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Abstract

We consider strings which are succinctly described. The description is in terms of straight-line
programs in which the constants are symbols and the only operation is the concatenation. Such
descriptions correspond to systems of recurrences or to context-free grammars generating single
words. The descriptive size of a string is the length n of a straight-line program (or size of a
grammar) which defines this string. Usually the strings of descriptive size n are of exponential
length. Fibonacci and Thue-Morse words are examples of such strings. We show that for a
pattern P and text T of descriptive sizes n,m, an occurrence of P in T can be found (if there is
any) in time polynomial with respect to n. This is nontrivial, since the actual lengths of P and
T could be exponential, and none of the known string-matching algorithms is directly applicable.
Our first tool is the periodicity lemma, which allows to represent some sets of exponentially many
positions in terms of feasibly many arithmetic progressions. The second tool is arithmetics: a
simple application of Euclid algorithm. Hence a textual problem for exponentially long strings is
reduced here to simple arithmetics on integers with (only) linearly many bits. We present also an
NP -complete version of the pattern-matching for shortly described strings.
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1 Introduction

We show how to make in an implicit way pattern-matching for some well structured and exponentially
long strings, given in the form of a succinct description. The descriptive size n of such strings is
the size of their description, while their real size N is the actual length of the string, assuming it is
explicitly written. The size of the whole problem is n. Usually N = Ω(2c·n).

In our algorithms we cannot write such long strings explicitly. Fortunately, each position in such
strings can be written with only linear number of bits. Hence the size of the output is small: the
output of our algorithm is an occurrence of one long string in another very long string. The input
consists of short descriptions of the strings in terms of straight-line programs. We strengthen (in a
nontrivial way) a result of [6], where quite sophisticated polynomial-time algorithm for equality of
two strings generated by grammars was given. The equality-test algorithm from [6] is not directly
applicable here since there are exponentially many positions, where the equality between the pattern
and the text can happen. However we use this algorithm as one of the basic subroutines.

A straight-line program R is a sequence of assignment statements:

X1 := expr1; X2 := expr2; . . . ; Xn := exprn

where Xi are variables and expr i are expressions of the form

• expr i is a symbol of a given alphabet Σ, or

• expr i = Xj ·Xk, for some j, k < i, where · denotes the concatenation of Xi and Xj .

For each variable Xi, denote by ν(Xi) the value of Xi after the execution of the program. ν(Xi)
is the string described by Xi. Denote by R the string described by (the value of) the program R:
R = ν(R) = ν(Xn). The size |R| of the program R is the number n, it is also called the descriptive
size of the generated string R = ν(R). R is called a string with short description, since usually |R|
is very long (exponentially) with respect to its descriptive size n = |R|.

We call also a description R a long string. If we consider a string in a usual sense (the description
is by giving the string explicitly) then we call such string a short string.

For a string w denote by w[i..j] the subword of w starting at i and ending at j. Similarly for a
long string W denote W[i..j] = ν(W)[i..j].

Denote by P and T the descriptions of the pattern P and a text T . P occurs in T at position i

iff T [i..i + |P | − 1] = P , we also say that P occurs at T at i.

The string matching problem for strings with short description is:

given P and T , check if P occurs in T , if “yes” then find any occurrence i.
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The size n of the problem is the size |T | of the description of the text T . Assume |P| = m ≤ n.

Our main result is the following theorem.

Theorem 1 The pattern-matching problem for strings with short descriptions can be solved in poly-
nomial time with respect to the descriptive size.

Example 1 We refer the reader to [5] for definitions of the Fibonacci and Thue-Morse words. Let
P = F5 be the 5-th Fibonacci word abaab, and T = T3 be the 3-rd Thue-Morse word abbabaab.
We show below short descriptions F5 and T3 for these words. An instance of the pattern-matching
problem for strings with short description is:

find and occurrence of F5 in T3.

An occurrence i = 4 of F5 in T3 is a solution to this instance.
The 5-th Fibonacci word is described by the following program P:

X1 := b; X2 := a; X3 := X2X1; X4 := X3X2; X5 := X4X3

The computation of F5 works as follows.

ν(X1) = b, ν(X2) = a, ν(X3) = ab, ν(X4) = aba, ν(X5) = abaab

The 3-rd Thue Morse word is described by the following program T3.

X0 := a; Y0 := b; X1 := X0Y0; Y1 := Y0X0;
X2 := X1Y1; Y2 := Y1X1; X3 = X2Y2

The third Thue-Morse word is generated as follows:

ν(X0) = a, ν(Y0) = b, ν(X1) = ab, ν(Y1) = ba,

ν(X2) = abba, ν(Y2) = baab, ν(X3) = abbabaab

Using our algorithm it can be effectively found, for example, an occurrence (if there is any) of the
Fibonacci word F220 in the Thue-Morse word T200, despite the fact that real lengths of these strings
are astronomic: |T200| = 2200 and |F220| ≥ 2120.

