local binary pattern (LBP) algorithm is introduced in [25] to

analyze the structural information. But, structural information

is unequal to structural uncertainty, because the HVS can

understand most of the orderly structural information and only

the residual represents structural uncertainty [19]. Meanwhile,

the Bayesian brain theory [26] further indicates that the HVS

possesses an internal generative mechanism (IGM), within

which the content of the input scene is actively predicted and

some unpredictable information (i.e., residual of the predic-

tion) is avoided for understanding. Therefore, we suggest to

consider the unpredictable information as the uncertainty. By

mimicking the active prediction in the IGM, an autoregressive

model [19] is employed to separate the disorderly uncertainty

from an input scene. And then, an improved LBP algorithm

is introduced to compute the structural uncertainty on the

disorderly uncertainty.

Finally, combining structural uncertainty with luminance

contrast, a computational function for pattern masking is

deduced. Furthermore, to demonstrate the effectiveness of the

proposed pattern masking, we extend the proposed pattern

masking to estimate the just noticeable difference (JND, which

accounts for such a visibility threshold and below which the

change cannot be detected by the majority (e.g., 75%) of

viewers [12]). Since most of the existing JND models estimate

the spatial masking effect based on contrast masking, they

always underestimate the JND thresholds for these places

with uncertain structures (e.g., the texture regions) [13], [21].

Therefore, we replace contrast masking with pattern masking

and introduce a novel JND model. With the help of the

proposed pattern masking function, the JND thresholds for the

sensitive and insensitive regions can be accurately computed.

Experimental results from subjective viewing tests confirm that

the proposed JND model correlates better with the HVS than

the existing JND models 1.

The organization of this paper is as follows: the structural

uncertainty of an image is analyzed and estimated in Sec-

tion II. And then, in Section III, by taking both luminance

1The source code is avaliable at http://web.xidian.edu.cn/wjj/en/index.html

contrast and structural uncertainty into account, a novel pattern

masking function is deduced. Experimental results of the

proposed pattern masking function is presented in Section IV.

Finally, conclusions are drawn in Section V.

II. STRUCTURAL UNCERTAINTY

In this section, visual character is firstly considered for

image structure analysis, and an improved LBP algorithm is

introduced for structural information computation. Then, by

mimicking the active prediction of the HVS, the uncertain

information is separated from an input image. Finally, the

structural character of the uncertain information is analyzed

with the improved LBP algorithm to acquire structural uncer-

tainty.

A. Structural Information Analysis

Image structures convey the primary visual information of a

scene, and the HVS is highly adapted to extract them for image

perception and understanding [19], [20]. Therefore, structural

information is usually measured for quality assessment [20],

texture classification [25], image denoising [27] and deblur-

ing [28]. For simplicity, image structures are analyzed with

some statistical values [20], such as variance and covariance,

which are effective to represent the luminance change but not

good enough to represent the spatial distribution of structural

information [29]. To this end, Ojala et al. [25] analyzed the

spatial relationship among pixels, and introduced a classic

LBP algorithm, within which a joint difference distribution

is adopted to represent the structural characteristic. For a

given pixel xc, the structural characteristic (T ) is always

analyzed with its circularly symmetric neighborhood xi (i =
1, 2, ..., p) [25], [29],

T(gc) = t(g1−gc, g2−gc, · · · , gp−gc), (1)

where t(·) represents the joint difference distribution, gc corre-

sponds to the gray value of the central pixel xc, gi corresponds

to the gray value of pixel xi in the local neighborhood, and

the neighborhood size p is always set as 8 (by considering the

accuracy and the computational complexity) [25], [29].

In order to be invariant against gray-scale shift, the signs of

differences are adopted to replace the exact difference values

in T [24], [25],

T(gc) ≈ t (s(g1−gc), s(g2−gc), · · · , s(gp−gc)) , (2)

where the sign is defined as

s(gi−gc) =

{

1, gi−gc ≥ 0

0, gi−gc < 0.
(3)

However, (3) is too sensitive to the gray value change.