2 Arithmetic Progressions and Euclid Algorithm

A crucial role in our algorithm play periodicities in strings. A nonnegative integer p is a period of a
nonempty string w iff w[i] = w[i− p], whenever both sides are defined. Hence p = |w| and p = 0 are
consider to be periods.

Lemma 1 (periodicity lemma, see [1]) If w has two periods p, q such that p+ q ≤ |w| then gcd(p, q)
is a period of w, where gcd means “greatest common divisor”.
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Denote Periods(w) = {p : p is a period of w}. A set of integers forming an arithmetic progression is
called here linear. We say that a set of positive integers from [1 . . . N ] is succinct w.r.t. N iff it can
be decomposed in at most blog2(N)c + 1 linear sets. For example the set Periods(aba) = {0, 2, 3}
consists of blog2(3)c+ 1 = 2 such sets.

For sets U and W define U ⊕W = {i + j : i ∈ U, j ∈ W}.

Lemma 2 (applying periodicity lemma) The set Periods(w) is succinct w.r.t. |w|.

Proof. The proof is by induction with respect to j = blog2(|w|)c. The case j = 0 is trivial, one-
letter string (|w| = 1) has periods 0 and 1 (forming a single progression), hence we have precisely
blog2(|w|)c+ 1 progressions.

Let k = d |w|2 e. It follows directly from lemma 1 that all periods in A = Periods(w)∩ [1 . . . k] form
a single arithmetic progression, whose step is the greatest common divisor of all of them. Let q be
the smallest period larger than k. Then it is easy to see that

Periods(w) = A ∪ {q} ⊕ Periods(w[q + 1..|w|]).
Now the claim follows from by inductive assumption, since blog2(|w| − q)c < j and A is a single
progression.

Observe that the structure of Periods(w) corresponds to a greedy construction: find the first
period p and take the longest progression containing consecutive periods which starts with p, then
go to the next period and continue. There are at most blog2(|w|)c+1 resulting progressions. Assume
that we use such type of the representation for sets of periods. Let S1 be a set of periods of w from
[1..k], and S2 be a set of periods from an interval [k + 1..|w|]. Then, when adding these sets, it can
happen that the last linear set in S1 continues, with the same step, in S2, as the first linear set in
S2. We join these two progressions in S and have less linear sets in S.

Generally define the operation compress(S), which for a given set of disjoint linear sets joins
any two linear sets (if one is a continuation of the other) wherever it is possible. This operation is
important, since we will be often adding succinct sets, and we need also a succinct representation in
terms of at most logarithmically many progressions.

Denote ArithProg(i, p, k) = {i, i+p, i+2p, . . . , i+kp}, so it is an arithmetic progression of length
k + 1. Its description is given by numbers i, p, k written in binary. The size of the description, is the
total number of bits in i, p, k.

Denote by Solution(p, U,W ) any position i ∈ U such that i + j = p for some j ∈ W . If there is
no such position i then Solution(p, U,W ) = 0

Lemma 3 (application of Euclid algorithm) Assume that two linear sets U,W ⊆ [1 . . . N ] are given
by their descriptions. Then for a given number c ∈ [1 . . . N ] we can compute Solution(c, U,W ) in
polynomial time with respect to log(N).

Proof. The problem can be easily reduced to the problem:
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for given nonnegative integers a, b, c, A,B find any integer solution (x, y) to the following
equation with constraints

ax + by = c, (1 ≤ x ≤ A, 1 ≤ y ≤ B). (1)

It is enough to compute a solution in polynomial time with respect to the number of bits of the input
constants.

We can assume that a, b are relatively prime, otherwise we can divide the equation by their
greatest common divisor.

As a side effect of Euclid algorithm applied to a, b we obtain integers (not necessarily positive,
but with not too many bits) x′0, y′0 such that ax′0 + by′0 = 1. Let x0 = cx′0, y0 = cy′0. Then all
solutions to the equation (1) are of the form

(x, y) = (x0 + kb, y0 − ka), where k is an integer parameter.

This defines a line, and we have to find any integer point in the rectangle {(i, j) : 1 ≤ i ≤ A,
1 ≤ j ≤ B} which is hitten by this line. This can be done in polynomial time using operations div
and mod on integers with polynomial number of bits. We refer for details to [4] (see page 325 and
Exercise 14 on page 327).

3 The Pattern-Matching Algorithm

Let us fix the pattern P = ν(P), the length of P is M and the length of the text T = ν(T ) is N .
Observe that N = O(2n), hence all positions in T can be written using O(n) bits.

Let X be a string (long or short) of the length K. Then define:

Prefs(X) = {1 ≤ i ≤ K : X[K − i + 1..K] is a prefix of P}.
Sufs(X) = {1 ≤ i ≤ K : X[1..i] is a suffix of P}.

Observation 1 Let P, A, B be long strings, then P occurs in A · B iff:

(1) P occurs in A or P occurs in B;

(2) or |P | ∈ Prefs(A)⊕ Sufs(B).

Define the operations of the prefix-extension and suffix-extension. For a long or a short word X

define

PrefExt(S, X) = {i + |X| : i ∈ S and P [1..i] ·X is a prefix of P}.
SuffExt(S, X) = {i + |X| : i ∈ S and X · P [M − i + 1..M ] is a suffix of P}.
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Assume the straight line program T defining the text T is using variables X1, X2, . . ., Xn. Each
of variables Xi corresponds to a program Xi which computes Xi. We denote

SUFF [i] = Sufs(Xi), PREF [i] = Prefs(Xi).

Observe that these tables depend on the pattern P , however it is convenient to assume further that
P is fixed. We are now able to give a sketch of the whole structure of the algorithm. Assume that
the lengths of all strings described by Xk’s are computed (it can be easily done in polynomial time).

ALGORITHM PATTERN MATCHING ;

for k = 1 to n do

if |ν(Xk)| ≤ n then {Xk can be treated as a short string}

1. test by classical methods an occurrence of P in Xk;
if there is an occurrence of P in Xk then report it and STOP

else compute PREF [k], SUFF [k] by classical methods;
else {assume Xk = Xi ·Xj for i, j < k }

2. pos := Solution(|P |,PREF [i],SUFF [j]);
if pos 6= 0 then report an occurrence and STOP

else begin
U := PrefExt(PREF [i],Xj) ∪ PREF [j];
W := SuffExt(SUFF [j],Xi) ∪ SUFF [i];
PREF [k] := compress(U); SUFF [k] := compress(W );
end

Let k be the first position in PREF [i], then all other positions in PREF [i] are of the form k + p′,
where p′ is a period of P [1 . . . k]. Hence Lemma 2 implies directly the following fact.

Lemma 4 The sets SUFF [i] and PREF [j] are succinct, for any 1 ≤ i, j ≤ n.

For a sequence of long strings γ = X1, . . . ,Xp define ν(γ) = ν(X1)ν(X2) . . . ν(Xp). We omit the proof
of the following fact. The proof employs the algorithm from [6] as a subroutine, and a kind of binary
search in [1 . . . N ]

Lemma 5 (subword-equality)
(a) For two sequences of long strings γ1 = X1, . . . ,Xp and γ2 = Y1, . . . ,Yq we can test equality
ν(γ1) = ν(γ2) in polynomial time with respect to the total size of all Xi’s and Yj’s.
(b) For two long strings X ,Y and integers i, j, k, l we can test the equality X [i..j] = Y[k..l], and find
the first mismatch (if there is any) in polynomial time with respect to the size of description.

Let us call the algorithms implied by the lemma the equality-test algorithms.
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Figure 1: The operation PrefExt(S, W ), where S = {|x0|, |x1|, . . . , |x6|}.

Our key lemma says that the operations PrefExt and SuffExt are feasible. Consider only the first
of them, the second one is symmetric. We consider a set S which consists of one linear set. If there
are polynomially many linear set-components of S, we deal with each of them separately.

Lemma 6 (key lemma) Assume W is a long word, and S = {t0, t1, . . . , ts} ⊆ [1 . . . k] is a linear set
given by its succinct representation, where t0 = k and strings xi = P [1 . . . ti], 0 ≤ i ≤ s, are suffixes
of P [1 . . . k]. Then the representation of PrefExt(S, W ) can be computed in polynomial time.

Proof. Assume the sequence t0, t1, . . . , ts is decreasing. We need to compute all possible continuation
of xi’s in P which match W , see Figure 1. Denote yi = P [1..|xi| + |W |] and Z = P [1..k] · W .
Hence our aim is to find all i’s such that yi is a suffix of Z, (0 ≤ i ≤ s). We call such i’s good
indices. The first mismatch to the period p in a string x is the first position (if there is any) such
that x[mismatch] 6= x[mismatch − p]. We can compute the first mismatch using an equality-test
algorithm from Lemma 5. There are four basic cases:

Case A: there is no mismatch in Z but there is a mismatch in y0.
Then good indices are all i ≥ r, where r is the first index such that yr contains no mismatch
at all. We have r = 3 in Figure 2 (case A).

Case B: there is a mismatch in Z and y0.
Then the only possible good index i is such that the first mismatch in yi is exactly over the
first mismatch in Z. See Figure 2 (case B), where the only good index is i = 2. We can easily
calculate such i, it is also possible that there is no good i in this case.