According to the subjective experiment on luminance adap-

tation [30], the HVS cannot sense some small change on gray

value. For example, as shown in Fig. 2 (a), if some background

regions are almost uniform to our eye, their structural measures

should be to zero. However, with (3), any tiny change (which

is too small to be sensed by the HVS) on gray value will be

counted for structural information computation. As a result,
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(a) (b) (c)

Fig. 2: LBP based structural information. (a) The original image. (b) Structural information based on the original LBP (which

is acquired from (7) with the original sign equation (3)). (c) Structural information based on the improved LBP (which is

acquired from (7) with the improved sign equation (5)).

the computed values of structural information of the uniform

background regions based on LBP are overestimated, as shown

in Fig. 2 (b), and this is not consistent with human perception.

In order to perform consistently with the human perception,

the luminance adaptation effect should be taken into account

when computing the structural characteristic. To this end,

we adopt the luminance adaptation threshold to improve (3).

Subjective perception experiments demonstrate that the HVS

is insensitive to dark/bright background, and is highly sensitive

to moderate luminance (e.g., for digital images with 256 gray

level, the HVS is insensitive to the background around 0 or

255, and sensitive to that around 127). According to the data

from a subjective viewing test [12], the luminance adaptation

threshold (LA) is computed as follows [13], [21],

LA(xc) =

{

17× (1−
√

B(xc)
127 ), If B(xc) ≤ 127

3
128 × (B(xc)− 127) + 3, else,

(4)

where B(xc) is the background luminance of pixel xc, i.e.,

the mean luminance of an image region (e.g., a 3×3 neigh-

borhood).

According to the definition of luminance adaptation, if

|gi−gc| < LA(xc), the HVS cannot sense the difference

between the two pixels; therefore, the corresponding spatial

structure to the HVS is uniform, and we suggest the sign

of gi − gc to be consistent with the sign of the prior one.

In this paper, we calculate the sign of the first neighboring

point with (3) (i.e., s′(g1−gc)=s(g1−gc)), and calculate the

rest (i.e., i = 2, ..., p) as follows,

s′(gi−gc) =











1, gi−gc ≥ LA(xc)

s′(gi−1−gc), |gi−gc| < LA(xc)

0, gi−gc ≤ −LA(xc).

(5)

And then, by assigning a binomial factor 2p for each sign s′

from (5), the local binary pattern (LBP), which characterizes

the spatial structure for pixel xc, is deduced [24], [25],

LBP(xc) =

p
∑

i=1

s′(gi−gc)2
i−1. (6)

Finally, the structural information is calculated based on the

LBP values. For a pixel xc, a 2p bins histogram is acquired

by mapping the LBP values of its neighboring local region

X [31] (e.g., a 21×21 surrounding region). And the structural

information of xc is represented by the Shannon entropy of

X [31], which is calculated as follows,

H(xc) =

2p
∑

b=1

−pb(xc) log pb(xc), (7)

where pb(xc) is the probability at bin b of X . With the

help of luminance adaptation, the structural information of the

uniform background region is approximate to zero, as shown

in Fig. 2 (c), which is much more consistent with the HVS

than that in Fig. 2 (b).

B. Human Perception and Structural Uncertainty

However, structural information is unequal to structural

uncertainty for human perception. The HVS is an efficient and

effective visual signal processing system, which helps us to un-

derstand the colorful outside world [32]. Rather than literally

translates the input scene, the HVS actively predicts the visual

content for perception [22]. Fig. 3 shows four concept images

with different structures. We can fully understand Fig. 3 (a)

and (b), since their structures are orderly and can be easily

predicted. However, Fig. 3 (c) and (d) possess much more

uncertain information, which represent disorderly structures.

And therefore, it is difficult to understand their visual contents.

In order to effectively estimate the uncertain information, we

should further analyze the characteristic of the HVS on image

processing.

Recent research on human perception indicates that the HVS

possesses an internal generative mechanism (IGM) for visual

signal processing [26], [22]. Furthermore, the IGM theory sug-

gests that the brain will adjust its configuration, e.g., it changes

the way of sampling or the way of encoding, to actively

predict the visual information for input scene perception and

understanding [33]. Therefore, the IGM performs as an active

prediction system, and a Bayesian brain theory is introduced

to mimic the performance of the IGM [26].

The key of the Bayesian brain theory is a Bayesian proba-

bilistic model that optimizes an input scene by minimizing the

prediction error. For example, in image domain, by considering
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(a) (b) (c) (d)

Fig. 3: Concept images for structural uncertainty illustration. (a) and (b) Images with orderly structures. (c) and (d) Images

with disorderly structures. The structural uncertainty values of (a)-(d) are 0, 0, 1.69, and 3.19, respectively.

(a) (b)

Fig. 4: Structural uncertainty analysis. (a) Original image. (b)

Uncertainty mask (HU ), in which we have mapped the values

into [0, 255] for a better view, and light regions represent high

uncertainty.

the relationships among pixels, a pixel x is predicted with

its surrounding X by maximizing the conditional probability

p(x/X ) for error minimization. With further analysis on the

relationships between the central pixel x and surrounding

pixels xi in X , the mutual information I(x;xi) is adopted

as the autoregressive coefficient, and an autoregressive model

is created to mimic the IGM for active prediction [19],

g′ =
∑

gi∈X

Ci gi + ε, (8)

where g′ is the predicted value of pixel x, Ci = I(x;xi)∑
k
I(x;xk)

being the normalized coefficient, and ε is white noise.

With (8), the visual contents of an input scene are actively

predicted. And the residual information (i.e., prediction error)

between the original image (M) and its corresponding pre-

dicted image M′ is regarded as the uncertainty U , namely,

U = M−M′. Then, we analyze the structural information of

the uncertainty portion U with (6), and acquire the structural

uncertainty HU of M according to (7). An example of

structural uncertainty is shown in Fig. 4, where the disorderly

regions (such as the trees) are with larger structural uncertainty

values than that of the orderly regions (such as the sky).

III. PATTERN MASKING

In this section, we firstly deduce the pattern masking

function by considering both luminance contrast and structural
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Fig. 5: Edge filters for four directions.

uncertainty. And then, in order to determine the parameters

in the pattern masking function, a subjective viewing test is

designed.

A. The Pattern Masking Function

The HVS is highly sensitive to both luminance change and

structural information. Therefore, pattern masking is deter-

mined by both luminance contrast and structural uncertainty.

For a uniform region with no luminance change, the pattern

masking effect is weak and its corresponding visibility thresh-

old is low. When it comes to an edge region with orderly

luminance change (such as Fig. 3 (a) and (b)), its visibility

threshold will become higher with the increase of the lumi-

nance edge height [5]. Furthermore, for an image region with

fixed luminance edge height, the more structural uncertainty it

possesses, the higher visibility threshold it has [23]. Therefore,

we suggest to take both luminance contrast and structural

uncertainty into account for pattern masking estimation,

PM(xc) = f(E(xc), HU (xc)), (9)

where PM(xc) is the visibility threshold of pixel xc caused

by pattern masking, HU (xc) is the structural uncertainty of

xc. E(xc) is the luminance edge height, which is usually

computed as follows [12], [13], [21],

E(xc) = max
k=1,...,4

Gradk(xc), (10)

Gradk = |ϕM∗∇k|, (11)

where ∇k are four directional filters, as shown in Fig. 5,

ϕ=1/16, and symbol ∗ denotes the convolution operation.

Since research about luminance contrast has been done and

the contrast masking effect is investigated throughly, we firstly
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Fig. 6: Fitting the nonlinear transducer of luminance contrast

f1(xc) with subjective visibility thresholds. The dash line

represents the fixed increasing ratio, and the solidline curve

represents the fitting results of (13).

analyze the effect from luminance contrast E in (9), namely,

the contrast masking effect (f1(E)). And then, by considering

the interaction of luminance contrast and structural uncertainty

on pattern masking (f2(E,HU )), (9) can be divided as follows,

PM(xc) = f1 (E(xc)) f2(E(xc), HU (xc)). (12)

The existing contrast masking function always calculates the

visibility threshold with a fixed increasing ratio to luminance

contrast [12], as shown of the dash line in Fig. 6. As a

result, the computed threshold for large luminance contrast

region is too high. In other words, the visibility threshold for

regions with high luminance contrast are overestimated [13].

Perceptual research indicates that the human eye’s response to

changes in light intensity is nonlinear (e.g., logarithmic [34]),

and the increasing ratio should be decreased with the increase

of luminance contrast [5]. To this end, a nonlinear transducer

for luminance contrast is introduced [5], [14], [8], and the

contrast masking is computed as follows,

f1(xc) = 0.115×
αE(xc)

2.4

E(xc)2 + β2
, (13)

where α is a constant of proportion and β determines the posi-

tively accelerating and compressive regions of the nonlinearity.