Case C: there is no mismatch in Z or y0.
Then all indices i are good.

Case D: there is a mismatch in Z but not in y0.
Then none of indices i is good.

In this way we compute the set of good indices. Observe that it consists of a subset of consecutive
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y1
y2

y3
y4

y5

y0

WP[1..k]

mismatch
to the period

Case A

y0
y1

y2
y3

y4
y5

WP[1..k]

Case B

Figure 2: Two cases: Z = P [1..k] ·W has (has no) mismatch, yi = P [1..|Xi|+ |W |].

indices from the set S. So the corresponding set (the required output) of integers {|yi| : i is a good
index } is linear. This completes the proof.

If the sets SUFF [j],PREF [j] has been already computed by the algorithm, then each of them
consists of a polynomial number of linear sets, for j < i. Hence we can compute the sets PREF [i]
and SUFF [i] in polynomial time using polynomially many time the algorithm from Lemma 6 to each
of these linear sets. In this way we have shown that the algorithm PATTERN MATCHING works
in polynomial time. This completes the proof of our main result (Theorem 1).

As a side effect of our pattern-matching algorithm we can compute the set of all periods for
strings with short description.

Theorem 2 Assume X is a string given by its description of size n. Then we can compute in
polynomial time a polynomial size representation of set Periods(ν(X )). The representation consists
of a linear number of linear sets.

Proof. Use the algorithm PATTERN MATCHING with the long pattern P = X and the long text
T = X . As a side effect we compute all suffixes of T which are prefixes of P. This determines easily
all periods.
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4 An NP-Complete Version of Pattern-Matching

We start with a problem which has a particularly simple polynomial time algorithm, next we show
that if we extend this problem then it becomes NP -complete.

The pattern–matching algorithm is much simpler if the pattern P is a short word of length
m = O(n), where n is the descriptive size of the long text T . Let Xi be the variables of a program
describing T .

Denote ShortVar = {Xi : |ν(Xi)| ≤ m}. For each variable Xi ∈ ShortVar we can compute
its value by simply simulating the given straight-line program. We need O(n ·m) time for all Xi’s
together.

The algorithm which looks for the short pattern P by searching only inside all words Xi (incor-
rectly assuming the pattern is contained totally in some of Xi’s) is incorrect.

For a language L over the alphabet ShortVar define ν(L) = {ν(γ) : γ ∈ L}.

Lemma 7 Assume a (short) word P is of the real size m = O(n). Then there is a nondeterministic
finite automaton A accepting a language L over ShortVar such that:

the pattern P occurs in T iff P ∈ ν(L).

The constructed nondeterministic automaton A has O(n) states.

Proof. We omit the proof.

We can replace each edge labeled Xi of the automaton A from the lemma above by |ν(Xi)| edges
“spelling” the word ν(Xi). Then the automaton grows by a factor O(m). The new automaton A′

has the size O(n2). It can be applied to test if P occurs in T by simulating A′ on P . A standard
method can be used to test if a nondeterministic automaton accepts a text. This proves the following
theorem.

Theorem 3 Assume we have a (short) pattern P given explicitly of size m = O(n) and a string T
given by its description of size n. Then we can test if P occurs in T in O(n3) time.

We show that the automata theoretic approach which was used above (and which corresponds
to regular expressions) does not work if the pattern is a long string.

Let Var be a set of variables in some straight-line program of length n, and P be a long pattern
(given by a straight-line program of length m ≤ n). We consider the regular-expression-matching
problem for shortly described strings defined as follows:

given a regular expression W over Var of size O(n)
test if ν(P) ∈ ν(W ),
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where ν(W ) = ν(L), and L is the language described by expression W .

Theorem 4 The regular-expression-matching problem for shortly described strings is NP-complete,
even if expressions do not contain operation ∗, nor empty strings and the alphabet Σ (for strings
which are values of variables) is unary.

Proof. The proof is a reduction from the SUBSET SUM problem defined as follows:

Input instance: Finite set A = {a1, a2, . . . , an} of integers and an integer K. The size of the input is
the number of bits needed for the description.

Question: Is there a subset A′ ⊆ A such that the sum of the elements in A′ is exactly K?

The problem SUBSET SUM is NP-complete, see [3], and [2], pp. 223. We can construct easily
a straight-line program such that ν(Xi) = 1ai and P = 1K . Then the SUBSET SUM problem is
reduced to the membership:

ν(P) ∈ ν((X1 ∪ ε) · (X2 ∪ ε) · · · (Xn ∪ ε)).

The empty string ε can be easily eliminated by rescaling numbers and replacing ε by a single letter 1.
This completes the proof.
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