By fitting (13) with subjective visibility thresholds (which

are acquired from a subjective experiment [30]), as shown in

Fig. 6, we set α = 16 and β = 26.

Meanwhile, we found that the human eye’s response to

structural uncertainty is also nonlinear, and there exists a

nonlinear transducer (N ) for structural uncertainty when mea-

suring the pattern masking effect.

N (HU (xc)) =
k1 HU (xc)

k2

HU (xc)2 + k23
, (14)

where k1, k2, and k3 are fixed parameters which determine

the shape of the nonlinear transducer N .

Furthermore, there exists interaction between luminance

contrast and structural uncertainty (I). From subjective view-

ing tests, we have found that under low luminance contrast

Fig. 7: Images with different structures [35] for parameter

determination in the pattern masking function.

and high structural uncertainty, the sensitivity of the human

eye is low and the visible threshold is high. In this condition,

a large value of f2(E,HU ) is needed to highlight the visual

masking effect. While under low structural uncertainty, even

though the luminance contrast is high, the sensitivity of the

human eye is high and the visible threshold is low. In this

condition, a small value of f2(E,HU ) is needed to restrain

the visual masking effect. To this end, we suggest to compute

the interaction term f2(E,HU ) as follows,

I(E(xc), HU (xc)) = (1 + k4 exp(−
f1(xc)

k5
))N (HU (xc)),

(15)

f2(xc) = 1 + I(E(xc), HU (xc)), (16)

where k4 is a constant of proportion and k5 is a decay factor

for the interaction between luminance contrast and structural

uncertainty. All of the five parameter (i.e., ki) will be set in

the next subsection through a subjective viewing test.

With (12), (13), and (16), the pattern masking effect can

be calculated. As can be seen, when the structural uncer-

tainty HU (xc) = 0 (for orderly region with no uncertainty),

f2(xc) = 1 and PM(xc) = f1(xc). Therefore, the contrast

masking function is a special case of the proposed pattern

masking function when structural uncertainty is equal to zero.

B. Determination of Parameters

There are several parameters that need to be determined for

the pattern masking function. In this paper, we tune the param-

eters with a subjective experiment on 9 texture images (with

size 512 × 512) from USC-SIPI database [35]. As shown in

Fig. 7, the 9 images possess different kinds of structures, and

from the upper left to lower right we name them as M1 to M9.
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TABLE I: The subjective visibility thresholds (the mean values

and the standard deviations) of the 9 texture images.

Image M1 M2 M3

HU 3.06 2.97 3.16

V 31.5± 3.5 28.6± 2.0 33.6± 4.4

Image M4 M5 M6

HU 3.12 3.14 3.18

V 30.0± 3.3 31.0± 3.1 31.3± 2.6

Image M7 M8 M9

HU 2.70 2.61 3.02

V 28.0± 4.3 25.0± 1.2 28.2± 4.0

With these images, a subjective viewing test experiment is

firstly designed to acquire the subjective visibility thresholds.

And then, by fitting the pattern masking equation with these

subjective visibility thresholds, the parameters are determined.

In the subjective viewing test experiment, testing images

are juxtaposed on a 17-in monitor for visibility threshold

measurement. And we set the viewing condition (e.g., the

viewing distance, the light condition of the environment, and

so on) based on the ITU-R BT.500-11 standard [36]. Twenty

viewers (their eye sight is either normal or has been corrected,

and ten of them are experts in image processing and the others

are naive) are invited in this test, and the viewing distance

is four times of the image height. For each image M, the

Gaussian white noise is injected with the guidance of the

following equation [13], [21],

Mn(xc) = M(xc) + V rand(xc), (17)

where Mn is the white noised contaminated image, V regulars

the energy of the noise, and rand(xc) randomly takes +1
or −1. Viewers are asked to adjust the value of V (which

begins from 1, and Viewers can increase or decrease it)

until they can sense the noise, and this value is recorded as

the subjective visibility threshold of the current image. The

visibility thresholds determined by the subjective tests of the

9 images (as shown in Fig. 7) are listed in Table I, and the

structural uncertainty of these images are also listed.

Then, we fit the pattern masking equation (9) with these

subjective visibility thresholds based on the lease squares to

determine the parameters,

arg min
k1,··· ,k5

9
∑

i=1

[PMi − Vi]
2, (18)

where PMi is the average value of computed visibility thresh-

olds on the ith image with (9), and Vi is the visibility threshold

determined by the subjective tests of the ith image, as shown

in Table I. As a result, the parameters in the pattern masking

equation are set as: k1 = 2.67, k2 = 3.22, k3 = 1.19,

k4 = 2.03, and k5 = 0.19. As shown in Fig. 8, the visibility

threshold (pattern masking) increases with luminance contrast

and structural uncertainty.

IV. EXPERIMENTAL RESULT AND DISCUSSION

In this section, we firstly make a comparison between the

proposed pattern masking function and the existing contrast

masking function [12] to demonstrate the effectiveness of

Fig. 8: Pattern masking by considering luminance contrast and

structural uncertainty (the output of equation (12)).

structural uncertainty on visibility threshold estimation. And

then, we extend the pattern masking function to JND estima-

tion and introduce a novel pixel domain JND model to further

demonstrate the effectiveness of the proposed pattern masking

function. Finally, a subjective viewing test is designed to make

a comprehensive comparison between the novel JND model

and three latest pixel domain JND models (i.e., Yang et al.’s

model [13], Liu et al.’s model [37], and Wu et al.s model [21])

on a set of images from two public databases [35], [38]. For

color images, the proposed model is performed on all color

channels.

A. Pattern Masking VS. Contrast Masking

An effective visual masking function should be able to

accurately indicate the sensitivity of the HVS to different

image regions. In order to demonstrate the effectiveness of

a visual masking function, the sensitive testing experiment is

always adopted [13], [37]. For a test image, the white noise is

injected with the guidance of the visual masking model (F ),

which is shaped as follows [12], [21],

M̂(xc) = M(xc) + E rand(xc)F (xc), (19)

where M̂ is the white noise contaminated image, E regulates

the energy of the white noise, which makes the same noise

energy for different visual masking models (F ), and rand(xc)
randomly takes +1 or −1.

By taking F as contrast masking [12], [13] (or pattern mask-

ing) in (19), we inject white noise into the Cemetry image with

the guidance of the contrast masking function (or the pattern

masking function), as shown in Fig. 9. With the parameter E ,

the energies of the two noise-contaminated images (i.e., Fig. 9

(b) and (c)) are adjusted to be the same (with MSE = 100).

Therefore, we can make a fair comparison between existing

contrast masking function and the proposed pattern masking

function.

The contrast masking function [12], [13] is mainly based on

luminance contrast for visibility threshold computation. As a

result, an edge region leads to high visibility threshold under

the contrast masking function. As shown in Fig. 9 (d), the
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(a)

(b) (c)

(d) (e)

Fig. 9: Pattern masking VS. contrast masking on Cemetry image (only a part of the image is cut due to the resolution

limitation of the scene). (a) The original image. (b) and (c) Contaminated images with contrast masking and pattern masking

guide noise (under the guidance of (19) with a same noise level MSE = 100), respectively. (d) and (e) The noise mask of (b)

and (c) (i.e., the value of E·F (xc) in (19)), respectively. And light regions of (d) and (e) represent high masking effect.
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white words on the black board, the steel bars, and the edge of

the brick wall are highlighted. However, the HVS is sensitive

to the edge region [13], and therefore, the contrast masking

function overestimates the visibility threshold of the edge

region. As shown in Fig. 9 (b), the noise in these edge regions

is easily perceived and generates obvious quality degradation.

Meanwhile, the disorderly regions, such as the trees, the grass,

and the surface of the brick in Fig. 9 (b), which do not have

high luminance contrast but are insensitive to the HVS, are

underestimated with the contrast masking function.

The proposed pattern masking function, which takes both

luminance contrast and structural uncertainty into account,

returns more accurate visibility thresholds for images than the

contrast masking function. Though these edge regions (i.e.,

the white words on the black board, the steel bars, and the

edge of the brick wall) possess large luminance edge heights,

they represent much orderly structures (with little structural

uncertainty). Therefore, the HVS is sensitive to them and

their visibility thresholds are not so high, as shown in Fig. 9

(e). Furthermore, the disorderly regions (i.e., the trees, the

grass, and the surface of the brick) possess much structural

uncertainty, the HVS cannot fully understand their detail and

is insensitive to them. As a result, these disorderly regions

have high visibility thresholds. As shown in Fig. 9 (e), the

output of the proposed pattern masking function highlights

these disorderly regions and suppresses orderly edge regions.

With the guidance of the proposed pattern masking function,

much more noise can be injected into the insensitive regions

and less into the sensitive regions. Therefore, the noise in

Fig. 9 (c) generates less perceptual quality degradation than

that in Fig. 9 (b), though the two images have the same level

of noise energy. In summary, the proposed pattern masking

function is more consistent with the HVS than that of the

contrast masking function.

B. Pattern Masking based JND Model

In order to further demonstrate the effectiveness of the pro-

posed pattern masking function, we adopt pattern masking to

improve the JND estimation. In general, luminance adaptation

and contrast masking are taken into account for pixel domain

JND estimation [12], [13], [37]. In this paper, by replacing

contrast masking with pattern masking, we introduce a novel

JND estimation model,

JND(xc) = LA(xc)+PM(xc)−Cgr×min{LA(xc), PM(xc)},
(20)

where Cgr is the gain reduction parameter due to the overlap-

ping between luminance adaptation LA and pattern masking

PM, and is set as Cgr = 0.3 (the same as in [13]).

And then, we compare the proposed JND model with three

latest JND models, namely, Yang et al.’s model [13], Liu et al.’s

model [37], and Wu et al.’s model [21] (we have not compare

with the classic Chou and Li’s model [12], because [13], [37]

are two improved models of [12]). By setting F in (19) as

a JND model, white noise is injected into an image with the

guidance of the corresponding JND model. Fig. 10 shows the

visibility threshold maps of the four different JND models on

Cemetry image, and Fig. 11 shows their corresponding noise-

contaminated images.

Considering that the HVS is sensitive to the edge region

and the contrast masking function always overestimates the

visibility threshold of the edge regions, Yang et al.’s suggested

to protect the edge region for JND estimation [13]. And

therefore, the canny edge detection is adopted to protect the

primary edge regions. As shown in Fig. 10 (a), the visibility

thresholds of the primary edge regions (such as the white

words on the black board and the steel bars) are suppressed.

However, the visibility thresholds of the other edge regions

are pop-out (such as the trunk of the trees, the edge of

the brick wall, and the other words regions). In summary,

with the protection of the canny edge detection in [13], the

secondly edge regions (which always with not so high edge

heights) are highlighted and these disorderly regions are still

underestimated. As a result, we can still easily perceive the

noise in Fig. 11 (a) (such as some word regions and the edge

of the brick wall).

Since the contrast masking function overestimates edge

regions and underestimates texture regions, Liu et al.’s [37]

suggested to separately estimate the contrast masking of the

two kinds of regions (i.e., edge regions and texture regions).

Therefore, a texture classification algorithm is firstly employed

to separate the two kinds of regions. And then, a bigger weight

is multiplied to the contrast masking function of the texture

regions and a smaller one for the edge regions. The JND

threshold map of Liu et al.’s model is shown in Fig. 10 (b). As

can be seen, the steel bars regions are correctly separated into

the edge regions and are effectively protected. However, some

sensitive regions, such as the white words on the black board,

are separated into the texture regions and are highlighted.

Meanwhile, some disorderly regions, such as the grass and

the surface of the brick, are still underestimated. In summary,

Liu et al.’s model tries to improve the JND estimation by

protecting edge regions and highlighting texture regions. But

the texture regions cannot always hide much noise (such as the

white words on the black board in Fig. 10 (b)), and actually,

only these texture regions with uncertain structures can hide

much noise. As a result, too much noise is injected into the

words regions, where the HVS is highly sensitive, as shown

in Fig. 11 (b).

In [21], the spatial structural character is considered for

JND estimation. By computing the structural regularity based

on the self-similarity of image structure, an ad hoc spatial

masking function is introduced for JND estimation. This JND

model effectively protects the orderly regions (e.g., the edge

regions), while overestimates the disorderly texture regions.

As shown in Fig. 10 (c), the visibility thresholds are quite low

in the orderly regions (such as the steel bars and the words

regions), and are very high in the disorderly regions (such as

the surface of the brick and the grass). However, the edge

region, which can hide more noise than the smooth region, is

overprotected. In addition, too much noise is injected into the

disorderly regions. As shown in Fig. 11 (c), we can obviously

sense the spots in these disorderly regions, which degrade the

perceptual quality of the image.

In the proposed JND model, the sensitive regions acquire
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(a) (b)

(c) (d)

Fig. 10: The visibility threshold maps (i.e., the value of E·F (xc) in (19)) of the four different JND models on Cemetry

image [38]. Form (a) to (d), they are the outputs of Yang et al.’s [13] model, Liu et al.’s model, Wu et al.’s model, and the

proposed JND model, respectively. And light regions represent high masking effect.

low visibility thresholds and the insensitive regions has high

visibility thresholds. As shown in Fig. 10 (d), by considering

the effect of luminance adaptation (caused by the background

luminance) and the effect of pattern masking (caused by

luminance contrast and structural uncertainty), the noise is

appropriately deployed into image regions with different con-

tents: very little noise is injected into the uniform regions,

much into the orderly edge regions, and most into these regions

with both luminance change and structural uncertainty. Though

the level of noise energy in the four contaminated images (i.e.,

Fig. 11 (a)-(d)) is the same, Fig. 11 (d) represents a better

perceptual quality than the other three images. Therefore, the

proposed JND model outperforms the latest three pixel domain

JND models (i.e., [13], [37], [21]).

C. Subjective Viewing Test

For a more comprehensive comparison between the pro-

posed pattern masking function (the proposed JND model)

and the existing contrast masking function (the three latest

JND models), a subjective viewing test experiment is designed.

The setting of the viewing condition is the same as mentioned

in Subsection III-B, which follows the ITU-R BT.500-11 stan-

dard [36]. By considering the availability and efficiency, eight

images from [35] (which are oft-used in JND comparison

experiments) and eight representative images from [38] (which

are oft-used in quality assessment experiments, and four of

them are mainly composed with orderly texture and the

other four are composed with disorderly texture) are chosen,

as shown in Fig. 12. In each test, two noise-contaminated

images about a same scene are juxtaposed on the screen (two

noise-injected images with the guidance of our model and

other comparison model, respectively. And they are randomly

juxtaposed on the left or right). Then 38 subjects (their eye

sight is either normal or has been corrected, and fifteen of them

are experts in image processing and the other twenty three are

naive) were invited to evaluate which one is better and how
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(a) (b)

(c) (d)

Fig. 11: Comparison among four different JND models on Cemetry image [38]. Form (a) to (d), they are noise-contaminated

images with the guidance of Yang et al.’s [13] model, Liu et al.’s model, Wu et al.’s model, and the proposed JND model,

respectively. Under the guidance of (19), the level of the noise energy of the four images are the same (MSE = 150).

TABLE II: Scores for Subjective Viewing Test

Score 0 1 2 3

Description Same quality Slightly better Better Much better

much better it is (following the evaluation rule as shown in

Tab II; and if the left one is better than the right one, then

give a positive score; otherwise, give a negative score).

Table III shows the subjective scores of comparison results

between the proposed pattern masking function and the exist-

ing contrast masking function, in which the positive (negative)

score means the proposed pattern masking function performs

better (worse) than the existing contrast masking function.

Since the proposed pattern masking function takes structural

uncertainty into account, it performs better (has positive score)

on most of images than the existing contrast masking function,

especially on these images with much disorderly regions (e.g.,

the Tank image with a large region of grass and the Ocean

image with a big unsmooth sea surface). Meanwhile, there are

TABLE III: Subjective viewing test result (pattern masking vs.

contrast masking).

Image Mean Std Image Mean Std

Indian 1.389 1.554 Ocean 2.194 0.710

Lena 0.056 1.241 Caps 0.028 1.362

Barbara 1.750 1.204 Plane 1.861 0.867

Peppers -0.028 0.609 Paint 1.222 0.959

Tank 2.000 0.926 Rapids 0.083 1.402

Airplane 0.722 1.162 House 0.250 0.874

Huts 0.861 1.073 Beacon 1.583 1.156

Boats 0.778 1.245 Stream 0.278 1.059

Average 0.939 – – – –

several scores which are approximate to zeros, which means

that the proposed pattern masking function performs equally to

the existing contrast masking function on their corresponding

images (i.e., Lena, Pepper, and Caps). With further analysis,

we found a common feature among these images, namely,

most regions in the three images are uniform/orderly and there
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Fig. 12: Images for subjective viewing test. The first and second rows of images are from [35] which are oft-used in JND

comparison experiments, and the other two rows of images are from [38] which are oft-used for quality assessment

are little uncertain structures. Under this special condition,

the structural uncertainty is approximated to zero, and the

pattern masking function is similar with the contrast masking

function (as analyzed in Subsection III-A). Moreover, the

average score (0.939) in Table III further confirms that the

proposed pattern masking function performs better than the

existing contrast masking function.

Table IV shows the comparison results between the pro-

posed JND model and three latest JND models (i.e., [13],

[37] and [21]). By comparing with Yang et al.’s [13] and Liu et

al.’s [37] models (both of them are based on contrast masking),

the proposed JND model performs better on almost all of these

images, and performs equally on one image (i.e., the Caps,

which mainly represents orderly structures; and the reason is

much similar to the description in the above paragraph). Wu

et al.’s model [19] also considers the structural character for

spatial masking estimation. However, this ad hoc JND model

cannot accurately measure the effect caused by the structural

uncertainty, and overestimates the visibility threshold of the

TABLE IV: Subjective viewing test results (the proposed JND

model vs. three latest JND models, respectively).

Image
Our vs. Yang Our vs. Liu Our vs. Wu

Mean Std Mean Std Mean Std

Ocean 0.806 0.786 1.139 1.046 0.389 0.836

Caps 0.028 1.383 -0.056 1.264 0.486 1.513

Plane 0.778 1.017 1.306 1.037 0.042 1.040

Paint 0.694 0.822 0.250 1.131 0.514 0.950

Rapids 0.778 1.290 0.583 1.402 0.528 1.137

House 0.694 1.009 0.083 0.967 0.486 1.086

Beacon 0.278 0.944 0.028 0.910 0.875 0.971

Stream 0.444 1.054 0.083 0.841 0.764 0.997

Average 0.563 – 0.427 – 0.510 –

region with uncertainty. When compared with Wu et al.’s

model, the proposed JND model performs better on most of

these images except the Plane image. That is because the plane

image is mainly composed with a large disorderly grass region

and a very orderly object region, and both of the two JND

models inject almost all of the noise into the grass region
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which is highly insensitive to the HVS. In addition, the average

scores (Our vs. Yang is 0.563, Our vs. Liu is 0.427, and Our

vs. Wu is 0.510) on all of the images are all positive, which

indicate that the proposed JND model outperforms the three

latest JND models.

V. CONCLUSION

In this paper, we have introduced a pattern masking func-

tion by considering both luminance contrast and structural

uncertainty. Visual masking, which effectively represents the

visual redundancy, is useful in image/video compression,

scene enhancement, quality assessment, watermarking, etc.

The existing contrast masking function only takes luminance

contrast into account for visual masking estimation, which

overestimates the edge region and underestimates the texture

region. According to the recent research on visual perception,

we suggested that the edge region is much orderly and

the HVS can easily predict its structural character, while

the texture region possesses uncertainty which impedes the

prediction of structural information by the HVS. In other

words, structural uncertainty effects the sensitivity of the HVS

for visual perception. Therefore, we advocated that structural

uncertainty is another determining factor on visual masking.

By mimicking the internal generative mechanism (IGM) on

scene understanding, we employed an autoregressive based

prediction model to separate the uncertain information from an

input scene. And then an improved local binary pattern (LBP)

scheme has been introduced for structural uncertainty estima-

tion. Finally, a pattern masking function has been deduced

based on luminance contrast and structural uncertainty. Experi-

mental results demonstrated that the proposed pattern masking

function outperforms the contrast masking function. Further-

more, we extended the proposed pattern masking function

and introduced a novel pixel domain JND estimation model.

Subjective viewing test further confirmed that the proposed

JND model is more consistent with the HVS than the existing

JND models.
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